Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / arch / arm / mm / dma-mapping.c
blob235eb775fc78284180779d3eed96ccb357f8127c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/highmem.h>
22 #include <asm/memory.h>
23 #include <asm/highmem.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <asm/sizes.h>
28 #include "mm.h"
30 static u64 get_coherent_dma_mask(struct device *dev)
32 u64 mask = (u64)arm_dma_limit;
34 if (dev) {
35 mask = dev->coherent_dma_mask;
38 * Sanity check the DMA mask - it must be non-zero, and
39 * must be able to be satisfied by a DMA allocation.
41 if (mask == 0) {
42 dev_warn(dev, "coherent DMA mask is unset\n");
43 return 0;
46 if ((~mask) & (u64)arm_dma_limit) {
47 dev_warn(dev, "coherent DMA mask %#llx is smaller "
48 "than system GFP_DMA mask %#llx\n",
49 mask, (u64)arm_dma_limit);
50 return 0;
54 return mask;
58 * Allocate a DMA buffer for 'dev' of size 'size' using the
59 * specified gfp mask. Note that 'size' must be page aligned.
61 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
63 unsigned long order = get_order(size);
64 struct page *page, *p, *e;
65 void *ptr;
66 u64 mask = get_coherent_dma_mask(dev);
68 #ifdef CONFIG_DMA_API_DEBUG
69 u64 limit = (mask + 1) & ~mask;
70 if (limit && size >= limit) {
71 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
72 size, mask);
73 return NULL;
75 #endif
77 if (!mask)
78 return NULL;
80 if (mask < 0xffffffffULL)
81 gfp |= GFP_DMA;
83 page = alloc_pages(gfp, order);
84 if (!page)
85 return NULL;
88 * Now split the huge page and free the excess pages
90 split_page(page, order);
91 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
92 __free_page(p);
95 * Ensure that the allocated pages are zeroed, and that any data
96 * lurking in the kernel direct-mapped region is invalidated.
98 ptr = page_address(page);
99 memset(ptr, 0, size);
100 dmac_flush_range(ptr, ptr + size);
101 outer_flush_range(__pa(ptr), __pa(ptr) + size);
103 return page;
107 * Free a DMA buffer. 'size' must be page aligned.
109 static void __dma_free_buffer(struct page *page, size_t size)
111 struct page *e = page + (size >> PAGE_SHIFT);
113 while (page < e) {
114 __free_page(page);
115 page++;
119 #ifdef CONFIG_MMU
120 /* Sanity check size */
121 #if (CONSISTENT_DMA_SIZE % SZ_2M)
122 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
123 #endif
125 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
126 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PMD_SHIFT)
127 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PMD_SHIFT)
130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
132 static pte_t *consistent_pte[NUM_CONSISTENT_PTES];
134 #include "vmregion.h"
136 static struct arm_vmregion_head consistent_head = {
137 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
138 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
139 .vm_start = CONSISTENT_BASE,
140 .vm_end = CONSISTENT_END,
143 #ifdef CONFIG_HUGETLB_PAGE
144 #error ARM Coherent DMA allocator does not (yet) support huge TLB
145 #endif
148 * Initialise the consistent memory allocation.
150 static int __init consistent_init(void)
152 int ret = 0;
153 pgd_t *pgd;
154 pud_t *pud;
155 pmd_t *pmd;
156 pte_t *pte;
157 int i = 0;
158 u32 base = CONSISTENT_BASE;
160 do {
161 pgd = pgd_offset(&init_mm, base);
163 pud = pud_alloc(&init_mm, pgd, base);
164 if (!pud) {
165 printk(KERN_ERR "%s: no pud tables\n", __func__);
166 ret = -ENOMEM;
167 break;
170 pmd = pmd_alloc(&init_mm, pud, base);
171 if (!pmd) {
172 printk(KERN_ERR "%s: no pmd tables\n", __func__);
173 ret = -ENOMEM;
174 break;
176 WARN_ON(!pmd_none(*pmd));
178 pte = pte_alloc_kernel(pmd, base);
179 if (!pte) {
180 printk(KERN_ERR "%s: no pte tables\n", __func__);
181 ret = -ENOMEM;
182 break;
185 consistent_pte[i++] = pte;
186 base += PMD_SIZE;
187 } while (base < CONSISTENT_END);
189 return ret;
192 core_initcall(consistent_init);
194 static void *
195 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot)
197 struct arm_vmregion *c;
198 size_t align;
199 int bit;
201 if (!consistent_pte[0]) {
202 printk(KERN_ERR "%s: not initialised\n", __func__);
203 dump_stack();
204 return NULL;
208 * Align the virtual region allocation - maximum alignment is
209 * a section size, minimum is a page size. This helps reduce
210 * fragmentation of the DMA space, and also prevents allocations
211 * smaller than a section from crossing a section boundary.
213 bit = fls(size - 1);
214 if (bit > SECTION_SHIFT)
215 bit = SECTION_SHIFT;
216 align = 1 << bit;
219 * Allocate a virtual address in the consistent mapping region.
221 c = arm_vmregion_alloc(&consistent_head, align, size,
222 gfp & ~(__GFP_DMA | __GFP_HIGHMEM));
223 if (c) {
224 pte_t *pte;
225 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
226 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
228 pte = consistent_pte[idx] + off;
229 c->vm_pages = page;
231 do {
232 BUG_ON(!pte_none(*pte));
234 set_pte_ext(pte, mk_pte(page, prot), 0);
235 page++;
236 pte++;
237 off++;
238 if (off >= PTRS_PER_PTE) {
239 off = 0;
240 pte = consistent_pte[++idx];
242 } while (size -= PAGE_SIZE);
244 dsb();
246 return (void *)c->vm_start;
248 return NULL;
251 static void __dma_free_remap(void *cpu_addr, size_t size)
253 struct arm_vmregion *c;
254 unsigned long addr;
255 pte_t *ptep;
256 int idx;
257 u32 off;
259 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
260 if (!c) {
261 printk(KERN_ERR "%s: trying to free invalid coherent area: %p\n",
262 __func__, cpu_addr);
263 dump_stack();
264 return;
267 if ((c->vm_end - c->vm_start) != size) {
268 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
269 __func__, c->vm_end - c->vm_start, size);
270 dump_stack();
271 size = c->vm_end - c->vm_start;
274 idx = CONSISTENT_PTE_INDEX(c->vm_start);
275 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
276 ptep = consistent_pte[idx] + off;
277 addr = c->vm_start;
278 do {
279 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
281 ptep++;
282 addr += PAGE_SIZE;
283 off++;
284 if (off >= PTRS_PER_PTE) {
285 off = 0;
286 ptep = consistent_pte[++idx];
289 if (pte_none(pte) || !pte_present(pte))
290 printk(KERN_CRIT "%s: bad page in kernel page table\n",
291 __func__);
292 } while (size -= PAGE_SIZE);
294 flush_tlb_kernel_range(c->vm_start, c->vm_end);
296 arm_vmregion_free(&consistent_head, c);
299 #else /* !CONFIG_MMU */
301 #define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
302 #define __dma_free_remap(addr, size) do { } while (0)
304 #endif /* CONFIG_MMU */
306 static void *
307 __dma_alloc(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp,
308 pgprot_t prot)
310 struct page *page;
311 void *addr;
313 *handle = ~0;
314 size = PAGE_ALIGN(size);
316 page = __dma_alloc_buffer(dev, size, gfp);
317 if (!page)
318 return NULL;
320 if (!arch_is_coherent())
321 addr = __dma_alloc_remap(page, size, gfp, prot);
322 else
323 addr = page_address(page);
325 if (addr)
326 *handle = pfn_to_dma(dev, page_to_pfn(page));
327 else
328 __dma_free_buffer(page, size);
330 return addr;
334 * Allocate DMA-coherent memory space and return both the kernel remapped
335 * virtual and bus address for that space.
337 void *
338 dma_alloc_coherent(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
340 void *memory;
342 if (dma_alloc_from_coherent(dev, size, handle, &memory))
343 return memory;
345 return __dma_alloc(dev, size, handle, gfp,
346 pgprot_dmacoherent(pgprot_kernel));
348 EXPORT_SYMBOL(dma_alloc_coherent);
351 * Allocate a writecombining region, in much the same way as
352 * dma_alloc_coherent above.
354 void *
355 dma_alloc_writecombine(struct device *dev, size_t size, dma_addr_t *handle, gfp_t gfp)
357 return __dma_alloc(dev, size, handle, gfp,
358 pgprot_writecombine(pgprot_kernel));
360 EXPORT_SYMBOL(dma_alloc_writecombine);
362 static int dma_mmap(struct device *dev, struct vm_area_struct *vma,
363 void *cpu_addr, dma_addr_t dma_addr, size_t size)
365 int ret = -ENXIO;
366 #ifdef CONFIG_MMU
367 unsigned long user_size, kern_size;
368 struct arm_vmregion *c;
370 user_size = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
372 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
373 if (c) {
374 unsigned long off = vma->vm_pgoff;
376 kern_size = (c->vm_end - c->vm_start) >> PAGE_SHIFT;
378 if (off < kern_size &&
379 user_size <= (kern_size - off)) {
380 ret = remap_pfn_range(vma, vma->vm_start,
381 page_to_pfn(c->vm_pages) + off,
382 user_size << PAGE_SHIFT,
383 vma->vm_page_prot);
386 #endif /* CONFIG_MMU */
388 return ret;
391 int dma_mmap_coherent(struct device *dev, struct vm_area_struct *vma,
392 void *cpu_addr, dma_addr_t dma_addr, size_t size)
394 vma->vm_page_prot = pgprot_dmacoherent(vma->vm_page_prot);
395 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
397 EXPORT_SYMBOL(dma_mmap_coherent);
399 int dma_mmap_writecombine(struct device *dev, struct vm_area_struct *vma,
400 void *cpu_addr, dma_addr_t dma_addr, size_t size)
402 vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
403 return dma_mmap(dev, vma, cpu_addr, dma_addr, size);
405 EXPORT_SYMBOL(dma_mmap_writecombine);
408 * free a page as defined by the above mapping.
409 * Must not be called with IRQs disabled.
411 void dma_free_coherent(struct device *dev, size_t size, void *cpu_addr, dma_addr_t handle)
413 WARN_ON(irqs_disabled());
415 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
416 return;
418 size = PAGE_ALIGN(size);
420 if (!arch_is_coherent())
421 __dma_free_remap(cpu_addr, size);
423 __dma_free_buffer(pfn_to_page(dma_to_pfn(dev, handle)), size);
425 EXPORT_SYMBOL(dma_free_coherent);
428 * Make an area consistent for devices.
429 * Note: Drivers should NOT use this function directly, as it will break
430 * platforms with CONFIG_DMABOUNCE.
431 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
433 void ___dma_single_cpu_to_dev(const void *kaddr, size_t size,
434 enum dma_data_direction dir)
436 unsigned long paddr;
438 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
440 dmac_map_area(kaddr, size, dir);
442 paddr = __pa(kaddr);
443 if (dir == DMA_FROM_DEVICE) {
444 outer_inv_range(paddr, paddr + size);
445 } else {
446 outer_clean_range(paddr, paddr + size);
448 /* FIXME: non-speculating: flush on bidirectional mappings? */
450 EXPORT_SYMBOL(___dma_single_cpu_to_dev);
452 void ___dma_single_dev_to_cpu(const void *kaddr, size_t size,
453 enum dma_data_direction dir)
455 BUG_ON(!virt_addr_valid(kaddr) || !virt_addr_valid(kaddr + size - 1));
457 /* FIXME: non-speculating: not required */
458 /* don't bother invalidating if DMA to device */
459 if (dir != DMA_TO_DEVICE) {
460 unsigned long paddr = __pa(kaddr);
461 outer_inv_range(paddr, paddr + size);
464 dmac_unmap_area(kaddr, size, dir);
466 EXPORT_SYMBOL(___dma_single_dev_to_cpu);
468 static void dma_cache_maint_page(struct page *page, unsigned long offset,
469 size_t size, enum dma_data_direction dir,
470 void (*op)(const void *, size_t, int))
473 * A single sg entry may refer to multiple physically contiguous
474 * pages. But we still need to process highmem pages individually.
475 * If highmem is not configured then the bulk of this loop gets
476 * optimized out.
478 size_t left = size;
479 do {
480 size_t len = left;
481 void *vaddr;
483 if (PageHighMem(page)) {
484 if (len + offset > PAGE_SIZE) {
485 if (offset >= PAGE_SIZE) {
486 page += offset / PAGE_SIZE;
487 offset %= PAGE_SIZE;
489 len = PAGE_SIZE - offset;
491 vaddr = kmap_high_get(page);
492 if (vaddr) {
493 vaddr += offset;
494 op(vaddr, len, dir);
495 kunmap_high(page);
496 } else if (cache_is_vipt()) {
497 /* unmapped pages might still be cached */
498 vaddr = kmap_atomic(page);
499 op(vaddr + offset, len, dir);
500 kunmap_atomic(vaddr);
502 } else {
503 vaddr = page_address(page) + offset;
504 op(vaddr, len, dir);
506 offset = 0;
507 page++;
508 left -= len;
509 } while (left);
512 void ___dma_page_cpu_to_dev(struct page *page, unsigned long off,
513 size_t size, enum dma_data_direction dir)
515 unsigned long paddr;
517 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
519 paddr = page_to_phys(page) + off;
520 if (dir == DMA_FROM_DEVICE) {
521 outer_inv_range(paddr, paddr + size);
522 } else {
523 outer_clean_range(paddr, paddr + size);
525 /* FIXME: non-speculating: flush on bidirectional mappings? */
527 EXPORT_SYMBOL(___dma_page_cpu_to_dev);
529 void ___dma_page_dev_to_cpu(struct page *page, unsigned long off,
530 size_t size, enum dma_data_direction dir)
532 unsigned long paddr = page_to_phys(page) + off;
534 /* FIXME: non-speculating: not required */
535 /* don't bother invalidating if DMA to device */
536 if (dir != DMA_TO_DEVICE)
537 outer_inv_range(paddr, paddr + size);
539 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
542 * Mark the D-cache clean for this page to avoid extra flushing.
544 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
545 set_bit(PG_dcache_clean, &page->flags);
547 EXPORT_SYMBOL(___dma_page_dev_to_cpu);
550 * dma_map_sg - map a set of SG buffers for streaming mode DMA
551 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
552 * @sg: list of buffers
553 * @nents: number of buffers to map
554 * @dir: DMA transfer direction
556 * Map a set of buffers described by scatterlist in streaming mode for DMA.
557 * This is the scatter-gather version of the dma_map_single interface.
558 * Here the scatter gather list elements are each tagged with the
559 * appropriate dma address and length. They are obtained via
560 * sg_dma_{address,length}.
562 * Device ownership issues as mentioned for dma_map_single are the same
563 * here.
565 int dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
566 enum dma_data_direction dir)
568 struct scatterlist *s;
569 int i, j;
571 BUG_ON(!valid_dma_direction(dir));
573 for_each_sg(sg, s, nents, i) {
574 s->dma_address = __dma_map_page(dev, sg_page(s), s->offset,
575 s->length, dir);
576 if (dma_mapping_error(dev, s->dma_address))
577 goto bad_mapping;
579 debug_dma_map_sg(dev, sg, nents, nents, dir);
580 return nents;
582 bad_mapping:
583 for_each_sg(sg, s, i, j)
584 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
585 return 0;
587 EXPORT_SYMBOL(dma_map_sg);
590 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
591 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
592 * @sg: list of buffers
593 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
594 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
596 * Unmap a set of streaming mode DMA translations. Again, CPU access
597 * rules concerning calls here are the same as for dma_unmap_single().
599 void dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
600 enum dma_data_direction dir)
602 struct scatterlist *s;
603 int i;
605 debug_dma_unmap_sg(dev, sg, nents, dir);
607 for_each_sg(sg, s, nents, i)
608 __dma_unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir);
610 EXPORT_SYMBOL(dma_unmap_sg);
613 * dma_sync_sg_for_cpu
614 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
615 * @sg: list of buffers
616 * @nents: number of buffers to map (returned from dma_map_sg)
617 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
619 void dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
620 int nents, enum dma_data_direction dir)
622 struct scatterlist *s;
623 int i;
625 for_each_sg(sg, s, nents, i) {
626 if (!dmabounce_sync_for_cpu(dev, sg_dma_address(s), 0,
627 sg_dma_len(s), dir))
628 continue;
630 __dma_page_dev_to_cpu(sg_page(s), s->offset,
631 s->length, dir);
634 debug_dma_sync_sg_for_cpu(dev, sg, nents, dir);
636 EXPORT_SYMBOL(dma_sync_sg_for_cpu);
639 * dma_sync_sg_for_device
640 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
641 * @sg: list of buffers
642 * @nents: number of buffers to map (returned from dma_map_sg)
643 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
645 void dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
646 int nents, enum dma_data_direction dir)
648 struct scatterlist *s;
649 int i;
651 for_each_sg(sg, s, nents, i) {
652 if (!dmabounce_sync_for_device(dev, sg_dma_address(s), 0,
653 sg_dma_len(s), dir))
654 continue;
656 __dma_page_cpu_to_dev(sg_page(s), s->offset,
657 s->length, dir);
660 debug_dma_sync_sg_for_device(dev, sg, nents, dir);
662 EXPORT_SYMBOL(dma_sync_sg_for_device);
665 * Return whether the given device DMA address mask can be supported
666 * properly. For example, if your device can only drive the low 24-bits
667 * during bus mastering, then you would pass 0x00ffffff as the mask
668 * to this function.
670 int dma_supported(struct device *dev, u64 mask)
672 if (mask < (u64)arm_dma_limit)
673 return 0;
674 return 1;
676 EXPORT_SYMBOL(dma_supported);
678 int dma_set_mask(struct device *dev, u64 dma_mask)
680 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
681 return -EIO;
683 #ifndef CONFIG_DMABOUNCE
684 *dev->dma_mask = dma_mask;
685 #endif
687 return 0;
689 EXPORT_SYMBOL(dma_set_mask);
691 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
693 static int __init dma_debug_do_init(void)
695 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
696 return 0;
698 fs_initcall(dma_debug_do_init);