Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / arch / powerpc / include / asm / mmu-hash64.h
blobb445e0af4c2b152e751020c4bd58a060708b5ff2
1 #ifndef _ASM_POWERPC_MMU_HASH64_H_
2 #define _ASM_POWERPC_MMU_HASH64_H_
3 /*
4 * PowerPC64 memory management structures
6 * Dave Engebretsen & Mike Corrigan <{engebret|mikejc}@us.ibm.com>
7 * PPC64 rework.
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation; either version
12 * 2 of the License, or (at your option) any later version.
15 #include <asm/asm-compat.h>
16 #include <asm/page.h>
19 * Segment table
22 #define STE_ESID_V 0x80
23 #define STE_ESID_KS 0x20
24 #define STE_ESID_KP 0x10
25 #define STE_ESID_N 0x08
27 #define STE_VSID_SHIFT 12
29 /* Location of cpu0's segment table */
30 #define STAB0_PAGE 0x8
31 #define STAB0_OFFSET (STAB0_PAGE << 12)
32 #define STAB0_PHYS_ADDR (STAB0_OFFSET + PHYSICAL_START)
34 #ifndef __ASSEMBLY__
35 extern char initial_stab[];
36 #endif /* ! __ASSEMBLY */
39 * SLB
42 #define SLB_NUM_BOLTED 3
43 #define SLB_CACHE_ENTRIES 8
44 #define SLB_MIN_SIZE 32
46 /* Bits in the SLB ESID word */
47 #define SLB_ESID_V ASM_CONST(0x0000000008000000) /* valid */
49 /* Bits in the SLB VSID word */
50 #define SLB_VSID_SHIFT 12
51 #define SLB_VSID_SHIFT_1T 24
52 #define SLB_VSID_SSIZE_SHIFT 62
53 #define SLB_VSID_B ASM_CONST(0xc000000000000000)
54 #define SLB_VSID_B_256M ASM_CONST(0x0000000000000000)
55 #define SLB_VSID_B_1T ASM_CONST(0x4000000000000000)
56 #define SLB_VSID_KS ASM_CONST(0x0000000000000800)
57 #define SLB_VSID_KP ASM_CONST(0x0000000000000400)
58 #define SLB_VSID_N ASM_CONST(0x0000000000000200) /* no-execute */
59 #define SLB_VSID_L ASM_CONST(0x0000000000000100)
60 #define SLB_VSID_C ASM_CONST(0x0000000000000080) /* class */
61 #define SLB_VSID_LP ASM_CONST(0x0000000000000030)
62 #define SLB_VSID_LP_00 ASM_CONST(0x0000000000000000)
63 #define SLB_VSID_LP_01 ASM_CONST(0x0000000000000010)
64 #define SLB_VSID_LP_10 ASM_CONST(0x0000000000000020)
65 #define SLB_VSID_LP_11 ASM_CONST(0x0000000000000030)
66 #define SLB_VSID_LLP (SLB_VSID_L|SLB_VSID_LP)
68 #define SLB_VSID_KERNEL (SLB_VSID_KP)
69 #define SLB_VSID_USER (SLB_VSID_KP|SLB_VSID_KS|SLB_VSID_C)
71 #define SLBIE_C (0x08000000)
72 #define SLBIE_SSIZE_SHIFT 25
75 * Hash table
78 #define HPTES_PER_GROUP 8
80 #define HPTE_V_SSIZE_SHIFT 62
81 #define HPTE_V_AVPN_SHIFT 7
82 #define HPTE_V_AVPN ASM_CONST(0x3fffffffffffff80)
83 #define HPTE_V_AVPN_VAL(x) (((x) & HPTE_V_AVPN) >> HPTE_V_AVPN_SHIFT)
84 #define HPTE_V_COMPARE(x,y) (!(((x) ^ (y)) & 0xffffffffffffff80UL))
85 #define HPTE_V_BOLTED ASM_CONST(0x0000000000000010)
86 #define HPTE_V_LOCK ASM_CONST(0x0000000000000008)
87 #define HPTE_V_LARGE ASM_CONST(0x0000000000000004)
88 #define HPTE_V_SECONDARY ASM_CONST(0x0000000000000002)
89 #define HPTE_V_VALID ASM_CONST(0x0000000000000001)
91 #define HPTE_R_PP0 ASM_CONST(0x8000000000000000)
92 #define HPTE_R_TS ASM_CONST(0x4000000000000000)
93 #define HPTE_R_KEY_HI ASM_CONST(0x3000000000000000)
94 #define HPTE_R_RPN_SHIFT 12
95 #define HPTE_R_RPN ASM_CONST(0x0ffffffffffff000)
96 #define HPTE_R_PP ASM_CONST(0x0000000000000003)
97 #define HPTE_R_N ASM_CONST(0x0000000000000004)
98 #define HPTE_R_G ASM_CONST(0x0000000000000008)
99 #define HPTE_R_M ASM_CONST(0x0000000000000010)
100 #define HPTE_R_I ASM_CONST(0x0000000000000020)
101 #define HPTE_R_W ASM_CONST(0x0000000000000040)
102 #define HPTE_R_WIMG ASM_CONST(0x0000000000000078)
103 #define HPTE_R_C ASM_CONST(0x0000000000000080)
104 #define HPTE_R_R ASM_CONST(0x0000000000000100)
105 #define HPTE_R_KEY_LO ASM_CONST(0x0000000000000e00)
107 #define HPTE_V_1TB_SEG ASM_CONST(0x4000000000000000)
108 #define HPTE_V_VRMA_MASK ASM_CONST(0x4001ffffff000000)
110 /* Values for PP (assumes Ks=0, Kp=1) */
111 /* pp0 will always be 0 for linux */
112 #define PP_RWXX 0 /* Supervisor read/write, User none */
113 #define PP_RWRX 1 /* Supervisor read/write, User read */
114 #define PP_RWRW 2 /* Supervisor read/write, User read/write */
115 #define PP_RXRX 3 /* Supervisor read, User read */
117 #ifndef __ASSEMBLY__
119 struct hash_pte {
120 unsigned long v;
121 unsigned long r;
124 extern struct hash_pte *htab_address;
125 extern unsigned long htab_size_bytes;
126 extern unsigned long htab_hash_mask;
129 * Page size definition
131 * shift : is the "PAGE_SHIFT" value for that page size
132 * sllp : is a bit mask with the value of SLB L || LP to be or'ed
133 * directly to a slbmte "vsid" value
134 * penc : is the HPTE encoding mask for the "LP" field:
137 struct mmu_psize_def
139 unsigned int shift; /* number of bits */
140 unsigned int penc; /* HPTE encoding */
141 unsigned int tlbiel; /* tlbiel supported for that page size */
142 unsigned long avpnm; /* bits to mask out in AVPN in the HPTE */
143 unsigned long sllp; /* SLB L||LP (exact mask to use in slbmte) */
146 #endif /* __ASSEMBLY__ */
149 * Segment sizes.
150 * These are the values used by hardware in the B field of
151 * SLB entries and the first dword of MMU hashtable entries.
152 * The B field is 2 bits; the values 2 and 3 are unused and reserved.
154 #define MMU_SEGSIZE_256M 0
155 #define MMU_SEGSIZE_1T 1
158 #ifndef __ASSEMBLY__
161 * The current system page and segment sizes
163 extern struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
164 extern int mmu_linear_psize;
165 extern int mmu_virtual_psize;
166 extern int mmu_vmalloc_psize;
167 extern int mmu_vmemmap_psize;
168 extern int mmu_io_psize;
169 extern int mmu_kernel_ssize;
170 extern int mmu_highuser_ssize;
171 extern u16 mmu_slb_size;
172 extern unsigned long tce_alloc_start, tce_alloc_end;
175 * If the processor supports 64k normal pages but not 64k cache
176 * inhibited pages, we have to be prepared to switch processes
177 * to use 4k pages when they create cache-inhibited mappings.
178 * If this is the case, mmu_ci_restrictions will be set to 1.
180 extern int mmu_ci_restrictions;
183 * This function sets the AVPN and L fields of the HPTE appropriately
184 * for the page size
186 static inline unsigned long hpte_encode_v(unsigned long va, int psize,
187 int ssize)
189 unsigned long v;
190 v = (va >> 23) & ~(mmu_psize_defs[psize].avpnm);
191 v <<= HPTE_V_AVPN_SHIFT;
192 if (psize != MMU_PAGE_4K)
193 v |= HPTE_V_LARGE;
194 v |= ((unsigned long) ssize) << HPTE_V_SSIZE_SHIFT;
195 return v;
199 * This function sets the ARPN, and LP fields of the HPTE appropriately
200 * for the page size. We assume the pa is already "clean" that is properly
201 * aligned for the requested page size
203 static inline unsigned long hpte_encode_r(unsigned long pa, int psize)
205 unsigned long r;
207 /* A 4K page needs no special encoding */
208 if (psize == MMU_PAGE_4K)
209 return pa & HPTE_R_RPN;
210 else {
211 unsigned int penc = mmu_psize_defs[psize].penc;
212 unsigned int shift = mmu_psize_defs[psize].shift;
213 return (pa & ~((1ul << shift) - 1)) | (penc << 12);
215 return r;
219 * Build a VA given VSID, EA and segment size
221 static inline unsigned long hpt_va(unsigned long ea, unsigned long vsid,
222 int ssize)
224 if (ssize == MMU_SEGSIZE_256M)
225 return (vsid << 28) | (ea & 0xfffffffUL);
226 return (vsid << 40) | (ea & 0xffffffffffUL);
230 * This hashes a virtual address
233 static inline unsigned long hpt_hash(unsigned long va, unsigned int shift,
234 int ssize)
236 unsigned long hash, vsid;
238 if (ssize == MMU_SEGSIZE_256M) {
239 hash = (va >> 28) ^ ((va & 0x0fffffffUL) >> shift);
240 } else {
241 vsid = va >> 40;
242 hash = vsid ^ (vsid << 25) ^ ((va & 0xffffffffffUL) >> shift);
244 return hash & 0x7fffffffffUL;
247 extern int __hash_page_4K(unsigned long ea, unsigned long access,
248 unsigned long vsid, pte_t *ptep, unsigned long trap,
249 unsigned int local, int ssize, int subpage_prot);
250 extern int __hash_page_64K(unsigned long ea, unsigned long access,
251 unsigned long vsid, pte_t *ptep, unsigned long trap,
252 unsigned int local, int ssize);
253 struct mm_struct;
254 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap);
255 extern int hash_page(unsigned long ea, unsigned long access, unsigned long trap);
256 int __hash_page_huge(unsigned long ea, unsigned long access, unsigned long vsid,
257 pte_t *ptep, unsigned long trap, int local, int ssize,
258 unsigned int shift, unsigned int mmu_psize);
259 extern void hash_failure_debug(unsigned long ea, unsigned long access,
260 unsigned long vsid, unsigned long trap,
261 int ssize, int psize, unsigned long pte);
262 extern int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
263 unsigned long pstart, unsigned long prot,
264 int psize, int ssize);
265 extern void add_gpage(unsigned long addr, unsigned long page_size,
266 unsigned long number_of_pages);
267 extern void demote_segment_4k(struct mm_struct *mm, unsigned long addr);
269 extern void hpte_init_native(void);
270 extern void hpte_init_lpar(void);
271 extern void hpte_init_iSeries(void);
272 extern void hpte_init_beat(void);
273 extern void hpte_init_beat_v3(void);
275 extern void stabs_alloc(void);
276 extern void slb_initialize(void);
277 extern void slb_flush_and_rebolt(void);
278 extern void stab_initialize(unsigned long stab);
280 extern void slb_vmalloc_update(void);
281 extern void slb_set_size(u16 size);
282 #endif /* __ASSEMBLY__ */
285 * VSID allocation
287 * We first generate a 36-bit "proto-VSID". For kernel addresses this
288 * is equal to the ESID, for user addresses it is:
289 * (context << 15) | (esid & 0x7fff)
291 * The two forms are distinguishable because the top bit is 0 for user
292 * addresses, whereas the top two bits are 1 for kernel addresses.
293 * Proto-VSIDs with the top two bits equal to 0b10 are reserved for
294 * now.
296 * The proto-VSIDs are then scrambled into real VSIDs with the
297 * multiplicative hash:
299 * VSID = (proto-VSID * VSID_MULTIPLIER) % VSID_MODULUS
300 * where VSID_MULTIPLIER = 268435399 = 0xFFFFFC7
301 * VSID_MODULUS = 2^36-1 = 0xFFFFFFFFF
303 * This scramble is only well defined for proto-VSIDs below
304 * 0xFFFFFFFFF, so both proto-VSID and actual VSID 0xFFFFFFFFF are
305 * reserved. VSID_MULTIPLIER is prime, so in particular it is
306 * co-prime to VSID_MODULUS, making this a 1:1 scrambling function.
307 * Because the modulus is 2^n-1 we can compute it efficiently without
308 * a divide or extra multiply (see below).
310 * This scheme has several advantages over older methods:
312 * - We have VSIDs allocated for every kernel address
313 * (i.e. everything above 0xC000000000000000), except the very top
314 * segment, which simplifies several things.
316 * - We allow for 15 significant bits of ESID and 20 bits of
317 * context for user addresses. i.e. 8T (43 bits) of address space for
318 * up to 1M contexts (although the page table structure and context
319 * allocation will need changes to take advantage of this).
321 * - The scramble function gives robust scattering in the hash
322 * table (at least based on some initial results). The previous
323 * method was more susceptible to pathological cases giving excessive
324 * hash collisions.
327 * WARNING - If you change these you must make sure the asm
328 * implementations in slb_allocate (slb_low.S), do_stab_bolted
329 * (head.S) and ASM_VSID_SCRAMBLE (below) are changed accordingly.
331 * You'll also need to change the precomputed VSID values in head.S
332 * which are used by the iSeries firmware.
335 #define VSID_MULTIPLIER_256M ASM_CONST(200730139) /* 28-bit prime */
336 #define VSID_BITS_256M 36
337 #define VSID_MODULUS_256M ((1UL<<VSID_BITS_256M)-1)
339 #define VSID_MULTIPLIER_1T ASM_CONST(12538073) /* 24-bit prime */
340 #define VSID_BITS_1T 24
341 #define VSID_MODULUS_1T ((1UL<<VSID_BITS_1T)-1)
343 #define CONTEXT_BITS 19
344 #define USER_ESID_BITS 16
345 #define USER_ESID_BITS_1T 4
347 #define USER_VSID_RANGE (1UL << (USER_ESID_BITS + SID_SHIFT))
350 * This macro generates asm code to compute the VSID scramble
351 * function. Used in slb_allocate() and do_stab_bolted. The function
352 * computed is: (protovsid*VSID_MULTIPLIER) % VSID_MODULUS
354 * rt = register continaing the proto-VSID and into which the
355 * VSID will be stored
356 * rx = scratch register (clobbered)
358 * - rt and rx must be different registers
359 * - The answer will end up in the low VSID_BITS bits of rt. The higher
360 * bits may contain other garbage, so you may need to mask the
361 * result.
363 #define ASM_VSID_SCRAMBLE(rt, rx, size) \
364 lis rx,VSID_MULTIPLIER_##size@h; \
365 ori rx,rx,VSID_MULTIPLIER_##size@l; \
366 mulld rt,rt,rx; /* rt = rt * MULTIPLIER */ \
368 srdi rx,rt,VSID_BITS_##size; \
369 clrldi rt,rt,(64-VSID_BITS_##size); \
370 add rt,rt,rx; /* add high and low bits */ \
371 /* Now, r3 == VSID (mod 2^36-1), and lies between 0 and \
372 * 2^36-1+2^28-1. That in particular means that if r3 >= \
373 * 2^36-1, then r3+1 has the 2^36 bit set. So, if r3+1 has \
374 * the bit clear, r3 already has the answer we want, if it \
375 * doesn't, the answer is the low 36 bits of r3+1. So in all \
376 * cases the answer is the low 36 bits of (r3 + ((r3+1) >> 36))*/\
377 addi rx,rt,1; \
378 srdi rx,rx,VSID_BITS_##size; /* extract 2^VSID_BITS bit */ \
379 add rt,rt,rx
382 #ifndef __ASSEMBLY__
384 #ifdef CONFIG_PPC_SUBPAGE_PROT
386 * For the sub-page protection option, we extend the PGD with one of
387 * these. Basically we have a 3-level tree, with the top level being
388 * the protptrs array. To optimize speed and memory consumption when
389 * only addresses < 4GB are being protected, pointers to the first
390 * four pages of sub-page protection words are stored in the low_prot
391 * array.
392 * Each page of sub-page protection words protects 1GB (4 bytes
393 * protects 64k). For the 3-level tree, each page of pointers then
394 * protects 8TB.
396 struct subpage_prot_table {
397 unsigned long maxaddr; /* only addresses < this are protected */
398 unsigned int **protptrs[2];
399 unsigned int *low_prot[4];
402 #define SBP_L1_BITS (PAGE_SHIFT - 2)
403 #define SBP_L2_BITS (PAGE_SHIFT - 3)
404 #define SBP_L1_COUNT (1 << SBP_L1_BITS)
405 #define SBP_L2_COUNT (1 << SBP_L2_BITS)
406 #define SBP_L2_SHIFT (PAGE_SHIFT + SBP_L1_BITS)
407 #define SBP_L3_SHIFT (SBP_L2_SHIFT + SBP_L2_BITS)
409 extern void subpage_prot_free(struct mm_struct *mm);
410 extern void subpage_prot_init_new_context(struct mm_struct *mm);
411 #else
412 static inline void subpage_prot_free(struct mm_struct *mm) {}
413 static inline void subpage_prot_init_new_context(struct mm_struct *mm) { }
414 #endif /* CONFIG_PPC_SUBPAGE_PROT */
416 typedef unsigned long mm_context_id_t;
417 struct spinlock;
419 typedef struct {
420 mm_context_id_t id;
421 u16 user_psize; /* page size index */
423 #ifdef CONFIG_PPC_MM_SLICES
424 u64 low_slices_psize; /* SLB page size encodings */
425 u64 high_slices_psize; /* 4 bits per slice for now */
426 #else
427 u16 sllp; /* SLB page size encoding */
428 #endif
429 unsigned long vdso_base;
430 #ifdef CONFIG_PPC_SUBPAGE_PROT
431 struct subpage_prot_table spt;
432 #endif /* CONFIG_PPC_SUBPAGE_PROT */
433 #ifdef CONFIG_PPC_ICSWX
434 struct spinlock *cop_lockp; /* guard acop and cop_pid */
435 unsigned long acop; /* mask of enabled coprocessor types */
436 unsigned int cop_pid; /* pid value used with coprocessors */
437 #endif /* CONFIG_PPC_ICSWX */
438 } mm_context_t;
441 #if 0
443 * The code below is equivalent to this function for arguments
444 * < 2^VSID_BITS, which is all this should ever be called
445 * with. However gcc is not clever enough to compute the
446 * modulus (2^n-1) without a second multiply.
448 #define vsid_scramble(protovsid, size) \
449 ((((protovsid) * VSID_MULTIPLIER_##size) % VSID_MODULUS_##size))
451 #else /* 1 */
452 #define vsid_scramble(protovsid, size) \
453 ({ \
454 unsigned long x; \
455 x = (protovsid) * VSID_MULTIPLIER_##size; \
456 x = (x >> VSID_BITS_##size) + (x & VSID_MODULUS_##size); \
457 (x + ((x+1) >> VSID_BITS_##size)) & VSID_MODULUS_##size; \
459 #endif /* 1 */
461 /* This is only valid for addresses >= PAGE_OFFSET */
462 static inline unsigned long get_kernel_vsid(unsigned long ea, int ssize)
464 if (ssize == MMU_SEGSIZE_256M)
465 return vsid_scramble(ea >> SID_SHIFT, 256M);
466 return vsid_scramble(ea >> SID_SHIFT_1T, 1T);
469 /* Returns the segment size indicator for a user address */
470 static inline int user_segment_size(unsigned long addr)
472 /* Use 1T segments if possible for addresses >= 1T */
473 if (addr >= (1UL << SID_SHIFT_1T))
474 return mmu_highuser_ssize;
475 return MMU_SEGSIZE_256M;
478 /* This is only valid for user addresses (which are below 2^44) */
479 static inline unsigned long get_vsid(unsigned long context, unsigned long ea,
480 int ssize)
482 if (ssize == MMU_SEGSIZE_256M)
483 return vsid_scramble((context << USER_ESID_BITS)
484 | (ea >> SID_SHIFT), 256M);
485 return vsid_scramble((context << USER_ESID_BITS_1T)
486 | (ea >> SID_SHIFT_1T), 1T);
490 * This is only used on legacy iSeries in lparmap.c,
491 * hence the 256MB segment assumption.
493 #define VSID_SCRAMBLE(pvsid) (((pvsid) * VSID_MULTIPLIER_256M) % \
494 VSID_MODULUS_256M)
495 #define KERNEL_VSID(ea) VSID_SCRAMBLE(GET_ESID(ea))
497 #endif /* __ASSEMBLY__ */
499 #endif /* _ASM_POWERPC_MMU_HASH64_H_ */