2 * linux/arch/arm/mm/dma-mapping.c
4 * Copyright (C) 2000-2004 Russell King
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
10 * DMA uncached mapping support.
12 #include <linux/module.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/highmem.h>
22 #include <asm/memory.h>
23 #include <asm/highmem.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26 #include <asm/sizes.h>
30 static u64
get_coherent_dma_mask(struct device
*dev
)
32 u64 mask
= (u64
)arm_dma_limit
;
35 mask
= dev
->coherent_dma_mask
;
38 * Sanity check the DMA mask - it must be non-zero, and
39 * must be able to be satisfied by a DMA allocation.
42 dev_warn(dev
, "coherent DMA mask is unset\n");
46 if ((~mask
) & (u64
)arm_dma_limit
) {
47 dev_warn(dev
, "coherent DMA mask %#llx is smaller "
48 "than system GFP_DMA mask %#llx\n",
49 mask
, (u64
)arm_dma_limit
);
58 * Allocate a DMA buffer for 'dev' of size 'size' using the
59 * specified gfp mask. Note that 'size' must be page aligned.
61 static struct page
*__dma_alloc_buffer(struct device
*dev
, size_t size
, gfp_t gfp
)
63 unsigned long order
= get_order(size
);
64 struct page
*page
, *p
, *e
;
66 u64 mask
= get_coherent_dma_mask(dev
);
68 #ifdef CONFIG_DMA_API_DEBUG
69 u64 limit
= (mask
+ 1) & ~mask
;
70 if (limit
&& size
>= limit
) {
71 dev_warn(dev
, "coherent allocation too big (requested %#x mask %#llx)\n",
80 if (mask
< 0xffffffffULL
)
83 page
= alloc_pages(gfp
, order
);
88 * Now split the huge page and free the excess pages
90 split_page(page
, order
);
91 for (p
= page
+ (size
>> PAGE_SHIFT
), e
= page
+ (1 << order
); p
< e
; p
++)
95 * Ensure that the allocated pages are zeroed, and that any data
96 * lurking in the kernel direct-mapped region is invalidated.
98 ptr
= page_address(page
);
100 dmac_flush_range(ptr
, ptr
+ size
);
101 outer_flush_range(__pa(ptr
), __pa(ptr
) + size
);
107 * Free a DMA buffer. 'size' must be page aligned.
109 static void __dma_free_buffer(struct page
*page
, size_t size
)
111 struct page
*e
= page
+ (size
>> PAGE_SHIFT
);
120 /* Sanity check size */
121 #if (CONSISTENT_DMA_SIZE % SZ_2M)
122 #error "CONSISTENT_DMA_SIZE must be multiple of 2MiB"
125 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PAGE_SHIFT)
126 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - CONSISTENT_BASE) >> PMD_SHIFT)
127 #define NUM_CONSISTENT_PTES (CONSISTENT_DMA_SIZE >> PMD_SHIFT)
130 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
132 static pte_t
*consistent_pte
[NUM_CONSISTENT_PTES
];
134 #include "vmregion.h"
136 static struct arm_vmregion_head consistent_head
= {
137 .vm_lock
= __SPIN_LOCK_UNLOCKED(&consistent_head
.vm_lock
),
138 .vm_list
= LIST_HEAD_INIT(consistent_head
.vm_list
),
139 .vm_start
= CONSISTENT_BASE
,
140 .vm_end
= CONSISTENT_END
,
143 #ifdef CONFIG_HUGETLB_PAGE
144 #error ARM Coherent DMA allocator does not (yet) support huge TLB
148 * Initialise the consistent memory allocation.
150 static int __init
consistent_init(void)
158 u32 base
= CONSISTENT_BASE
;
161 pgd
= pgd_offset(&init_mm
, base
);
163 pud
= pud_alloc(&init_mm
, pgd
, base
);
165 printk(KERN_ERR
"%s: no pud tables\n", __func__
);
170 pmd
= pmd_alloc(&init_mm
, pud
, base
);
172 printk(KERN_ERR
"%s: no pmd tables\n", __func__
);
176 WARN_ON(!pmd_none(*pmd
));
178 pte
= pte_alloc_kernel(pmd
, base
);
180 printk(KERN_ERR
"%s: no pte tables\n", __func__
);
185 consistent_pte
[i
++] = pte
;
187 } while (base
< CONSISTENT_END
);
192 core_initcall(consistent_init
);
195 __dma_alloc_remap(struct page
*page
, size_t size
, gfp_t gfp
, pgprot_t prot
)
197 struct arm_vmregion
*c
;
201 if (!consistent_pte
[0]) {
202 printk(KERN_ERR
"%s: not initialised\n", __func__
);
208 * Align the virtual region allocation - maximum alignment is
209 * a section size, minimum is a page size. This helps reduce
210 * fragmentation of the DMA space, and also prevents allocations
211 * smaller than a section from crossing a section boundary.
214 if (bit
> SECTION_SHIFT
)
219 * Allocate a virtual address in the consistent mapping region.
221 c
= arm_vmregion_alloc(&consistent_head
, align
, size
,
222 gfp
& ~(__GFP_DMA
| __GFP_HIGHMEM
));
225 int idx
= CONSISTENT_PTE_INDEX(c
->vm_start
);
226 u32 off
= CONSISTENT_OFFSET(c
->vm_start
) & (PTRS_PER_PTE
-1);
228 pte
= consistent_pte
[idx
] + off
;
232 BUG_ON(!pte_none(*pte
));
234 set_pte_ext(pte
, mk_pte(page
, prot
), 0);
238 if (off
>= PTRS_PER_PTE
) {
240 pte
= consistent_pte
[++idx
];
242 } while (size
-= PAGE_SIZE
);
246 return (void *)c
->vm_start
;
251 static void __dma_free_remap(void *cpu_addr
, size_t size
)
253 struct arm_vmregion
*c
;
259 c
= arm_vmregion_find_remove(&consistent_head
, (unsigned long)cpu_addr
);
261 printk(KERN_ERR
"%s: trying to free invalid coherent area: %p\n",
267 if ((c
->vm_end
- c
->vm_start
) != size
) {
268 printk(KERN_ERR
"%s: freeing wrong coherent size (%ld != %d)\n",
269 __func__
, c
->vm_end
- c
->vm_start
, size
);
271 size
= c
->vm_end
- c
->vm_start
;
274 idx
= CONSISTENT_PTE_INDEX(c
->vm_start
);
275 off
= CONSISTENT_OFFSET(c
->vm_start
) & (PTRS_PER_PTE
-1);
276 ptep
= consistent_pte
[idx
] + off
;
279 pte_t pte
= ptep_get_and_clear(&init_mm
, addr
, ptep
);
284 if (off
>= PTRS_PER_PTE
) {
286 ptep
= consistent_pte
[++idx
];
289 if (pte_none(pte
) || !pte_present(pte
))
290 printk(KERN_CRIT
"%s: bad page in kernel page table\n",
292 } while (size
-= PAGE_SIZE
);
294 flush_tlb_kernel_range(c
->vm_start
, c
->vm_end
);
296 arm_vmregion_free(&consistent_head
, c
);
299 #else /* !CONFIG_MMU */
301 #define __dma_alloc_remap(page, size, gfp, prot) page_address(page)
302 #define __dma_free_remap(addr, size) do { } while (0)
304 #endif /* CONFIG_MMU */
307 __dma_alloc(struct device
*dev
, size_t size
, dma_addr_t
*handle
, gfp_t gfp
,
314 size
= PAGE_ALIGN(size
);
316 page
= __dma_alloc_buffer(dev
, size
, gfp
);
320 if (!arch_is_coherent())
321 addr
= __dma_alloc_remap(page
, size
, gfp
, prot
);
323 addr
= page_address(page
);
326 *handle
= pfn_to_dma(dev
, page_to_pfn(page
));
328 __dma_free_buffer(page
, size
);
334 * Allocate DMA-coherent memory space and return both the kernel remapped
335 * virtual and bus address for that space.
338 dma_alloc_coherent(struct device
*dev
, size_t size
, dma_addr_t
*handle
, gfp_t gfp
)
342 if (dma_alloc_from_coherent(dev
, size
, handle
, &memory
))
345 return __dma_alloc(dev
, size
, handle
, gfp
,
346 pgprot_dmacoherent(pgprot_kernel
));
348 EXPORT_SYMBOL(dma_alloc_coherent
);
351 * Allocate a writecombining region, in much the same way as
352 * dma_alloc_coherent above.
355 dma_alloc_writecombine(struct device
*dev
, size_t size
, dma_addr_t
*handle
, gfp_t gfp
)
357 return __dma_alloc(dev
, size
, handle
, gfp
,
358 pgprot_writecombine(pgprot_kernel
));
360 EXPORT_SYMBOL(dma_alloc_writecombine
);
362 static int dma_mmap(struct device
*dev
, struct vm_area_struct
*vma
,
363 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
)
367 unsigned long user_size
, kern_size
;
368 struct arm_vmregion
*c
;
370 user_size
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
372 c
= arm_vmregion_find(&consistent_head
, (unsigned long)cpu_addr
);
374 unsigned long off
= vma
->vm_pgoff
;
376 kern_size
= (c
->vm_end
- c
->vm_start
) >> PAGE_SHIFT
;
378 if (off
< kern_size
&&
379 user_size
<= (kern_size
- off
)) {
380 ret
= remap_pfn_range(vma
, vma
->vm_start
,
381 page_to_pfn(c
->vm_pages
) + off
,
382 user_size
<< PAGE_SHIFT
,
386 #endif /* CONFIG_MMU */
391 int dma_mmap_coherent(struct device
*dev
, struct vm_area_struct
*vma
,
392 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
)
394 vma
->vm_page_prot
= pgprot_dmacoherent(vma
->vm_page_prot
);
395 return dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
);
397 EXPORT_SYMBOL(dma_mmap_coherent
);
399 int dma_mmap_writecombine(struct device
*dev
, struct vm_area_struct
*vma
,
400 void *cpu_addr
, dma_addr_t dma_addr
, size_t size
)
402 vma
->vm_page_prot
= pgprot_writecombine(vma
->vm_page_prot
);
403 return dma_mmap(dev
, vma
, cpu_addr
, dma_addr
, size
);
405 EXPORT_SYMBOL(dma_mmap_writecombine
);
408 * free a page as defined by the above mapping.
409 * Must not be called with IRQs disabled.
411 void dma_free_coherent(struct device
*dev
, size_t size
, void *cpu_addr
, dma_addr_t handle
)
413 WARN_ON(irqs_disabled());
415 if (dma_release_from_coherent(dev
, get_order(size
), cpu_addr
))
418 size
= PAGE_ALIGN(size
);
420 if (!arch_is_coherent())
421 __dma_free_remap(cpu_addr
, size
);
423 __dma_free_buffer(pfn_to_page(dma_to_pfn(dev
, handle
)), size
);
425 EXPORT_SYMBOL(dma_free_coherent
);
428 * Make an area consistent for devices.
429 * Note: Drivers should NOT use this function directly, as it will break
430 * platforms with CONFIG_DMABOUNCE.
431 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
433 void ___dma_single_cpu_to_dev(const void *kaddr
, size_t size
,
434 enum dma_data_direction dir
)
438 BUG_ON(!virt_addr_valid(kaddr
) || !virt_addr_valid(kaddr
+ size
- 1));
440 dmac_map_area(kaddr
, size
, dir
);
443 if (dir
== DMA_FROM_DEVICE
) {
444 outer_inv_range(paddr
, paddr
+ size
);
446 outer_clean_range(paddr
, paddr
+ size
);
448 /* FIXME: non-speculating: flush on bidirectional mappings? */
450 EXPORT_SYMBOL(___dma_single_cpu_to_dev
);
452 void ___dma_single_dev_to_cpu(const void *kaddr
, size_t size
,
453 enum dma_data_direction dir
)
455 BUG_ON(!virt_addr_valid(kaddr
) || !virt_addr_valid(kaddr
+ size
- 1));
457 /* FIXME: non-speculating: not required */
458 /* don't bother invalidating if DMA to device */
459 if (dir
!= DMA_TO_DEVICE
) {
460 unsigned long paddr
= __pa(kaddr
);
461 outer_inv_range(paddr
, paddr
+ size
);
464 dmac_unmap_area(kaddr
, size
, dir
);
466 EXPORT_SYMBOL(___dma_single_dev_to_cpu
);
468 static void dma_cache_maint_page(struct page
*page
, unsigned long offset
,
469 size_t size
, enum dma_data_direction dir
,
470 void (*op
)(const void *, size_t, int))
473 * A single sg entry may refer to multiple physically contiguous
474 * pages. But we still need to process highmem pages individually.
475 * If highmem is not configured then the bulk of this loop gets
483 if (PageHighMem(page
)) {
484 if (len
+ offset
> PAGE_SIZE
) {
485 if (offset
>= PAGE_SIZE
) {
486 page
+= offset
/ PAGE_SIZE
;
489 len
= PAGE_SIZE
- offset
;
491 vaddr
= kmap_high_get(page
);
496 } else if (cache_is_vipt()) {
497 /* unmapped pages might still be cached */
498 vaddr
= kmap_atomic(page
);
499 op(vaddr
+ offset
, len
, dir
);
500 kunmap_atomic(vaddr
);
503 vaddr
= page_address(page
) + offset
;
512 void ___dma_page_cpu_to_dev(struct page
*page
, unsigned long off
,
513 size_t size
, enum dma_data_direction dir
)
517 dma_cache_maint_page(page
, off
, size
, dir
, dmac_map_area
);
519 paddr
= page_to_phys(page
) + off
;
520 if (dir
== DMA_FROM_DEVICE
) {
521 outer_inv_range(paddr
, paddr
+ size
);
523 outer_clean_range(paddr
, paddr
+ size
);
525 /* FIXME: non-speculating: flush on bidirectional mappings? */
527 EXPORT_SYMBOL(___dma_page_cpu_to_dev
);
529 void ___dma_page_dev_to_cpu(struct page
*page
, unsigned long off
,
530 size_t size
, enum dma_data_direction dir
)
532 unsigned long paddr
= page_to_phys(page
) + off
;
534 /* FIXME: non-speculating: not required */
535 /* don't bother invalidating if DMA to device */
536 if (dir
!= DMA_TO_DEVICE
)
537 outer_inv_range(paddr
, paddr
+ size
);
539 dma_cache_maint_page(page
, off
, size
, dir
, dmac_unmap_area
);
542 * Mark the D-cache clean for this page to avoid extra flushing.
544 if (dir
!= DMA_TO_DEVICE
&& off
== 0 && size
>= PAGE_SIZE
)
545 set_bit(PG_dcache_clean
, &page
->flags
);
547 EXPORT_SYMBOL(___dma_page_dev_to_cpu
);
550 * dma_map_sg - map a set of SG buffers for streaming mode DMA
551 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
552 * @sg: list of buffers
553 * @nents: number of buffers to map
554 * @dir: DMA transfer direction
556 * Map a set of buffers described by scatterlist in streaming mode for DMA.
557 * This is the scatter-gather version of the dma_map_single interface.
558 * Here the scatter gather list elements are each tagged with the
559 * appropriate dma address and length. They are obtained via
560 * sg_dma_{address,length}.
562 * Device ownership issues as mentioned for dma_map_single are the same
565 int dma_map_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
566 enum dma_data_direction dir
)
568 struct scatterlist
*s
;
571 BUG_ON(!valid_dma_direction(dir
));
573 for_each_sg(sg
, s
, nents
, i
) {
574 s
->dma_address
= __dma_map_page(dev
, sg_page(s
), s
->offset
,
576 if (dma_mapping_error(dev
, s
->dma_address
))
579 debug_dma_map_sg(dev
, sg
, nents
, nents
, dir
);
583 for_each_sg(sg
, s
, i
, j
)
584 __dma_unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
);
587 EXPORT_SYMBOL(dma_map_sg
);
590 * dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
591 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
592 * @sg: list of buffers
593 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
594 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
596 * Unmap a set of streaming mode DMA translations. Again, CPU access
597 * rules concerning calls here are the same as for dma_unmap_single().
599 void dma_unmap_sg(struct device
*dev
, struct scatterlist
*sg
, int nents
,
600 enum dma_data_direction dir
)
602 struct scatterlist
*s
;
605 debug_dma_unmap_sg(dev
, sg
, nents
, dir
);
607 for_each_sg(sg
, s
, nents
, i
)
608 __dma_unmap_page(dev
, sg_dma_address(s
), sg_dma_len(s
), dir
);
610 EXPORT_SYMBOL(dma_unmap_sg
);
613 * dma_sync_sg_for_cpu
614 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
615 * @sg: list of buffers
616 * @nents: number of buffers to map (returned from dma_map_sg)
617 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
619 void dma_sync_sg_for_cpu(struct device
*dev
, struct scatterlist
*sg
,
620 int nents
, enum dma_data_direction dir
)
622 struct scatterlist
*s
;
625 for_each_sg(sg
, s
, nents
, i
) {
626 if (!dmabounce_sync_for_cpu(dev
, sg_dma_address(s
), 0,
630 __dma_page_dev_to_cpu(sg_page(s
), s
->offset
,
634 debug_dma_sync_sg_for_cpu(dev
, sg
, nents
, dir
);
636 EXPORT_SYMBOL(dma_sync_sg_for_cpu
);
639 * dma_sync_sg_for_device
640 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
641 * @sg: list of buffers
642 * @nents: number of buffers to map (returned from dma_map_sg)
643 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
645 void dma_sync_sg_for_device(struct device
*dev
, struct scatterlist
*sg
,
646 int nents
, enum dma_data_direction dir
)
648 struct scatterlist
*s
;
651 for_each_sg(sg
, s
, nents
, i
) {
652 if (!dmabounce_sync_for_device(dev
, sg_dma_address(s
), 0,
656 __dma_page_cpu_to_dev(sg_page(s
), s
->offset
,
660 debug_dma_sync_sg_for_device(dev
, sg
, nents
, dir
);
662 EXPORT_SYMBOL(dma_sync_sg_for_device
);
665 * Return whether the given device DMA address mask can be supported
666 * properly. For example, if your device can only drive the low 24-bits
667 * during bus mastering, then you would pass 0x00ffffff as the mask
670 int dma_supported(struct device
*dev
, u64 mask
)
672 if (mask
< (u64
)arm_dma_limit
)
676 EXPORT_SYMBOL(dma_supported
);
678 int dma_set_mask(struct device
*dev
, u64 dma_mask
)
680 if (!dev
->dma_mask
|| !dma_supported(dev
, dma_mask
))
683 #ifndef CONFIG_DMABOUNCE
684 *dev
->dma_mask
= dma_mask
;
689 EXPORT_SYMBOL(dma_set_mask
);
691 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
693 static int __init
dma_debug_do_init(void)
695 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES
);
698 fs_initcall(dma_debug_do_init
);