Merge branch 'for-linus' of git://git.infradead.org/users/sameo/mfd-2.6
[linux-btrfs-devel.git] / drivers / dma / ste_dma40.c
blob467e4dcb20a012cadfcc10bc616b25dbe11d373a
1 /*
2 * Copyright (C) Ericsson AB 2007-2008
3 * Copyright (C) ST-Ericsson SA 2008-2010
4 * Author: Per Forlin <per.forlin@stericsson.com> for ST-Ericsson
5 * Author: Jonas Aaberg <jonas.aberg@stericsson.com> for ST-Ericsson
6 * License terms: GNU General Public License (GPL) version 2
7 */
9 #include <linux/dma-mapping.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/dmaengine.h>
13 #include <linux/platform_device.h>
14 #include <linux/clk.h>
15 #include <linux/delay.h>
16 #include <linux/err.h>
17 #include <linux/amba/bus.h>
19 #include <plat/ste_dma40.h>
21 #include "ste_dma40_ll.h"
23 #define D40_NAME "dma40"
25 #define D40_PHY_CHAN -1
27 /* For masking out/in 2 bit channel positions */
28 #define D40_CHAN_POS(chan) (2 * (chan / 2))
29 #define D40_CHAN_POS_MASK(chan) (0x3 << D40_CHAN_POS(chan))
31 /* Maximum iterations taken before giving up suspending a channel */
32 #define D40_SUSPEND_MAX_IT 500
34 /* Hardware requirement on LCLA alignment */
35 #define LCLA_ALIGNMENT 0x40000
37 /* Max number of links per event group */
38 #define D40_LCLA_LINK_PER_EVENT_GRP 128
39 #define D40_LCLA_END D40_LCLA_LINK_PER_EVENT_GRP
41 /* Attempts before giving up to trying to get pages that are aligned */
42 #define MAX_LCLA_ALLOC_ATTEMPTS 256
44 /* Bit markings for allocation map */
45 #define D40_ALLOC_FREE (1 << 31)
46 #define D40_ALLOC_PHY (1 << 30)
47 #define D40_ALLOC_LOG_FREE 0
49 /**
50 * enum 40_command - The different commands and/or statuses.
52 * @D40_DMA_STOP: DMA channel command STOP or status STOPPED,
53 * @D40_DMA_RUN: The DMA channel is RUNNING of the command RUN.
54 * @D40_DMA_SUSPEND_REQ: Request the DMA to SUSPEND as soon as possible.
55 * @D40_DMA_SUSPENDED: The DMA channel is SUSPENDED.
57 enum d40_command {
58 D40_DMA_STOP = 0,
59 D40_DMA_RUN = 1,
60 D40_DMA_SUSPEND_REQ = 2,
61 D40_DMA_SUSPENDED = 3
64 /**
65 * struct d40_lli_pool - Structure for keeping LLIs in memory
67 * @base: Pointer to memory area when the pre_alloc_lli's are not large
68 * enough, IE bigger than the most common case, 1 dst and 1 src. NULL if
69 * pre_alloc_lli is used.
70 * @dma_addr: DMA address, if mapped
71 * @size: The size in bytes of the memory at base or the size of pre_alloc_lli.
72 * @pre_alloc_lli: Pre allocated area for the most common case of transfers,
73 * one buffer to one buffer.
75 struct d40_lli_pool {
76 void *base;
77 int size;
78 dma_addr_t dma_addr;
79 /* Space for dst and src, plus an extra for padding */
80 u8 pre_alloc_lli[3 * sizeof(struct d40_phy_lli)];
83 /**
84 * struct d40_desc - A descriptor is one DMA job.
86 * @lli_phy: LLI settings for physical channel. Both src and dst=
87 * points into the lli_pool, to base if lli_len > 1 or to pre_alloc_lli if
88 * lli_len equals one.
89 * @lli_log: Same as above but for logical channels.
90 * @lli_pool: The pool with two entries pre-allocated.
91 * @lli_len: Number of llis of current descriptor.
92 * @lli_current: Number of transferred llis.
93 * @lcla_alloc: Number of LCLA entries allocated.
94 * @txd: DMA engine struct. Used for among other things for communication
95 * during a transfer.
96 * @node: List entry.
97 * @is_in_client_list: true if the client owns this descriptor.
98 * the previous one.
100 * This descriptor is used for both logical and physical transfers.
102 struct d40_desc {
103 /* LLI physical */
104 struct d40_phy_lli_bidir lli_phy;
105 /* LLI logical */
106 struct d40_log_lli_bidir lli_log;
108 struct d40_lli_pool lli_pool;
109 int lli_len;
110 int lli_current;
111 int lcla_alloc;
113 struct dma_async_tx_descriptor txd;
114 struct list_head node;
116 bool is_in_client_list;
117 bool cyclic;
121 * struct d40_lcla_pool - LCLA pool settings and data.
123 * @base: The virtual address of LCLA. 18 bit aligned.
124 * @base_unaligned: The orignal kmalloc pointer, if kmalloc is used.
125 * This pointer is only there for clean-up on error.
126 * @pages: The number of pages needed for all physical channels.
127 * Only used later for clean-up on error
128 * @lock: Lock to protect the content in this struct.
129 * @alloc_map: big map over which LCLA entry is own by which job.
131 struct d40_lcla_pool {
132 void *base;
133 dma_addr_t dma_addr;
134 void *base_unaligned;
135 int pages;
136 spinlock_t lock;
137 struct d40_desc **alloc_map;
141 * struct d40_phy_res - struct for handling eventlines mapped to physical
142 * channels.
144 * @lock: A lock protection this entity.
145 * @num: The physical channel number of this entity.
146 * @allocated_src: Bit mapped to show which src event line's are mapped to
147 * this physical channel. Can also be free or physically allocated.
148 * @allocated_dst: Same as for src but is dst.
149 * allocated_dst and allocated_src uses the D40_ALLOC* defines as well as
150 * event line number.
152 struct d40_phy_res {
153 spinlock_t lock;
154 int num;
155 u32 allocated_src;
156 u32 allocated_dst;
159 struct d40_base;
162 * struct d40_chan - Struct that describes a channel.
164 * @lock: A spinlock to protect this struct.
165 * @log_num: The logical number, if any of this channel.
166 * @completed: Starts with 1, after first interrupt it is set to dma engine's
167 * current cookie.
168 * @pending_tx: The number of pending transfers. Used between interrupt handler
169 * and tasklet.
170 * @busy: Set to true when transfer is ongoing on this channel.
171 * @phy_chan: Pointer to physical channel which this instance runs on. If this
172 * point is NULL, then the channel is not allocated.
173 * @chan: DMA engine handle.
174 * @tasklet: Tasklet that gets scheduled from interrupt context to complete a
175 * transfer and call client callback.
176 * @client: Cliented owned descriptor list.
177 * @pending_queue: Submitted jobs, to be issued by issue_pending()
178 * @active: Active descriptor.
179 * @queue: Queued jobs.
180 * @prepare_queue: Prepared jobs.
181 * @dma_cfg: The client configuration of this dma channel.
182 * @configured: whether the dma_cfg configuration is valid
183 * @base: Pointer to the device instance struct.
184 * @src_def_cfg: Default cfg register setting for src.
185 * @dst_def_cfg: Default cfg register setting for dst.
186 * @log_def: Default logical channel settings.
187 * @lcla: Space for one dst src pair for logical channel transfers.
188 * @lcpa: Pointer to dst and src lcpa settings.
189 * @runtime_addr: runtime configured address.
190 * @runtime_direction: runtime configured direction.
192 * This struct can either "be" a logical or a physical channel.
194 struct d40_chan {
195 spinlock_t lock;
196 int log_num;
197 /* ID of the most recent completed transfer */
198 int completed;
199 int pending_tx;
200 bool busy;
201 struct d40_phy_res *phy_chan;
202 struct dma_chan chan;
203 struct tasklet_struct tasklet;
204 struct list_head client;
205 struct list_head pending_queue;
206 struct list_head active;
207 struct list_head queue;
208 struct list_head prepare_queue;
209 struct stedma40_chan_cfg dma_cfg;
210 bool configured;
211 struct d40_base *base;
212 /* Default register configurations */
213 u32 src_def_cfg;
214 u32 dst_def_cfg;
215 struct d40_def_lcsp log_def;
216 struct d40_log_lli_full *lcpa;
217 /* Runtime reconfiguration */
218 dma_addr_t runtime_addr;
219 enum dma_data_direction runtime_direction;
223 * struct d40_base - The big global struct, one for each probe'd instance.
225 * @interrupt_lock: Lock used to make sure one interrupt is handle a time.
226 * @execmd_lock: Lock for execute command usage since several channels share
227 * the same physical register.
228 * @dev: The device structure.
229 * @virtbase: The virtual base address of the DMA's register.
230 * @rev: silicon revision detected.
231 * @clk: Pointer to the DMA clock structure.
232 * @phy_start: Physical memory start of the DMA registers.
233 * @phy_size: Size of the DMA register map.
234 * @irq: The IRQ number.
235 * @num_phy_chans: The number of physical channels. Read from HW. This
236 * is the number of available channels for this driver, not counting "Secure
237 * mode" allocated physical channels.
238 * @num_log_chans: The number of logical channels. Calculated from
239 * num_phy_chans.
240 * @dma_both: dma_device channels that can do both memcpy and slave transfers.
241 * @dma_slave: dma_device channels that can do only do slave transfers.
242 * @dma_memcpy: dma_device channels that can do only do memcpy transfers.
243 * @log_chans: Room for all possible logical channels in system.
244 * @lookup_log_chans: Used to map interrupt number to logical channel. Points
245 * to log_chans entries.
246 * @lookup_phy_chans: Used to map interrupt number to physical channel. Points
247 * to phy_chans entries.
248 * @plat_data: Pointer to provided platform_data which is the driver
249 * configuration.
250 * @phy_res: Vector containing all physical channels.
251 * @lcla_pool: lcla pool settings and data.
252 * @lcpa_base: The virtual mapped address of LCPA.
253 * @phy_lcpa: The physical address of the LCPA.
254 * @lcpa_size: The size of the LCPA area.
255 * @desc_slab: cache for descriptors.
257 struct d40_base {
258 spinlock_t interrupt_lock;
259 spinlock_t execmd_lock;
260 struct device *dev;
261 void __iomem *virtbase;
262 u8 rev:4;
263 struct clk *clk;
264 phys_addr_t phy_start;
265 resource_size_t phy_size;
266 int irq;
267 int num_phy_chans;
268 int num_log_chans;
269 struct dma_device dma_both;
270 struct dma_device dma_slave;
271 struct dma_device dma_memcpy;
272 struct d40_chan *phy_chans;
273 struct d40_chan *log_chans;
274 struct d40_chan **lookup_log_chans;
275 struct d40_chan **lookup_phy_chans;
276 struct stedma40_platform_data *plat_data;
277 /* Physical half channels */
278 struct d40_phy_res *phy_res;
279 struct d40_lcla_pool lcla_pool;
280 void *lcpa_base;
281 dma_addr_t phy_lcpa;
282 resource_size_t lcpa_size;
283 struct kmem_cache *desc_slab;
287 * struct d40_interrupt_lookup - lookup table for interrupt handler
289 * @src: Interrupt mask register.
290 * @clr: Interrupt clear register.
291 * @is_error: true if this is an error interrupt.
292 * @offset: start delta in the lookup_log_chans in d40_base. If equals to
293 * D40_PHY_CHAN, the lookup_phy_chans shall be used instead.
295 struct d40_interrupt_lookup {
296 u32 src;
297 u32 clr;
298 bool is_error;
299 int offset;
303 * struct d40_reg_val - simple lookup struct
305 * @reg: The register.
306 * @val: The value that belongs to the register in reg.
308 struct d40_reg_val {
309 unsigned int reg;
310 unsigned int val;
313 static struct device *chan2dev(struct d40_chan *d40c)
315 return &d40c->chan.dev->device;
318 static bool chan_is_physical(struct d40_chan *chan)
320 return chan->log_num == D40_PHY_CHAN;
323 static bool chan_is_logical(struct d40_chan *chan)
325 return !chan_is_physical(chan);
328 static void __iomem *chan_base(struct d40_chan *chan)
330 return chan->base->virtbase + D40_DREG_PCBASE +
331 chan->phy_chan->num * D40_DREG_PCDELTA;
334 #define d40_err(dev, format, arg...) \
335 dev_err(dev, "[%s] " format, __func__, ## arg)
337 #define chan_err(d40c, format, arg...) \
338 d40_err(chan2dev(d40c), format, ## arg)
340 static int d40_pool_lli_alloc(struct d40_chan *d40c, struct d40_desc *d40d,
341 int lli_len)
343 bool is_log = chan_is_logical(d40c);
344 u32 align;
345 void *base;
347 if (is_log)
348 align = sizeof(struct d40_log_lli);
349 else
350 align = sizeof(struct d40_phy_lli);
352 if (lli_len == 1) {
353 base = d40d->lli_pool.pre_alloc_lli;
354 d40d->lli_pool.size = sizeof(d40d->lli_pool.pre_alloc_lli);
355 d40d->lli_pool.base = NULL;
356 } else {
357 d40d->lli_pool.size = lli_len * 2 * align;
359 base = kmalloc(d40d->lli_pool.size + align, GFP_NOWAIT);
360 d40d->lli_pool.base = base;
362 if (d40d->lli_pool.base == NULL)
363 return -ENOMEM;
366 if (is_log) {
367 d40d->lli_log.src = PTR_ALIGN(base, align);
368 d40d->lli_log.dst = d40d->lli_log.src + lli_len;
370 d40d->lli_pool.dma_addr = 0;
371 } else {
372 d40d->lli_phy.src = PTR_ALIGN(base, align);
373 d40d->lli_phy.dst = d40d->lli_phy.src + lli_len;
375 d40d->lli_pool.dma_addr = dma_map_single(d40c->base->dev,
376 d40d->lli_phy.src,
377 d40d->lli_pool.size,
378 DMA_TO_DEVICE);
380 if (dma_mapping_error(d40c->base->dev,
381 d40d->lli_pool.dma_addr)) {
382 kfree(d40d->lli_pool.base);
383 d40d->lli_pool.base = NULL;
384 d40d->lli_pool.dma_addr = 0;
385 return -ENOMEM;
389 return 0;
392 static void d40_pool_lli_free(struct d40_chan *d40c, struct d40_desc *d40d)
394 if (d40d->lli_pool.dma_addr)
395 dma_unmap_single(d40c->base->dev, d40d->lli_pool.dma_addr,
396 d40d->lli_pool.size, DMA_TO_DEVICE);
398 kfree(d40d->lli_pool.base);
399 d40d->lli_pool.base = NULL;
400 d40d->lli_pool.size = 0;
401 d40d->lli_log.src = NULL;
402 d40d->lli_log.dst = NULL;
403 d40d->lli_phy.src = NULL;
404 d40d->lli_phy.dst = NULL;
407 static int d40_lcla_alloc_one(struct d40_chan *d40c,
408 struct d40_desc *d40d)
410 unsigned long flags;
411 int i;
412 int ret = -EINVAL;
413 int p;
415 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
417 p = d40c->phy_chan->num * D40_LCLA_LINK_PER_EVENT_GRP;
420 * Allocate both src and dst at the same time, therefore the half
421 * start on 1 since 0 can't be used since zero is used as end marker.
423 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
424 if (!d40c->base->lcla_pool.alloc_map[p + i]) {
425 d40c->base->lcla_pool.alloc_map[p + i] = d40d;
426 d40d->lcla_alloc++;
427 ret = i;
428 break;
432 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
434 return ret;
437 static int d40_lcla_free_all(struct d40_chan *d40c,
438 struct d40_desc *d40d)
440 unsigned long flags;
441 int i;
442 int ret = -EINVAL;
444 if (chan_is_physical(d40c))
445 return 0;
447 spin_lock_irqsave(&d40c->base->lcla_pool.lock, flags);
449 for (i = 1 ; i < D40_LCLA_LINK_PER_EVENT_GRP / 2; i++) {
450 if (d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
451 D40_LCLA_LINK_PER_EVENT_GRP + i] == d40d) {
452 d40c->base->lcla_pool.alloc_map[d40c->phy_chan->num *
453 D40_LCLA_LINK_PER_EVENT_GRP + i] = NULL;
454 d40d->lcla_alloc--;
455 if (d40d->lcla_alloc == 0) {
456 ret = 0;
457 break;
462 spin_unlock_irqrestore(&d40c->base->lcla_pool.lock, flags);
464 return ret;
468 static void d40_desc_remove(struct d40_desc *d40d)
470 list_del(&d40d->node);
473 static struct d40_desc *d40_desc_get(struct d40_chan *d40c)
475 struct d40_desc *desc = NULL;
477 if (!list_empty(&d40c->client)) {
478 struct d40_desc *d;
479 struct d40_desc *_d;
481 list_for_each_entry_safe(d, _d, &d40c->client, node)
482 if (async_tx_test_ack(&d->txd)) {
483 d40_desc_remove(d);
484 desc = d;
485 memset(desc, 0, sizeof(*desc));
486 break;
490 if (!desc)
491 desc = kmem_cache_zalloc(d40c->base->desc_slab, GFP_NOWAIT);
493 if (desc)
494 INIT_LIST_HEAD(&desc->node);
496 return desc;
499 static void d40_desc_free(struct d40_chan *d40c, struct d40_desc *d40d)
502 d40_pool_lli_free(d40c, d40d);
503 d40_lcla_free_all(d40c, d40d);
504 kmem_cache_free(d40c->base->desc_slab, d40d);
507 static void d40_desc_submit(struct d40_chan *d40c, struct d40_desc *desc)
509 list_add_tail(&desc->node, &d40c->active);
512 static void d40_phy_lli_load(struct d40_chan *chan, struct d40_desc *desc)
514 struct d40_phy_lli *lli_dst = desc->lli_phy.dst;
515 struct d40_phy_lli *lli_src = desc->lli_phy.src;
516 void __iomem *base = chan_base(chan);
518 writel(lli_src->reg_cfg, base + D40_CHAN_REG_SSCFG);
519 writel(lli_src->reg_elt, base + D40_CHAN_REG_SSELT);
520 writel(lli_src->reg_ptr, base + D40_CHAN_REG_SSPTR);
521 writel(lli_src->reg_lnk, base + D40_CHAN_REG_SSLNK);
523 writel(lli_dst->reg_cfg, base + D40_CHAN_REG_SDCFG);
524 writel(lli_dst->reg_elt, base + D40_CHAN_REG_SDELT);
525 writel(lli_dst->reg_ptr, base + D40_CHAN_REG_SDPTR);
526 writel(lli_dst->reg_lnk, base + D40_CHAN_REG_SDLNK);
529 static void d40_log_lli_to_lcxa(struct d40_chan *chan, struct d40_desc *desc)
531 struct d40_lcla_pool *pool = &chan->base->lcla_pool;
532 struct d40_log_lli_bidir *lli = &desc->lli_log;
533 int lli_current = desc->lli_current;
534 int lli_len = desc->lli_len;
535 bool cyclic = desc->cyclic;
536 int curr_lcla = -EINVAL;
537 int first_lcla = 0;
538 bool linkback;
541 * We may have partially running cyclic transfers, in case we did't get
542 * enough LCLA entries.
544 linkback = cyclic && lli_current == 0;
547 * For linkback, we need one LCLA even with only one link, because we
548 * can't link back to the one in LCPA space
550 if (linkback || (lli_len - lli_current > 1)) {
551 curr_lcla = d40_lcla_alloc_one(chan, desc);
552 first_lcla = curr_lcla;
556 * For linkback, we normally load the LCPA in the loop since we need to
557 * link it to the second LCLA and not the first. However, if we
558 * couldn't even get a first LCLA, then we have to run in LCPA and
559 * reload manually.
561 if (!linkback || curr_lcla == -EINVAL) {
562 unsigned int flags = 0;
564 if (curr_lcla == -EINVAL)
565 flags |= LLI_TERM_INT;
567 d40_log_lli_lcpa_write(chan->lcpa,
568 &lli->dst[lli_current],
569 &lli->src[lli_current],
570 curr_lcla,
571 flags);
572 lli_current++;
575 if (curr_lcla < 0)
576 goto out;
578 for (; lli_current < lli_len; lli_current++) {
579 unsigned int lcla_offset = chan->phy_chan->num * 1024 +
580 8 * curr_lcla * 2;
581 struct d40_log_lli *lcla = pool->base + lcla_offset;
582 unsigned int flags = 0;
583 int next_lcla;
585 if (lli_current + 1 < lli_len)
586 next_lcla = d40_lcla_alloc_one(chan, desc);
587 else
588 next_lcla = linkback ? first_lcla : -EINVAL;
590 if (cyclic || next_lcla == -EINVAL)
591 flags |= LLI_TERM_INT;
593 if (linkback && curr_lcla == first_lcla) {
594 /* First link goes in both LCPA and LCLA */
595 d40_log_lli_lcpa_write(chan->lcpa,
596 &lli->dst[lli_current],
597 &lli->src[lli_current],
598 next_lcla, flags);
602 * One unused LCLA in the cyclic case if the very first
603 * next_lcla fails...
605 d40_log_lli_lcla_write(lcla,
606 &lli->dst[lli_current],
607 &lli->src[lli_current],
608 next_lcla, flags);
610 dma_sync_single_range_for_device(chan->base->dev,
611 pool->dma_addr, lcla_offset,
612 2 * sizeof(struct d40_log_lli),
613 DMA_TO_DEVICE);
615 curr_lcla = next_lcla;
617 if (curr_lcla == -EINVAL || curr_lcla == first_lcla) {
618 lli_current++;
619 break;
623 out:
624 desc->lli_current = lli_current;
627 static void d40_desc_load(struct d40_chan *d40c, struct d40_desc *d40d)
629 if (chan_is_physical(d40c)) {
630 d40_phy_lli_load(d40c, d40d);
631 d40d->lli_current = d40d->lli_len;
632 } else
633 d40_log_lli_to_lcxa(d40c, d40d);
636 static struct d40_desc *d40_first_active_get(struct d40_chan *d40c)
638 struct d40_desc *d;
640 if (list_empty(&d40c->active))
641 return NULL;
643 d = list_first_entry(&d40c->active,
644 struct d40_desc,
645 node);
646 return d;
649 /* remove desc from current queue and add it to the pending_queue */
650 static void d40_desc_queue(struct d40_chan *d40c, struct d40_desc *desc)
652 d40_desc_remove(desc);
653 desc->is_in_client_list = false;
654 list_add_tail(&desc->node, &d40c->pending_queue);
657 static struct d40_desc *d40_first_pending(struct d40_chan *d40c)
659 struct d40_desc *d;
661 if (list_empty(&d40c->pending_queue))
662 return NULL;
664 d = list_first_entry(&d40c->pending_queue,
665 struct d40_desc,
666 node);
667 return d;
670 static struct d40_desc *d40_first_queued(struct d40_chan *d40c)
672 struct d40_desc *d;
674 if (list_empty(&d40c->queue))
675 return NULL;
677 d = list_first_entry(&d40c->queue,
678 struct d40_desc,
679 node);
680 return d;
683 static int d40_psize_2_burst_size(bool is_log, int psize)
685 if (is_log) {
686 if (psize == STEDMA40_PSIZE_LOG_1)
687 return 1;
688 } else {
689 if (psize == STEDMA40_PSIZE_PHY_1)
690 return 1;
693 return 2 << psize;
697 * The dma only supports transmitting packages up to
698 * STEDMA40_MAX_SEG_SIZE << data_width. Calculate the total number of
699 * dma elements required to send the entire sg list
701 static int d40_size_2_dmalen(int size, u32 data_width1, u32 data_width2)
703 int dmalen;
704 u32 max_w = max(data_width1, data_width2);
705 u32 min_w = min(data_width1, data_width2);
706 u32 seg_max = ALIGN(STEDMA40_MAX_SEG_SIZE << min_w, 1 << max_w);
708 if (seg_max > STEDMA40_MAX_SEG_SIZE)
709 seg_max -= (1 << max_w);
711 if (!IS_ALIGNED(size, 1 << max_w))
712 return -EINVAL;
714 if (size <= seg_max)
715 dmalen = 1;
716 else {
717 dmalen = size / seg_max;
718 if (dmalen * seg_max < size)
719 dmalen++;
721 return dmalen;
724 static int d40_sg_2_dmalen(struct scatterlist *sgl, int sg_len,
725 u32 data_width1, u32 data_width2)
727 struct scatterlist *sg;
728 int i;
729 int len = 0;
730 int ret;
732 for_each_sg(sgl, sg, sg_len, i) {
733 ret = d40_size_2_dmalen(sg_dma_len(sg),
734 data_width1, data_width2);
735 if (ret < 0)
736 return ret;
737 len += ret;
739 return len;
742 /* Support functions for logical channels */
744 static int d40_channel_execute_command(struct d40_chan *d40c,
745 enum d40_command command)
747 u32 status;
748 int i;
749 void __iomem *active_reg;
750 int ret = 0;
751 unsigned long flags;
752 u32 wmask;
754 spin_lock_irqsave(&d40c->base->execmd_lock, flags);
756 if (d40c->phy_chan->num % 2 == 0)
757 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
758 else
759 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
761 if (command == D40_DMA_SUSPEND_REQ) {
762 status = (readl(active_reg) &
763 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
764 D40_CHAN_POS(d40c->phy_chan->num);
766 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
767 goto done;
770 wmask = 0xffffffff & ~(D40_CHAN_POS_MASK(d40c->phy_chan->num));
771 writel(wmask | (command << D40_CHAN_POS(d40c->phy_chan->num)),
772 active_reg);
774 if (command == D40_DMA_SUSPEND_REQ) {
776 for (i = 0 ; i < D40_SUSPEND_MAX_IT; i++) {
777 status = (readl(active_reg) &
778 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
779 D40_CHAN_POS(d40c->phy_chan->num);
781 cpu_relax();
783 * Reduce the number of bus accesses while
784 * waiting for the DMA to suspend.
786 udelay(3);
788 if (status == D40_DMA_STOP ||
789 status == D40_DMA_SUSPENDED)
790 break;
793 if (i == D40_SUSPEND_MAX_IT) {
794 chan_err(d40c,
795 "unable to suspend the chl %d (log: %d) status %x\n",
796 d40c->phy_chan->num, d40c->log_num,
797 status);
798 dump_stack();
799 ret = -EBUSY;
803 done:
804 spin_unlock_irqrestore(&d40c->base->execmd_lock, flags);
805 return ret;
808 static void d40_term_all(struct d40_chan *d40c)
810 struct d40_desc *d40d;
811 struct d40_desc *_d;
813 /* Release active descriptors */
814 while ((d40d = d40_first_active_get(d40c))) {
815 d40_desc_remove(d40d);
816 d40_desc_free(d40c, d40d);
819 /* Release queued descriptors waiting for transfer */
820 while ((d40d = d40_first_queued(d40c))) {
821 d40_desc_remove(d40d);
822 d40_desc_free(d40c, d40d);
825 /* Release pending descriptors */
826 while ((d40d = d40_first_pending(d40c))) {
827 d40_desc_remove(d40d);
828 d40_desc_free(d40c, d40d);
831 /* Release client owned descriptors */
832 if (!list_empty(&d40c->client))
833 list_for_each_entry_safe(d40d, _d, &d40c->client, node) {
834 d40_desc_remove(d40d);
835 d40_desc_free(d40c, d40d);
838 /* Release descriptors in prepare queue */
839 if (!list_empty(&d40c->prepare_queue))
840 list_for_each_entry_safe(d40d, _d,
841 &d40c->prepare_queue, node) {
842 d40_desc_remove(d40d);
843 d40_desc_free(d40c, d40d);
846 d40c->pending_tx = 0;
847 d40c->busy = false;
850 static void __d40_config_set_event(struct d40_chan *d40c, bool enable,
851 u32 event, int reg)
853 void __iomem *addr = chan_base(d40c) + reg;
854 int tries;
856 if (!enable) {
857 writel((D40_DEACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
858 | ~D40_EVENTLINE_MASK(event), addr);
859 return;
863 * The hardware sometimes doesn't register the enable when src and dst
864 * event lines are active on the same logical channel. Retry to ensure
865 * it does. Usually only one retry is sufficient.
867 tries = 100;
868 while (--tries) {
869 writel((D40_ACTIVATE_EVENTLINE << D40_EVENTLINE_POS(event))
870 | ~D40_EVENTLINE_MASK(event), addr);
872 if (readl(addr) & D40_EVENTLINE_MASK(event))
873 break;
876 if (tries != 99)
877 dev_dbg(chan2dev(d40c),
878 "[%s] workaround enable S%cLNK (%d tries)\n",
879 __func__, reg == D40_CHAN_REG_SSLNK ? 'S' : 'D',
880 100 - tries);
882 WARN_ON(!tries);
885 static void d40_config_set_event(struct d40_chan *d40c, bool do_enable)
887 unsigned long flags;
889 spin_lock_irqsave(&d40c->phy_chan->lock, flags);
891 /* Enable event line connected to device (or memcpy) */
892 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
893 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH)) {
894 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
896 __d40_config_set_event(d40c, do_enable, event,
897 D40_CHAN_REG_SSLNK);
900 if (d40c->dma_cfg.dir != STEDMA40_PERIPH_TO_MEM) {
901 u32 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
903 __d40_config_set_event(d40c, do_enable, event,
904 D40_CHAN_REG_SDLNK);
907 spin_unlock_irqrestore(&d40c->phy_chan->lock, flags);
910 static u32 d40_chan_has_events(struct d40_chan *d40c)
912 void __iomem *chanbase = chan_base(d40c);
913 u32 val;
915 val = readl(chanbase + D40_CHAN_REG_SSLNK);
916 val |= readl(chanbase + D40_CHAN_REG_SDLNK);
918 return val;
921 static u32 d40_get_prmo(struct d40_chan *d40c)
923 static const unsigned int phy_map[] = {
924 [STEDMA40_PCHAN_BASIC_MODE]
925 = D40_DREG_PRMO_PCHAN_BASIC,
926 [STEDMA40_PCHAN_MODULO_MODE]
927 = D40_DREG_PRMO_PCHAN_MODULO,
928 [STEDMA40_PCHAN_DOUBLE_DST_MODE]
929 = D40_DREG_PRMO_PCHAN_DOUBLE_DST,
931 static const unsigned int log_map[] = {
932 [STEDMA40_LCHAN_SRC_PHY_DST_LOG]
933 = D40_DREG_PRMO_LCHAN_SRC_PHY_DST_LOG,
934 [STEDMA40_LCHAN_SRC_LOG_DST_PHY]
935 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_PHY,
936 [STEDMA40_LCHAN_SRC_LOG_DST_LOG]
937 = D40_DREG_PRMO_LCHAN_SRC_LOG_DST_LOG,
940 if (chan_is_physical(d40c))
941 return phy_map[d40c->dma_cfg.mode_opt];
942 else
943 return log_map[d40c->dma_cfg.mode_opt];
946 static void d40_config_write(struct d40_chan *d40c)
948 u32 addr_base;
949 u32 var;
951 /* Odd addresses are even addresses + 4 */
952 addr_base = (d40c->phy_chan->num % 2) * 4;
953 /* Setup channel mode to logical or physical */
954 var = ((u32)(chan_is_logical(d40c)) + 1) <<
955 D40_CHAN_POS(d40c->phy_chan->num);
956 writel(var, d40c->base->virtbase + D40_DREG_PRMSE + addr_base);
958 /* Setup operational mode option register */
959 var = d40_get_prmo(d40c) << D40_CHAN_POS(d40c->phy_chan->num);
961 writel(var, d40c->base->virtbase + D40_DREG_PRMOE + addr_base);
963 if (chan_is_logical(d40c)) {
964 int lidx = (d40c->phy_chan->num << D40_SREG_ELEM_LOG_LIDX_POS)
965 & D40_SREG_ELEM_LOG_LIDX_MASK;
966 void __iomem *chanbase = chan_base(d40c);
968 /* Set default config for CFG reg */
969 writel(d40c->src_def_cfg, chanbase + D40_CHAN_REG_SSCFG);
970 writel(d40c->dst_def_cfg, chanbase + D40_CHAN_REG_SDCFG);
972 /* Set LIDX for lcla */
973 writel(lidx, chanbase + D40_CHAN_REG_SSELT);
974 writel(lidx, chanbase + D40_CHAN_REG_SDELT);
978 static u32 d40_residue(struct d40_chan *d40c)
980 u32 num_elt;
982 if (chan_is_logical(d40c))
983 num_elt = (readl(&d40c->lcpa->lcsp2) & D40_MEM_LCSP2_ECNT_MASK)
984 >> D40_MEM_LCSP2_ECNT_POS;
985 else {
986 u32 val = readl(chan_base(d40c) + D40_CHAN_REG_SDELT);
987 num_elt = (val & D40_SREG_ELEM_PHY_ECNT_MASK)
988 >> D40_SREG_ELEM_PHY_ECNT_POS;
991 return num_elt * (1 << d40c->dma_cfg.dst_info.data_width);
994 static bool d40_tx_is_linked(struct d40_chan *d40c)
996 bool is_link;
998 if (chan_is_logical(d40c))
999 is_link = readl(&d40c->lcpa->lcsp3) & D40_MEM_LCSP3_DLOS_MASK;
1000 else
1001 is_link = readl(chan_base(d40c) + D40_CHAN_REG_SDLNK)
1002 & D40_SREG_LNK_PHYS_LNK_MASK;
1004 return is_link;
1007 static int d40_pause(struct d40_chan *d40c)
1009 int res = 0;
1010 unsigned long flags;
1012 if (!d40c->busy)
1013 return 0;
1015 spin_lock_irqsave(&d40c->lock, flags);
1017 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1018 if (res == 0) {
1019 if (chan_is_logical(d40c)) {
1020 d40_config_set_event(d40c, false);
1021 /* Resume the other logical channels if any */
1022 if (d40_chan_has_events(d40c))
1023 res = d40_channel_execute_command(d40c,
1024 D40_DMA_RUN);
1028 spin_unlock_irqrestore(&d40c->lock, flags);
1029 return res;
1032 static int d40_resume(struct d40_chan *d40c)
1034 int res = 0;
1035 unsigned long flags;
1037 if (!d40c->busy)
1038 return 0;
1040 spin_lock_irqsave(&d40c->lock, flags);
1042 if (d40c->base->rev == 0)
1043 if (chan_is_logical(d40c)) {
1044 res = d40_channel_execute_command(d40c,
1045 D40_DMA_SUSPEND_REQ);
1046 goto no_suspend;
1049 /* If bytes left to transfer or linked tx resume job */
1050 if (d40_residue(d40c) || d40_tx_is_linked(d40c)) {
1052 if (chan_is_logical(d40c))
1053 d40_config_set_event(d40c, true);
1055 res = d40_channel_execute_command(d40c, D40_DMA_RUN);
1058 no_suspend:
1059 spin_unlock_irqrestore(&d40c->lock, flags);
1060 return res;
1063 static int d40_terminate_all(struct d40_chan *chan)
1065 unsigned long flags;
1066 int ret = 0;
1068 ret = d40_pause(chan);
1069 if (!ret && chan_is_physical(chan))
1070 ret = d40_channel_execute_command(chan, D40_DMA_STOP);
1072 spin_lock_irqsave(&chan->lock, flags);
1073 d40_term_all(chan);
1074 spin_unlock_irqrestore(&chan->lock, flags);
1076 return ret;
1079 static dma_cookie_t d40_tx_submit(struct dma_async_tx_descriptor *tx)
1081 struct d40_chan *d40c = container_of(tx->chan,
1082 struct d40_chan,
1083 chan);
1084 struct d40_desc *d40d = container_of(tx, struct d40_desc, txd);
1085 unsigned long flags;
1087 spin_lock_irqsave(&d40c->lock, flags);
1089 d40c->chan.cookie++;
1091 if (d40c->chan.cookie < 0)
1092 d40c->chan.cookie = 1;
1094 d40d->txd.cookie = d40c->chan.cookie;
1096 d40_desc_queue(d40c, d40d);
1098 spin_unlock_irqrestore(&d40c->lock, flags);
1100 return tx->cookie;
1103 static int d40_start(struct d40_chan *d40c)
1105 if (d40c->base->rev == 0) {
1106 int err;
1108 if (chan_is_logical(d40c)) {
1109 err = d40_channel_execute_command(d40c,
1110 D40_DMA_SUSPEND_REQ);
1111 if (err)
1112 return err;
1116 if (chan_is_logical(d40c))
1117 d40_config_set_event(d40c, true);
1119 return d40_channel_execute_command(d40c, D40_DMA_RUN);
1122 static struct d40_desc *d40_queue_start(struct d40_chan *d40c)
1124 struct d40_desc *d40d;
1125 int err;
1127 /* Start queued jobs, if any */
1128 d40d = d40_first_queued(d40c);
1130 if (d40d != NULL) {
1131 d40c->busy = true;
1133 /* Remove from queue */
1134 d40_desc_remove(d40d);
1136 /* Add to active queue */
1137 d40_desc_submit(d40c, d40d);
1139 /* Initiate DMA job */
1140 d40_desc_load(d40c, d40d);
1142 /* Start dma job */
1143 err = d40_start(d40c);
1145 if (err)
1146 return NULL;
1149 return d40d;
1152 /* called from interrupt context */
1153 static void dma_tc_handle(struct d40_chan *d40c)
1155 struct d40_desc *d40d;
1157 /* Get first active entry from list */
1158 d40d = d40_first_active_get(d40c);
1160 if (d40d == NULL)
1161 return;
1163 if (d40d->cyclic) {
1165 * If this was a paritially loaded list, we need to reloaded
1166 * it, and only when the list is completed. We need to check
1167 * for done because the interrupt will hit for every link, and
1168 * not just the last one.
1170 if (d40d->lli_current < d40d->lli_len
1171 && !d40_tx_is_linked(d40c)
1172 && !d40_residue(d40c)) {
1173 d40_lcla_free_all(d40c, d40d);
1174 d40_desc_load(d40c, d40d);
1175 (void) d40_start(d40c);
1177 if (d40d->lli_current == d40d->lli_len)
1178 d40d->lli_current = 0;
1180 } else {
1181 d40_lcla_free_all(d40c, d40d);
1183 if (d40d->lli_current < d40d->lli_len) {
1184 d40_desc_load(d40c, d40d);
1185 /* Start dma job */
1186 (void) d40_start(d40c);
1187 return;
1190 if (d40_queue_start(d40c) == NULL)
1191 d40c->busy = false;
1194 d40c->pending_tx++;
1195 tasklet_schedule(&d40c->tasklet);
1199 static void dma_tasklet(unsigned long data)
1201 struct d40_chan *d40c = (struct d40_chan *) data;
1202 struct d40_desc *d40d;
1203 unsigned long flags;
1204 dma_async_tx_callback callback;
1205 void *callback_param;
1207 spin_lock_irqsave(&d40c->lock, flags);
1209 /* Get first active entry from list */
1210 d40d = d40_first_active_get(d40c);
1211 if (d40d == NULL)
1212 goto err;
1214 if (!d40d->cyclic)
1215 d40c->completed = d40d->txd.cookie;
1218 * If terminating a channel pending_tx is set to zero.
1219 * This prevents any finished active jobs to return to the client.
1221 if (d40c->pending_tx == 0) {
1222 spin_unlock_irqrestore(&d40c->lock, flags);
1223 return;
1226 /* Callback to client */
1227 callback = d40d->txd.callback;
1228 callback_param = d40d->txd.callback_param;
1230 if (!d40d->cyclic) {
1231 if (async_tx_test_ack(&d40d->txd)) {
1232 d40_desc_remove(d40d);
1233 d40_desc_free(d40c, d40d);
1234 } else {
1235 if (!d40d->is_in_client_list) {
1236 d40_desc_remove(d40d);
1237 d40_lcla_free_all(d40c, d40d);
1238 list_add_tail(&d40d->node, &d40c->client);
1239 d40d->is_in_client_list = true;
1244 d40c->pending_tx--;
1246 if (d40c->pending_tx)
1247 tasklet_schedule(&d40c->tasklet);
1249 spin_unlock_irqrestore(&d40c->lock, flags);
1251 if (callback && (d40d->txd.flags & DMA_PREP_INTERRUPT))
1252 callback(callback_param);
1254 return;
1256 err:
1257 /* Rescue manoeuvre if receiving double interrupts */
1258 if (d40c->pending_tx > 0)
1259 d40c->pending_tx--;
1260 spin_unlock_irqrestore(&d40c->lock, flags);
1263 static irqreturn_t d40_handle_interrupt(int irq, void *data)
1265 static const struct d40_interrupt_lookup il[] = {
1266 {D40_DREG_LCTIS0, D40_DREG_LCICR0, false, 0},
1267 {D40_DREG_LCTIS1, D40_DREG_LCICR1, false, 32},
1268 {D40_DREG_LCTIS2, D40_DREG_LCICR2, false, 64},
1269 {D40_DREG_LCTIS3, D40_DREG_LCICR3, false, 96},
1270 {D40_DREG_LCEIS0, D40_DREG_LCICR0, true, 0},
1271 {D40_DREG_LCEIS1, D40_DREG_LCICR1, true, 32},
1272 {D40_DREG_LCEIS2, D40_DREG_LCICR2, true, 64},
1273 {D40_DREG_LCEIS3, D40_DREG_LCICR3, true, 96},
1274 {D40_DREG_PCTIS, D40_DREG_PCICR, false, D40_PHY_CHAN},
1275 {D40_DREG_PCEIS, D40_DREG_PCICR, true, D40_PHY_CHAN},
1278 int i;
1279 u32 regs[ARRAY_SIZE(il)];
1280 u32 idx;
1281 u32 row;
1282 long chan = -1;
1283 struct d40_chan *d40c;
1284 unsigned long flags;
1285 struct d40_base *base = data;
1287 spin_lock_irqsave(&base->interrupt_lock, flags);
1289 /* Read interrupt status of both logical and physical channels */
1290 for (i = 0; i < ARRAY_SIZE(il); i++)
1291 regs[i] = readl(base->virtbase + il[i].src);
1293 for (;;) {
1295 chan = find_next_bit((unsigned long *)regs,
1296 BITS_PER_LONG * ARRAY_SIZE(il), chan + 1);
1298 /* No more set bits found? */
1299 if (chan == BITS_PER_LONG * ARRAY_SIZE(il))
1300 break;
1302 row = chan / BITS_PER_LONG;
1303 idx = chan & (BITS_PER_LONG - 1);
1305 /* ACK interrupt */
1306 writel(1 << idx, base->virtbase + il[row].clr);
1308 if (il[row].offset == D40_PHY_CHAN)
1309 d40c = base->lookup_phy_chans[idx];
1310 else
1311 d40c = base->lookup_log_chans[il[row].offset + idx];
1312 spin_lock(&d40c->lock);
1314 if (!il[row].is_error)
1315 dma_tc_handle(d40c);
1316 else
1317 d40_err(base->dev, "IRQ chan: %ld offset %d idx %d\n",
1318 chan, il[row].offset, idx);
1320 spin_unlock(&d40c->lock);
1323 spin_unlock_irqrestore(&base->interrupt_lock, flags);
1325 return IRQ_HANDLED;
1328 static int d40_validate_conf(struct d40_chan *d40c,
1329 struct stedma40_chan_cfg *conf)
1331 int res = 0;
1332 u32 dst_event_group = D40_TYPE_TO_GROUP(conf->dst_dev_type);
1333 u32 src_event_group = D40_TYPE_TO_GROUP(conf->src_dev_type);
1334 bool is_log = conf->mode == STEDMA40_MODE_LOGICAL;
1336 if (!conf->dir) {
1337 chan_err(d40c, "Invalid direction.\n");
1338 res = -EINVAL;
1341 if (conf->dst_dev_type != STEDMA40_DEV_DST_MEMORY &&
1342 d40c->base->plat_data->dev_tx[conf->dst_dev_type] == 0 &&
1343 d40c->runtime_addr == 0) {
1345 chan_err(d40c, "Invalid TX channel address (%d)\n",
1346 conf->dst_dev_type);
1347 res = -EINVAL;
1350 if (conf->src_dev_type != STEDMA40_DEV_SRC_MEMORY &&
1351 d40c->base->plat_data->dev_rx[conf->src_dev_type] == 0 &&
1352 d40c->runtime_addr == 0) {
1353 chan_err(d40c, "Invalid RX channel address (%d)\n",
1354 conf->src_dev_type);
1355 res = -EINVAL;
1358 if (conf->dir == STEDMA40_MEM_TO_PERIPH &&
1359 dst_event_group == STEDMA40_DEV_DST_MEMORY) {
1360 chan_err(d40c, "Invalid dst\n");
1361 res = -EINVAL;
1364 if (conf->dir == STEDMA40_PERIPH_TO_MEM &&
1365 src_event_group == STEDMA40_DEV_SRC_MEMORY) {
1366 chan_err(d40c, "Invalid src\n");
1367 res = -EINVAL;
1370 if (src_event_group == STEDMA40_DEV_SRC_MEMORY &&
1371 dst_event_group == STEDMA40_DEV_DST_MEMORY && is_log) {
1372 chan_err(d40c, "No event line\n");
1373 res = -EINVAL;
1376 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH &&
1377 (src_event_group != dst_event_group)) {
1378 chan_err(d40c, "Invalid event group\n");
1379 res = -EINVAL;
1382 if (conf->dir == STEDMA40_PERIPH_TO_PERIPH) {
1384 * DMAC HW supports it. Will be added to this driver,
1385 * in case any dma client requires it.
1387 chan_err(d40c, "periph to periph not supported\n");
1388 res = -EINVAL;
1391 if (d40_psize_2_burst_size(is_log, conf->src_info.psize) *
1392 (1 << conf->src_info.data_width) !=
1393 d40_psize_2_burst_size(is_log, conf->dst_info.psize) *
1394 (1 << conf->dst_info.data_width)) {
1396 * The DMAC hardware only supports
1397 * src (burst x width) == dst (burst x width)
1400 chan_err(d40c, "src (burst x width) != dst (burst x width)\n");
1401 res = -EINVAL;
1404 return res;
1407 static bool d40_alloc_mask_set(struct d40_phy_res *phy, bool is_src,
1408 int log_event_line, bool is_log)
1410 unsigned long flags;
1411 spin_lock_irqsave(&phy->lock, flags);
1412 if (!is_log) {
1413 /* Physical interrupts are masked per physical full channel */
1414 if (phy->allocated_src == D40_ALLOC_FREE &&
1415 phy->allocated_dst == D40_ALLOC_FREE) {
1416 phy->allocated_dst = D40_ALLOC_PHY;
1417 phy->allocated_src = D40_ALLOC_PHY;
1418 goto found;
1419 } else
1420 goto not_found;
1423 /* Logical channel */
1424 if (is_src) {
1425 if (phy->allocated_src == D40_ALLOC_PHY)
1426 goto not_found;
1428 if (phy->allocated_src == D40_ALLOC_FREE)
1429 phy->allocated_src = D40_ALLOC_LOG_FREE;
1431 if (!(phy->allocated_src & (1 << log_event_line))) {
1432 phy->allocated_src |= 1 << log_event_line;
1433 goto found;
1434 } else
1435 goto not_found;
1436 } else {
1437 if (phy->allocated_dst == D40_ALLOC_PHY)
1438 goto not_found;
1440 if (phy->allocated_dst == D40_ALLOC_FREE)
1441 phy->allocated_dst = D40_ALLOC_LOG_FREE;
1443 if (!(phy->allocated_dst & (1 << log_event_line))) {
1444 phy->allocated_dst |= 1 << log_event_line;
1445 goto found;
1446 } else
1447 goto not_found;
1450 not_found:
1451 spin_unlock_irqrestore(&phy->lock, flags);
1452 return false;
1453 found:
1454 spin_unlock_irqrestore(&phy->lock, flags);
1455 return true;
1458 static bool d40_alloc_mask_free(struct d40_phy_res *phy, bool is_src,
1459 int log_event_line)
1461 unsigned long flags;
1462 bool is_free = false;
1464 spin_lock_irqsave(&phy->lock, flags);
1465 if (!log_event_line) {
1466 phy->allocated_dst = D40_ALLOC_FREE;
1467 phy->allocated_src = D40_ALLOC_FREE;
1468 is_free = true;
1469 goto out;
1472 /* Logical channel */
1473 if (is_src) {
1474 phy->allocated_src &= ~(1 << log_event_line);
1475 if (phy->allocated_src == D40_ALLOC_LOG_FREE)
1476 phy->allocated_src = D40_ALLOC_FREE;
1477 } else {
1478 phy->allocated_dst &= ~(1 << log_event_line);
1479 if (phy->allocated_dst == D40_ALLOC_LOG_FREE)
1480 phy->allocated_dst = D40_ALLOC_FREE;
1483 is_free = ((phy->allocated_src | phy->allocated_dst) ==
1484 D40_ALLOC_FREE);
1486 out:
1487 spin_unlock_irqrestore(&phy->lock, flags);
1489 return is_free;
1492 static int d40_allocate_channel(struct d40_chan *d40c)
1494 int dev_type;
1495 int event_group;
1496 int event_line;
1497 struct d40_phy_res *phys;
1498 int i;
1499 int j;
1500 int log_num;
1501 bool is_src;
1502 bool is_log = d40c->dma_cfg.mode == STEDMA40_MODE_LOGICAL;
1504 phys = d40c->base->phy_res;
1506 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1507 dev_type = d40c->dma_cfg.src_dev_type;
1508 log_num = 2 * dev_type;
1509 is_src = true;
1510 } else if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1511 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1512 /* dst event lines are used for logical memcpy */
1513 dev_type = d40c->dma_cfg.dst_dev_type;
1514 log_num = 2 * dev_type + 1;
1515 is_src = false;
1516 } else
1517 return -EINVAL;
1519 event_group = D40_TYPE_TO_GROUP(dev_type);
1520 event_line = D40_TYPE_TO_EVENT(dev_type);
1522 if (!is_log) {
1523 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1524 /* Find physical half channel */
1525 for (i = 0; i < d40c->base->num_phy_chans; i++) {
1527 if (d40_alloc_mask_set(&phys[i], is_src,
1528 0, is_log))
1529 goto found_phy;
1531 } else
1532 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1533 int phy_num = j + event_group * 2;
1534 for (i = phy_num; i < phy_num + 2; i++) {
1535 if (d40_alloc_mask_set(&phys[i],
1536 is_src,
1538 is_log))
1539 goto found_phy;
1542 return -EINVAL;
1543 found_phy:
1544 d40c->phy_chan = &phys[i];
1545 d40c->log_num = D40_PHY_CHAN;
1546 goto out;
1548 if (dev_type == -1)
1549 return -EINVAL;
1551 /* Find logical channel */
1552 for (j = 0; j < d40c->base->num_phy_chans; j += 8) {
1553 int phy_num = j + event_group * 2;
1555 * Spread logical channels across all available physical rather
1556 * than pack every logical channel at the first available phy
1557 * channels.
1559 if (is_src) {
1560 for (i = phy_num; i < phy_num + 2; i++) {
1561 if (d40_alloc_mask_set(&phys[i], is_src,
1562 event_line, is_log))
1563 goto found_log;
1565 } else {
1566 for (i = phy_num + 1; i >= phy_num; i--) {
1567 if (d40_alloc_mask_set(&phys[i], is_src,
1568 event_line, is_log))
1569 goto found_log;
1573 return -EINVAL;
1575 found_log:
1576 d40c->phy_chan = &phys[i];
1577 d40c->log_num = log_num;
1578 out:
1580 if (is_log)
1581 d40c->base->lookup_log_chans[d40c->log_num] = d40c;
1582 else
1583 d40c->base->lookup_phy_chans[d40c->phy_chan->num] = d40c;
1585 return 0;
1589 static int d40_config_memcpy(struct d40_chan *d40c)
1591 dma_cap_mask_t cap = d40c->chan.device->cap_mask;
1593 if (dma_has_cap(DMA_MEMCPY, cap) && !dma_has_cap(DMA_SLAVE, cap)) {
1594 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_log;
1595 d40c->dma_cfg.src_dev_type = STEDMA40_DEV_SRC_MEMORY;
1596 d40c->dma_cfg.dst_dev_type = d40c->base->plat_data->
1597 memcpy[d40c->chan.chan_id];
1599 } else if (dma_has_cap(DMA_MEMCPY, cap) &&
1600 dma_has_cap(DMA_SLAVE, cap)) {
1601 d40c->dma_cfg = *d40c->base->plat_data->memcpy_conf_phy;
1602 } else {
1603 chan_err(d40c, "No memcpy\n");
1604 return -EINVAL;
1607 return 0;
1611 static int d40_free_dma(struct d40_chan *d40c)
1614 int res = 0;
1615 u32 event;
1616 struct d40_phy_res *phy = d40c->phy_chan;
1617 bool is_src;
1619 /* Terminate all queued and active transfers */
1620 d40_term_all(d40c);
1622 if (phy == NULL) {
1623 chan_err(d40c, "phy == null\n");
1624 return -EINVAL;
1627 if (phy->allocated_src == D40_ALLOC_FREE &&
1628 phy->allocated_dst == D40_ALLOC_FREE) {
1629 chan_err(d40c, "channel already free\n");
1630 return -EINVAL;
1633 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1634 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1635 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1636 is_src = false;
1637 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1638 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1639 is_src = true;
1640 } else {
1641 chan_err(d40c, "Unknown direction\n");
1642 return -EINVAL;
1645 res = d40_channel_execute_command(d40c, D40_DMA_SUSPEND_REQ);
1646 if (res) {
1647 chan_err(d40c, "suspend failed\n");
1648 return res;
1651 if (chan_is_logical(d40c)) {
1652 /* Release logical channel, deactivate the event line */
1654 d40_config_set_event(d40c, false);
1655 d40c->base->lookup_log_chans[d40c->log_num] = NULL;
1658 * Check if there are more logical allocation
1659 * on this phy channel.
1661 if (!d40_alloc_mask_free(phy, is_src, event)) {
1662 /* Resume the other logical channels if any */
1663 if (d40_chan_has_events(d40c)) {
1664 res = d40_channel_execute_command(d40c,
1665 D40_DMA_RUN);
1666 if (res) {
1667 chan_err(d40c,
1668 "Executing RUN command\n");
1669 return res;
1672 return 0;
1674 } else {
1675 (void) d40_alloc_mask_free(phy, is_src, 0);
1678 /* Release physical channel */
1679 res = d40_channel_execute_command(d40c, D40_DMA_STOP);
1680 if (res) {
1681 chan_err(d40c, "Failed to stop channel\n");
1682 return res;
1684 d40c->phy_chan = NULL;
1685 d40c->configured = false;
1686 d40c->base->lookup_phy_chans[phy->num] = NULL;
1688 return 0;
1691 static bool d40_is_paused(struct d40_chan *d40c)
1693 void __iomem *chanbase = chan_base(d40c);
1694 bool is_paused = false;
1695 unsigned long flags;
1696 void __iomem *active_reg;
1697 u32 status;
1698 u32 event;
1700 spin_lock_irqsave(&d40c->lock, flags);
1702 if (chan_is_physical(d40c)) {
1703 if (d40c->phy_chan->num % 2 == 0)
1704 active_reg = d40c->base->virtbase + D40_DREG_ACTIVE;
1705 else
1706 active_reg = d40c->base->virtbase + D40_DREG_ACTIVO;
1708 status = (readl(active_reg) &
1709 D40_CHAN_POS_MASK(d40c->phy_chan->num)) >>
1710 D40_CHAN_POS(d40c->phy_chan->num);
1711 if (status == D40_DMA_SUSPENDED || status == D40_DMA_STOP)
1712 is_paused = true;
1714 goto _exit;
1717 if (d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH ||
1718 d40c->dma_cfg.dir == STEDMA40_MEM_TO_MEM) {
1719 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.dst_dev_type);
1720 status = readl(chanbase + D40_CHAN_REG_SDLNK);
1721 } else if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) {
1722 event = D40_TYPE_TO_EVENT(d40c->dma_cfg.src_dev_type);
1723 status = readl(chanbase + D40_CHAN_REG_SSLNK);
1724 } else {
1725 chan_err(d40c, "Unknown direction\n");
1726 goto _exit;
1729 status = (status & D40_EVENTLINE_MASK(event)) >>
1730 D40_EVENTLINE_POS(event);
1732 if (status != D40_DMA_RUN)
1733 is_paused = true;
1734 _exit:
1735 spin_unlock_irqrestore(&d40c->lock, flags);
1736 return is_paused;
1741 static u32 stedma40_residue(struct dma_chan *chan)
1743 struct d40_chan *d40c =
1744 container_of(chan, struct d40_chan, chan);
1745 u32 bytes_left;
1746 unsigned long flags;
1748 spin_lock_irqsave(&d40c->lock, flags);
1749 bytes_left = d40_residue(d40c);
1750 spin_unlock_irqrestore(&d40c->lock, flags);
1752 return bytes_left;
1755 static int
1756 d40_prep_sg_log(struct d40_chan *chan, struct d40_desc *desc,
1757 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1758 unsigned int sg_len, dma_addr_t src_dev_addr,
1759 dma_addr_t dst_dev_addr)
1761 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1762 struct stedma40_half_channel_info *src_info = &cfg->src_info;
1763 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1764 int ret;
1766 ret = d40_log_sg_to_lli(sg_src, sg_len,
1767 src_dev_addr,
1768 desc->lli_log.src,
1769 chan->log_def.lcsp1,
1770 src_info->data_width,
1771 dst_info->data_width);
1773 ret = d40_log_sg_to_lli(sg_dst, sg_len,
1774 dst_dev_addr,
1775 desc->lli_log.dst,
1776 chan->log_def.lcsp3,
1777 dst_info->data_width,
1778 src_info->data_width);
1780 return ret < 0 ? ret : 0;
1783 static int
1784 d40_prep_sg_phy(struct d40_chan *chan, struct d40_desc *desc,
1785 struct scatterlist *sg_src, struct scatterlist *sg_dst,
1786 unsigned int sg_len, dma_addr_t src_dev_addr,
1787 dma_addr_t dst_dev_addr)
1789 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1790 struct stedma40_half_channel_info *src_info = &cfg->src_info;
1791 struct stedma40_half_channel_info *dst_info = &cfg->dst_info;
1792 unsigned long flags = 0;
1793 int ret;
1795 if (desc->cyclic)
1796 flags |= LLI_CYCLIC | LLI_TERM_INT;
1798 ret = d40_phy_sg_to_lli(sg_src, sg_len, src_dev_addr,
1799 desc->lli_phy.src,
1800 virt_to_phys(desc->lli_phy.src),
1801 chan->src_def_cfg,
1802 src_info, dst_info, flags);
1804 ret = d40_phy_sg_to_lli(sg_dst, sg_len, dst_dev_addr,
1805 desc->lli_phy.dst,
1806 virt_to_phys(desc->lli_phy.dst),
1807 chan->dst_def_cfg,
1808 dst_info, src_info, flags);
1810 dma_sync_single_for_device(chan->base->dev, desc->lli_pool.dma_addr,
1811 desc->lli_pool.size, DMA_TO_DEVICE);
1813 return ret < 0 ? ret : 0;
1817 static struct d40_desc *
1818 d40_prep_desc(struct d40_chan *chan, struct scatterlist *sg,
1819 unsigned int sg_len, unsigned long dma_flags)
1821 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1822 struct d40_desc *desc;
1823 int ret;
1825 desc = d40_desc_get(chan);
1826 if (!desc)
1827 return NULL;
1829 desc->lli_len = d40_sg_2_dmalen(sg, sg_len, cfg->src_info.data_width,
1830 cfg->dst_info.data_width);
1831 if (desc->lli_len < 0) {
1832 chan_err(chan, "Unaligned size\n");
1833 goto err;
1836 ret = d40_pool_lli_alloc(chan, desc, desc->lli_len);
1837 if (ret < 0) {
1838 chan_err(chan, "Could not allocate lli\n");
1839 goto err;
1843 desc->lli_current = 0;
1844 desc->txd.flags = dma_flags;
1845 desc->txd.tx_submit = d40_tx_submit;
1847 dma_async_tx_descriptor_init(&desc->txd, &chan->chan);
1849 return desc;
1851 err:
1852 d40_desc_free(chan, desc);
1853 return NULL;
1856 static dma_addr_t
1857 d40_get_dev_addr(struct d40_chan *chan, enum dma_data_direction direction)
1859 struct stedma40_platform_data *plat = chan->base->plat_data;
1860 struct stedma40_chan_cfg *cfg = &chan->dma_cfg;
1861 dma_addr_t addr = 0;
1863 if (chan->runtime_addr)
1864 return chan->runtime_addr;
1866 if (direction == DMA_FROM_DEVICE)
1867 addr = plat->dev_rx[cfg->src_dev_type];
1868 else if (direction == DMA_TO_DEVICE)
1869 addr = plat->dev_tx[cfg->dst_dev_type];
1871 return addr;
1874 static struct dma_async_tx_descriptor *
1875 d40_prep_sg(struct dma_chan *dchan, struct scatterlist *sg_src,
1876 struct scatterlist *sg_dst, unsigned int sg_len,
1877 enum dma_data_direction direction, unsigned long dma_flags)
1879 struct d40_chan *chan = container_of(dchan, struct d40_chan, chan);
1880 dma_addr_t src_dev_addr = 0;
1881 dma_addr_t dst_dev_addr = 0;
1882 struct d40_desc *desc;
1883 unsigned long flags;
1884 int ret;
1886 if (!chan->phy_chan) {
1887 chan_err(chan, "Cannot prepare unallocated channel\n");
1888 return NULL;
1892 spin_lock_irqsave(&chan->lock, flags);
1894 desc = d40_prep_desc(chan, sg_src, sg_len, dma_flags);
1895 if (desc == NULL)
1896 goto err;
1898 if (sg_next(&sg_src[sg_len - 1]) == sg_src)
1899 desc->cyclic = true;
1901 if (direction != DMA_NONE) {
1902 dma_addr_t dev_addr = d40_get_dev_addr(chan, direction);
1904 if (direction == DMA_FROM_DEVICE)
1905 src_dev_addr = dev_addr;
1906 else if (direction == DMA_TO_DEVICE)
1907 dst_dev_addr = dev_addr;
1910 if (chan_is_logical(chan))
1911 ret = d40_prep_sg_log(chan, desc, sg_src, sg_dst,
1912 sg_len, src_dev_addr, dst_dev_addr);
1913 else
1914 ret = d40_prep_sg_phy(chan, desc, sg_src, sg_dst,
1915 sg_len, src_dev_addr, dst_dev_addr);
1917 if (ret) {
1918 chan_err(chan, "Failed to prepare %s sg job: %d\n",
1919 chan_is_logical(chan) ? "log" : "phy", ret);
1920 goto err;
1924 * add descriptor to the prepare queue in order to be able
1925 * to free them later in terminate_all
1927 list_add_tail(&desc->node, &chan->prepare_queue);
1929 spin_unlock_irqrestore(&chan->lock, flags);
1931 return &desc->txd;
1933 err:
1934 if (desc)
1935 d40_desc_free(chan, desc);
1936 spin_unlock_irqrestore(&chan->lock, flags);
1937 return NULL;
1940 bool stedma40_filter(struct dma_chan *chan, void *data)
1942 struct stedma40_chan_cfg *info = data;
1943 struct d40_chan *d40c =
1944 container_of(chan, struct d40_chan, chan);
1945 int err;
1947 if (data) {
1948 err = d40_validate_conf(d40c, info);
1949 if (!err)
1950 d40c->dma_cfg = *info;
1951 } else
1952 err = d40_config_memcpy(d40c);
1954 if (!err)
1955 d40c->configured = true;
1957 return err == 0;
1959 EXPORT_SYMBOL(stedma40_filter);
1961 static void __d40_set_prio_rt(struct d40_chan *d40c, int dev_type, bool src)
1963 bool realtime = d40c->dma_cfg.realtime;
1964 bool highprio = d40c->dma_cfg.high_priority;
1965 u32 prioreg = highprio ? D40_DREG_PSEG1 : D40_DREG_PCEG1;
1966 u32 rtreg = realtime ? D40_DREG_RSEG1 : D40_DREG_RCEG1;
1967 u32 event = D40_TYPE_TO_EVENT(dev_type);
1968 u32 group = D40_TYPE_TO_GROUP(dev_type);
1969 u32 bit = 1 << event;
1971 /* Destination event lines are stored in the upper halfword */
1972 if (!src)
1973 bit <<= 16;
1975 writel(bit, d40c->base->virtbase + prioreg + group * 4);
1976 writel(bit, d40c->base->virtbase + rtreg + group * 4);
1979 static void d40_set_prio_realtime(struct d40_chan *d40c)
1981 if (d40c->base->rev < 3)
1982 return;
1984 if ((d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM) ||
1985 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1986 __d40_set_prio_rt(d40c, d40c->dma_cfg.src_dev_type, true);
1988 if ((d40c->dma_cfg.dir == STEDMA40_MEM_TO_PERIPH) ||
1989 (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_PERIPH))
1990 __d40_set_prio_rt(d40c, d40c->dma_cfg.dst_dev_type, false);
1993 /* DMA ENGINE functions */
1994 static int d40_alloc_chan_resources(struct dma_chan *chan)
1996 int err;
1997 unsigned long flags;
1998 struct d40_chan *d40c =
1999 container_of(chan, struct d40_chan, chan);
2000 bool is_free_phy;
2001 spin_lock_irqsave(&d40c->lock, flags);
2003 d40c->completed = chan->cookie = 1;
2005 /* If no dma configuration is set use default configuration (memcpy) */
2006 if (!d40c->configured) {
2007 err = d40_config_memcpy(d40c);
2008 if (err) {
2009 chan_err(d40c, "Failed to configure memcpy channel\n");
2010 goto fail;
2013 is_free_phy = (d40c->phy_chan == NULL);
2015 err = d40_allocate_channel(d40c);
2016 if (err) {
2017 chan_err(d40c, "Failed to allocate channel\n");
2018 goto fail;
2021 /* Fill in basic CFG register values */
2022 d40_phy_cfg(&d40c->dma_cfg, &d40c->src_def_cfg,
2023 &d40c->dst_def_cfg, chan_is_logical(d40c));
2025 d40_set_prio_realtime(d40c);
2027 if (chan_is_logical(d40c)) {
2028 d40_log_cfg(&d40c->dma_cfg,
2029 &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2031 if (d40c->dma_cfg.dir == STEDMA40_PERIPH_TO_MEM)
2032 d40c->lcpa = d40c->base->lcpa_base +
2033 d40c->dma_cfg.src_dev_type * D40_LCPA_CHAN_SIZE;
2034 else
2035 d40c->lcpa = d40c->base->lcpa_base +
2036 d40c->dma_cfg.dst_dev_type *
2037 D40_LCPA_CHAN_SIZE + D40_LCPA_CHAN_DST_DELTA;
2041 * Only write channel configuration to the DMA if the physical
2042 * resource is free. In case of multiple logical channels
2043 * on the same physical resource, only the first write is necessary.
2045 if (is_free_phy)
2046 d40_config_write(d40c);
2047 fail:
2048 spin_unlock_irqrestore(&d40c->lock, flags);
2049 return err;
2052 static void d40_free_chan_resources(struct dma_chan *chan)
2054 struct d40_chan *d40c =
2055 container_of(chan, struct d40_chan, chan);
2056 int err;
2057 unsigned long flags;
2059 if (d40c->phy_chan == NULL) {
2060 chan_err(d40c, "Cannot free unallocated channel\n");
2061 return;
2065 spin_lock_irqsave(&d40c->lock, flags);
2067 err = d40_free_dma(d40c);
2069 if (err)
2070 chan_err(d40c, "Failed to free channel\n");
2071 spin_unlock_irqrestore(&d40c->lock, flags);
2074 static struct dma_async_tx_descriptor *d40_prep_memcpy(struct dma_chan *chan,
2075 dma_addr_t dst,
2076 dma_addr_t src,
2077 size_t size,
2078 unsigned long dma_flags)
2080 struct scatterlist dst_sg;
2081 struct scatterlist src_sg;
2083 sg_init_table(&dst_sg, 1);
2084 sg_init_table(&src_sg, 1);
2086 sg_dma_address(&dst_sg) = dst;
2087 sg_dma_address(&src_sg) = src;
2089 sg_dma_len(&dst_sg) = size;
2090 sg_dma_len(&src_sg) = size;
2092 return d40_prep_sg(chan, &src_sg, &dst_sg, 1, DMA_NONE, dma_flags);
2095 static struct dma_async_tx_descriptor *
2096 d40_prep_memcpy_sg(struct dma_chan *chan,
2097 struct scatterlist *dst_sg, unsigned int dst_nents,
2098 struct scatterlist *src_sg, unsigned int src_nents,
2099 unsigned long dma_flags)
2101 if (dst_nents != src_nents)
2102 return NULL;
2104 return d40_prep_sg(chan, src_sg, dst_sg, src_nents, DMA_NONE, dma_flags);
2107 static struct dma_async_tx_descriptor *d40_prep_slave_sg(struct dma_chan *chan,
2108 struct scatterlist *sgl,
2109 unsigned int sg_len,
2110 enum dma_data_direction direction,
2111 unsigned long dma_flags)
2113 if (direction != DMA_FROM_DEVICE && direction != DMA_TO_DEVICE)
2114 return NULL;
2116 return d40_prep_sg(chan, sgl, sgl, sg_len, direction, dma_flags);
2119 static struct dma_async_tx_descriptor *
2120 dma40_prep_dma_cyclic(struct dma_chan *chan, dma_addr_t dma_addr,
2121 size_t buf_len, size_t period_len,
2122 enum dma_data_direction direction)
2124 unsigned int periods = buf_len / period_len;
2125 struct dma_async_tx_descriptor *txd;
2126 struct scatterlist *sg;
2127 int i;
2129 sg = kcalloc(periods + 1, sizeof(struct scatterlist), GFP_NOWAIT);
2130 for (i = 0; i < periods; i++) {
2131 sg_dma_address(&sg[i]) = dma_addr;
2132 sg_dma_len(&sg[i]) = period_len;
2133 dma_addr += period_len;
2136 sg[periods].offset = 0;
2137 sg[periods].length = 0;
2138 sg[periods].page_link =
2139 ((unsigned long)sg | 0x01) & ~0x02;
2141 txd = d40_prep_sg(chan, sg, sg, periods, direction,
2142 DMA_PREP_INTERRUPT);
2144 kfree(sg);
2146 return txd;
2149 static enum dma_status d40_tx_status(struct dma_chan *chan,
2150 dma_cookie_t cookie,
2151 struct dma_tx_state *txstate)
2153 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2154 dma_cookie_t last_used;
2155 dma_cookie_t last_complete;
2156 int ret;
2158 if (d40c->phy_chan == NULL) {
2159 chan_err(d40c, "Cannot read status of unallocated channel\n");
2160 return -EINVAL;
2163 last_complete = d40c->completed;
2164 last_used = chan->cookie;
2166 if (d40_is_paused(d40c))
2167 ret = DMA_PAUSED;
2168 else
2169 ret = dma_async_is_complete(cookie, last_complete, last_used);
2171 dma_set_tx_state(txstate, last_complete, last_used,
2172 stedma40_residue(chan));
2174 return ret;
2177 static void d40_issue_pending(struct dma_chan *chan)
2179 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2180 unsigned long flags;
2182 if (d40c->phy_chan == NULL) {
2183 chan_err(d40c, "Channel is not allocated!\n");
2184 return;
2187 spin_lock_irqsave(&d40c->lock, flags);
2189 list_splice_tail_init(&d40c->pending_queue, &d40c->queue);
2191 /* Busy means that queued jobs are already being processed */
2192 if (!d40c->busy)
2193 (void) d40_queue_start(d40c);
2195 spin_unlock_irqrestore(&d40c->lock, flags);
2198 static int
2199 dma40_config_to_halfchannel(struct d40_chan *d40c,
2200 struct stedma40_half_channel_info *info,
2201 enum dma_slave_buswidth width,
2202 u32 maxburst)
2204 enum stedma40_periph_data_width addr_width;
2205 int psize;
2207 switch (width) {
2208 case DMA_SLAVE_BUSWIDTH_1_BYTE:
2209 addr_width = STEDMA40_BYTE_WIDTH;
2210 break;
2211 case DMA_SLAVE_BUSWIDTH_2_BYTES:
2212 addr_width = STEDMA40_HALFWORD_WIDTH;
2213 break;
2214 case DMA_SLAVE_BUSWIDTH_4_BYTES:
2215 addr_width = STEDMA40_WORD_WIDTH;
2216 break;
2217 case DMA_SLAVE_BUSWIDTH_8_BYTES:
2218 addr_width = STEDMA40_DOUBLEWORD_WIDTH;
2219 break;
2220 default:
2221 dev_err(d40c->base->dev,
2222 "illegal peripheral address width "
2223 "requested (%d)\n",
2224 width);
2225 return -EINVAL;
2228 if (chan_is_logical(d40c)) {
2229 if (maxburst >= 16)
2230 psize = STEDMA40_PSIZE_LOG_16;
2231 else if (maxburst >= 8)
2232 psize = STEDMA40_PSIZE_LOG_8;
2233 else if (maxburst >= 4)
2234 psize = STEDMA40_PSIZE_LOG_4;
2235 else
2236 psize = STEDMA40_PSIZE_LOG_1;
2237 } else {
2238 if (maxburst >= 16)
2239 psize = STEDMA40_PSIZE_PHY_16;
2240 else if (maxburst >= 8)
2241 psize = STEDMA40_PSIZE_PHY_8;
2242 else if (maxburst >= 4)
2243 psize = STEDMA40_PSIZE_PHY_4;
2244 else
2245 psize = STEDMA40_PSIZE_PHY_1;
2248 info->data_width = addr_width;
2249 info->psize = psize;
2250 info->flow_ctrl = STEDMA40_NO_FLOW_CTRL;
2252 return 0;
2255 /* Runtime reconfiguration extension */
2256 static int d40_set_runtime_config(struct dma_chan *chan,
2257 struct dma_slave_config *config)
2259 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2260 struct stedma40_chan_cfg *cfg = &d40c->dma_cfg;
2261 enum dma_slave_buswidth src_addr_width, dst_addr_width;
2262 dma_addr_t config_addr;
2263 u32 src_maxburst, dst_maxburst;
2264 int ret;
2266 src_addr_width = config->src_addr_width;
2267 src_maxburst = config->src_maxburst;
2268 dst_addr_width = config->dst_addr_width;
2269 dst_maxburst = config->dst_maxburst;
2271 if (config->direction == DMA_FROM_DEVICE) {
2272 dma_addr_t dev_addr_rx =
2273 d40c->base->plat_data->dev_rx[cfg->src_dev_type];
2275 config_addr = config->src_addr;
2276 if (dev_addr_rx)
2277 dev_dbg(d40c->base->dev,
2278 "channel has a pre-wired RX address %08x "
2279 "overriding with %08x\n",
2280 dev_addr_rx, config_addr);
2281 if (cfg->dir != STEDMA40_PERIPH_TO_MEM)
2282 dev_dbg(d40c->base->dev,
2283 "channel was not configured for peripheral "
2284 "to memory transfer (%d) overriding\n",
2285 cfg->dir);
2286 cfg->dir = STEDMA40_PERIPH_TO_MEM;
2288 /* Configure the memory side */
2289 if (dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2290 dst_addr_width = src_addr_width;
2291 if (dst_maxburst == 0)
2292 dst_maxburst = src_maxburst;
2294 } else if (config->direction == DMA_TO_DEVICE) {
2295 dma_addr_t dev_addr_tx =
2296 d40c->base->plat_data->dev_tx[cfg->dst_dev_type];
2298 config_addr = config->dst_addr;
2299 if (dev_addr_tx)
2300 dev_dbg(d40c->base->dev,
2301 "channel has a pre-wired TX address %08x "
2302 "overriding with %08x\n",
2303 dev_addr_tx, config_addr);
2304 if (cfg->dir != STEDMA40_MEM_TO_PERIPH)
2305 dev_dbg(d40c->base->dev,
2306 "channel was not configured for memory "
2307 "to peripheral transfer (%d) overriding\n",
2308 cfg->dir);
2309 cfg->dir = STEDMA40_MEM_TO_PERIPH;
2311 /* Configure the memory side */
2312 if (src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
2313 src_addr_width = dst_addr_width;
2314 if (src_maxburst == 0)
2315 src_maxburst = dst_maxburst;
2316 } else {
2317 dev_err(d40c->base->dev,
2318 "unrecognized channel direction %d\n",
2319 config->direction);
2320 return -EINVAL;
2323 if (src_maxburst * src_addr_width != dst_maxburst * dst_addr_width) {
2324 dev_err(d40c->base->dev,
2325 "src/dst width/maxburst mismatch: %d*%d != %d*%d\n",
2326 src_maxburst,
2327 src_addr_width,
2328 dst_maxburst,
2329 dst_addr_width);
2330 return -EINVAL;
2333 ret = dma40_config_to_halfchannel(d40c, &cfg->src_info,
2334 src_addr_width,
2335 src_maxburst);
2336 if (ret)
2337 return ret;
2339 ret = dma40_config_to_halfchannel(d40c, &cfg->dst_info,
2340 dst_addr_width,
2341 dst_maxburst);
2342 if (ret)
2343 return ret;
2345 /* Fill in register values */
2346 if (chan_is_logical(d40c))
2347 d40_log_cfg(cfg, &d40c->log_def.lcsp1, &d40c->log_def.lcsp3);
2348 else
2349 d40_phy_cfg(cfg, &d40c->src_def_cfg,
2350 &d40c->dst_def_cfg, false);
2352 /* These settings will take precedence later */
2353 d40c->runtime_addr = config_addr;
2354 d40c->runtime_direction = config->direction;
2355 dev_dbg(d40c->base->dev,
2356 "configured channel %s for %s, data width %d/%d, "
2357 "maxburst %d/%d elements, LE, no flow control\n",
2358 dma_chan_name(chan),
2359 (config->direction == DMA_FROM_DEVICE) ? "RX" : "TX",
2360 src_addr_width, dst_addr_width,
2361 src_maxburst, dst_maxburst);
2363 return 0;
2366 static int d40_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd,
2367 unsigned long arg)
2369 struct d40_chan *d40c = container_of(chan, struct d40_chan, chan);
2371 if (d40c->phy_chan == NULL) {
2372 chan_err(d40c, "Channel is not allocated!\n");
2373 return -EINVAL;
2376 switch (cmd) {
2377 case DMA_TERMINATE_ALL:
2378 return d40_terminate_all(d40c);
2379 case DMA_PAUSE:
2380 return d40_pause(d40c);
2381 case DMA_RESUME:
2382 return d40_resume(d40c);
2383 case DMA_SLAVE_CONFIG:
2384 return d40_set_runtime_config(chan,
2385 (struct dma_slave_config *) arg);
2386 default:
2387 break;
2390 /* Other commands are unimplemented */
2391 return -ENXIO;
2394 /* Initialization functions */
2396 static void __init d40_chan_init(struct d40_base *base, struct dma_device *dma,
2397 struct d40_chan *chans, int offset,
2398 int num_chans)
2400 int i = 0;
2401 struct d40_chan *d40c;
2403 INIT_LIST_HEAD(&dma->channels);
2405 for (i = offset; i < offset + num_chans; i++) {
2406 d40c = &chans[i];
2407 d40c->base = base;
2408 d40c->chan.device = dma;
2410 spin_lock_init(&d40c->lock);
2412 d40c->log_num = D40_PHY_CHAN;
2414 INIT_LIST_HEAD(&d40c->active);
2415 INIT_LIST_HEAD(&d40c->queue);
2416 INIT_LIST_HEAD(&d40c->pending_queue);
2417 INIT_LIST_HEAD(&d40c->client);
2418 INIT_LIST_HEAD(&d40c->prepare_queue);
2420 tasklet_init(&d40c->tasklet, dma_tasklet,
2421 (unsigned long) d40c);
2423 list_add_tail(&d40c->chan.device_node,
2424 &dma->channels);
2428 static void d40_ops_init(struct d40_base *base, struct dma_device *dev)
2430 if (dma_has_cap(DMA_SLAVE, dev->cap_mask))
2431 dev->device_prep_slave_sg = d40_prep_slave_sg;
2433 if (dma_has_cap(DMA_MEMCPY, dev->cap_mask)) {
2434 dev->device_prep_dma_memcpy = d40_prep_memcpy;
2437 * This controller can only access address at even
2438 * 32bit boundaries, i.e. 2^2
2440 dev->copy_align = 2;
2443 if (dma_has_cap(DMA_SG, dev->cap_mask))
2444 dev->device_prep_dma_sg = d40_prep_memcpy_sg;
2446 if (dma_has_cap(DMA_CYCLIC, dev->cap_mask))
2447 dev->device_prep_dma_cyclic = dma40_prep_dma_cyclic;
2449 dev->device_alloc_chan_resources = d40_alloc_chan_resources;
2450 dev->device_free_chan_resources = d40_free_chan_resources;
2451 dev->device_issue_pending = d40_issue_pending;
2452 dev->device_tx_status = d40_tx_status;
2453 dev->device_control = d40_control;
2454 dev->dev = base->dev;
2457 static int __init d40_dmaengine_init(struct d40_base *base,
2458 int num_reserved_chans)
2460 int err ;
2462 d40_chan_init(base, &base->dma_slave, base->log_chans,
2463 0, base->num_log_chans);
2465 dma_cap_zero(base->dma_slave.cap_mask);
2466 dma_cap_set(DMA_SLAVE, base->dma_slave.cap_mask);
2467 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2469 d40_ops_init(base, &base->dma_slave);
2471 err = dma_async_device_register(&base->dma_slave);
2473 if (err) {
2474 d40_err(base->dev, "Failed to register slave channels\n");
2475 goto failure1;
2478 d40_chan_init(base, &base->dma_memcpy, base->log_chans,
2479 base->num_log_chans, base->plat_data->memcpy_len);
2481 dma_cap_zero(base->dma_memcpy.cap_mask);
2482 dma_cap_set(DMA_MEMCPY, base->dma_memcpy.cap_mask);
2483 dma_cap_set(DMA_SG, base->dma_memcpy.cap_mask);
2485 d40_ops_init(base, &base->dma_memcpy);
2487 err = dma_async_device_register(&base->dma_memcpy);
2489 if (err) {
2490 d40_err(base->dev,
2491 "Failed to regsiter memcpy only channels\n");
2492 goto failure2;
2495 d40_chan_init(base, &base->dma_both, base->phy_chans,
2496 0, num_reserved_chans);
2498 dma_cap_zero(base->dma_both.cap_mask);
2499 dma_cap_set(DMA_SLAVE, base->dma_both.cap_mask);
2500 dma_cap_set(DMA_MEMCPY, base->dma_both.cap_mask);
2501 dma_cap_set(DMA_SG, base->dma_both.cap_mask);
2502 dma_cap_set(DMA_CYCLIC, base->dma_slave.cap_mask);
2504 d40_ops_init(base, &base->dma_both);
2505 err = dma_async_device_register(&base->dma_both);
2507 if (err) {
2508 d40_err(base->dev,
2509 "Failed to register logical and physical capable channels\n");
2510 goto failure3;
2512 return 0;
2513 failure3:
2514 dma_async_device_unregister(&base->dma_memcpy);
2515 failure2:
2516 dma_async_device_unregister(&base->dma_slave);
2517 failure1:
2518 return err;
2521 /* Initialization functions. */
2523 static int __init d40_phy_res_init(struct d40_base *base)
2525 int i;
2526 int num_phy_chans_avail = 0;
2527 u32 val[2];
2528 int odd_even_bit = -2;
2530 val[0] = readl(base->virtbase + D40_DREG_PRSME);
2531 val[1] = readl(base->virtbase + D40_DREG_PRSMO);
2533 for (i = 0; i < base->num_phy_chans; i++) {
2534 base->phy_res[i].num = i;
2535 odd_even_bit += 2 * ((i % 2) == 0);
2536 if (((val[i % 2] >> odd_even_bit) & 3) == 1) {
2537 /* Mark security only channels as occupied */
2538 base->phy_res[i].allocated_src = D40_ALLOC_PHY;
2539 base->phy_res[i].allocated_dst = D40_ALLOC_PHY;
2540 } else {
2541 base->phy_res[i].allocated_src = D40_ALLOC_FREE;
2542 base->phy_res[i].allocated_dst = D40_ALLOC_FREE;
2543 num_phy_chans_avail++;
2545 spin_lock_init(&base->phy_res[i].lock);
2548 /* Mark disabled channels as occupied */
2549 for (i = 0; base->plat_data->disabled_channels[i] != -1; i++) {
2550 int chan = base->plat_data->disabled_channels[i];
2552 base->phy_res[chan].allocated_src = D40_ALLOC_PHY;
2553 base->phy_res[chan].allocated_dst = D40_ALLOC_PHY;
2554 num_phy_chans_avail--;
2557 dev_info(base->dev, "%d of %d physical DMA channels available\n",
2558 num_phy_chans_avail, base->num_phy_chans);
2560 /* Verify settings extended vs standard */
2561 val[0] = readl(base->virtbase + D40_DREG_PRTYP);
2563 for (i = 0; i < base->num_phy_chans; i++) {
2565 if (base->phy_res[i].allocated_src == D40_ALLOC_FREE &&
2566 (val[0] & 0x3) != 1)
2567 dev_info(base->dev,
2568 "[%s] INFO: channel %d is misconfigured (%d)\n",
2569 __func__, i, val[0] & 0x3);
2571 val[0] = val[0] >> 2;
2574 return num_phy_chans_avail;
2577 static struct d40_base * __init d40_hw_detect_init(struct platform_device *pdev)
2579 struct stedma40_platform_data *plat_data;
2580 struct clk *clk = NULL;
2581 void __iomem *virtbase = NULL;
2582 struct resource *res = NULL;
2583 struct d40_base *base = NULL;
2584 int num_log_chans = 0;
2585 int num_phy_chans;
2586 int i;
2587 u32 pid;
2588 u32 cid;
2589 u8 rev;
2591 clk = clk_get(&pdev->dev, NULL);
2593 if (IS_ERR(clk)) {
2594 d40_err(&pdev->dev, "No matching clock found\n");
2595 goto failure;
2598 clk_enable(clk);
2600 /* Get IO for DMAC base address */
2601 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "base");
2602 if (!res)
2603 goto failure;
2605 if (request_mem_region(res->start, resource_size(res),
2606 D40_NAME " I/O base") == NULL)
2607 goto failure;
2609 virtbase = ioremap(res->start, resource_size(res));
2610 if (!virtbase)
2611 goto failure;
2613 /* This is just a regular AMBA PrimeCell ID actually */
2614 for (pid = 0, i = 0; i < 4; i++)
2615 pid |= (readl(virtbase + resource_size(res) - 0x20 + 4 * i)
2616 & 255) << (i * 8);
2617 for (cid = 0, i = 0; i < 4; i++)
2618 cid |= (readl(virtbase + resource_size(res) - 0x10 + 4 * i)
2619 & 255) << (i * 8);
2621 if (cid != AMBA_CID) {
2622 d40_err(&pdev->dev, "Unknown hardware! No PrimeCell ID\n");
2623 goto failure;
2625 if (AMBA_MANF_BITS(pid) != AMBA_VENDOR_ST) {
2626 d40_err(&pdev->dev, "Unknown designer! Got %x wanted %x\n",
2627 AMBA_MANF_BITS(pid),
2628 AMBA_VENDOR_ST);
2629 goto failure;
2632 * HW revision:
2633 * DB8500ed has revision 0
2634 * ? has revision 1
2635 * DB8500v1 has revision 2
2636 * DB8500v2 has revision 3
2638 rev = AMBA_REV_BITS(pid);
2640 /* The number of physical channels on this HW */
2641 num_phy_chans = 4 * (readl(virtbase + D40_DREG_ICFG) & 0x7) + 4;
2643 dev_info(&pdev->dev, "hardware revision: %d @ 0x%x\n",
2644 rev, res->start);
2646 plat_data = pdev->dev.platform_data;
2648 /* Count the number of logical channels in use */
2649 for (i = 0; i < plat_data->dev_len; i++)
2650 if (plat_data->dev_rx[i] != 0)
2651 num_log_chans++;
2653 for (i = 0; i < plat_data->dev_len; i++)
2654 if (plat_data->dev_tx[i] != 0)
2655 num_log_chans++;
2657 base = kzalloc(ALIGN(sizeof(struct d40_base), 4) +
2658 (num_phy_chans + num_log_chans + plat_data->memcpy_len) *
2659 sizeof(struct d40_chan), GFP_KERNEL);
2661 if (base == NULL) {
2662 d40_err(&pdev->dev, "Out of memory\n");
2663 goto failure;
2666 base->rev = rev;
2667 base->clk = clk;
2668 base->num_phy_chans = num_phy_chans;
2669 base->num_log_chans = num_log_chans;
2670 base->phy_start = res->start;
2671 base->phy_size = resource_size(res);
2672 base->virtbase = virtbase;
2673 base->plat_data = plat_data;
2674 base->dev = &pdev->dev;
2675 base->phy_chans = ((void *)base) + ALIGN(sizeof(struct d40_base), 4);
2676 base->log_chans = &base->phy_chans[num_phy_chans];
2678 base->phy_res = kzalloc(num_phy_chans * sizeof(struct d40_phy_res),
2679 GFP_KERNEL);
2680 if (!base->phy_res)
2681 goto failure;
2683 base->lookup_phy_chans = kzalloc(num_phy_chans *
2684 sizeof(struct d40_chan *),
2685 GFP_KERNEL);
2686 if (!base->lookup_phy_chans)
2687 goto failure;
2689 if (num_log_chans + plat_data->memcpy_len) {
2691 * The max number of logical channels are event lines for all
2692 * src devices and dst devices
2694 base->lookup_log_chans = kzalloc(plat_data->dev_len * 2 *
2695 sizeof(struct d40_chan *),
2696 GFP_KERNEL);
2697 if (!base->lookup_log_chans)
2698 goto failure;
2701 base->lcla_pool.alloc_map = kzalloc(num_phy_chans *
2702 sizeof(struct d40_desc *) *
2703 D40_LCLA_LINK_PER_EVENT_GRP,
2704 GFP_KERNEL);
2705 if (!base->lcla_pool.alloc_map)
2706 goto failure;
2708 base->desc_slab = kmem_cache_create(D40_NAME, sizeof(struct d40_desc),
2709 0, SLAB_HWCACHE_ALIGN,
2710 NULL);
2711 if (base->desc_slab == NULL)
2712 goto failure;
2714 return base;
2716 failure:
2717 if (!IS_ERR(clk)) {
2718 clk_disable(clk);
2719 clk_put(clk);
2721 if (virtbase)
2722 iounmap(virtbase);
2723 if (res)
2724 release_mem_region(res->start,
2725 resource_size(res));
2726 if (virtbase)
2727 iounmap(virtbase);
2729 if (base) {
2730 kfree(base->lcla_pool.alloc_map);
2731 kfree(base->lookup_log_chans);
2732 kfree(base->lookup_phy_chans);
2733 kfree(base->phy_res);
2734 kfree(base);
2737 return NULL;
2740 static void __init d40_hw_init(struct d40_base *base)
2743 static const struct d40_reg_val dma_init_reg[] = {
2744 /* Clock every part of the DMA block from start */
2745 { .reg = D40_DREG_GCC, .val = 0x0000ff01},
2747 /* Interrupts on all logical channels */
2748 { .reg = D40_DREG_LCMIS0, .val = 0xFFFFFFFF},
2749 { .reg = D40_DREG_LCMIS1, .val = 0xFFFFFFFF},
2750 { .reg = D40_DREG_LCMIS2, .val = 0xFFFFFFFF},
2751 { .reg = D40_DREG_LCMIS3, .val = 0xFFFFFFFF},
2752 { .reg = D40_DREG_LCICR0, .val = 0xFFFFFFFF},
2753 { .reg = D40_DREG_LCICR1, .val = 0xFFFFFFFF},
2754 { .reg = D40_DREG_LCICR2, .val = 0xFFFFFFFF},
2755 { .reg = D40_DREG_LCICR3, .val = 0xFFFFFFFF},
2756 { .reg = D40_DREG_LCTIS0, .val = 0xFFFFFFFF},
2757 { .reg = D40_DREG_LCTIS1, .val = 0xFFFFFFFF},
2758 { .reg = D40_DREG_LCTIS2, .val = 0xFFFFFFFF},
2759 { .reg = D40_DREG_LCTIS3, .val = 0xFFFFFFFF}
2761 int i;
2762 u32 prmseo[2] = {0, 0};
2763 u32 activeo[2] = {0xFFFFFFFF, 0xFFFFFFFF};
2764 u32 pcmis = 0;
2765 u32 pcicr = 0;
2767 for (i = 0; i < ARRAY_SIZE(dma_init_reg); i++)
2768 writel(dma_init_reg[i].val,
2769 base->virtbase + dma_init_reg[i].reg);
2771 /* Configure all our dma channels to default settings */
2772 for (i = 0; i < base->num_phy_chans; i++) {
2774 activeo[i % 2] = activeo[i % 2] << 2;
2776 if (base->phy_res[base->num_phy_chans - i - 1].allocated_src
2777 == D40_ALLOC_PHY) {
2778 activeo[i % 2] |= 3;
2779 continue;
2782 /* Enable interrupt # */
2783 pcmis = (pcmis << 1) | 1;
2785 /* Clear interrupt # */
2786 pcicr = (pcicr << 1) | 1;
2788 /* Set channel to physical mode */
2789 prmseo[i % 2] = prmseo[i % 2] << 2;
2790 prmseo[i % 2] |= 1;
2794 writel(prmseo[1], base->virtbase + D40_DREG_PRMSE);
2795 writel(prmseo[0], base->virtbase + D40_DREG_PRMSO);
2796 writel(activeo[1], base->virtbase + D40_DREG_ACTIVE);
2797 writel(activeo[0], base->virtbase + D40_DREG_ACTIVO);
2799 /* Write which interrupt to enable */
2800 writel(pcmis, base->virtbase + D40_DREG_PCMIS);
2802 /* Write which interrupt to clear */
2803 writel(pcicr, base->virtbase + D40_DREG_PCICR);
2807 static int __init d40_lcla_allocate(struct d40_base *base)
2809 struct d40_lcla_pool *pool = &base->lcla_pool;
2810 unsigned long *page_list;
2811 int i, j;
2812 int ret = 0;
2815 * This is somewhat ugly. We need 8192 bytes that are 18 bit aligned,
2816 * To full fill this hardware requirement without wasting 256 kb
2817 * we allocate pages until we get an aligned one.
2819 page_list = kmalloc(sizeof(unsigned long) * MAX_LCLA_ALLOC_ATTEMPTS,
2820 GFP_KERNEL);
2822 if (!page_list) {
2823 ret = -ENOMEM;
2824 goto failure;
2827 /* Calculating how many pages that are required */
2828 base->lcla_pool.pages = SZ_1K * base->num_phy_chans / PAGE_SIZE;
2830 for (i = 0; i < MAX_LCLA_ALLOC_ATTEMPTS; i++) {
2831 page_list[i] = __get_free_pages(GFP_KERNEL,
2832 base->lcla_pool.pages);
2833 if (!page_list[i]) {
2835 d40_err(base->dev, "Failed to allocate %d pages.\n",
2836 base->lcla_pool.pages);
2838 for (j = 0; j < i; j++)
2839 free_pages(page_list[j], base->lcla_pool.pages);
2840 goto failure;
2843 if ((virt_to_phys((void *)page_list[i]) &
2844 (LCLA_ALIGNMENT - 1)) == 0)
2845 break;
2848 for (j = 0; j < i; j++)
2849 free_pages(page_list[j], base->lcla_pool.pages);
2851 if (i < MAX_LCLA_ALLOC_ATTEMPTS) {
2852 base->lcla_pool.base = (void *)page_list[i];
2853 } else {
2855 * After many attempts and no succees with finding the correct
2856 * alignment, try with allocating a big buffer.
2858 dev_warn(base->dev,
2859 "[%s] Failed to get %d pages @ 18 bit align.\n",
2860 __func__, base->lcla_pool.pages);
2861 base->lcla_pool.base_unaligned = kmalloc(SZ_1K *
2862 base->num_phy_chans +
2863 LCLA_ALIGNMENT,
2864 GFP_KERNEL);
2865 if (!base->lcla_pool.base_unaligned) {
2866 ret = -ENOMEM;
2867 goto failure;
2870 base->lcla_pool.base = PTR_ALIGN(base->lcla_pool.base_unaligned,
2871 LCLA_ALIGNMENT);
2874 pool->dma_addr = dma_map_single(base->dev, pool->base,
2875 SZ_1K * base->num_phy_chans,
2876 DMA_TO_DEVICE);
2877 if (dma_mapping_error(base->dev, pool->dma_addr)) {
2878 pool->dma_addr = 0;
2879 ret = -ENOMEM;
2880 goto failure;
2883 writel(virt_to_phys(base->lcla_pool.base),
2884 base->virtbase + D40_DREG_LCLA);
2885 failure:
2886 kfree(page_list);
2887 return ret;
2890 static int __init d40_probe(struct platform_device *pdev)
2892 int err;
2893 int ret = -ENOENT;
2894 struct d40_base *base;
2895 struct resource *res = NULL;
2896 int num_reserved_chans;
2897 u32 val;
2899 base = d40_hw_detect_init(pdev);
2901 if (!base)
2902 goto failure;
2904 num_reserved_chans = d40_phy_res_init(base);
2906 platform_set_drvdata(pdev, base);
2908 spin_lock_init(&base->interrupt_lock);
2909 spin_lock_init(&base->execmd_lock);
2911 /* Get IO for logical channel parameter address */
2912 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lcpa");
2913 if (!res) {
2914 ret = -ENOENT;
2915 d40_err(&pdev->dev, "No \"lcpa\" memory resource\n");
2916 goto failure;
2918 base->lcpa_size = resource_size(res);
2919 base->phy_lcpa = res->start;
2921 if (request_mem_region(res->start, resource_size(res),
2922 D40_NAME " I/O lcpa") == NULL) {
2923 ret = -EBUSY;
2924 d40_err(&pdev->dev,
2925 "Failed to request LCPA region 0x%x-0x%x\n",
2926 res->start, res->end);
2927 goto failure;
2930 /* We make use of ESRAM memory for this. */
2931 val = readl(base->virtbase + D40_DREG_LCPA);
2932 if (res->start != val && val != 0) {
2933 dev_warn(&pdev->dev,
2934 "[%s] Mismatch LCPA dma 0x%x, def 0x%x\n",
2935 __func__, val, res->start);
2936 } else
2937 writel(res->start, base->virtbase + D40_DREG_LCPA);
2939 base->lcpa_base = ioremap(res->start, resource_size(res));
2940 if (!base->lcpa_base) {
2941 ret = -ENOMEM;
2942 d40_err(&pdev->dev, "Failed to ioremap LCPA region\n");
2943 goto failure;
2946 ret = d40_lcla_allocate(base);
2947 if (ret) {
2948 d40_err(&pdev->dev, "Failed to allocate LCLA area\n");
2949 goto failure;
2952 spin_lock_init(&base->lcla_pool.lock);
2954 base->irq = platform_get_irq(pdev, 0);
2956 ret = request_irq(base->irq, d40_handle_interrupt, 0, D40_NAME, base);
2957 if (ret) {
2958 d40_err(&pdev->dev, "No IRQ defined\n");
2959 goto failure;
2962 err = d40_dmaengine_init(base, num_reserved_chans);
2963 if (err)
2964 goto failure;
2966 d40_hw_init(base);
2968 dev_info(base->dev, "initialized\n");
2969 return 0;
2971 failure:
2972 if (base) {
2973 if (base->desc_slab)
2974 kmem_cache_destroy(base->desc_slab);
2975 if (base->virtbase)
2976 iounmap(base->virtbase);
2978 if (base->lcla_pool.dma_addr)
2979 dma_unmap_single(base->dev, base->lcla_pool.dma_addr,
2980 SZ_1K * base->num_phy_chans,
2981 DMA_TO_DEVICE);
2983 if (!base->lcla_pool.base_unaligned && base->lcla_pool.base)
2984 free_pages((unsigned long)base->lcla_pool.base,
2985 base->lcla_pool.pages);
2987 kfree(base->lcla_pool.base_unaligned);
2989 if (base->phy_lcpa)
2990 release_mem_region(base->phy_lcpa,
2991 base->lcpa_size);
2992 if (base->phy_start)
2993 release_mem_region(base->phy_start,
2994 base->phy_size);
2995 if (base->clk) {
2996 clk_disable(base->clk);
2997 clk_put(base->clk);
3000 kfree(base->lcla_pool.alloc_map);
3001 kfree(base->lookup_log_chans);
3002 kfree(base->lookup_phy_chans);
3003 kfree(base->phy_res);
3004 kfree(base);
3007 d40_err(&pdev->dev, "probe failed\n");
3008 return ret;
3011 static struct platform_driver d40_driver = {
3012 .driver = {
3013 .owner = THIS_MODULE,
3014 .name = D40_NAME,
3018 static int __init stedma40_init(void)
3020 return platform_driver_probe(&d40_driver, d40_probe);
3022 subsys_initcall(stedma40_init);