nfsd4: typo logical vs bitwise negate for want_mask
[linux-btrfs-devel.git] / arch / x86 / mm / hugetlbpage.c
blobf581a18c0d4d7d07aac5cdfa8fb443106e3d5e92
1 /*
2 * IA-32 Huge TLB Page Support for Kernel.
4 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
5 */
7 #include <linux/init.h>
8 #include <linux/fs.h>
9 #include <linux/mm.h>
10 #include <linux/hugetlb.h>
11 #include <linux/pagemap.h>
12 #include <linux/err.h>
13 #include <linux/sysctl.h>
14 #include <asm/mman.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17 #include <asm/pgalloc.h>
19 static unsigned long page_table_shareable(struct vm_area_struct *svma,
20 struct vm_area_struct *vma,
21 unsigned long addr, pgoff_t idx)
23 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
24 svma->vm_start;
25 unsigned long sbase = saddr & PUD_MASK;
26 unsigned long s_end = sbase + PUD_SIZE;
28 /* Allow segments to share if only one is marked locked */
29 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
30 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
33 * match the virtual addresses, permission and the alignment of the
34 * page table page.
36 if (pmd_index(addr) != pmd_index(saddr) ||
37 vm_flags != svm_flags ||
38 sbase < svma->vm_start || svma->vm_end < s_end)
39 return 0;
41 return saddr;
44 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
46 unsigned long base = addr & PUD_MASK;
47 unsigned long end = base + PUD_SIZE;
50 * check on proper vm_flags and page table alignment
52 if (vma->vm_flags & VM_MAYSHARE &&
53 vma->vm_start <= base && end <= vma->vm_end)
54 return 1;
55 return 0;
59 * search for a shareable pmd page for hugetlb.
61 static void huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
63 struct vm_area_struct *vma = find_vma(mm, addr);
64 struct address_space *mapping = vma->vm_file->f_mapping;
65 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
66 vma->vm_pgoff;
67 struct prio_tree_iter iter;
68 struct vm_area_struct *svma;
69 unsigned long saddr;
70 pte_t *spte = NULL;
72 if (!vma_shareable(vma, addr))
73 return;
75 mutex_lock(&mapping->i_mmap_mutex);
76 vma_prio_tree_foreach(svma, &iter, &mapping->i_mmap, idx, idx) {
77 if (svma == vma)
78 continue;
80 saddr = page_table_shareable(svma, vma, addr, idx);
81 if (saddr) {
82 spte = huge_pte_offset(svma->vm_mm, saddr);
83 if (spte) {
84 get_page(virt_to_page(spte));
85 break;
90 if (!spte)
91 goto out;
93 spin_lock(&mm->page_table_lock);
94 if (pud_none(*pud))
95 pud_populate(mm, pud, (pmd_t *)((unsigned long)spte & PAGE_MASK));
96 else
97 put_page(virt_to_page(spte));
98 spin_unlock(&mm->page_table_lock);
99 out:
100 mutex_unlock(&mapping->i_mmap_mutex);
104 * unmap huge page backed by shared pte.
106 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
107 * indicated by page_count > 1, unmap is achieved by clearing pud and
108 * decrementing the ref count. If count == 1, the pte page is not shared.
110 * called with vma->vm_mm->page_table_lock held.
112 * returns: 1 successfully unmapped a shared pte page
113 * 0 the underlying pte page is not shared, or it is the last user
115 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
117 pgd_t *pgd = pgd_offset(mm, *addr);
118 pud_t *pud = pud_offset(pgd, *addr);
120 BUG_ON(page_count(virt_to_page(ptep)) == 0);
121 if (page_count(virt_to_page(ptep)) == 1)
122 return 0;
124 pud_clear(pud);
125 put_page(virt_to_page(ptep));
126 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
127 return 1;
130 pte_t *huge_pte_alloc(struct mm_struct *mm,
131 unsigned long addr, unsigned long sz)
133 pgd_t *pgd;
134 pud_t *pud;
135 pte_t *pte = NULL;
137 pgd = pgd_offset(mm, addr);
138 pud = pud_alloc(mm, pgd, addr);
139 if (pud) {
140 if (sz == PUD_SIZE) {
141 pte = (pte_t *)pud;
142 } else {
143 BUG_ON(sz != PMD_SIZE);
144 if (pud_none(*pud))
145 huge_pmd_share(mm, addr, pud);
146 pte = (pte_t *) pmd_alloc(mm, pud, addr);
149 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
151 return pte;
154 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
156 pgd_t *pgd;
157 pud_t *pud;
158 pmd_t *pmd = NULL;
160 pgd = pgd_offset(mm, addr);
161 if (pgd_present(*pgd)) {
162 pud = pud_offset(pgd, addr);
163 if (pud_present(*pud)) {
164 if (pud_large(*pud))
165 return (pte_t *)pud;
166 pmd = pmd_offset(pud, addr);
169 return (pte_t *) pmd;
172 #if 0 /* This is just for testing */
173 struct page *
174 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
176 unsigned long start = address;
177 int length = 1;
178 int nr;
179 struct page *page;
180 struct vm_area_struct *vma;
182 vma = find_vma(mm, addr);
183 if (!vma || !is_vm_hugetlb_page(vma))
184 return ERR_PTR(-EINVAL);
186 pte = huge_pte_offset(mm, address);
188 /* hugetlb should be locked, and hence, prefaulted */
189 WARN_ON(!pte || pte_none(*pte));
191 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
193 WARN_ON(!PageHead(page));
195 return page;
198 int pmd_huge(pmd_t pmd)
200 return 0;
203 int pud_huge(pud_t pud)
205 return 0;
208 struct page *
209 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
210 pmd_t *pmd, int write)
212 return NULL;
215 #else
217 struct page *
218 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
220 return ERR_PTR(-EINVAL);
223 int pmd_huge(pmd_t pmd)
225 return !!(pmd_val(pmd) & _PAGE_PSE);
228 int pud_huge(pud_t pud)
230 return !!(pud_val(pud) & _PAGE_PSE);
233 struct page *
234 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
235 pmd_t *pmd, int write)
237 struct page *page;
239 page = pte_page(*(pte_t *)pmd);
240 if (page)
241 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
242 return page;
245 struct page *
246 follow_huge_pud(struct mm_struct *mm, unsigned long address,
247 pud_t *pud, int write)
249 struct page *page;
251 page = pte_page(*(pte_t *)pud);
252 if (page)
253 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
254 return page;
257 #endif
259 /* x86_64 also uses this file */
261 #ifdef HAVE_ARCH_HUGETLB_UNMAPPED_AREA
262 static unsigned long hugetlb_get_unmapped_area_bottomup(struct file *file,
263 unsigned long addr, unsigned long len,
264 unsigned long pgoff, unsigned long flags)
266 struct hstate *h = hstate_file(file);
267 struct mm_struct *mm = current->mm;
268 struct vm_area_struct *vma;
269 unsigned long start_addr;
271 if (len > mm->cached_hole_size) {
272 start_addr = mm->free_area_cache;
273 } else {
274 start_addr = TASK_UNMAPPED_BASE;
275 mm->cached_hole_size = 0;
278 full_search:
279 addr = ALIGN(start_addr, huge_page_size(h));
281 for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
282 /* At this point: (!vma || addr < vma->vm_end). */
283 if (TASK_SIZE - len < addr) {
285 * Start a new search - just in case we missed
286 * some holes.
288 if (start_addr != TASK_UNMAPPED_BASE) {
289 start_addr = TASK_UNMAPPED_BASE;
290 mm->cached_hole_size = 0;
291 goto full_search;
293 return -ENOMEM;
295 if (!vma || addr + len <= vma->vm_start) {
296 mm->free_area_cache = addr + len;
297 return addr;
299 if (addr + mm->cached_hole_size < vma->vm_start)
300 mm->cached_hole_size = vma->vm_start - addr;
301 addr = ALIGN(vma->vm_end, huge_page_size(h));
305 static unsigned long hugetlb_get_unmapped_area_topdown(struct file *file,
306 unsigned long addr0, unsigned long len,
307 unsigned long pgoff, unsigned long flags)
309 struct hstate *h = hstate_file(file);
310 struct mm_struct *mm = current->mm;
311 struct vm_area_struct *vma, *prev_vma;
312 unsigned long base = mm->mmap_base, addr = addr0;
313 unsigned long largest_hole = mm->cached_hole_size;
314 int first_time = 1;
316 /* don't allow allocations above current base */
317 if (mm->free_area_cache > base)
318 mm->free_area_cache = base;
320 if (len <= largest_hole) {
321 largest_hole = 0;
322 mm->free_area_cache = base;
324 try_again:
325 /* make sure it can fit in the remaining address space */
326 if (mm->free_area_cache < len)
327 goto fail;
329 /* either no address requested or can't fit in requested address hole */
330 addr = (mm->free_area_cache - len) & huge_page_mask(h);
331 do {
333 * Lookup failure means no vma is above this address,
334 * i.e. return with success:
336 if (!(vma = find_vma_prev(mm, addr, &prev_vma)))
337 return addr;
340 * new region fits between prev_vma->vm_end and
341 * vma->vm_start, use it:
343 if (addr + len <= vma->vm_start &&
344 (!prev_vma || (addr >= prev_vma->vm_end))) {
345 /* remember the address as a hint for next time */
346 mm->cached_hole_size = largest_hole;
347 return (mm->free_area_cache = addr);
348 } else {
349 /* pull free_area_cache down to the first hole */
350 if (mm->free_area_cache == vma->vm_end) {
351 mm->free_area_cache = vma->vm_start;
352 mm->cached_hole_size = largest_hole;
356 /* remember the largest hole we saw so far */
357 if (addr + largest_hole < vma->vm_start)
358 largest_hole = vma->vm_start - addr;
360 /* try just below the current vma->vm_start */
361 addr = (vma->vm_start - len) & huge_page_mask(h);
362 } while (len <= vma->vm_start);
364 fail:
366 * if hint left us with no space for the requested
367 * mapping then try again:
369 if (first_time) {
370 mm->free_area_cache = base;
371 largest_hole = 0;
372 first_time = 0;
373 goto try_again;
376 * A failed mmap() very likely causes application failure,
377 * so fall back to the bottom-up function here. This scenario
378 * can happen with large stack limits and large mmap()
379 * allocations.
381 mm->free_area_cache = TASK_UNMAPPED_BASE;
382 mm->cached_hole_size = ~0UL;
383 addr = hugetlb_get_unmapped_area_bottomup(file, addr0,
384 len, pgoff, flags);
387 * Restore the topdown base:
389 mm->free_area_cache = base;
390 mm->cached_hole_size = ~0UL;
392 return addr;
395 unsigned long
396 hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
397 unsigned long len, unsigned long pgoff, unsigned long flags)
399 struct hstate *h = hstate_file(file);
400 struct mm_struct *mm = current->mm;
401 struct vm_area_struct *vma;
403 if (len & ~huge_page_mask(h))
404 return -EINVAL;
405 if (len > TASK_SIZE)
406 return -ENOMEM;
408 if (flags & MAP_FIXED) {
409 if (prepare_hugepage_range(file, addr, len))
410 return -EINVAL;
411 return addr;
414 if (addr) {
415 addr = ALIGN(addr, huge_page_size(h));
416 vma = find_vma(mm, addr);
417 if (TASK_SIZE - len >= addr &&
418 (!vma || addr + len <= vma->vm_start))
419 return addr;
421 if (mm->get_unmapped_area == arch_get_unmapped_area)
422 return hugetlb_get_unmapped_area_bottomup(file, addr, len,
423 pgoff, flags);
424 else
425 return hugetlb_get_unmapped_area_topdown(file, addr, len,
426 pgoff, flags);
429 #endif /*HAVE_ARCH_HUGETLB_UNMAPPED_AREA*/
431 #ifdef CONFIG_X86_64
432 static __init int setup_hugepagesz(char *opt)
434 unsigned long ps = memparse(opt, &opt);
435 if (ps == PMD_SIZE) {
436 hugetlb_add_hstate(PMD_SHIFT - PAGE_SHIFT);
437 } else if (ps == PUD_SIZE && cpu_has_gbpages) {
438 hugetlb_add_hstate(PUD_SHIFT - PAGE_SHIFT);
439 } else {
440 printk(KERN_ERR "hugepagesz: Unsupported page size %lu M\n",
441 ps >> 20);
442 return 0;
444 return 1;
446 __setup("hugepagesz=", setup_hugepagesz);
447 #endif