2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
9 * Copyright (C) 2006 Qumranet, Inc.
10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
22 * We need the mmu code to access both 32-bit and 64-bit guest ptes,
23 * so the code in this file is compiled twice, once per pte size.
27 #define pt_element_t u64
28 #define guest_walker guest_walker64
29 #define FNAME(name) paging##64_##name
30 #define PT_BASE_ADDR_MASK PT64_BASE_ADDR_MASK
31 #define PT_LVL_ADDR_MASK(lvl) PT64_LVL_ADDR_MASK(lvl)
32 #define PT_LVL_OFFSET_MASK(lvl) PT64_LVL_OFFSET_MASK(lvl)
33 #define PT_INDEX(addr, level) PT64_INDEX(addr, level)
34 #define PT_LEVEL_BITS PT64_LEVEL_BITS
36 #define PT_MAX_FULL_LEVELS 4
37 #define CMPXCHG cmpxchg
39 #define CMPXCHG cmpxchg64
40 #define PT_MAX_FULL_LEVELS 2
43 #define pt_element_t u32
44 #define guest_walker guest_walker32
45 #define FNAME(name) paging##32_##name
46 #define PT_BASE_ADDR_MASK PT32_BASE_ADDR_MASK
47 #define PT_LVL_ADDR_MASK(lvl) PT32_LVL_ADDR_MASK(lvl)
48 #define PT_LVL_OFFSET_MASK(lvl) PT32_LVL_OFFSET_MASK(lvl)
49 #define PT_INDEX(addr, level) PT32_INDEX(addr, level)
50 #define PT_LEVEL_BITS PT32_LEVEL_BITS
51 #define PT_MAX_FULL_LEVELS 2
52 #define CMPXCHG cmpxchg
54 #error Invalid PTTYPE value
57 #define gpte_to_gfn_lvl FNAME(gpte_to_gfn_lvl)
58 #define gpte_to_gfn(pte) gpte_to_gfn_lvl((pte), PT_PAGE_TABLE_LEVEL)
61 * The guest_walker structure emulates the behavior of the hardware page
66 gfn_t table_gfn
[PT_MAX_FULL_LEVELS
];
67 pt_element_t ptes
[PT_MAX_FULL_LEVELS
];
68 pt_element_t prefetch_ptes
[PTE_PREFETCH_NUM
];
69 gpa_t pte_gpa
[PT_MAX_FULL_LEVELS
];
73 struct x86_exception fault
;
76 static gfn_t
gpte_to_gfn_lvl(pt_element_t gpte
, int lvl
)
78 return (gpte
& PT_LVL_ADDR_MASK(lvl
)) >> PAGE_SHIFT
;
81 static int FNAME(cmpxchg_gpte
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
82 pt_element_t __user
*ptep_user
, unsigned index
,
83 pt_element_t orig_pte
, pt_element_t new_pte
)
90 npages
= get_user_pages_fast((unsigned long)ptep_user
, 1, 1, &page
);
91 /* Check if the user is doing something meaningless. */
92 if (unlikely(npages
!= 1))
95 table
= kmap_atomic(page
, KM_USER0
);
96 ret
= CMPXCHG(&table
[index
], orig_pte
, new_pte
);
97 kunmap_atomic(table
, KM_USER0
);
99 kvm_release_page_dirty(page
);
101 return (ret
!= orig_pte
);
104 static unsigned FNAME(gpte_access
)(struct kvm_vcpu
*vcpu
, pt_element_t gpte
,
109 access
= (gpte
& (PT_WRITABLE_MASK
| PT_USER_MASK
)) | ACC_EXEC_MASK
;
110 if (last
&& !is_dirty_gpte(gpte
))
111 access
&= ~ACC_WRITE_MASK
;
114 if (vcpu
->arch
.mmu
.nx
)
115 access
&= ~(gpte
>> PT64_NX_SHIFT
);
120 static bool FNAME(is_last_gpte
)(struct guest_walker
*walker
,
121 struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
124 if (walker
->level
== PT_PAGE_TABLE_LEVEL
)
127 if ((walker
->level
== PT_DIRECTORY_LEVEL
) && is_large_pte(gpte
) &&
128 (PTTYPE
== 64 || is_pse(vcpu
)))
131 if ((walker
->level
== PT_PDPE_LEVEL
) && is_large_pte(gpte
) &&
132 (mmu
->root_level
== PT64_ROOT_LEVEL
))
139 * Fetch a guest pte for a guest virtual address
141 static int FNAME(walk_addr_generic
)(struct guest_walker
*walker
,
142 struct kvm_vcpu
*vcpu
, struct kvm_mmu
*mmu
,
143 gva_t addr
, u32 access
)
146 pt_element_t __user
*uninitialized_var(ptep_user
);
148 unsigned index
, pt_access
, uninitialized_var(pte_access
);
152 const int write_fault
= access
& PFERR_WRITE_MASK
;
153 const int user_fault
= access
& PFERR_USER_MASK
;
154 const int fetch_fault
= access
& PFERR_FETCH_MASK
;
157 trace_kvm_mmu_pagetable_walk(addr
, write_fault
, user_fault
,
161 walker
->level
= mmu
->root_level
;
162 pte
= mmu
->get_cr3(vcpu
);
165 if (walker
->level
== PT32E_ROOT_LEVEL
) {
166 pte
= kvm_pdptr_read_mmu(vcpu
, mmu
, (addr
>> 30) & 3);
167 trace_kvm_mmu_paging_element(pte
, walker
->level
);
168 if (!is_present_gpte(pte
))
173 ASSERT((!is_long_mode(vcpu
) && is_pae(vcpu
)) ||
174 (mmu
->get_cr3(vcpu
) & CR3_NONPAE_RESERVED_BITS
) == 0);
180 unsigned long host_addr
;
182 index
= PT_INDEX(addr
, walker
->level
);
184 table_gfn
= gpte_to_gfn(pte
);
185 offset
= index
* sizeof(pt_element_t
);
186 pte_gpa
= gfn_to_gpa(table_gfn
) + offset
;
187 walker
->table_gfn
[walker
->level
- 1] = table_gfn
;
188 walker
->pte_gpa
[walker
->level
- 1] = pte_gpa
;
190 real_gfn
= mmu
->translate_gpa(vcpu
, gfn_to_gpa(table_gfn
),
191 PFERR_USER_MASK
|PFERR_WRITE_MASK
);
192 if (unlikely(real_gfn
== UNMAPPED_GVA
))
194 real_gfn
= gpa_to_gfn(real_gfn
);
196 host_addr
= gfn_to_hva(vcpu
->kvm
, real_gfn
);
197 if (unlikely(kvm_is_error_hva(host_addr
)))
200 ptep_user
= (pt_element_t __user
*)((void *)host_addr
+ offset
);
201 if (unlikely(__copy_from_user(&pte
, ptep_user
, sizeof(pte
))))
204 trace_kvm_mmu_paging_element(pte
, walker
->level
);
206 if (unlikely(!is_present_gpte(pte
)))
209 if (unlikely(is_rsvd_bits_set(&vcpu
->arch
.mmu
, pte
,
211 errcode
|= PFERR_RSVD_MASK
| PFERR_PRESENT_MASK
;
215 if (!check_write_user_access(vcpu
, write_fault
, user_fault
,
220 if (unlikely(fetch_fault
&& (pte
& PT64_NX_MASK
)))
224 if (!eperm
&& unlikely(!(pte
& PT_ACCESSED_MASK
))) {
226 trace_kvm_mmu_set_accessed_bit(table_gfn
, index
,
228 ret
= FNAME(cmpxchg_gpte
)(vcpu
, mmu
, ptep_user
, index
,
229 pte
, pte
|PT_ACCESSED_MASK
);
230 if (unlikely(ret
< 0))
235 mark_page_dirty(vcpu
->kvm
, table_gfn
);
236 pte
|= PT_ACCESSED_MASK
;
239 walker
->ptes
[walker
->level
- 1] = pte
;
241 if (FNAME(is_last_gpte
)(walker
, vcpu
, mmu
, pte
)) {
242 int lvl
= walker
->level
;
247 /* check if the kernel is fetching from user page */
248 if (unlikely(pte_access
& PT_USER_MASK
) &&
249 kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
))
250 if (fetch_fault
&& !user_fault
)
253 gfn
= gpte_to_gfn_lvl(pte
, lvl
);
254 gfn
+= (addr
& PT_LVL_OFFSET_MASK(lvl
)) >> PAGE_SHIFT
;
257 walker
->level
== PT_DIRECTORY_LEVEL
&&
259 gfn
+= pse36_gfn_delta(pte
);
261 ac
= write_fault
| fetch_fault
| user_fault
;
263 real_gpa
= mmu
->translate_gpa(vcpu
, gfn_to_gpa(gfn
),
265 if (real_gpa
== UNMAPPED_GVA
)
268 walker
->gfn
= real_gpa
>> PAGE_SHIFT
;
273 pt_access
&= FNAME(gpte_access
)(vcpu
, pte
, false);
277 if (unlikely(eperm
)) {
278 errcode
|= PFERR_PRESENT_MASK
;
282 if (write_fault
&& unlikely(!is_dirty_gpte(pte
))) {
285 trace_kvm_mmu_set_dirty_bit(table_gfn
, index
, sizeof(pte
));
286 ret
= FNAME(cmpxchg_gpte
)(vcpu
, mmu
, ptep_user
, index
,
287 pte
, pte
|PT_DIRTY_MASK
);
288 if (unlikely(ret
< 0))
293 mark_page_dirty(vcpu
->kvm
, table_gfn
);
294 pte
|= PT_DIRTY_MASK
;
295 walker
->ptes
[walker
->level
- 1] = pte
;
298 pte_access
= pt_access
& FNAME(gpte_access
)(vcpu
, pte
, true);
299 walker
->pt_access
= pt_access
;
300 walker
->pte_access
= pte_access
;
301 pgprintk("%s: pte %llx pte_access %x pt_access %x\n",
302 __func__
, (u64
)pte
, pte_access
, pt_access
);
306 errcode
|= write_fault
| user_fault
;
307 if (fetch_fault
&& (mmu
->nx
||
308 kvm_read_cr4_bits(vcpu
, X86_CR4_SMEP
)))
309 errcode
|= PFERR_FETCH_MASK
;
311 walker
->fault
.vector
= PF_VECTOR
;
312 walker
->fault
.error_code_valid
= true;
313 walker
->fault
.error_code
= errcode
;
314 walker
->fault
.address
= addr
;
315 walker
->fault
.nested_page_fault
= mmu
!= vcpu
->arch
.walk_mmu
;
317 trace_kvm_mmu_walker_error(walker
->fault
.error_code
);
321 static int FNAME(walk_addr
)(struct guest_walker
*walker
,
322 struct kvm_vcpu
*vcpu
, gva_t addr
, u32 access
)
324 return FNAME(walk_addr_generic
)(walker
, vcpu
, &vcpu
->arch
.mmu
, addr
,
328 static int FNAME(walk_addr_nested
)(struct guest_walker
*walker
,
329 struct kvm_vcpu
*vcpu
, gva_t addr
,
332 return FNAME(walk_addr_generic
)(walker
, vcpu
, &vcpu
->arch
.nested_mmu
,
336 static bool FNAME(prefetch_invalid_gpte
)(struct kvm_vcpu
*vcpu
,
337 struct kvm_mmu_page
*sp
, u64
*spte
,
340 if (is_rsvd_bits_set(&vcpu
->arch
.mmu
, gpte
, PT_PAGE_TABLE_LEVEL
))
343 if (!is_present_gpte(gpte
))
346 if (!(gpte
& PT_ACCESSED_MASK
))
352 drop_spte(vcpu
->kvm
, spte
);
356 static void FNAME(update_pte
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
,
357 u64
*spte
, const void *pte
)
363 gpte
= *(const pt_element_t
*)pte
;
364 if (FNAME(prefetch_invalid_gpte
)(vcpu
, sp
, spte
, gpte
))
367 pgprintk("%s: gpte %llx spte %p\n", __func__
, (u64
)gpte
, spte
);
368 pte_access
= sp
->role
.access
& FNAME(gpte_access
)(vcpu
, gpte
, true);
369 pfn
= gfn_to_pfn_atomic(vcpu
->kvm
, gpte_to_gfn(gpte
));
370 if (mmu_invalid_pfn(pfn
)) {
371 kvm_release_pfn_clean(pfn
);
376 * we call mmu_set_spte() with host_writable = true because that
377 * vcpu->arch.update_pte.pfn was fetched from get_user_pages(write = 1).
379 mmu_set_spte(vcpu
, spte
, sp
->role
.access
, pte_access
, 0, 0,
380 NULL
, PT_PAGE_TABLE_LEVEL
,
381 gpte_to_gfn(gpte
), pfn
, true, true);
384 static bool FNAME(gpte_changed
)(struct kvm_vcpu
*vcpu
,
385 struct guest_walker
*gw
, int level
)
387 pt_element_t curr_pte
;
388 gpa_t base_gpa
, pte_gpa
= gw
->pte_gpa
[level
- 1];
392 if (level
== PT_PAGE_TABLE_LEVEL
) {
393 mask
= PTE_PREFETCH_NUM
* sizeof(pt_element_t
) - 1;
394 base_gpa
= pte_gpa
& ~mask
;
395 index
= (pte_gpa
- base_gpa
) / sizeof(pt_element_t
);
397 r
= kvm_read_guest_atomic(vcpu
->kvm
, base_gpa
,
398 gw
->prefetch_ptes
, sizeof(gw
->prefetch_ptes
));
399 curr_pte
= gw
->prefetch_ptes
[index
];
401 r
= kvm_read_guest_atomic(vcpu
->kvm
, pte_gpa
,
402 &curr_pte
, sizeof(curr_pte
));
404 return r
|| curr_pte
!= gw
->ptes
[level
- 1];
407 static void FNAME(pte_prefetch
)(struct kvm_vcpu
*vcpu
, struct guest_walker
*gw
,
410 struct kvm_mmu_page
*sp
;
411 pt_element_t
*gptep
= gw
->prefetch_ptes
;
415 sp
= page_header(__pa(sptep
));
417 if (sp
->role
.level
> PT_PAGE_TABLE_LEVEL
)
421 return __direct_pte_prefetch(vcpu
, sp
, sptep
);
423 i
= (sptep
- sp
->spt
) & ~(PTE_PREFETCH_NUM
- 1);
426 for (i
= 0; i
< PTE_PREFETCH_NUM
; i
++, spte
++) {
435 if (is_shadow_present_pte(*spte
))
440 if (FNAME(prefetch_invalid_gpte
)(vcpu
, sp
, spte
, gpte
))
443 pte_access
= sp
->role
.access
& FNAME(gpte_access
)(vcpu
, gpte
,
445 gfn
= gpte_to_gfn(gpte
);
446 pfn
= pte_prefetch_gfn_to_pfn(vcpu
, gfn
,
447 pte_access
& ACC_WRITE_MASK
);
448 if (mmu_invalid_pfn(pfn
)) {
449 kvm_release_pfn_clean(pfn
);
453 mmu_set_spte(vcpu
, spte
, sp
->role
.access
, pte_access
, 0, 0,
454 NULL
, PT_PAGE_TABLE_LEVEL
, gfn
,
460 * Fetch a shadow pte for a specific level in the paging hierarchy.
462 static u64
*FNAME(fetch
)(struct kvm_vcpu
*vcpu
, gva_t addr
,
463 struct guest_walker
*gw
,
464 int user_fault
, int write_fault
, int hlevel
,
465 int *emulate
, pfn_t pfn
, bool map_writable
,
468 unsigned access
= gw
->pt_access
;
469 struct kvm_mmu_page
*sp
= NULL
;
471 unsigned direct_access
;
472 struct kvm_shadow_walk_iterator it
;
474 if (!is_present_gpte(gw
->ptes
[gw
->level
- 1]))
477 direct_access
= gw
->pte_access
;
479 top_level
= vcpu
->arch
.mmu
.root_level
;
480 if (top_level
== PT32E_ROOT_LEVEL
)
481 top_level
= PT32_ROOT_LEVEL
;
483 * Verify that the top-level gpte is still there. Since the page
484 * is a root page, it is either write protected (and cannot be
485 * changed from now on) or it is invalid (in which case, we don't
486 * really care if it changes underneath us after this point).
488 if (FNAME(gpte_changed
)(vcpu
, gw
, top_level
))
489 goto out_gpte_changed
;
491 for (shadow_walk_init(&it
, vcpu
, addr
);
492 shadow_walk_okay(&it
) && it
.level
> gw
->level
;
493 shadow_walk_next(&it
)) {
496 drop_large_spte(vcpu
, it
.sptep
);
499 if (!is_shadow_present_pte(*it
.sptep
)) {
500 table_gfn
= gw
->table_gfn
[it
.level
- 2];
501 sp
= kvm_mmu_get_page(vcpu
, table_gfn
, addr
, it
.level
-1,
502 false, access
, it
.sptep
);
506 * Verify that the gpte in the page we've just write
507 * protected is still there.
509 if (FNAME(gpte_changed
)(vcpu
, gw
, it
.level
- 1))
510 goto out_gpte_changed
;
513 link_shadow_page(it
.sptep
, sp
);
517 shadow_walk_okay(&it
) && it
.level
> hlevel
;
518 shadow_walk_next(&it
)) {
521 validate_direct_spte(vcpu
, it
.sptep
, direct_access
);
523 drop_large_spte(vcpu
, it
.sptep
);
525 if (is_shadow_present_pte(*it
.sptep
))
528 direct_gfn
= gw
->gfn
& ~(KVM_PAGES_PER_HPAGE(it
.level
) - 1);
530 sp
= kvm_mmu_get_page(vcpu
, direct_gfn
, addr
, it
.level
-1,
531 true, direct_access
, it
.sptep
);
532 link_shadow_page(it
.sptep
, sp
);
535 mmu_set_spte(vcpu
, it
.sptep
, access
, gw
->pte_access
,
536 user_fault
, write_fault
, emulate
, it
.level
,
537 gw
->gfn
, pfn
, prefault
, map_writable
);
538 FNAME(pte_prefetch
)(vcpu
, gw
, it
.sptep
);
544 kvm_mmu_put_page(sp
, it
.sptep
);
545 kvm_release_pfn_clean(pfn
);
550 * Page fault handler. There are several causes for a page fault:
551 * - there is no shadow pte for the guest pte
552 * - write access through a shadow pte marked read only so that we can set
554 * - write access to a shadow pte marked read only so we can update the page
555 * dirty bitmap, when userspace requests it
556 * - mmio access; in this case we will never install a present shadow pte
557 * - normal guest page fault due to the guest pte marked not present, not
558 * writable, or not executable
560 * Returns: 1 if we need to emulate the instruction, 0 otherwise, or
561 * a negative value on error.
563 static int FNAME(page_fault
)(struct kvm_vcpu
*vcpu
, gva_t addr
, u32 error_code
,
566 int write_fault
= error_code
& PFERR_WRITE_MASK
;
567 int user_fault
= error_code
& PFERR_USER_MASK
;
568 struct guest_walker walker
;
573 int level
= PT_PAGE_TABLE_LEVEL
;
575 unsigned long mmu_seq
;
578 pgprintk("%s: addr %lx err %x\n", __func__
, addr
, error_code
);
580 if (unlikely(error_code
& PFERR_RSVD_MASK
))
581 return handle_mmio_page_fault(vcpu
, addr
, error_code
,
582 mmu_is_nested(vcpu
));
584 r
= mmu_topup_memory_caches(vcpu
);
589 * Look up the guest pte for the faulting address.
591 r
= FNAME(walk_addr
)(&walker
, vcpu
, addr
, error_code
);
594 * The page is not mapped by the guest. Let the guest handle it.
597 pgprintk("%s: guest page fault\n", __func__
);
599 inject_page_fault(vcpu
, &walker
.fault
);
600 /* reset fork detector */
601 vcpu
->arch
.last_pt_write_count
= 0;
606 if (walker
.level
>= PT_DIRECTORY_LEVEL
)
607 force_pt_level
= mapping_level_dirty_bitmap(vcpu
, walker
.gfn
);
610 if (!force_pt_level
) {
611 level
= min(walker
.level
, mapping_level(vcpu
, walker
.gfn
));
612 walker
.gfn
= walker
.gfn
& ~(KVM_PAGES_PER_HPAGE(level
) - 1);
615 mmu_seq
= vcpu
->kvm
->mmu_notifier_seq
;
618 if (try_async_pf(vcpu
, prefault
, walker
.gfn
, addr
, &pfn
, write_fault
,
622 if (handle_abnormal_pfn(vcpu
, mmu_is_nested(vcpu
) ? 0 : addr
,
623 walker
.gfn
, pfn
, walker
.pte_access
, &r
))
626 spin_lock(&vcpu
->kvm
->mmu_lock
);
627 if (mmu_notifier_retry(vcpu
, mmu_seq
))
630 trace_kvm_mmu_audit(vcpu
, AUDIT_PRE_PAGE_FAULT
);
631 kvm_mmu_free_some_pages(vcpu
);
633 transparent_hugepage_adjust(vcpu
, &walker
.gfn
, &pfn
, &level
);
634 sptep
= FNAME(fetch
)(vcpu
, addr
, &walker
, user_fault
, write_fault
,
635 level
, &emulate
, pfn
, map_writable
, prefault
);
637 pgprintk("%s: shadow pte %p %llx emulate %d\n", __func__
,
638 sptep
, *sptep
, emulate
);
641 vcpu
->arch
.last_pt_write_count
= 0; /* reset fork detector */
643 ++vcpu
->stat
.pf_fixed
;
644 trace_kvm_mmu_audit(vcpu
, AUDIT_POST_PAGE_FAULT
);
645 spin_unlock(&vcpu
->kvm
->mmu_lock
);
650 spin_unlock(&vcpu
->kvm
->mmu_lock
);
651 kvm_release_pfn_clean(pfn
);
655 static void FNAME(invlpg
)(struct kvm_vcpu
*vcpu
, gva_t gva
)
657 struct kvm_shadow_walk_iterator iterator
;
658 struct kvm_mmu_page
*sp
;
664 vcpu_clear_mmio_info(vcpu
, gva
);
666 spin_lock(&vcpu
->kvm
->mmu_lock
);
668 for_each_shadow_entry(vcpu
, gva
, iterator
) {
669 level
= iterator
.level
;
670 sptep
= iterator
.sptep
;
672 sp
= page_header(__pa(sptep
));
673 if (is_last_spte(*sptep
, level
)) {
680 (PT_LEVEL_BITS
- PT64_LEVEL_BITS
) * level
;
681 offset
= sp
->role
.quadrant
<< shift
;
683 pte_gpa
= (sp
->gfn
<< PAGE_SHIFT
) + offset
;
684 pte_gpa
+= (sptep
- sp
->spt
) * sizeof(pt_element_t
);
686 if (is_shadow_present_pte(*sptep
)) {
687 if (is_large_pte(*sptep
))
688 --vcpu
->kvm
->stat
.lpages
;
689 drop_spte(vcpu
->kvm
, sptep
);
691 } else if (is_mmio_spte(*sptep
))
692 mmu_spte_clear_no_track(sptep
);
697 if (!is_shadow_present_pte(*sptep
) || !sp
->unsync_children
)
702 kvm_flush_remote_tlbs(vcpu
->kvm
);
704 atomic_inc(&vcpu
->kvm
->arch
.invlpg_counter
);
706 spin_unlock(&vcpu
->kvm
->mmu_lock
);
711 if (mmu_topup_memory_caches(vcpu
))
713 kvm_mmu_pte_write(vcpu
, pte_gpa
, NULL
, sizeof(pt_element_t
), 0);
716 static gpa_t
FNAME(gva_to_gpa
)(struct kvm_vcpu
*vcpu
, gva_t vaddr
, u32 access
,
717 struct x86_exception
*exception
)
719 struct guest_walker walker
;
720 gpa_t gpa
= UNMAPPED_GVA
;
723 r
= FNAME(walk_addr
)(&walker
, vcpu
, vaddr
, access
);
726 gpa
= gfn_to_gpa(walker
.gfn
);
727 gpa
|= vaddr
& ~PAGE_MASK
;
728 } else if (exception
)
729 *exception
= walker
.fault
;
734 static gpa_t
FNAME(gva_to_gpa_nested
)(struct kvm_vcpu
*vcpu
, gva_t vaddr
,
736 struct x86_exception
*exception
)
738 struct guest_walker walker
;
739 gpa_t gpa
= UNMAPPED_GVA
;
742 r
= FNAME(walk_addr_nested
)(&walker
, vcpu
, vaddr
, access
);
745 gpa
= gfn_to_gpa(walker
.gfn
);
746 gpa
|= vaddr
& ~PAGE_MASK
;
747 } else if (exception
)
748 *exception
= walker
.fault
;
754 * Using the cached information from sp->gfns is safe because:
755 * - The spte has a reference to the struct page, so the pfn for a given gfn
756 * can't change unless all sptes pointing to it are nuked first.
759 * We should flush all tlbs if spte is dropped even though guest is
760 * responsible for it. Since if we don't, kvm_mmu_notifier_invalidate_page
761 * and kvm_mmu_notifier_invalidate_range_start detect the mapping page isn't
762 * used by guest then tlbs are not flushed, so guest is allowed to access the
764 * And we increase kvm->tlbs_dirty to delay tlbs flush in this case.
766 static int FNAME(sync_page
)(struct kvm_vcpu
*vcpu
, struct kvm_mmu_page
*sp
)
768 int i
, offset
, nr_present
;
772 offset
= nr_present
= 0;
774 /* direct kvm_mmu_page can not be unsync. */
775 BUG_ON(sp
->role
.direct
);
778 offset
= sp
->role
.quadrant
<< PT64_LEVEL_BITS
;
780 first_pte_gpa
= gfn_to_gpa(sp
->gfn
) + offset
* sizeof(pt_element_t
);
782 for (i
= 0; i
< PT64_ENT_PER_PAGE
; i
++) {
791 pte_gpa
= first_pte_gpa
+ i
* sizeof(pt_element_t
);
793 if (kvm_read_guest_atomic(vcpu
->kvm
, pte_gpa
, &gpte
,
794 sizeof(pt_element_t
)))
797 if (FNAME(prefetch_invalid_gpte
)(vcpu
, sp
, &sp
->spt
[i
], gpte
)) {
798 vcpu
->kvm
->tlbs_dirty
++;
802 gfn
= gpte_to_gfn(gpte
);
803 pte_access
= sp
->role
.access
;
804 pte_access
&= FNAME(gpte_access
)(vcpu
, gpte
, true);
806 if (sync_mmio_spte(&sp
->spt
[i
], gfn
, pte_access
, &nr_present
))
809 if (gfn
!= sp
->gfns
[i
]) {
810 drop_spte(vcpu
->kvm
, &sp
->spt
[i
]);
811 vcpu
->kvm
->tlbs_dirty
++;
817 host_writable
= sp
->spt
[i
] & SPTE_HOST_WRITEABLE
;
819 set_spte(vcpu
, &sp
->spt
[i
], pte_access
, 0, 0,
820 PT_PAGE_TABLE_LEVEL
, gfn
,
821 spte_to_pfn(sp
->spt
[i
]), true, false,
831 #undef PT_BASE_ADDR_MASK
833 #undef PT_LVL_ADDR_MASK
834 #undef PT_LVL_OFFSET_MASK
836 #undef PT_MAX_FULL_LEVELS
838 #undef gpte_to_gfn_lvl