nfsd4: typo logical vs bitwise negate for want_mask
[linux-btrfs-devel.git] / sound / aoa / codecs / tas.c
blobfd2188c3df2b4c436c9a6112cbc577c309d2898e
1 /*
2 * Apple Onboard Audio driver for tas codec
4 * Copyright 2006 Johannes Berg <johannes@sipsolutions.net>
6 * GPL v2, can be found in COPYING.
8 * Open questions:
9 * - How to distinguish between 3004 and versions?
11 * FIXMEs:
12 * - This codec driver doesn't honour the 'connected'
13 * property of the aoa_codec struct, hence if
14 * it is used in machines where not everything is
15 * connected it will display wrong mixer elements.
16 * - Driver assumes that the microphone is always
17 * monaureal and connected to the right channel of
18 * the input. This should also be a codec-dependent
19 * flag, maybe the codec should have 3 different
20 * bits for the three different possibilities how
21 * it can be hooked up...
22 * But as long as I don't see any hardware hooked
23 * up that way...
24 * - As Apple notes in their code, the tas3004 seems
25 * to delay the right channel by one sample. You can
26 * see this when for example recording stereo in
27 * audacity, or recording the tas output via cable
28 * on another machine (use a sinus generator or so).
29 * I tried programming the BiQuads but couldn't
30 * make the delay work, maybe someone can read the
31 * datasheet and fix it. The relevant Apple comment
32 * is in AppleTAS3004Audio.cpp lines 1637 ff. Note
33 * that their comment describing how they program
34 * the filters sucks...
36 * Other things:
37 * - this should actually register *two* aoa_codec
38 * structs since it has two inputs. Then it must
39 * use the prepare callback to forbid running the
40 * secondary output on a different clock.
41 * Also, whatever bus knows how to do this must
42 * provide two soundbus_dev devices and the fabric
43 * must be able to link them correctly.
45 * I don't even know if Apple ever uses the second
46 * port on the tas3004 though, I don't think their
47 * i2s controllers can even do it. OTOH, they all
48 * derive the clocks from common clocks, so it
49 * might just be possible. The framework allows the
50 * codec to refine the transfer_info items in the
51 * usable callback, so we can simply remove the
52 * rates the second instance is not using when it
53 * actually is in use.
54 * Maybe we'll need to make the sound busses have
55 * a 'clock group id' value so the codec can
56 * determine if the two outputs can be driven at
57 * the same time. But that is likely overkill, up
58 * to the fabric to not link them up incorrectly,
59 * and up to the hardware designer to not wire
60 * them up in some weird unusable way.
62 #include <stddef.h>
63 #include <linux/i2c.h>
64 #include <asm/pmac_low_i2c.h>
65 #include <asm/prom.h>
66 #include <linux/delay.h>
67 #include <linux/module.h>
68 #include <linux/mutex.h>
69 #include <linux/slab.h>
71 MODULE_AUTHOR("Johannes Berg <johannes@sipsolutions.net>");
72 MODULE_LICENSE("GPL");
73 MODULE_DESCRIPTION("tas codec driver for snd-aoa");
75 #include "tas.h"
76 #include "tas-gain-table.h"
77 #include "tas-basstreble.h"
78 #include "../aoa.h"
79 #include "../soundbus/soundbus.h"
81 #define PFX "snd-aoa-codec-tas: "
84 struct tas {
85 struct aoa_codec codec;
86 struct i2c_client *i2c;
87 u32 mute_l:1, mute_r:1 ,
88 controls_created:1 ,
89 drc_enabled:1,
90 hw_enabled:1;
91 u8 cached_volume_l, cached_volume_r;
92 u8 mixer_l[3], mixer_r[3];
93 u8 bass, treble;
94 u8 acr;
95 int drc_range;
96 /* protects hardware access against concurrency from
97 * userspace when hitting controls and during
98 * codec init/suspend/resume */
99 struct mutex mtx;
102 static int tas_reset_init(struct tas *tas);
104 static struct tas *codec_to_tas(struct aoa_codec *codec)
106 return container_of(codec, struct tas, codec);
109 static inline int tas_write_reg(struct tas *tas, u8 reg, u8 len, u8 *data)
111 if (len == 1)
112 return i2c_smbus_write_byte_data(tas->i2c, reg, *data);
113 else
114 return i2c_smbus_write_i2c_block_data(tas->i2c, reg, len, data);
117 static void tas3004_set_drc(struct tas *tas)
119 unsigned char val[6];
121 if (tas->drc_enabled)
122 val[0] = 0x50; /* 3:1 above threshold */
123 else
124 val[0] = 0x51; /* disabled */
125 val[1] = 0x02; /* 1:1 below threshold */
126 if (tas->drc_range > 0xef)
127 val[2] = 0xef;
128 else if (tas->drc_range < 0)
129 val[2] = 0x00;
130 else
131 val[2] = tas->drc_range;
132 val[3] = 0xb0;
133 val[4] = 0x60;
134 val[5] = 0xa0;
136 tas_write_reg(tas, TAS_REG_DRC, 6, val);
139 static void tas_set_treble(struct tas *tas)
141 u8 tmp;
143 tmp = tas3004_treble(tas->treble);
144 tas_write_reg(tas, TAS_REG_TREBLE, 1, &tmp);
147 static void tas_set_bass(struct tas *tas)
149 u8 tmp;
151 tmp = tas3004_bass(tas->bass);
152 tas_write_reg(tas, TAS_REG_BASS, 1, &tmp);
155 static void tas_set_volume(struct tas *tas)
157 u8 block[6];
158 int tmp;
159 u8 left, right;
161 left = tas->cached_volume_l;
162 right = tas->cached_volume_r;
164 if (left > 177) left = 177;
165 if (right > 177) right = 177;
167 if (tas->mute_l) left = 0;
168 if (tas->mute_r) right = 0;
170 /* analysing the volume and mixer tables shows
171 * that they are similar enough when we shift
172 * the mixer table down by 4 bits. The error
173 * is miniscule, in just one item the error
174 * is 1, at a value of 0x07f17b (mixer table
175 * value is 0x07f17a) */
176 tmp = tas_gaintable[left];
177 block[0] = tmp>>20;
178 block[1] = tmp>>12;
179 block[2] = tmp>>4;
180 tmp = tas_gaintable[right];
181 block[3] = tmp>>20;
182 block[4] = tmp>>12;
183 block[5] = tmp>>4;
184 tas_write_reg(tas, TAS_REG_VOL, 6, block);
187 static void tas_set_mixer(struct tas *tas)
189 u8 block[9];
190 int tmp, i;
191 u8 val;
193 for (i=0;i<3;i++) {
194 val = tas->mixer_l[i];
195 if (val > 177) val = 177;
196 tmp = tas_gaintable[val];
197 block[3*i+0] = tmp>>16;
198 block[3*i+1] = tmp>>8;
199 block[3*i+2] = tmp;
201 tas_write_reg(tas, TAS_REG_LMIX, 9, block);
203 for (i=0;i<3;i++) {
204 val = tas->mixer_r[i];
205 if (val > 177) val = 177;
206 tmp = tas_gaintable[val];
207 block[3*i+0] = tmp>>16;
208 block[3*i+1] = tmp>>8;
209 block[3*i+2] = tmp;
211 tas_write_reg(tas, TAS_REG_RMIX, 9, block);
214 /* alsa stuff */
216 static int tas_dev_register(struct snd_device *dev)
218 return 0;
221 static struct snd_device_ops ops = {
222 .dev_register = tas_dev_register,
225 static int tas_snd_vol_info(struct snd_kcontrol *kcontrol,
226 struct snd_ctl_elem_info *uinfo)
228 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
229 uinfo->count = 2;
230 uinfo->value.integer.min = 0;
231 uinfo->value.integer.max = 177;
232 return 0;
235 static int tas_snd_vol_get(struct snd_kcontrol *kcontrol,
236 struct snd_ctl_elem_value *ucontrol)
238 struct tas *tas = snd_kcontrol_chip(kcontrol);
240 mutex_lock(&tas->mtx);
241 ucontrol->value.integer.value[0] = tas->cached_volume_l;
242 ucontrol->value.integer.value[1] = tas->cached_volume_r;
243 mutex_unlock(&tas->mtx);
244 return 0;
247 static int tas_snd_vol_put(struct snd_kcontrol *kcontrol,
248 struct snd_ctl_elem_value *ucontrol)
250 struct tas *tas = snd_kcontrol_chip(kcontrol);
252 if (ucontrol->value.integer.value[0] < 0 ||
253 ucontrol->value.integer.value[0] > 177)
254 return -EINVAL;
255 if (ucontrol->value.integer.value[1] < 0 ||
256 ucontrol->value.integer.value[1] > 177)
257 return -EINVAL;
259 mutex_lock(&tas->mtx);
260 if (tas->cached_volume_l == ucontrol->value.integer.value[0]
261 && tas->cached_volume_r == ucontrol->value.integer.value[1]) {
262 mutex_unlock(&tas->mtx);
263 return 0;
266 tas->cached_volume_l = ucontrol->value.integer.value[0];
267 tas->cached_volume_r = ucontrol->value.integer.value[1];
268 if (tas->hw_enabled)
269 tas_set_volume(tas);
270 mutex_unlock(&tas->mtx);
271 return 1;
274 static struct snd_kcontrol_new volume_control = {
275 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
276 .name = "Master Playback Volume",
277 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
278 .info = tas_snd_vol_info,
279 .get = tas_snd_vol_get,
280 .put = tas_snd_vol_put,
283 #define tas_snd_mute_info snd_ctl_boolean_stereo_info
285 static int tas_snd_mute_get(struct snd_kcontrol *kcontrol,
286 struct snd_ctl_elem_value *ucontrol)
288 struct tas *tas = snd_kcontrol_chip(kcontrol);
290 mutex_lock(&tas->mtx);
291 ucontrol->value.integer.value[0] = !tas->mute_l;
292 ucontrol->value.integer.value[1] = !tas->mute_r;
293 mutex_unlock(&tas->mtx);
294 return 0;
297 static int tas_snd_mute_put(struct snd_kcontrol *kcontrol,
298 struct snd_ctl_elem_value *ucontrol)
300 struct tas *tas = snd_kcontrol_chip(kcontrol);
302 mutex_lock(&tas->mtx);
303 if (tas->mute_l == !ucontrol->value.integer.value[0]
304 && tas->mute_r == !ucontrol->value.integer.value[1]) {
305 mutex_unlock(&tas->mtx);
306 return 0;
309 tas->mute_l = !ucontrol->value.integer.value[0];
310 tas->mute_r = !ucontrol->value.integer.value[1];
311 if (tas->hw_enabled)
312 tas_set_volume(tas);
313 mutex_unlock(&tas->mtx);
314 return 1;
317 static struct snd_kcontrol_new mute_control = {
318 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
319 .name = "Master Playback Switch",
320 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
321 .info = tas_snd_mute_info,
322 .get = tas_snd_mute_get,
323 .put = tas_snd_mute_put,
326 static int tas_snd_mixer_info(struct snd_kcontrol *kcontrol,
327 struct snd_ctl_elem_info *uinfo)
329 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
330 uinfo->count = 2;
331 uinfo->value.integer.min = 0;
332 uinfo->value.integer.max = 177;
333 return 0;
336 static int tas_snd_mixer_get(struct snd_kcontrol *kcontrol,
337 struct snd_ctl_elem_value *ucontrol)
339 struct tas *tas = snd_kcontrol_chip(kcontrol);
340 int idx = kcontrol->private_value;
342 mutex_lock(&tas->mtx);
343 ucontrol->value.integer.value[0] = tas->mixer_l[idx];
344 ucontrol->value.integer.value[1] = tas->mixer_r[idx];
345 mutex_unlock(&tas->mtx);
347 return 0;
350 static int tas_snd_mixer_put(struct snd_kcontrol *kcontrol,
351 struct snd_ctl_elem_value *ucontrol)
353 struct tas *tas = snd_kcontrol_chip(kcontrol);
354 int idx = kcontrol->private_value;
356 mutex_lock(&tas->mtx);
357 if (tas->mixer_l[idx] == ucontrol->value.integer.value[0]
358 && tas->mixer_r[idx] == ucontrol->value.integer.value[1]) {
359 mutex_unlock(&tas->mtx);
360 return 0;
363 tas->mixer_l[idx] = ucontrol->value.integer.value[0];
364 tas->mixer_r[idx] = ucontrol->value.integer.value[1];
366 if (tas->hw_enabled)
367 tas_set_mixer(tas);
368 mutex_unlock(&tas->mtx);
369 return 1;
372 #define MIXER_CONTROL(n,descr,idx) \
373 static struct snd_kcontrol_new n##_control = { \
374 .iface = SNDRV_CTL_ELEM_IFACE_MIXER, \
375 .name = descr " Playback Volume", \
376 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE, \
377 .info = tas_snd_mixer_info, \
378 .get = tas_snd_mixer_get, \
379 .put = tas_snd_mixer_put, \
380 .private_value = idx, \
383 MIXER_CONTROL(pcm1, "PCM", 0);
384 MIXER_CONTROL(monitor, "Monitor", 2);
386 static int tas_snd_drc_range_info(struct snd_kcontrol *kcontrol,
387 struct snd_ctl_elem_info *uinfo)
389 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
390 uinfo->count = 1;
391 uinfo->value.integer.min = 0;
392 uinfo->value.integer.max = TAS3004_DRC_MAX;
393 return 0;
396 static int tas_snd_drc_range_get(struct snd_kcontrol *kcontrol,
397 struct snd_ctl_elem_value *ucontrol)
399 struct tas *tas = snd_kcontrol_chip(kcontrol);
401 mutex_lock(&tas->mtx);
402 ucontrol->value.integer.value[0] = tas->drc_range;
403 mutex_unlock(&tas->mtx);
404 return 0;
407 static int tas_snd_drc_range_put(struct snd_kcontrol *kcontrol,
408 struct snd_ctl_elem_value *ucontrol)
410 struct tas *tas = snd_kcontrol_chip(kcontrol);
412 if (ucontrol->value.integer.value[0] < 0 ||
413 ucontrol->value.integer.value[0] > TAS3004_DRC_MAX)
414 return -EINVAL;
416 mutex_lock(&tas->mtx);
417 if (tas->drc_range == ucontrol->value.integer.value[0]) {
418 mutex_unlock(&tas->mtx);
419 return 0;
422 tas->drc_range = ucontrol->value.integer.value[0];
423 if (tas->hw_enabled)
424 tas3004_set_drc(tas);
425 mutex_unlock(&tas->mtx);
426 return 1;
429 static struct snd_kcontrol_new drc_range_control = {
430 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
431 .name = "DRC Range",
432 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
433 .info = tas_snd_drc_range_info,
434 .get = tas_snd_drc_range_get,
435 .put = tas_snd_drc_range_put,
438 #define tas_snd_drc_switch_info snd_ctl_boolean_mono_info
440 static int tas_snd_drc_switch_get(struct snd_kcontrol *kcontrol,
441 struct snd_ctl_elem_value *ucontrol)
443 struct tas *tas = snd_kcontrol_chip(kcontrol);
445 mutex_lock(&tas->mtx);
446 ucontrol->value.integer.value[0] = tas->drc_enabled;
447 mutex_unlock(&tas->mtx);
448 return 0;
451 static int tas_snd_drc_switch_put(struct snd_kcontrol *kcontrol,
452 struct snd_ctl_elem_value *ucontrol)
454 struct tas *tas = snd_kcontrol_chip(kcontrol);
456 mutex_lock(&tas->mtx);
457 if (tas->drc_enabled == ucontrol->value.integer.value[0]) {
458 mutex_unlock(&tas->mtx);
459 return 0;
462 tas->drc_enabled = !!ucontrol->value.integer.value[0];
463 if (tas->hw_enabled)
464 tas3004_set_drc(tas);
465 mutex_unlock(&tas->mtx);
466 return 1;
469 static struct snd_kcontrol_new drc_switch_control = {
470 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
471 .name = "DRC Range Switch",
472 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
473 .info = tas_snd_drc_switch_info,
474 .get = tas_snd_drc_switch_get,
475 .put = tas_snd_drc_switch_put,
478 static int tas_snd_capture_source_info(struct snd_kcontrol *kcontrol,
479 struct snd_ctl_elem_info *uinfo)
481 static char *texts[] = { "Line-In", "Microphone" };
483 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
484 uinfo->count = 1;
485 uinfo->value.enumerated.items = 2;
486 if (uinfo->value.enumerated.item > 1)
487 uinfo->value.enumerated.item = 1;
488 strcpy(uinfo->value.enumerated.name, texts[uinfo->value.enumerated.item]);
489 return 0;
492 static int tas_snd_capture_source_get(struct snd_kcontrol *kcontrol,
493 struct snd_ctl_elem_value *ucontrol)
495 struct tas *tas = snd_kcontrol_chip(kcontrol);
497 mutex_lock(&tas->mtx);
498 ucontrol->value.enumerated.item[0] = !!(tas->acr & TAS_ACR_INPUT_B);
499 mutex_unlock(&tas->mtx);
500 return 0;
503 static int tas_snd_capture_source_put(struct snd_kcontrol *kcontrol,
504 struct snd_ctl_elem_value *ucontrol)
506 struct tas *tas = snd_kcontrol_chip(kcontrol);
507 int oldacr;
509 if (ucontrol->value.enumerated.item[0] > 1)
510 return -EINVAL;
511 mutex_lock(&tas->mtx);
512 oldacr = tas->acr;
515 * Despite what the data sheet says in one place, the
516 * TAS_ACR_B_MONAUREAL bit forces mono output even when
517 * input A (line in) is selected.
519 tas->acr &= ~(TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL);
520 if (ucontrol->value.enumerated.item[0])
521 tas->acr |= TAS_ACR_INPUT_B | TAS_ACR_B_MONAUREAL |
522 TAS_ACR_B_MON_SEL_RIGHT;
523 if (oldacr == tas->acr) {
524 mutex_unlock(&tas->mtx);
525 return 0;
527 if (tas->hw_enabled)
528 tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
529 mutex_unlock(&tas->mtx);
530 return 1;
533 static struct snd_kcontrol_new capture_source_control = {
534 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
535 /* If we name this 'Input Source', it properly shows up in
536 * alsamixer as a selection, * but it's shown under the
537 * 'Playback' category.
538 * If I name it 'Capture Source', it shows up in strange
539 * ways (two bools of which one can be selected at a
540 * time) but at least it's shown in the 'Capture'
541 * category.
542 * I was told that this was due to backward compatibility,
543 * but I don't understand then why the mangling is *not*
544 * done when I name it "Input Source".....
546 .name = "Capture Source",
547 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
548 .info = tas_snd_capture_source_info,
549 .get = tas_snd_capture_source_get,
550 .put = tas_snd_capture_source_put,
553 static int tas_snd_treble_info(struct snd_kcontrol *kcontrol,
554 struct snd_ctl_elem_info *uinfo)
556 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
557 uinfo->count = 1;
558 uinfo->value.integer.min = TAS3004_TREBLE_MIN;
559 uinfo->value.integer.max = TAS3004_TREBLE_MAX;
560 return 0;
563 static int tas_snd_treble_get(struct snd_kcontrol *kcontrol,
564 struct snd_ctl_elem_value *ucontrol)
566 struct tas *tas = snd_kcontrol_chip(kcontrol);
568 mutex_lock(&tas->mtx);
569 ucontrol->value.integer.value[0] = tas->treble;
570 mutex_unlock(&tas->mtx);
571 return 0;
574 static int tas_snd_treble_put(struct snd_kcontrol *kcontrol,
575 struct snd_ctl_elem_value *ucontrol)
577 struct tas *tas = snd_kcontrol_chip(kcontrol);
579 if (ucontrol->value.integer.value[0] < TAS3004_TREBLE_MIN ||
580 ucontrol->value.integer.value[0] > TAS3004_TREBLE_MAX)
581 return -EINVAL;
582 mutex_lock(&tas->mtx);
583 if (tas->treble == ucontrol->value.integer.value[0]) {
584 mutex_unlock(&tas->mtx);
585 return 0;
588 tas->treble = ucontrol->value.integer.value[0];
589 if (tas->hw_enabled)
590 tas_set_treble(tas);
591 mutex_unlock(&tas->mtx);
592 return 1;
595 static struct snd_kcontrol_new treble_control = {
596 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
597 .name = "Treble",
598 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
599 .info = tas_snd_treble_info,
600 .get = tas_snd_treble_get,
601 .put = tas_snd_treble_put,
604 static int tas_snd_bass_info(struct snd_kcontrol *kcontrol,
605 struct snd_ctl_elem_info *uinfo)
607 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
608 uinfo->count = 1;
609 uinfo->value.integer.min = TAS3004_BASS_MIN;
610 uinfo->value.integer.max = TAS3004_BASS_MAX;
611 return 0;
614 static int tas_snd_bass_get(struct snd_kcontrol *kcontrol,
615 struct snd_ctl_elem_value *ucontrol)
617 struct tas *tas = snd_kcontrol_chip(kcontrol);
619 mutex_lock(&tas->mtx);
620 ucontrol->value.integer.value[0] = tas->bass;
621 mutex_unlock(&tas->mtx);
622 return 0;
625 static int tas_snd_bass_put(struct snd_kcontrol *kcontrol,
626 struct snd_ctl_elem_value *ucontrol)
628 struct tas *tas = snd_kcontrol_chip(kcontrol);
630 if (ucontrol->value.integer.value[0] < TAS3004_BASS_MIN ||
631 ucontrol->value.integer.value[0] > TAS3004_BASS_MAX)
632 return -EINVAL;
633 mutex_lock(&tas->mtx);
634 if (tas->bass == ucontrol->value.integer.value[0]) {
635 mutex_unlock(&tas->mtx);
636 return 0;
639 tas->bass = ucontrol->value.integer.value[0];
640 if (tas->hw_enabled)
641 tas_set_bass(tas);
642 mutex_unlock(&tas->mtx);
643 return 1;
646 static struct snd_kcontrol_new bass_control = {
647 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
648 .name = "Bass",
649 .access = SNDRV_CTL_ELEM_ACCESS_READWRITE,
650 .info = tas_snd_bass_info,
651 .get = tas_snd_bass_get,
652 .put = tas_snd_bass_put,
655 static struct transfer_info tas_transfers[] = {
657 /* input */
658 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
659 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
660 .transfer_in = 1,
663 /* output */
664 .formats = SNDRV_PCM_FMTBIT_S16_BE | SNDRV_PCM_FMTBIT_S24_BE,
665 .rates = SNDRV_PCM_RATE_32000 | SNDRV_PCM_RATE_44100 | SNDRV_PCM_RATE_48000,
666 .transfer_in = 0,
671 static int tas_usable(struct codec_info_item *cii,
672 struct transfer_info *ti,
673 struct transfer_info *out)
675 return 1;
678 static int tas_reset_init(struct tas *tas)
680 u8 tmp;
682 tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
683 msleep(5);
684 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
685 msleep(5);
686 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 1);
687 msleep(20);
688 tas->codec.gpio->methods->set_hw_reset(tas->codec.gpio, 0);
689 msleep(10);
690 tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
692 tmp = TAS_MCS_SCLK64 | TAS_MCS_SPORT_MODE_I2S | TAS_MCS_SPORT_WL_24BIT;
693 if (tas_write_reg(tas, TAS_REG_MCS, 1, &tmp))
694 goto outerr;
696 tas->acr |= TAS_ACR_ANALOG_PDOWN;
697 if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
698 goto outerr;
700 tmp = 0;
701 if (tas_write_reg(tas, TAS_REG_MCS2, 1, &tmp))
702 goto outerr;
704 tas3004_set_drc(tas);
706 /* Set treble & bass to 0dB */
707 tas->treble = TAS3004_TREBLE_ZERO;
708 tas->bass = TAS3004_BASS_ZERO;
709 tas_set_treble(tas);
710 tas_set_bass(tas);
712 tas->acr &= ~TAS_ACR_ANALOG_PDOWN;
713 if (tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr))
714 goto outerr;
716 return 0;
717 outerr:
718 return -ENODEV;
721 static int tas_switch_clock(struct codec_info_item *cii, enum clock_switch clock)
723 struct tas *tas = cii->codec_data;
725 switch(clock) {
726 case CLOCK_SWITCH_PREPARE_SLAVE:
727 /* Clocks are going away, mute mute mute */
728 tas->codec.gpio->methods->all_amps_off(tas->codec.gpio);
729 tas->hw_enabled = 0;
730 break;
731 case CLOCK_SWITCH_SLAVE:
732 /* Clocks are back, re-init the codec */
733 mutex_lock(&tas->mtx);
734 tas_reset_init(tas);
735 tas_set_volume(tas);
736 tas_set_mixer(tas);
737 tas->hw_enabled = 1;
738 tas->codec.gpio->methods->all_amps_restore(tas->codec.gpio);
739 mutex_unlock(&tas->mtx);
740 break;
741 default:
742 /* doesn't happen as of now */
743 return -EINVAL;
745 return 0;
748 #ifdef CONFIG_PM
749 /* we are controlled via i2c and assume that is always up
750 * If that wasn't the case, we'd have to suspend once
751 * our i2c device is suspended, and then take note of that! */
752 static int tas_suspend(struct tas *tas)
754 mutex_lock(&tas->mtx);
755 tas->hw_enabled = 0;
756 tas->acr |= TAS_ACR_ANALOG_PDOWN;
757 tas_write_reg(tas, TAS_REG_ACR, 1, &tas->acr);
758 mutex_unlock(&tas->mtx);
759 return 0;
762 static int tas_resume(struct tas *tas)
764 /* reset codec */
765 mutex_lock(&tas->mtx);
766 tas_reset_init(tas);
767 tas_set_volume(tas);
768 tas_set_mixer(tas);
769 tas->hw_enabled = 1;
770 mutex_unlock(&tas->mtx);
771 return 0;
774 static int _tas_suspend(struct codec_info_item *cii, pm_message_t state)
776 return tas_suspend(cii->codec_data);
779 static int _tas_resume(struct codec_info_item *cii)
781 return tas_resume(cii->codec_data);
783 #else /* CONFIG_PM */
784 #define _tas_suspend NULL
785 #define _tas_resume NULL
786 #endif /* CONFIG_PM */
788 static struct codec_info tas_codec_info = {
789 .transfers = tas_transfers,
790 /* in theory, we can drive it at 512 too...
791 * but so far the framework doesn't allow
792 * for that and I don't see much point in it. */
793 .sysclock_factor = 256,
794 /* same here, could be 32 for just one 16 bit format */
795 .bus_factor = 64,
796 .owner = THIS_MODULE,
797 .usable = tas_usable,
798 .switch_clock = tas_switch_clock,
799 .suspend = _tas_suspend,
800 .resume = _tas_resume,
803 static int tas_init_codec(struct aoa_codec *codec)
805 struct tas *tas = codec_to_tas(codec);
806 int err;
808 if (!tas->codec.gpio || !tas->codec.gpio->methods) {
809 printk(KERN_ERR PFX "gpios not assigned!!\n");
810 return -EINVAL;
813 mutex_lock(&tas->mtx);
814 if (tas_reset_init(tas)) {
815 printk(KERN_ERR PFX "tas failed to initialise\n");
816 mutex_unlock(&tas->mtx);
817 return -ENXIO;
819 tas->hw_enabled = 1;
820 mutex_unlock(&tas->mtx);
822 if (tas->codec.soundbus_dev->attach_codec(tas->codec.soundbus_dev,
823 aoa_get_card(),
824 &tas_codec_info, tas)) {
825 printk(KERN_ERR PFX "error attaching tas to soundbus\n");
826 return -ENODEV;
829 if (aoa_snd_device_new(SNDRV_DEV_LOWLEVEL, tas, &ops)) {
830 printk(KERN_ERR PFX "failed to create tas snd device!\n");
831 return -ENODEV;
833 err = aoa_snd_ctl_add(snd_ctl_new1(&volume_control, tas));
834 if (err)
835 goto error;
837 err = aoa_snd_ctl_add(snd_ctl_new1(&mute_control, tas));
838 if (err)
839 goto error;
841 err = aoa_snd_ctl_add(snd_ctl_new1(&pcm1_control, tas));
842 if (err)
843 goto error;
845 err = aoa_snd_ctl_add(snd_ctl_new1(&monitor_control, tas));
846 if (err)
847 goto error;
849 err = aoa_snd_ctl_add(snd_ctl_new1(&capture_source_control, tas));
850 if (err)
851 goto error;
853 err = aoa_snd_ctl_add(snd_ctl_new1(&drc_range_control, tas));
854 if (err)
855 goto error;
857 err = aoa_snd_ctl_add(snd_ctl_new1(&drc_switch_control, tas));
858 if (err)
859 goto error;
861 err = aoa_snd_ctl_add(snd_ctl_new1(&treble_control, tas));
862 if (err)
863 goto error;
865 err = aoa_snd_ctl_add(snd_ctl_new1(&bass_control, tas));
866 if (err)
867 goto error;
869 return 0;
870 error:
871 tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
872 snd_device_free(aoa_get_card(), tas);
873 return err;
876 static void tas_exit_codec(struct aoa_codec *codec)
878 struct tas *tas = codec_to_tas(codec);
880 if (!tas->codec.soundbus_dev)
881 return;
882 tas->codec.soundbus_dev->detach_codec(tas->codec.soundbus_dev, tas);
886 static int tas_create(struct i2c_adapter *adapter,
887 struct device_node *node,
888 int addr)
890 struct i2c_board_info info;
891 struct i2c_client *client;
893 memset(&info, 0, sizeof(struct i2c_board_info));
894 strlcpy(info.type, "aoa_codec_tas", I2C_NAME_SIZE);
895 info.addr = addr;
896 info.platform_data = node;
898 client = i2c_new_device(adapter, &info);
899 if (!client)
900 return -ENODEV;
902 * We know the driver is already loaded, so the device should be
903 * already bound. If not it means binding failed, and then there
904 * is no point in keeping the device instantiated.
906 if (!client->driver) {
907 i2c_unregister_device(client);
908 return -ENODEV;
912 * Let i2c-core delete that device on driver removal.
913 * This is safe because i2c-core holds the core_lock mutex for us.
915 list_add_tail(&client->detected, &client->driver->clients);
916 return 0;
919 static int tas_i2c_probe(struct i2c_client *client,
920 const struct i2c_device_id *id)
922 struct device_node *node = client->dev.platform_data;
923 struct tas *tas;
925 tas = kzalloc(sizeof(struct tas), GFP_KERNEL);
927 if (!tas)
928 return -ENOMEM;
930 mutex_init(&tas->mtx);
931 tas->i2c = client;
932 i2c_set_clientdata(client, tas);
934 /* seems that half is a saner default */
935 tas->drc_range = TAS3004_DRC_MAX / 2;
937 strlcpy(tas->codec.name, "tas", MAX_CODEC_NAME_LEN);
938 tas->codec.owner = THIS_MODULE;
939 tas->codec.init = tas_init_codec;
940 tas->codec.exit = tas_exit_codec;
941 tas->codec.node = of_node_get(node);
943 if (aoa_codec_register(&tas->codec)) {
944 goto fail;
946 printk(KERN_DEBUG
947 "snd-aoa-codec-tas: tas found, addr 0x%02x on %s\n",
948 (unsigned int)client->addr, node->full_name);
949 return 0;
950 fail:
951 mutex_destroy(&tas->mtx);
952 kfree(tas);
953 return -EINVAL;
956 static int tas_i2c_attach(struct i2c_adapter *adapter)
958 struct device_node *busnode, *dev = NULL;
959 struct pmac_i2c_bus *bus;
961 bus = pmac_i2c_adapter_to_bus(adapter);
962 if (bus == NULL)
963 return -ENODEV;
964 busnode = pmac_i2c_get_bus_node(bus);
966 while ((dev = of_get_next_child(busnode, dev)) != NULL) {
967 if (of_device_is_compatible(dev, "tas3004")) {
968 const u32 *addr;
969 printk(KERN_DEBUG PFX "found tas3004\n");
970 addr = of_get_property(dev, "reg", NULL);
971 if (!addr)
972 continue;
973 return tas_create(adapter, dev, ((*addr) >> 1) & 0x7f);
975 /* older machines have no 'codec' node with a 'compatible'
976 * property that says 'tas3004', they just have a 'deq'
977 * node without any such property... */
978 if (strcmp(dev->name, "deq") == 0) {
979 const u32 *_addr;
980 u32 addr;
981 printk(KERN_DEBUG PFX "found 'deq' node\n");
982 _addr = of_get_property(dev, "i2c-address", NULL);
983 if (!_addr)
984 continue;
985 addr = ((*_addr) >> 1) & 0x7f;
986 /* now, if the address doesn't match any of the two
987 * that a tas3004 can have, we cannot handle this.
988 * I doubt it ever happens but hey. */
989 if (addr != 0x34 && addr != 0x35)
990 continue;
991 return tas_create(adapter, dev, addr);
994 return -ENODEV;
997 static int tas_i2c_remove(struct i2c_client *client)
999 struct tas *tas = i2c_get_clientdata(client);
1000 u8 tmp = TAS_ACR_ANALOG_PDOWN;
1002 aoa_codec_unregister(&tas->codec);
1003 of_node_put(tas->codec.node);
1005 /* power down codec chip */
1006 tas_write_reg(tas, TAS_REG_ACR, 1, &tmp);
1008 mutex_destroy(&tas->mtx);
1009 kfree(tas);
1010 return 0;
1013 static const struct i2c_device_id tas_i2c_id[] = {
1014 { "aoa_codec_tas", 0 },
1018 static struct i2c_driver tas_driver = {
1019 .driver = {
1020 .name = "aoa_codec_tas",
1021 .owner = THIS_MODULE,
1023 .attach_adapter = tas_i2c_attach,
1024 .probe = tas_i2c_probe,
1025 .remove = tas_i2c_remove,
1026 .id_table = tas_i2c_id,
1029 static int __init tas_init(void)
1031 return i2c_add_driver(&tas_driver);
1034 static void __exit tas_exit(void)
1036 i2c_del_driver(&tas_driver);
1039 module_init(tas_init);
1040 module_exit(tas_exit);