nfsd4: typo logical vs bitwise negate for want_mask
[linux-btrfs-devel.git] / arch / mips / cavium-octeon / octeon-irq.c
blobffd4ae660f792461015be0f1d7ceb2dec7184dea
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * Copyright (C) 2004-2008, 2009, 2010, 2011 Cavium Networks
7 */
9 #include <linux/interrupt.h>
10 #include <linux/bitops.h>
11 #include <linux/percpu.h>
12 #include <linux/irq.h>
13 #include <linux/smp.h>
15 #include <asm/octeon/octeon.h>
17 static DEFINE_RAW_SPINLOCK(octeon_irq_ciu0_lock);
18 static DEFINE_RAW_SPINLOCK(octeon_irq_ciu1_lock);
20 static DEFINE_PER_CPU(unsigned long, octeon_irq_ciu0_en_mirror);
21 static DEFINE_PER_CPU(unsigned long, octeon_irq_ciu1_en_mirror);
23 static __read_mostly u8 octeon_irq_ciu_to_irq[8][64];
25 union octeon_ciu_chip_data {
26 void *p;
27 unsigned long l;
28 struct {
29 unsigned int line:6;
30 unsigned int bit:6;
31 } s;
34 struct octeon_core_chip_data {
35 struct mutex core_irq_mutex;
36 bool current_en;
37 bool desired_en;
38 u8 bit;
41 #define MIPS_CORE_IRQ_LINES 8
43 static struct octeon_core_chip_data octeon_irq_core_chip_data[MIPS_CORE_IRQ_LINES];
45 static void __init octeon_irq_set_ciu_mapping(int irq, int line, int bit,
46 struct irq_chip *chip,
47 irq_flow_handler_t handler)
49 union octeon_ciu_chip_data cd;
51 irq_set_chip_and_handler(irq, chip, handler);
53 cd.l = 0;
54 cd.s.line = line;
55 cd.s.bit = bit;
57 irq_set_chip_data(irq, cd.p);
58 octeon_irq_ciu_to_irq[line][bit] = irq;
61 static int octeon_coreid_for_cpu(int cpu)
63 #ifdef CONFIG_SMP
64 return cpu_logical_map(cpu);
65 #else
66 return cvmx_get_core_num();
67 #endif
70 static int octeon_cpu_for_coreid(int coreid)
72 #ifdef CONFIG_SMP
73 return cpu_number_map(coreid);
74 #else
75 return smp_processor_id();
76 #endif
79 static void octeon_irq_core_ack(struct irq_data *data)
81 struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
82 unsigned int bit = cd->bit;
85 * We don't need to disable IRQs to make these atomic since
86 * they are already disabled earlier in the low level
87 * interrupt code.
89 clear_c0_status(0x100 << bit);
90 /* The two user interrupts must be cleared manually. */
91 if (bit < 2)
92 clear_c0_cause(0x100 << bit);
95 static void octeon_irq_core_eoi(struct irq_data *data)
97 struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
100 * We don't need to disable IRQs to make these atomic since
101 * they are already disabled earlier in the low level
102 * interrupt code.
104 set_c0_status(0x100 << cd->bit);
107 static void octeon_irq_core_set_enable_local(void *arg)
109 struct irq_data *data = arg;
110 struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
111 unsigned int mask = 0x100 << cd->bit;
114 * Interrupts are already disabled, so these are atomic.
116 if (cd->desired_en)
117 set_c0_status(mask);
118 else
119 clear_c0_status(mask);
123 static void octeon_irq_core_disable(struct irq_data *data)
125 struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
126 cd->desired_en = false;
129 static void octeon_irq_core_enable(struct irq_data *data)
131 struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
132 cd->desired_en = true;
135 static void octeon_irq_core_bus_lock(struct irq_data *data)
137 struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
139 mutex_lock(&cd->core_irq_mutex);
142 static void octeon_irq_core_bus_sync_unlock(struct irq_data *data)
144 struct octeon_core_chip_data *cd = irq_data_get_irq_chip_data(data);
146 if (cd->desired_en != cd->current_en) {
147 on_each_cpu(octeon_irq_core_set_enable_local, data, 1);
149 cd->current_en = cd->desired_en;
152 mutex_unlock(&cd->core_irq_mutex);
155 static struct irq_chip octeon_irq_chip_core = {
156 .name = "Core",
157 .irq_enable = octeon_irq_core_enable,
158 .irq_disable = octeon_irq_core_disable,
159 .irq_ack = octeon_irq_core_ack,
160 .irq_eoi = octeon_irq_core_eoi,
161 .irq_bus_lock = octeon_irq_core_bus_lock,
162 .irq_bus_sync_unlock = octeon_irq_core_bus_sync_unlock,
164 .irq_cpu_online = octeon_irq_core_eoi,
165 .irq_cpu_offline = octeon_irq_core_ack,
166 .flags = IRQCHIP_ONOFFLINE_ENABLED,
169 static void __init octeon_irq_init_core(void)
171 int i;
172 int irq;
173 struct octeon_core_chip_data *cd;
175 for (i = 0; i < MIPS_CORE_IRQ_LINES; i++) {
176 cd = &octeon_irq_core_chip_data[i];
177 cd->current_en = false;
178 cd->desired_en = false;
179 cd->bit = i;
180 mutex_init(&cd->core_irq_mutex);
182 irq = OCTEON_IRQ_SW0 + i;
183 switch (irq) {
184 case OCTEON_IRQ_TIMER:
185 case OCTEON_IRQ_SW0:
186 case OCTEON_IRQ_SW1:
187 case OCTEON_IRQ_5:
188 case OCTEON_IRQ_PERF:
189 irq_set_chip_data(irq, cd);
190 irq_set_chip_and_handler(irq, &octeon_irq_chip_core,
191 handle_percpu_irq);
192 break;
193 default:
194 break;
199 static int next_cpu_for_irq(struct irq_data *data)
202 #ifdef CONFIG_SMP
203 int cpu;
204 int weight = cpumask_weight(data->affinity);
206 if (weight > 1) {
207 cpu = smp_processor_id();
208 for (;;) {
209 cpu = cpumask_next(cpu, data->affinity);
210 if (cpu >= nr_cpu_ids) {
211 cpu = -1;
212 continue;
213 } else if (cpumask_test_cpu(cpu, cpu_online_mask)) {
214 break;
217 } else if (weight == 1) {
218 cpu = cpumask_first(data->affinity);
219 } else {
220 cpu = smp_processor_id();
222 return cpu;
223 #else
224 return smp_processor_id();
225 #endif
228 static void octeon_irq_ciu_enable(struct irq_data *data)
230 int cpu = next_cpu_for_irq(data);
231 int coreid = octeon_coreid_for_cpu(cpu);
232 unsigned long *pen;
233 unsigned long flags;
234 union octeon_ciu_chip_data cd;
236 cd.p = irq_data_get_irq_chip_data(data);
238 if (cd.s.line == 0) {
239 raw_spin_lock_irqsave(&octeon_irq_ciu0_lock, flags);
240 pen = &per_cpu(octeon_irq_ciu0_en_mirror, cpu);
241 set_bit(cd.s.bit, pen);
242 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), *pen);
243 raw_spin_unlock_irqrestore(&octeon_irq_ciu0_lock, flags);
244 } else {
245 raw_spin_lock_irqsave(&octeon_irq_ciu1_lock, flags);
246 pen = &per_cpu(octeon_irq_ciu1_en_mirror, cpu);
247 set_bit(cd.s.bit, pen);
248 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), *pen);
249 raw_spin_unlock_irqrestore(&octeon_irq_ciu1_lock, flags);
253 static void octeon_irq_ciu_enable_local(struct irq_data *data)
255 unsigned long *pen;
256 unsigned long flags;
257 union octeon_ciu_chip_data cd;
259 cd.p = irq_data_get_irq_chip_data(data);
261 if (cd.s.line == 0) {
262 raw_spin_lock_irqsave(&octeon_irq_ciu0_lock, flags);
263 pen = &__get_cpu_var(octeon_irq_ciu0_en_mirror);
264 set_bit(cd.s.bit, pen);
265 cvmx_write_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2), *pen);
266 raw_spin_unlock_irqrestore(&octeon_irq_ciu0_lock, flags);
267 } else {
268 raw_spin_lock_irqsave(&octeon_irq_ciu1_lock, flags);
269 pen = &__get_cpu_var(octeon_irq_ciu1_en_mirror);
270 set_bit(cd.s.bit, pen);
271 cvmx_write_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1), *pen);
272 raw_spin_unlock_irqrestore(&octeon_irq_ciu1_lock, flags);
276 static void octeon_irq_ciu_disable_local(struct irq_data *data)
278 unsigned long *pen;
279 unsigned long flags;
280 union octeon_ciu_chip_data cd;
282 cd.p = irq_data_get_irq_chip_data(data);
284 if (cd.s.line == 0) {
285 raw_spin_lock_irqsave(&octeon_irq_ciu0_lock, flags);
286 pen = &__get_cpu_var(octeon_irq_ciu0_en_mirror);
287 clear_bit(cd.s.bit, pen);
288 cvmx_write_csr(CVMX_CIU_INTX_EN0(cvmx_get_core_num() * 2), *pen);
289 raw_spin_unlock_irqrestore(&octeon_irq_ciu0_lock, flags);
290 } else {
291 raw_spin_lock_irqsave(&octeon_irq_ciu1_lock, flags);
292 pen = &__get_cpu_var(octeon_irq_ciu1_en_mirror);
293 clear_bit(cd.s.bit, pen);
294 cvmx_write_csr(CVMX_CIU_INTX_EN1(cvmx_get_core_num() * 2 + 1), *pen);
295 raw_spin_unlock_irqrestore(&octeon_irq_ciu1_lock, flags);
299 static void octeon_irq_ciu_disable_all(struct irq_data *data)
301 unsigned long flags;
302 unsigned long *pen;
303 int cpu;
304 union octeon_ciu_chip_data cd;
306 wmb(); /* Make sure flag changes arrive before register updates. */
308 cd.p = irq_data_get_irq_chip_data(data);
310 if (cd.s.line == 0) {
311 raw_spin_lock_irqsave(&octeon_irq_ciu0_lock, flags);
312 for_each_online_cpu(cpu) {
313 int coreid = octeon_coreid_for_cpu(cpu);
314 pen = &per_cpu(octeon_irq_ciu0_en_mirror, cpu);
315 clear_bit(cd.s.bit, pen);
316 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), *pen);
318 raw_spin_unlock_irqrestore(&octeon_irq_ciu0_lock, flags);
319 } else {
320 raw_spin_lock_irqsave(&octeon_irq_ciu1_lock, flags);
321 for_each_online_cpu(cpu) {
322 int coreid = octeon_coreid_for_cpu(cpu);
323 pen = &per_cpu(octeon_irq_ciu1_en_mirror, cpu);
324 clear_bit(cd.s.bit, pen);
325 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), *pen);
327 raw_spin_unlock_irqrestore(&octeon_irq_ciu1_lock, flags);
331 static void octeon_irq_ciu_enable_all(struct irq_data *data)
333 unsigned long flags;
334 unsigned long *pen;
335 int cpu;
336 union octeon_ciu_chip_data cd;
338 cd.p = irq_data_get_irq_chip_data(data);
340 if (cd.s.line == 0) {
341 raw_spin_lock_irqsave(&octeon_irq_ciu0_lock, flags);
342 for_each_online_cpu(cpu) {
343 int coreid = octeon_coreid_for_cpu(cpu);
344 pen = &per_cpu(octeon_irq_ciu0_en_mirror, cpu);
345 set_bit(cd.s.bit, pen);
346 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), *pen);
348 raw_spin_unlock_irqrestore(&octeon_irq_ciu0_lock, flags);
349 } else {
350 raw_spin_lock_irqsave(&octeon_irq_ciu1_lock, flags);
351 for_each_online_cpu(cpu) {
352 int coreid = octeon_coreid_for_cpu(cpu);
353 pen = &per_cpu(octeon_irq_ciu1_en_mirror, cpu);
354 set_bit(cd.s.bit, pen);
355 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), *pen);
357 raw_spin_unlock_irqrestore(&octeon_irq_ciu1_lock, flags);
362 * Enable the irq on the next core in the affinity set for chips that
363 * have the EN*_W1{S,C} registers.
365 static void octeon_irq_ciu_enable_v2(struct irq_data *data)
367 u64 mask;
368 int cpu = next_cpu_for_irq(data);
369 union octeon_ciu_chip_data cd;
371 cd.p = irq_data_get_irq_chip_data(data);
372 mask = 1ull << (cd.s.bit);
375 * Called under the desc lock, so these should never get out
376 * of sync.
378 if (cd.s.line == 0) {
379 int index = octeon_coreid_for_cpu(cpu) * 2;
380 set_bit(cd.s.bit, &per_cpu(octeon_irq_ciu0_en_mirror, cpu));
381 cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask);
382 } else {
383 int index = octeon_coreid_for_cpu(cpu) * 2 + 1;
384 set_bit(cd.s.bit, &per_cpu(octeon_irq_ciu1_en_mirror, cpu));
385 cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask);
390 * Enable the irq on the current CPU for chips that
391 * have the EN*_W1{S,C} registers.
393 static void octeon_irq_ciu_enable_local_v2(struct irq_data *data)
395 u64 mask;
396 union octeon_ciu_chip_data cd;
398 cd.p = irq_data_get_irq_chip_data(data);
399 mask = 1ull << (cd.s.bit);
401 if (cd.s.line == 0) {
402 int index = cvmx_get_core_num() * 2;
403 set_bit(cd.s.bit, &__get_cpu_var(octeon_irq_ciu0_en_mirror));
404 cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask);
405 } else {
406 int index = cvmx_get_core_num() * 2 + 1;
407 set_bit(cd.s.bit, &__get_cpu_var(octeon_irq_ciu1_en_mirror));
408 cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask);
412 static void octeon_irq_ciu_disable_local_v2(struct irq_data *data)
414 u64 mask;
415 union octeon_ciu_chip_data cd;
417 cd.p = irq_data_get_irq_chip_data(data);
418 mask = 1ull << (cd.s.bit);
420 if (cd.s.line == 0) {
421 int index = cvmx_get_core_num() * 2;
422 clear_bit(cd.s.bit, &__get_cpu_var(octeon_irq_ciu0_en_mirror));
423 cvmx_write_csr(CVMX_CIU_INTX_EN0_W1C(index), mask);
424 } else {
425 int index = cvmx_get_core_num() * 2 + 1;
426 clear_bit(cd.s.bit, &__get_cpu_var(octeon_irq_ciu1_en_mirror));
427 cvmx_write_csr(CVMX_CIU_INTX_EN1_W1C(index), mask);
432 * Write to the W1C bit in CVMX_CIU_INTX_SUM0 to clear the irq.
434 static void octeon_irq_ciu_ack(struct irq_data *data)
436 u64 mask;
437 union octeon_ciu_chip_data cd;
439 cd.p = data->chip_data;
440 mask = 1ull << (cd.s.bit);
442 if (cd.s.line == 0) {
443 int index = cvmx_get_core_num() * 2;
444 cvmx_write_csr(CVMX_CIU_INTX_SUM0(index), mask);
445 } else {
446 cvmx_write_csr(CVMX_CIU_INT_SUM1, mask);
451 * Disable the irq on the all cores for chips that have the EN*_W1{S,C}
452 * registers.
454 static void octeon_irq_ciu_disable_all_v2(struct irq_data *data)
456 int cpu;
457 u64 mask;
458 union octeon_ciu_chip_data cd;
460 wmb(); /* Make sure flag changes arrive before register updates. */
462 cd.p = data->chip_data;
463 mask = 1ull << (cd.s.bit);
465 if (cd.s.line == 0) {
466 for_each_online_cpu(cpu) {
467 int index = octeon_coreid_for_cpu(cpu) * 2;
468 clear_bit(cd.s.bit, &per_cpu(octeon_irq_ciu0_en_mirror, cpu));
469 cvmx_write_csr(CVMX_CIU_INTX_EN0_W1C(index), mask);
471 } else {
472 for_each_online_cpu(cpu) {
473 int index = octeon_coreid_for_cpu(cpu) * 2 + 1;
474 clear_bit(cd.s.bit, &per_cpu(octeon_irq_ciu1_en_mirror, cpu));
475 cvmx_write_csr(CVMX_CIU_INTX_EN1_W1C(index), mask);
481 * Enable the irq on the all cores for chips that have the EN*_W1{S,C}
482 * registers.
484 static void octeon_irq_ciu_enable_all_v2(struct irq_data *data)
486 int cpu;
487 u64 mask;
488 union octeon_ciu_chip_data cd;
490 cd.p = data->chip_data;
491 mask = 1ull << (cd.s.bit);
493 if (cd.s.line == 0) {
494 for_each_online_cpu(cpu) {
495 int index = octeon_coreid_for_cpu(cpu) * 2;
496 set_bit(cd.s.bit, &per_cpu(octeon_irq_ciu0_en_mirror, cpu));
497 cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask);
499 } else {
500 for_each_online_cpu(cpu) {
501 int index = octeon_coreid_for_cpu(cpu) * 2 + 1;
502 set_bit(cd.s.bit, &per_cpu(octeon_irq_ciu1_en_mirror, cpu));
503 cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask);
508 #ifdef CONFIG_SMP
510 static void octeon_irq_cpu_offline_ciu(struct irq_data *data)
512 int cpu = smp_processor_id();
513 cpumask_t new_affinity;
515 if (!cpumask_test_cpu(cpu, data->affinity))
516 return;
518 if (cpumask_weight(data->affinity) > 1) {
520 * It has multi CPU affinity, just remove this CPU
521 * from the affinity set.
523 cpumask_copy(&new_affinity, data->affinity);
524 cpumask_clear_cpu(cpu, &new_affinity);
525 } else {
526 /* Otherwise, put it on lowest numbered online CPU. */
527 cpumask_clear(&new_affinity);
528 cpumask_set_cpu(cpumask_first(cpu_online_mask), &new_affinity);
530 __irq_set_affinity_locked(data, &new_affinity);
533 static int octeon_irq_ciu_set_affinity(struct irq_data *data,
534 const struct cpumask *dest, bool force)
536 int cpu;
537 bool enable_one = !irqd_irq_disabled(data) && !irqd_irq_masked(data);
538 unsigned long flags;
539 union octeon_ciu_chip_data cd;
541 cd.p = data->chip_data;
544 * For non-v2 CIU, we will allow only single CPU affinity.
545 * This removes the need to do locking in the .ack/.eoi
546 * functions.
548 if (cpumask_weight(dest) != 1)
549 return -EINVAL;
551 if (!enable_one)
552 return 0;
554 if (cd.s.line == 0) {
555 raw_spin_lock_irqsave(&octeon_irq_ciu0_lock, flags);
556 for_each_online_cpu(cpu) {
557 int coreid = octeon_coreid_for_cpu(cpu);
558 unsigned long *pen = &per_cpu(octeon_irq_ciu0_en_mirror, cpu);
560 if (cpumask_test_cpu(cpu, dest) && enable_one) {
561 enable_one = false;
562 set_bit(cd.s.bit, pen);
563 } else {
564 clear_bit(cd.s.bit, pen);
566 cvmx_write_csr(CVMX_CIU_INTX_EN0(coreid * 2), *pen);
568 raw_spin_unlock_irqrestore(&octeon_irq_ciu0_lock, flags);
569 } else {
570 raw_spin_lock_irqsave(&octeon_irq_ciu1_lock, flags);
571 for_each_online_cpu(cpu) {
572 int coreid = octeon_coreid_for_cpu(cpu);
573 unsigned long *pen = &per_cpu(octeon_irq_ciu1_en_mirror, cpu);
575 if (cpumask_test_cpu(cpu, dest) && enable_one) {
576 enable_one = false;
577 set_bit(cd.s.bit, pen);
578 } else {
579 clear_bit(cd.s.bit, pen);
581 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), *pen);
583 raw_spin_unlock_irqrestore(&octeon_irq_ciu1_lock, flags);
585 return 0;
589 * Set affinity for the irq for chips that have the EN*_W1{S,C}
590 * registers.
592 static int octeon_irq_ciu_set_affinity_v2(struct irq_data *data,
593 const struct cpumask *dest,
594 bool force)
596 int cpu;
597 bool enable_one = !irqd_irq_disabled(data) && !irqd_irq_masked(data);
598 u64 mask;
599 union octeon_ciu_chip_data cd;
601 if (!enable_one)
602 return 0;
604 cd.p = data->chip_data;
605 mask = 1ull << cd.s.bit;
607 if (cd.s.line == 0) {
608 for_each_online_cpu(cpu) {
609 unsigned long *pen = &per_cpu(octeon_irq_ciu0_en_mirror, cpu);
610 int index = octeon_coreid_for_cpu(cpu) * 2;
611 if (cpumask_test_cpu(cpu, dest) && enable_one) {
612 enable_one = false;
613 set_bit(cd.s.bit, pen);
614 cvmx_write_csr(CVMX_CIU_INTX_EN0_W1S(index), mask);
615 } else {
616 clear_bit(cd.s.bit, pen);
617 cvmx_write_csr(CVMX_CIU_INTX_EN0_W1C(index), mask);
620 } else {
621 for_each_online_cpu(cpu) {
622 unsigned long *pen = &per_cpu(octeon_irq_ciu1_en_mirror, cpu);
623 int index = octeon_coreid_for_cpu(cpu) * 2 + 1;
624 if (cpumask_test_cpu(cpu, dest) && enable_one) {
625 enable_one = false;
626 set_bit(cd.s.bit, pen);
627 cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(index), mask);
628 } else {
629 clear_bit(cd.s.bit, pen);
630 cvmx_write_csr(CVMX_CIU_INTX_EN1_W1C(index), mask);
634 return 0;
636 #endif
639 * The v1 CIU code already masks things, so supply a dummy version to
640 * the core chip code.
642 static void octeon_irq_dummy_mask(struct irq_data *data)
647 * Newer octeon chips have support for lockless CIU operation.
649 static struct irq_chip octeon_irq_chip_ciu_v2 = {
650 .name = "CIU",
651 .irq_enable = octeon_irq_ciu_enable_v2,
652 .irq_disable = octeon_irq_ciu_disable_all_v2,
653 .irq_mask = octeon_irq_ciu_disable_local_v2,
654 .irq_unmask = octeon_irq_ciu_enable_v2,
655 #ifdef CONFIG_SMP
656 .irq_set_affinity = octeon_irq_ciu_set_affinity_v2,
657 .irq_cpu_offline = octeon_irq_cpu_offline_ciu,
658 #endif
661 static struct irq_chip octeon_irq_chip_ciu_edge_v2 = {
662 .name = "CIU-E",
663 .irq_enable = octeon_irq_ciu_enable_v2,
664 .irq_disable = octeon_irq_ciu_disable_all_v2,
665 .irq_ack = octeon_irq_ciu_ack,
666 .irq_mask = octeon_irq_ciu_disable_local_v2,
667 .irq_unmask = octeon_irq_ciu_enable_v2,
668 #ifdef CONFIG_SMP
669 .irq_set_affinity = octeon_irq_ciu_set_affinity_v2,
670 .irq_cpu_offline = octeon_irq_cpu_offline_ciu,
671 #endif
674 static struct irq_chip octeon_irq_chip_ciu = {
675 .name = "CIU",
676 .irq_enable = octeon_irq_ciu_enable,
677 .irq_disable = octeon_irq_ciu_disable_all,
678 .irq_mask = octeon_irq_dummy_mask,
679 #ifdef CONFIG_SMP
680 .irq_set_affinity = octeon_irq_ciu_set_affinity,
681 .irq_cpu_offline = octeon_irq_cpu_offline_ciu,
682 #endif
685 static struct irq_chip octeon_irq_chip_ciu_edge = {
686 .name = "CIU-E",
687 .irq_enable = octeon_irq_ciu_enable,
688 .irq_disable = octeon_irq_ciu_disable_all,
689 .irq_mask = octeon_irq_dummy_mask,
690 .irq_ack = octeon_irq_ciu_ack,
691 #ifdef CONFIG_SMP
692 .irq_set_affinity = octeon_irq_ciu_set_affinity,
693 .irq_cpu_offline = octeon_irq_cpu_offline_ciu,
694 #endif
697 /* The mbox versions don't do any affinity or round-robin. */
698 static struct irq_chip octeon_irq_chip_ciu_mbox_v2 = {
699 .name = "CIU-M",
700 .irq_enable = octeon_irq_ciu_enable_all_v2,
701 .irq_disable = octeon_irq_ciu_disable_all_v2,
702 .irq_ack = octeon_irq_ciu_disable_local_v2,
703 .irq_eoi = octeon_irq_ciu_enable_local_v2,
705 .irq_cpu_online = octeon_irq_ciu_enable_local_v2,
706 .irq_cpu_offline = octeon_irq_ciu_disable_local_v2,
707 .flags = IRQCHIP_ONOFFLINE_ENABLED,
710 static struct irq_chip octeon_irq_chip_ciu_mbox = {
711 .name = "CIU-M",
712 .irq_enable = octeon_irq_ciu_enable_all,
713 .irq_disable = octeon_irq_ciu_disable_all,
715 .irq_cpu_online = octeon_irq_ciu_enable_local,
716 .irq_cpu_offline = octeon_irq_ciu_disable_local,
717 .flags = IRQCHIP_ONOFFLINE_ENABLED,
721 * Watchdog interrupts are special. They are associated with a single
722 * core, so we hardwire the affinity to that core.
724 static void octeon_irq_ciu_wd_enable(struct irq_data *data)
726 unsigned long flags;
727 unsigned long *pen;
728 int coreid = data->irq - OCTEON_IRQ_WDOG0; /* Bit 0-63 of EN1 */
729 int cpu = octeon_cpu_for_coreid(coreid);
731 raw_spin_lock_irqsave(&octeon_irq_ciu1_lock, flags);
732 pen = &per_cpu(octeon_irq_ciu1_en_mirror, cpu);
733 set_bit(coreid, pen);
734 cvmx_write_csr(CVMX_CIU_INTX_EN1(coreid * 2 + 1), *pen);
735 raw_spin_unlock_irqrestore(&octeon_irq_ciu1_lock, flags);
739 * Watchdog interrupts are special. They are associated with a single
740 * core, so we hardwire the affinity to that core.
742 static void octeon_irq_ciu1_wd_enable_v2(struct irq_data *data)
744 int coreid = data->irq - OCTEON_IRQ_WDOG0;
745 int cpu = octeon_cpu_for_coreid(coreid);
747 set_bit(coreid, &per_cpu(octeon_irq_ciu1_en_mirror, cpu));
748 cvmx_write_csr(CVMX_CIU_INTX_EN1_W1S(coreid * 2 + 1), 1ull << coreid);
752 static struct irq_chip octeon_irq_chip_ciu_wd_v2 = {
753 .name = "CIU-W",
754 .irq_enable = octeon_irq_ciu1_wd_enable_v2,
755 .irq_disable = octeon_irq_ciu_disable_all_v2,
756 .irq_mask = octeon_irq_ciu_disable_local_v2,
757 .irq_unmask = octeon_irq_ciu_enable_local_v2,
760 static struct irq_chip octeon_irq_chip_ciu_wd = {
761 .name = "CIU-W",
762 .irq_enable = octeon_irq_ciu_wd_enable,
763 .irq_disable = octeon_irq_ciu_disable_all,
764 .irq_mask = octeon_irq_dummy_mask,
767 static void octeon_irq_ip2_v1(void)
769 const unsigned long core_id = cvmx_get_core_num();
770 u64 ciu_sum = cvmx_read_csr(CVMX_CIU_INTX_SUM0(core_id * 2));
772 ciu_sum &= __get_cpu_var(octeon_irq_ciu0_en_mirror);
773 clear_c0_status(STATUSF_IP2);
774 if (likely(ciu_sum)) {
775 int bit = fls64(ciu_sum) - 1;
776 int irq = octeon_irq_ciu_to_irq[0][bit];
777 if (likely(irq))
778 do_IRQ(irq);
779 else
780 spurious_interrupt();
781 } else {
782 spurious_interrupt();
784 set_c0_status(STATUSF_IP2);
787 static void octeon_irq_ip2_v2(void)
789 const unsigned long core_id = cvmx_get_core_num();
790 u64 ciu_sum = cvmx_read_csr(CVMX_CIU_INTX_SUM0(core_id * 2));
792 ciu_sum &= __get_cpu_var(octeon_irq_ciu0_en_mirror);
793 if (likely(ciu_sum)) {
794 int bit = fls64(ciu_sum) - 1;
795 int irq = octeon_irq_ciu_to_irq[0][bit];
796 if (likely(irq))
797 do_IRQ(irq);
798 else
799 spurious_interrupt();
800 } else {
801 spurious_interrupt();
804 static void octeon_irq_ip3_v1(void)
806 u64 ciu_sum = cvmx_read_csr(CVMX_CIU_INT_SUM1);
808 ciu_sum &= __get_cpu_var(octeon_irq_ciu1_en_mirror);
809 clear_c0_status(STATUSF_IP3);
810 if (likely(ciu_sum)) {
811 int bit = fls64(ciu_sum) - 1;
812 int irq = octeon_irq_ciu_to_irq[1][bit];
813 if (likely(irq))
814 do_IRQ(irq);
815 else
816 spurious_interrupt();
817 } else {
818 spurious_interrupt();
820 set_c0_status(STATUSF_IP3);
823 static void octeon_irq_ip3_v2(void)
825 u64 ciu_sum = cvmx_read_csr(CVMX_CIU_INT_SUM1);
827 ciu_sum &= __get_cpu_var(octeon_irq_ciu1_en_mirror);
828 if (likely(ciu_sum)) {
829 int bit = fls64(ciu_sum) - 1;
830 int irq = octeon_irq_ciu_to_irq[1][bit];
831 if (likely(irq))
832 do_IRQ(irq);
833 else
834 spurious_interrupt();
835 } else {
836 spurious_interrupt();
840 static void octeon_irq_ip4_mask(void)
842 clear_c0_status(STATUSF_IP4);
843 spurious_interrupt();
846 static void (*octeon_irq_ip2)(void);
847 static void (*octeon_irq_ip3)(void);
848 static void (*octeon_irq_ip4)(void);
850 void __cpuinitdata (*octeon_irq_setup_secondary)(void);
852 static void __cpuinit octeon_irq_percpu_enable(void)
854 irq_cpu_online();
857 static void __cpuinit octeon_irq_init_ciu_percpu(void)
859 int coreid = cvmx_get_core_num();
861 * Disable All CIU Interrupts. The ones we need will be
862 * enabled later. Read the SUM register so we know the write
863 * completed.
865 cvmx_write_csr(CVMX_CIU_INTX_EN0((coreid * 2)), 0);
866 cvmx_write_csr(CVMX_CIU_INTX_EN0((coreid * 2 + 1)), 0);
867 cvmx_write_csr(CVMX_CIU_INTX_EN1((coreid * 2)), 0);
868 cvmx_write_csr(CVMX_CIU_INTX_EN1((coreid * 2 + 1)), 0);
869 cvmx_read_csr(CVMX_CIU_INTX_SUM0((coreid * 2)));
872 static void __cpuinit octeon_irq_setup_secondary_ciu(void)
875 __get_cpu_var(octeon_irq_ciu0_en_mirror) = 0;
876 __get_cpu_var(octeon_irq_ciu1_en_mirror) = 0;
878 octeon_irq_init_ciu_percpu();
879 octeon_irq_percpu_enable();
881 /* Enable the CIU lines */
882 set_c0_status(STATUSF_IP3 | STATUSF_IP2);
883 clear_c0_status(STATUSF_IP4);
886 static void __init octeon_irq_init_ciu(void)
888 unsigned int i;
889 struct irq_chip *chip;
890 struct irq_chip *chip_edge;
891 struct irq_chip *chip_mbox;
892 struct irq_chip *chip_wd;
894 octeon_irq_init_ciu_percpu();
895 octeon_irq_setup_secondary = octeon_irq_setup_secondary_ciu;
897 if (OCTEON_IS_MODEL(OCTEON_CN58XX_PASS2_X) ||
898 OCTEON_IS_MODEL(OCTEON_CN56XX_PASS2_X) ||
899 OCTEON_IS_MODEL(OCTEON_CN52XX_PASS2_X) ||
900 OCTEON_IS_MODEL(OCTEON_CN6XXX)) {
901 octeon_irq_ip2 = octeon_irq_ip2_v2;
902 octeon_irq_ip3 = octeon_irq_ip3_v2;
903 chip = &octeon_irq_chip_ciu_v2;
904 chip_edge = &octeon_irq_chip_ciu_edge_v2;
905 chip_mbox = &octeon_irq_chip_ciu_mbox_v2;
906 chip_wd = &octeon_irq_chip_ciu_wd_v2;
907 } else {
908 octeon_irq_ip2 = octeon_irq_ip2_v1;
909 octeon_irq_ip3 = octeon_irq_ip3_v1;
910 chip = &octeon_irq_chip_ciu;
911 chip_edge = &octeon_irq_chip_ciu_edge;
912 chip_mbox = &octeon_irq_chip_ciu_mbox;
913 chip_wd = &octeon_irq_chip_ciu_wd;
915 octeon_irq_ip4 = octeon_irq_ip4_mask;
917 /* Mips internal */
918 octeon_irq_init_core();
920 /* CIU_0 */
921 for (i = 0; i < 16; i++)
922 octeon_irq_set_ciu_mapping(i + OCTEON_IRQ_WORKQ0, 0, i + 0, chip, handle_level_irq);
923 for (i = 0; i < 16; i++)
924 octeon_irq_set_ciu_mapping(i + OCTEON_IRQ_GPIO0, 0, i + 16, chip, handle_level_irq);
926 octeon_irq_set_ciu_mapping(OCTEON_IRQ_MBOX0, 0, 32, chip_mbox, handle_percpu_irq);
927 octeon_irq_set_ciu_mapping(OCTEON_IRQ_MBOX1, 0, 33, chip_mbox, handle_percpu_irq);
929 octeon_irq_set_ciu_mapping(OCTEON_IRQ_UART0, 0, 34, chip, handle_level_irq);
930 octeon_irq_set_ciu_mapping(OCTEON_IRQ_UART1, 0, 35, chip, handle_level_irq);
932 for (i = 0; i < 4; i++)
933 octeon_irq_set_ciu_mapping(i + OCTEON_IRQ_PCI_INT0, 0, i + 36, chip, handle_level_irq);
934 for (i = 0; i < 4; i++)
935 octeon_irq_set_ciu_mapping(i + OCTEON_IRQ_PCI_MSI0, 0, i + 40, chip, handle_level_irq);
937 octeon_irq_set_ciu_mapping(OCTEON_IRQ_TWSI, 0, 45, chip, handle_level_irq);
938 octeon_irq_set_ciu_mapping(OCTEON_IRQ_RML, 0, 46, chip, handle_level_irq);
939 octeon_irq_set_ciu_mapping(OCTEON_IRQ_TRACE0, 0, 47, chip, handle_level_irq);
941 for (i = 0; i < 2; i++)
942 octeon_irq_set_ciu_mapping(i + OCTEON_IRQ_GMX_DRP0, 0, i + 48, chip_edge, handle_edge_irq);
944 octeon_irq_set_ciu_mapping(OCTEON_IRQ_IPD_DRP, 0, 50, chip_edge, handle_edge_irq);
945 octeon_irq_set_ciu_mapping(OCTEON_IRQ_KEY_ZERO, 0, 51, chip_edge, handle_edge_irq);
947 for (i = 0; i < 4; i++)
948 octeon_irq_set_ciu_mapping(i + OCTEON_IRQ_TIMER0, 0, i + 52, chip_edge, handle_edge_irq);
950 octeon_irq_set_ciu_mapping(OCTEON_IRQ_USB0, 0, 56, chip, handle_level_irq);
951 octeon_irq_set_ciu_mapping(OCTEON_IRQ_PCM, 0, 57, chip, handle_level_irq);
952 octeon_irq_set_ciu_mapping(OCTEON_IRQ_MPI, 0, 58, chip, handle_level_irq);
953 octeon_irq_set_ciu_mapping(OCTEON_IRQ_TWSI2, 0, 59, chip, handle_level_irq);
954 octeon_irq_set_ciu_mapping(OCTEON_IRQ_POWIQ, 0, 60, chip, handle_level_irq);
955 octeon_irq_set_ciu_mapping(OCTEON_IRQ_IPDPPTHR, 0, 61, chip, handle_level_irq);
956 octeon_irq_set_ciu_mapping(OCTEON_IRQ_MII0, 0, 62, chip, handle_level_irq);
957 octeon_irq_set_ciu_mapping(OCTEON_IRQ_BOOTDMA, 0, 63, chip, handle_level_irq);
959 /* CIU_1 */
960 for (i = 0; i < 16; i++)
961 octeon_irq_set_ciu_mapping(i + OCTEON_IRQ_WDOG0, 1, i + 0, chip_wd, handle_level_irq);
963 octeon_irq_set_ciu_mapping(OCTEON_IRQ_UART2, 1, 16, chip, handle_level_irq);
964 octeon_irq_set_ciu_mapping(OCTEON_IRQ_USB1, 1, 17, chip, handle_level_irq);
965 octeon_irq_set_ciu_mapping(OCTEON_IRQ_MII1, 1, 18, chip, handle_level_irq);
966 octeon_irq_set_ciu_mapping(OCTEON_IRQ_NAND, 1, 19, chip, handle_level_irq);
967 octeon_irq_set_ciu_mapping(OCTEON_IRQ_MIO, 1, 20, chip, handle_level_irq);
968 octeon_irq_set_ciu_mapping(OCTEON_IRQ_IOB, 1, 21, chip, handle_level_irq);
969 octeon_irq_set_ciu_mapping(OCTEON_IRQ_FPA, 1, 22, chip, handle_level_irq);
970 octeon_irq_set_ciu_mapping(OCTEON_IRQ_POW, 1, 23, chip, handle_level_irq);
971 octeon_irq_set_ciu_mapping(OCTEON_IRQ_L2C, 1, 24, chip, handle_level_irq);
972 octeon_irq_set_ciu_mapping(OCTEON_IRQ_IPD, 1, 25, chip, handle_level_irq);
973 octeon_irq_set_ciu_mapping(OCTEON_IRQ_PIP, 1, 26, chip, handle_level_irq);
974 octeon_irq_set_ciu_mapping(OCTEON_IRQ_PKO, 1, 27, chip, handle_level_irq);
975 octeon_irq_set_ciu_mapping(OCTEON_IRQ_ZIP, 1, 28, chip, handle_level_irq);
976 octeon_irq_set_ciu_mapping(OCTEON_IRQ_TIM, 1, 29, chip, handle_level_irq);
977 octeon_irq_set_ciu_mapping(OCTEON_IRQ_RAD, 1, 30, chip, handle_level_irq);
978 octeon_irq_set_ciu_mapping(OCTEON_IRQ_KEY, 1, 31, chip, handle_level_irq);
979 octeon_irq_set_ciu_mapping(OCTEON_IRQ_DFA, 1, 32, chip, handle_level_irq);
980 octeon_irq_set_ciu_mapping(OCTEON_IRQ_USBCTL, 1, 33, chip, handle_level_irq);
981 octeon_irq_set_ciu_mapping(OCTEON_IRQ_SLI, 1, 34, chip, handle_level_irq);
982 octeon_irq_set_ciu_mapping(OCTEON_IRQ_DPI, 1, 35, chip, handle_level_irq);
984 octeon_irq_set_ciu_mapping(OCTEON_IRQ_AGX0, 1, 36, chip, handle_level_irq);
986 octeon_irq_set_ciu_mapping(OCTEON_IRQ_AGL, 1, 46, chip, handle_level_irq);
988 octeon_irq_set_ciu_mapping(OCTEON_IRQ_PTP, 1, 47, chip_edge, handle_edge_irq);
990 octeon_irq_set_ciu_mapping(OCTEON_IRQ_PEM0, 1, 48, chip, handle_level_irq);
991 octeon_irq_set_ciu_mapping(OCTEON_IRQ_PEM1, 1, 49, chip, handle_level_irq);
992 octeon_irq_set_ciu_mapping(OCTEON_IRQ_SRIO0, 1, 50, chip, handle_level_irq);
993 octeon_irq_set_ciu_mapping(OCTEON_IRQ_SRIO1, 1, 51, chip, handle_level_irq);
994 octeon_irq_set_ciu_mapping(OCTEON_IRQ_LMC0, 1, 52, chip, handle_level_irq);
995 octeon_irq_set_ciu_mapping(OCTEON_IRQ_DFM, 1, 56, chip, handle_level_irq);
996 octeon_irq_set_ciu_mapping(OCTEON_IRQ_RST, 1, 63, chip, handle_level_irq);
998 /* Enable the CIU lines */
999 set_c0_status(STATUSF_IP3 | STATUSF_IP2);
1000 clear_c0_status(STATUSF_IP4);
1003 void __init arch_init_irq(void)
1005 #ifdef CONFIG_SMP
1006 /* Set the default affinity to the boot cpu. */
1007 cpumask_clear(irq_default_affinity);
1008 cpumask_set_cpu(smp_processor_id(), irq_default_affinity);
1009 #endif
1010 octeon_irq_init_ciu();
1013 asmlinkage void plat_irq_dispatch(void)
1015 unsigned long cop0_cause;
1016 unsigned long cop0_status;
1018 while (1) {
1019 cop0_cause = read_c0_cause();
1020 cop0_status = read_c0_status();
1021 cop0_cause &= cop0_status;
1022 cop0_cause &= ST0_IM;
1024 if (unlikely(cop0_cause & STATUSF_IP2))
1025 octeon_irq_ip2();
1026 else if (unlikely(cop0_cause & STATUSF_IP3))
1027 octeon_irq_ip3();
1028 else if (unlikely(cop0_cause & STATUSF_IP4))
1029 octeon_irq_ip4();
1030 else if (likely(cop0_cause))
1031 do_IRQ(fls(cop0_cause) - 9 + MIPS_CPU_IRQ_BASE);
1032 else
1033 break;
1037 #ifdef CONFIG_HOTPLUG_CPU
1039 void fixup_irqs(void)
1041 irq_cpu_offline();
1044 #endif /* CONFIG_HOTPLUG_CPU */