nfsd4: typo logical vs bitwise negate for want_mask
[linux-btrfs-devel.git] / arch / x86 / include / asm / uv / uv_hub.h
blobf26544a15214e41f418b0554c52581ce23f9aacb
1 /*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
6 * SGI UV architectural definitions
8 * Copyright (C) 2007-2010 Silicon Graphics, Inc. All rights reserved.
9 */
11 #ifndef _ASM_X86_UV_UV_HUB_H
12 #define _ASM_X86_UV_UV_HUB_H
14 #ifdef CONFIG_X86_64
15 #include <linux/numa.h>
16 #include <linux/percpu.h>
17 #include <linux/timer.h>
18 #include <linux/io.h>
19 #include <asm/types.h>
20 #include <asm/percpu.h>
21 #include <asm/uv/uv_mmrs.h>
22 #include <asm/irq_vectors.h>
23 #include <asm/io_apic.h>
27 * Addressing Terminology
29 * M - The low M bits of a physical address represent the offset
30 * into the blade local memory. RAM memory on a blade is physically
31 * contiguous (although various IO spaces may punch holes in
32 * it)..
34 * N - Number of bits in the node portion of a socket physical
35 * address.
37 * NASID - network ID of a router, Mbrick or Cbrick. Nasid values of
38 * routers always have low bit of 1, C/MBricks have low bit
39 * equal to 0. Most addressing macros that target UV hub chips
40 * right shift the NASID by 1 to exclude the always-zero bit.
41 * NASIDs contain up to 15 bits.
43 * GNODE - NASID right shifted by 1 bit. Most mmrs contain gnodes instead
44 * of nasids.
46 * PNODE - the low N bits of the GNODE. The PNODE is the most useful variant
47 * of the nasid for socket usage.
50 * NumaLink Global Physical Address Format:
51 * +--------------------------------+---------------------+
52 * |00..000| GNODE | NodeOffset |
53 * +--------------------------------+---------------------+
54 * |<-------53 - M bits --->|<--------M bits ----->
56 * M - number of node offset bits (35 .. 40)
59 * Memory/UV-HUB Processor Socket Address Format:
60 * +----------------+---------------+---------------------+
61 * |00..000000000000| PNODE | NodeOffset |
62 * +----------------+---------------+---------------------+
63 * <--- N bits --->|<--------M bits ----->
65 * M - number of node offset bits (35 .. 40)
66 * N - number of PNODE bits (0 .. 10)
68 * Note: M + N cannot currently exceed 44 (x86_64) or 46 (IA64).
69 * The actual values are configuration dependent and are set at
70 * boot time. M & N values are set by the hardware/BIOS at boot.
73 * APICID format
74 * NOTE!!!!!! This is the current format of the APICID. However, code
75 * should assume that this will change in the future. Use functions
76 * in this file for all APICID bit manipulations and conversion.
78 * 1111110000000000
79 * 5432109876543210
80 * pppppppppplc0cch Nehalem-EX (12 bits in hdw reg)
81 * ppppppppplcc0cch Westmere-EX (12 bits in hdw reg)
82 * pppppppppppcccch SandyBridge (15 bits in hdw reg)
83 * sssssssssss
85 * p = pnode bits
86 * l = socket number on board
87 * c = core
88 * h = hyperthread
89 * s = bits that are in the SOCKET_ID CSR
91 * Note: Processor may support fewer bits in the APICID register. The ACPI
92 * tables hold all 16 bits. Software needs to be aware of this.
94 * Unless otherwise specified, all references to APICID refer to
95 * the FULL value contained in ACPI tables, not the subset in the
96 * processor APICID register.
101 * Maximum number of bricks in all partitions and in all coherency domains.
102 * This is the total number of bricks accessible in the numalink fabric. It
103 * includes all C & M bricks. Routers are NOT included.
105 * This value is also the value of the maximum number of non-router NASIDs
106 * in the numalink fabric.
108 * NOTE: a brick may contain 1 or 2 OS nodes. Don't get these confused.
110 #define UV_MAX_NUMALINK_BLADES 16384
113 * Maximum number of C/Mbricks within a software SSI (hardware may support
114 * more).
116 #define UV_MAX_SSI_BLADES 256
119 * The largest possible NASID of a C or M brick (+ 2)
121 #define UV_MAX_NASID_VALUE (UV_MAX_NUMALINK_BLADES * 2)
123 struct uv_scir_s {
124 struct timer_list timer;
125 unsigned long offset;
126 unsigned long last;
127 unsigned long idle_on;
128 unsigned long idle_off;
129 unsigned char state;
130 unsigned char enabled;
134 * The following defines attributes of the HUB chip. These attributes are
135 * frequently referenced and are kept in the per-cpu data areas of each cpu.
136 * They are kept together in a struct to minimize cache misses.
138 struct uv_hub_info_s {
139 unsigned long global_mmr_base;
140 unsigned long gpa_mask;
141 unsigned int gnode_extra;
142 unsigned char hub_revision;
143 unsigned char apic_pnode_shift;
144 unsigned long gnode_upper;
145 unsigned long lowmem_remap_top;
146 unsigned long lowmem_remap_base;
147 unsigned short pnode;
148 unsigned short pnode_mask;
149 unsigned short coherency_domain_number;
150 unsigned short numa_blade_id;
151 unsigned char blade_processor_id;
152 unsigned char m_val;
153 unsigned char n_val;
154 struct uv_scir_s scir;
157 DECLARE_PER_CPU(struct uv_hub_info_s, __uv_hub_info);
158 #define uv_hub_info (&__get_cpu_var(__uv_hub_info))
159 #define uv_cpu_hub_info(cpu) (&per_cpu(__uv_hub_info, cpu))
162 * Hub revisions less than UV2_HUB_REVISION_BASE are UV1 hubs. All UV2
163 * hubs have revision numbers greater than or equal to UV2_HUB_REVISION_BASE.
164 * This is a software convention - NOT the hardware revision numbers in
165 * the hub chip.
167 #define UV1_HUB_REVISION_BASE 1
168 #define UV2_HUB_REVISION_BASE 3
170 static inline int is_uv1_hub(void)
172 return uv_hub_info->hub_revision < UV2_HUB_REVISION_BASE;
175 static inline int is_uv2_hub(void)
177 return uv_hub_info->hub_revision >= UV2_HUB_REVISION_BASE;
180 union uvh_apicid {
181 unsigned long v;
182 struct uvh_apicid_s {
183 unsigned long local_apic_mask : 24;
184 unsigned long local_apic_shift : 5;
185 unsigned long unused1 : 3;
186 unsigned long pnode_mask : 24;
187 unsigned long pnode_shift : 5;
188 unsigned long unused2 : 3;
189 } s;
193 * Local & Global MMR space macros.
194 * Note: macros are intended to be used ONLY by inline functions
195 * in this file - not by other kernel code.
196 * n - NASID (full 15-bit global nasid)
197 * g - GNODE (full 15-bit global nasid, right shifted 1)
198 * p - PNODE (local part of nsids, right shifted 1)
200 #define UV_NASID_TO_PNODE(n) (((n) >> 1) & uv_hub_info->pnode_mask)
201 #define UV_PNODE_TO_GNODE(p) ((p) |uv_hub_info->gnode_extra)
202 #define UV_PNODE_TO_NASID(p) (UV_PNODE_TO_GNODE(p) << 1)
204 #define UV1_LOCAL_MMR_BASE 0xf4000000UL
205 #define UV1_GLOBAL_MMR32_BASE 0xf8000000UL
206 #define UV1_LOCAL_MMR_SIZE (64UL * 1024 * 1024)
207 #define UV1_GLOBAL_MMR32_SIZE (64UL * 1024 * 1024)
209 #define UV2_LOCAL_MMR_BASE 0xfa000000UL
210 #define UV2_GLOBAL_MMR32_BASE 0xfc000000UL
211 #define UV2_LOCAL_MMR_SIZE (32UL * 1024 * 1024)
212 #define UV2_GLOBAL_MMR32_SIZE (32UL * 1024 * 1024)
214 #define UV_LOCAL_MMR_BASE (is_uv1_hub() ? UV1_LOCAL_MMR_BASE \
215 : UV2_LOCAL_MMR_BASE)
216 #define UV_GLOBAL_MMR32_BASE (is_uv1_hub() ? UV1_GLOBAL_MMR32_BASE \
217 : UV2_GLOBAL_MMR32_BASE)
218 #define UV_LOCAL_MMR_SIZE (is_uv1_hub() ? UV1_LOCAL_MMR_SIZE : \
219 UV2_LOCAL_MMR_SIZE)
220 #define UV_GLOBAL_MMR32_SIZE (is_uv1_hub() ? UV1_GLOBAL_MMR32_SIZE :\
221 UV2_GLOBAL_MMR32_SIZE)
222 #define UV_GLOBAL_MMR64_BASE (uv_hub_info->global_mmr_base)
224 #define UV_GLOBAL_GRU_MMR_BASE 0x4000000
226 #define UV_GLOBAL_MMR32_PNODE_SHIFT 15
227 #define UV_GLOBAL_MMR64_PNODE_SHIFT 26
229 #define UV_GLOBAL_MMR32_PNODE_BITS(p) ((p) << (UV_GLOBAL_MMR32_PNODE_SHIFT))
231 #define UV_GLOBAL_MMR64_PNODE_BITS(p) \
232 (((unsigned long)(p)) << UV_GLOBAL_MMR64_PNODE_SHIFT)
234 #define UVH_APICID 0x002D0E00L
235 #define UV_APIC_PNODE_SHIFT 6
237 #define UV_APICID_HIBIT_MASK 0xffff0000
239 /* Local Bus from cpu's perspective */
240 #define LOCAL_BUS_BASE 0x1c00000
241 #define LOCAL_BUS_SIZE (4 * 1024 * 1024)
244 * System Controller Interface Reg
246 * Note there are NO leds on a UV system. This register is only
247 * used by the system controller to monitor system-wide operation.
248 * There are 64 regs per node. With Nahelem cpus (2 cores per node,
249 * 8 cpus per core, 2 threads per cpu) there are 32 cpu threads on
250 * a node.
252 * The window is located at top of ACPI MMR space
254 #define SCIR_WINDOW_COUNT 64
255 #define SCIR_LOCAL_MMR_BASE (LOCAL_BUS_BASE + \
256 LOCAL_BUS_SIZE - \
257 SCIR_WINDOW_COUNT)
259 #define SCIR_CPU_HEARTBEAT 0x01 /* timer interrupt */
260 #define SCIR_CPU_ACTIVITY 0x02 /* not idle */
261 #define SCIR_CPU_HB_INTERVAL (HZ) /* once per second */
263 /* Loop through all installed blades */
264 #define for_each_possible_blade(bid) \
265 for ((bid) = 0; (bid) < uv_num_possible_blades(); (bid)++)
268 * Macros for converting between kernel virtual addresses, socket local physical
269 * addresses, and UV global physical addresses.
270 * Note: use the standard __pa() & __va() macros for converting
271 * between socket virtual and socket physical addresses.
274 /* socket phys RAM --> UV global physical address */
275 static inline unsigned long uv_soc_phys_ram_to_gpa(unsigned long paddr)
277 if (paddr < uv_hub_info->lowmem_remap_top)
278 paddr |= uv_hub_info->lowmem_remap_base;
279 return paddr | uv_hub_info->gnode_upper;
283 /* socket virtual --> UV global physical address */
284 static inline unsigned long uv_gpa(void *v)
286 return uv_soc_phys_ram_to_gpa(__pa(v));
289 /* Top two bits indicate the requested address is in MMR space. */
290 static inline int
291 uv_gpa_in_mmr_space(unsigned long gpa)
293 return (gpa >> 62) == 0x3UL;
296 /* UV global physical address --> socket phys RAM */
297 static inline unsigned long uv_gpa_to_soc_phys_ram(unsigned long gpa)
299 unsigned long paddr = gpa & uv_hub_info->gpa_mask;
300 unsigned long remap_base = uv_hub_info->lowmem_remap_base;
301 unsigned long remap_top = uv_hub_info->lowmem_remap_top;
303 if (paddr >= remap_base && paddr < remap_base + remap_top)
304 paddr -= remap_base;
305 return paddr;
309 /* gnode -> pnode */
310 static inline unsigned long uv_gpa_to_gnode(unsigned long gpa)
312 return gpa >> uv_hub_info->m_val;
315 /* gpa -> pnode */
316 static inline int uv_gpa_to_pnode(unsigned long gpa)
318 unsigned long n_mask = (1UL << uv_hub_info->n_val) - 1;
320 return uv_gpa_to_gnode(gpa) & n_mask;
323 /* pnode, offset --> socket virtual */
324 static inline void *uv_pnode_offset_to_vaddr(int pnode, unsigned long offset)
326 return __va(((unsigned long)pnode << uv_hub_info->m_val) | offset);
331 * Extract a PNODE from an APICID (full apicid, not processor subset)
333 static inline int uv_apicid_to_pnode(int apicid)
335 return (apicid >> uv_hub_info->apic_pnode_shift);
339 * Convert an apicid to the socket number on the blade
341 static inline int uv_apicid_to_socket(int apicid)
343 if (is_uv1_hub())
344 return (apicid >> (uv_hub_info->apic_pnode_shift - 1)) & 1;
345 else
346 return 0;
350 * Access global MMRs using the low memory MMR32 space. This region supports
351 * faster MMR access but not all MMRs are accessible in this space.
353 static inline unsigned long *uv_global_mmr32_address(int pnode, unsigned long offset)
355 return __va(UV_GLOBAL_MMR32_BASE |
356 UV_GLOBAL_MMR32_PNODE_BITS(pnode) | offset);
359 static inline void uv_write_global_mmr32(int pnode, unsigned long offset, unsigned long val)
361 writeq(val, uv_global_mmr32_address(pnode, offset));
364 static inline unsigned long uv_read_global_mmr32(int pnode, unsigned long offset)
366 return readq(uv_global_mmr32_address(pnode, offset));
370 * Access Global MMR space using the MMR space located at the top of physical
371 * memory.
373 static inline volatile void __iomem *uv_global_mmr64_address(int pnode, unsigned long offset)
375 return __va(UV_GLOBAL_MMR64_BASE |
376 UV_GLOBAL_MMR64_PNODE_BITS(pnode) | offset);
379 static inline void uv_write_global_mmr64(int pnode, unsigned long offset, unsigned long val)
381 writeq(val, uv_global_mmr64_address(pnode, offset));
384 static inline unsigned long uv_read_global_mmr64(int pnode, unsigned long offset)
386 return readq(uv_global_mmr64_address(pnode, offset));
390 * Global MMR space addresses when referenced by the GRU. (GRU does
391 * NOT use socket addressing).
393 static inline unsigned long uv_global_gru_mmr_address(int pnode, unsigned long offset)
395 return UV_GLOBAL_GRU_MMR_BASE | offset |
396 ((unsigned long)pnode << uv_hub_info->m_val);
399 static inline void uv_write_global_mmr8(int pnode, unsigned long offset, unsigned char val)
401 writeb(val, uv_global_mmr64_address(pnode, offset));
404 static inline unsigned char uv_read_global_mmr8(int pnode, unsigned long offset)
406 return readb(uv_global_mmr64_address(pnode, offset));
410 * Access hub local MMRs. Faster than using global space but only local MMRs
411 * are accessible.
413 static inline unsigned long *uv_local_mmr_address(unsigned long offset)
415 return __va(UV_LOCAL_MMR_BASE | offset);
418 static inline unsigned long uv_read_local_mmr(unsigned long offset)
420 return readq(uv_local_mmr_address(offset));
423 static inline void uv_write_local_mmr(unsigned long offset, unsigned long val)
425 writeq(val, uv_local_mmr_address(offset));
428 static inline unsigned char uv_read_local_mmr8(unsigned long offset)
430 return readb(uv_local_mmr_address(offset));
433 static inline void uv_write_local_mmr8(unsigned long offset, unsigned char val)
435 writeb(val, uv_local_mmr_address(offset));
439 * Structures and definitions for converting between cpu, node, pnode, and blade
440 * numbers.
442 struct uv_blade_info {
443 unsigned short nr_possible_cpus;
444 unsigned short nr_online_cpus;
445 unsigned short pnode;
446 short memory_nid;
447 spinlock_t nmi_lock;
448 unsigned long nmi_count;
450 extern struct uv_blade_info *uv_blade_info;
451 extern short *uv_node_to_blade;
452 extern short *uv_cpu_to_blade;
453 extern short uv_possible_blades;
455 /* Blade-local cpu number of current cpu. Numbered 0 .. <# cpus on the blade> */
456 static inline int uv_blade_processor_id(void)
458 return uv_hub_info->blade_processor_id;
461 /* Blade number of current cpu. Numnbered 0 .. <#blades -1> */
462 static inline int uv_numa_blade_id(void)
464 return uv_hub_info->numa_blade_id;
467 /* Convert a cpu number to the the UV blade number */
468 static inline int uv_cpu_to_blade_id(int cpu)
470 return uv_cpu_to_blade[cpu];
473 /* Convert linux node number to the UV blade number */
474 static inline int uv_node_to_blade_id(int nid)
476 return uv_node_to_blade[nid];
479 /* Convert a blade id to the PNODE of the blade */
480 static inline int uv_blade_to_pnode(int bid)
482 return uv_blade_info[bid].pnode;
485 /* Nid of memory node on blade. -1 if no blade-local memory */
486 static inline int uv_blade_to_memory_nid(int bid)
488 return uv_blade_info[bid].memory_nid;
491 /* Determine the number of possible cpus on a blade */
492 static inline int uv_blade_nr_possible_cpus(int bid)
494 return uv_blade_info[bid].nr_possible_cpus;
497 /* Determine the number of online cpus on a blade */
498 static inline int uv_blade_nr_online_cpus(int bid)
500 return uv_blade_info[bid].nr_online_cpus;
503 /* Convert a cpu id to the PNODE of the blade containing the cpu */
504 static inline int uv_cpu_to_pnode(int cpu)
506 return uv_blade_info[uv_cpu_to_blade_id(cpu)].pnode;
509 /* Convert a linux node number to the PNODE of the blade */
510 static inline int uv_node_to_pnode(int nid)
512 return uv_blade_info[uv_node_to_blade_id(nid)].pnode;
515 /* Maximum possible number of blades */
516 static inline int uv_num_possible_blades(void)
518 return uv_possible_blades;
521 /* Update SCIR state */
522 static inline void uv_set_scir_bits(unsigned char value)
524 if (uv_hub_info->scir.state != value) {
525 uv_hub_info->scir.state = value;
526 uv_write_local_mmr8(uv_hub_info->scir.offset, value);
530 static inline unsigned long uv_scir_offset(int apicid)
532 return SCIR_LOCAL_MMR_BASE | (apicid & 0x3f);
535 static inline void uv_set_cpu_scir_bits(int cpu, unsigned char value)
537 if (uv_cpu_hub_info(cpu)->scir.state != value) {
538 uv_write_global_mmr8(uv_cpu_to_pnode(cpu),
539 uv_cpu_hub_info(cpu)->scir.offset, value);
540 uv_cpu_hub_info(cpu)->scir.state = value;
544 extern unsigned int uv_apicid_hibits;
545 static unsigned long uv_hub_ipi_value(int apicid, int vector, int mode)
547 apicid |= uv_apicid_hibits;
548 return (1UL << UVH_IPI_INT_SEND_SHFT) |
549 ((apicid) << UVH_IPI_INT_APIC_ID_SHFT) |
550 (mode << UVH_IPI_INT_DELIVERY_MODE_SHFT) |
551 (vector << UVH_IPI_INT_VECTOR_SHFT);
554 static inline void uv_hub_send_ipi(int pnode, int apicid, int vector)
556 unsigned long val;
557 unsigned long dmode = dest_Fixed;
559 if (vector == NMI_VECTOR)
560 dmode = dest_NMI;
562 val = uv_hub_ipi_value(apicid, vector, dmode);
563 uv_write_global_mmr64(pnode, UVH_IPI_INT, val);
567 * Get the minimum revision number of the hub chips within the partition.
568 * 1 - UV1 rev 1.0 initial silicon
569 * 2 - UV1 rev 2.0 production silicon
570 * 3 - UV2 rev 1.0 initial silicon
572 static inline int uv_get_min_hub_revision_id(void)
574 return uv_hub_info->hub_revision;
577 #endif /* CONFIG_X86_64 */
578 #endif /* _ASM_X86_UV_UV_HUB_H */