3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/i386/mm/fault.c"
6 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Modified by Cort Dougan and Paul Mackerras.
10 * Modified for PPC64 by Dave Engebretsen (engebret@ibm.com)
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
18 #include <linux/signal.h>
19 #include <linux/sched.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/string.h>
23 #include <linux/types.h>
24 #include <linux/ptrace.h>
25 #include <linux/mman.h>
27 #include <linux/interrupt.h>
28 #include <linux/highmem.h>
29 #include <linux/module.h>
30 #include <linux/kprobes.h>
31 #include <linux/kdebug.h>
32 #include <linux/perf_event.h>
33 #include <linux/magic.h>
34 #include <linux/ratelimit.h>
36 #include <asm/firmware.h>
38 #include <asm/pgtable.h>
40 #include <asm/mmu_context.h>
41 #include <asm/system.h>
42 #include <asm/uaccess.h>
43 #include <asm/tlbflush.h>
44 #include <asm/siginfo.h>
45 #include <mm/mmu_decl.h>
48 static inline int notify_page_fault(struct pt_regs
*regs
)
52 /* kprobe_running() needs smp_processor_id() */
53 if (!user_mode(regs
)) {
55 if (kprobe_running() && kprobe_fault_handler(regs
, 11))
63 static inline int notify_page_fault(struct pt_regs
*regs
)
70 * Check whether the instruction at regs->nip is a store using
71 * an update addressing form which will update r1.
73 static int store_updates_sp(struct pt_regs
*regs
)
77 if (get_user(inst
, (unsigned int __user
*)regs
->nip
))
79 /* check for 1 in the rA field */
80 if (((inst
>> 16) & 0x1f) != 1)
82 /* check major opcode */
90 case 62: /* std or stdu */
91 return (inst
& 3) == 1;
93 /* check minor opcode */
94 switch ((inst
>> 1) & 0x3ff) {
99 case 695: /* stfsux */
100 case 759: /* stfdux */
108 * For 600- and 800-family processors, the error_code parameter is DSISR
109 * for a data fault, SRR1 for an instruction fault. For 400-family processors
110 * the error_code parameter is ESR for a data fault, 0 for an instruction
112 * For 64-bit processors, the error_code parameter is
113 * - DSISR for a non-SLB data access fault,
114 * - SRR1 & 0x08000000 for a non-SLB instruction access fault
117 * The return value is 0 if the fault was handled, or the signal
118 * number if this is a kernel fault that can't be handled here.
120 int __kprobes
do_page_fault(struct pt_regs
*regs
, unsigned long address
,
121 unsigned long error_code
)
123 struct vm_area_struct
* vma
;
124 struct mm_struct
*mm
= current
->mm
;
126 int code
= SEGV_MAPERR
;
127 int is_write
= 0, ret
;
128 int trap
= TRAP(regs
);
129 int is_exec
= trap
== 0x400;
131 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE))
133 * Fortunately the bit assignments in SRR1 for an instruction
134 * fault and DSISR for a data fault are mostly the same for the
135 * bits we are interested in. But there are some bits which
136 * indicate errors in DSISR but can validly be set in SRR1.
139 error_code
&= 0x48200000;
141 is_write
= error_code
& DSISR_ISSTORE
;
143 is_write
= error_code
& ESR_DST
;
144 #endif /* CONFIG_4xx || CONFIG_BOOKE */
146 if (notify_page_fault(regs
))
149 if (unlikely(debugger_fault_handler(regs
)))
152 /* On a kernel SLB miss we can only check for a valid exception entry */
153 if (!user_mode(regs
) && (address
>= TASK_SIZE
))
156 #if !(defined(CONFIG_4xx) || defined(CONFIG_BOOKE) || \
157 defined(CONFIG_PPC_BOOK3S_64))
158 if (error_code
& DSISR_DABRMATCH
) {
160 do_dabr(regs
, address
, error_code
);
165 if (in_atomic() || mm
== NULL
) {
166 if (!user_mode(regs
))
168 /* in_atomic() in user mode is really bad,
169 as is current->mm == NULL. */
170 printk(KERN_EMERG
"Page fault in user mode with "
171 "in_atomic() = %d mm = %p\n", in_atomic(), mm
);
172 printk(KERN_EMERG
"NIP = %lx MSR = %lx\n",
173 regs
->nip
, regs
->msr
);
174 die("Weird page fault", regs
, SIGSEGV
);
177 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS
, 1, regs
, address
);
179 /* When running in the kernel we expect faults to occur only to
180 * addresses in user space. All other faults represent errors in the
181 * kernel and should generate an OOPS. Unfortunately, in the case of an
182 * erroneous fault occurring in a code path which already holds mmap_sem
183 * we will deadlock attempting to validate the fault against the
184 * address space. Luckily the kernel only validly references user
185 * space from well defined areas of code, which are listed in the
188 * As the vast majority of faults will be valid we will only perform
189 * the source reference check when there is a possibility of a deadlock.
190 * Attempt to lock the address space, if we cannot we then validate the
191 * source. If this is invalid we can skip the address space check,
192 * thus avoiding the deadlock.
194 if (!down_read_trylock(&mm
->mmap_sem
)) {
195 if (!user_mode(regs
) && !search_exception_tables(regs
->nip
))
196 goto bad_area_nosemaphore
;
198 down_read(&mm
->mmap_sem
);
201 vma
= find_vma(mm
, address
);
204 if (vma
->vm_start
<= address
)
206 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
210 * N.B. The POWER/Open ABI allows programs to access up to
211 * 288 bytes below the stack pointer.
212 * The kernel signal delivery code writes up to about 1.5kB
213 * below the stack pointer (r1) before decrementing it.
214 * The exec code can write slightly over 640kB to the stack
215 * before setting the user r1. Thus we allow the stack to
216 * expand to 1MB without further checks.
218 if (address
+ 0x100000 < vma
->vm_end
) {
219 /* get user regs even if this fault is in kernel mode */
220 struct pt_regs
*uregs
= current
->thread
.regs
;
225 * A user-mode access to an address a long way below
226 * the stack pointer is only valid if the instruction
227 * is one which would update the stack pointer to the
228 * address accessed if the instruction completed,
229 * i.e. either stwu rs,n(r1) or stwux rs,r1,rb
230 * (or the byte, halfword, float or double forms).
232 * If we don't check this then any write to the area
233 * between the last mapped region and the stack will
234 * expand the stack rather than segfaulting.
236 if (address
+ 2048 < uregs
->gpr
[1]
237 && (!user_mode(regs
) || !store_updates_sp(regs
)))
240 if (expand_stack(vma
, address
))
245 #if defined(CONFIG_6xx)
246 if (error_code
& 0x95700000)
247 /* an error such as lwarx to I/O controller space,
248 address matching DABR, eciwx, etc. */
250 #endif /* CONFIG_6xx */
251 #if defined(CONFIG_8xx)
252 /* 8xx sometimes need to load a invalid/non-present TLBs.
253 * These must be invalidated separately as linux mm don't.
255 if (error_code
& 0x40000000) /* no translation? */
256 _tlbil_va(address
, 0, 0, 0);
258 /* The MPC8xx seems to always set 0x80000000, which is
259 * "undefined". Of those that can be set, this is the only
260 * one which seems bad.
262 if (error_code
& 0x10000000)
263 /* Guarded storage error. */
265 #endif /* CONFIG_8xx */
268 #ifdef CONFIG_PPC_STD_MMU
269 /* Protection fault on exec go straight to failure on
270 * Hash based MMUs as they either don't support per-page
271 * execute permission, or if they do, it's handled already
272 * at the hash level. This test would probably have to
273 * be removed if we change the way this works to make hash
274 * processors use the same I/D cache coherency mechanism
277 if (error_code
& DSISR_PROTFAULT
)
279 #endif /* CONFIG_PPC_STD_MMU */
282 * Allow execution from readable areas if the MMU does not
283 * provide separate controls over reading and executing.
285 * Note: That code used to not be enabled for 4xx/BookE.
286 * It is now as I/D cache coherency for these is done at
287 * set_pte_at() time and I see no reason why the test
288 * below wouldn't be valid on those processors. This -may-
289 * break programs compiled with a really old ABI though.
291 if (!(vma
->vm_flags
& VM_EXEC
) &&
292 (cpu_has_feature(CPU_FTR_NOEXECUTE
) ||
293 !(vma
->vm_flags
& (VM_READ
| VM_WRITE
))))
296 } else if (is_write
) {
297 if (!(vma
->vm_flags
& VM_WRITE
))
301 /* protection fault */
302 if (error_code
& 0x08000000)
304 if (!(vma
->vm_flags
& (VM_READ
| VM_EXEC
| VM_WRITE
)))
309 * If for any reason at all we couldn't handle the fault,
310 * make sure we exit gracefully rather than endlessly redo
313 ret
= handle_mm_fault(mm
, vma
, address
, is_write
? FAULT_FLAG_WRITE
: 0);
314 if (unlikely(ret
& VM_FAULT_ERROR
)) {
315 if (ret
& VM_FAULT_OOM
)
317 else if (ret
& VM_FAULT_SIGBUS
)
321 if (ret
& VM_FAULT_MAJOR
) {
323 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ
, 1,
325 #ifdef CONFIG_PPC_SMLPAR
326 if (firmware_has_feature(FW_FEATURE_CMO
)) {
328 get_lppaca()->page_ins
+= (1 << PAGE_FACTOR
);
334 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN
, 1,
337 up_read(&mm
->mmap_sem
);
341 up_read(&mm
->mmap_sem
);
343 bad_area_nosemaphore
:
344 /* User mode accesses cause a SIGSEGV */
345 if (user_mode(regs
)) {
346 _exception(SIGSEGV
, regs
, code
, address
);
350 if (is_exec
&& (error_code
& DSISR_PROTFAULT
))
351 printk_ratelimited(KERN_CRIT
"kernel tried to execute NX-protected"
352 " page (%lx) - exploit attempt? (uid: %d)\n",
353 address
, current_uid());
358 * We ran out of memory, or some other thing happened to us that made
359 * us unable to handle the page fault gracefully.
362 up_read(&mm
->mmap_sem
);
363 if (!user_mode(regs
))
365 pagefault_out_of_memory();
369 up_read(&mm
->mmap_sem
);
370 if (user_mode(regs
)) {
371 info
.si_signo
= SIGBUS
;
373 info
.si_code
= BUS_ADRERR
;
374 info
.si_addr
= (void __user
*)address
;
375 force_sig_info(SIGBUS
, &info
, current
);
382 * bad_page_fault is called when we have a bad access from the kernel.
383 * It is called from the DSI and ISI handlers in head.S and from some
384 * of the procedures in traps.c.
386 void bad_page_fault(struct pt_regs
*regs
, unsigned long address
, int sig
)
388 const struct exception_table_entry
*entry
;
389 unsigned long *stackend
;
391 /* Are we prepared to handle this fault? */
392 if ((entry
= search_exception_tables(regs
->nip
)) != NULL
) {
393 regs
->nip
= entry
->fixup
;
397 /* kernel has accessed a bad area */
399 switch (regs
->trap
) {
402 printk(KERN_ALERT
"Unable to handle kernel paging request for "
403 "data at address 0x%08lx\n", regs
->dar
);
407 printk(KERN_ALERT
"Unable to handle kernel paging request for "
408 "instruction fetch\n");
411 printk(KERN_ALERT
"Unable to handle kernel paging request for "
415 printk(KERN_ALERT
"Faulting instruction address: 0x%08lx\n",
418 stackend
= end_of_stack(current
);
419 if (current
!= &init_task
&& *stackend
!= STACK_END_MAGIC
)
420 printk(KERN_ALERT
"Thread overran stack, or stack corrupted\n");
422 die("Kernel access of bad area", regs
, sig
);