Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / arch / x86 / kvm / x86.c
blob84a28ea45fa494b76fd89cf1d9698cd8c4b14d9f
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * derived from drivers/kvm/kvm_main.c
6 * Copyright (C) 2006 Qumranet, Inc.
7 * Copyright (C) 2008 Qumranet, Inc.
8 * Copyright IBM Corporation, 2008
9 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
11 * Authors:
12 * Avi Kivity <avi@qumranet.com>
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Amit Shah <amit.shah@qumranet.com>
15 * Ben-Ami Yassour <benami@il.ibm.com>
17 * This work is licensed under the terms of the GNU GPL, version 2. See
18 * the COPYING file in the top-level directory.
22 #include <linux/kvm_host.h>
23 #include "irq.h"
24 #include "mmu.h"
25 #include "i8254.h"
26 #include "tss.h"
27 #include "kvm_cache_regs.h"
28 #include "x86.h"
30 #include <linux/clocksource.h>
31 #include <linux/interrupt.h>
32 #include <linux/kvm.h>
33 #include <linux/fs.h>
34 #include <linux/vmalloc.h>
35 #include <linux/module.h>
36 #include <linux/mman.h>
37 #include <linux/highmem.h>
38 #include <linux/iommu.h>
39 #include <linux/intel-iommu.h>
40 #include <linux/cpufreq.h>
41 #include <linux/user-return-notifier.h>
42 #include <linux/srcu.h>
43 #include <linux/slab.h>
44 #include <linux/perf_event.h>
45 #include <linux/uaccess.h>
46 #include <linux/hash.h>
47 #include <trace/events/kvm.h>
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
52 #include <asm/debugreg.h>
53 #include <asm/msr.h>
54 #include <asm/desc.h>
55 #include <asm/mtrr.h>
56 #include <asm/mce.h>
57 #include <asm/i387.h>
58 #include <asm/xcr.h>
59 #include <asm/pvclock.h>
60 #include <asm/div64.h>
62 #define MAX_IO_MSRS 256
63 #define KVM_MAX_MCE_BANKS 32
64 #define KVM_MCE_CAP_SUPPORTED (MCG_CTL_P | MCG_SER_P)
66 #define emul_to_vcpu(ctxt) \
67 container_of(ctxt, struct kvm_vcpu, arch.emulate_ctxt)
69 /* EFER defaults:
70 * - enable syscall per default because its emulated by KVM
71 * - enable LME and LMA per default on 64 bit KVM
73 #ifdef CONFIG_X86_64
74 static
75 u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
76 #else
77 static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
78 #endif
80 #define VM_STAT(x) offsetof(struct kvm, stat.x), KVM_STAT_VM
81 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
83 static void update_cr8_intercept(struct kvm_vcpu *vcpu);
84 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
85 struct kvm_cpuid_entry2 __user *entries);
87 struct kvm_x86_ops *kvm_x86_ops;
88 EXPORT_SYMBOL_GPL(kvm_x86_ops);
90 int ignore_msrs = 0;
91 module_param_named(ignore_msrs, ignore_msrs, bool, S_IRUGO | S_IWUSR);
93 bool kvm_has_tsc_control;
94 EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
95 u32 kvm_max_guest_tsc_khz;
96 EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
98 #define KVM_NR_SHARED_MSRS 16
100 struct kvm_shared_msrs_global {
101 int nr;
102 u32 msrs[KVM_NR_SHARED_MSRS];
105 struct kvm_shared_msrs {
106 struct user_return_notifier urn;
107 bool registered;
108 struct kvm_shared_msr_values {
109 u64 host;
110 u64 curr;
111 } values[KVM_NR_SHARED_MSRS];
114 static struct kvm_shared_msrs_global __read_mostly shared_msrs_global;
115 static DEFINE_PER_CPU(struct kvm_shared_msrs, shared_msrs);
117 struct kvm_stats_debugfs_item debugfs_entries[] = {
118 { "pf_fixed", VCPU_STAT(pf_fixed) },
119 { "pf_guest", VCPU_STAT(pf_guest) },
120 { "tlb_flush", VCPU_STAT(tlb_flush) },
121 { "invlpg", VCPU_STAT(invlpg) },
122 { "exits", VCPU_STAT(exits) },
123 { "io_exits", VCPU_STAT(io_exits) },
124 { "mmio_exits", VCPU_STAT(mmio_exits) },
125 { "signal_exits", VCPU_STAT(signal_exits) },
126 { "irq_window", VCPU_STAT(irq_window_exits) },
127 { "nmi_window", VCPU_STAT(nmi_window_exits) },
128 { "halt_exits", VCPU_STAT(halt_exits) },
129 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
130 { "hypercalls", VCPU_STAT(hypercalls) },
131 { "request_irq", VCPU_STAT(request_irq_exits) },
132 { "irq_exits", VCPU_STAT(irq_exits) },
133 { "host_state_reload", VCPU_STAT(host_state_reload) },
134 { "efer_reload", VCPU_STAT(efer_reload) },
135 { "fpu_reload", VCPU_STAT(fpu_reload) },
136 { "insn_emulation", VCPU_STAT(insn_emulation) },
137 { "insn_emulation_fail", VCPU_STAT(insn_emulation_fail) },
138 { "irq_injections", VCPU_STAT(irq_injections) },
139 { "nmi_injections", VCPU_STAT(nmi_injections) },
140 { "mmu_shadow_zapped", VM_STAT(mmu_shadow_zapped) },
141 { "mmu_pte_write", VM_STAT(mmu_pte_write) },
142 { "mmu_pte_updated", VM_STAT(mmu_pte_updated) },
143 { "mmu_pde_zapped", VM_STAT(mmu_pde_zapped) },
144 { "mmu_flooded", VM_STAT(mmu_flooded) },
145 { "mmu_recycled", VM_STAT(mmu_recycled) },
146 { "mmu_cache_miss", VM_STAT(mmu_cache_miss) },
147 { "mmu_unsync", VM_STAT(mmu_unsync) },
148 { "remote_tlb_flush", VM_STAT(remote_tlb_flush) },
149 { "largepages", VM_STAT(lpages) },
150 { NULL }
153 u64 __read_mostly host_xcr0;
155 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
157 static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
159 int i;
160 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU); i++)
161 vcpu->arch.apf.gfns[i] = ~0;
164 static void kvm_on_user_return(struct user_return_notifier *urn)
166 unsigned slot;
167 struct kvm_shared_msrs *locals
168 = container_of(urn, struct kvm_shared_msrs, urn);
169 struct kvm_shared_msr_values *values;
171 for (slot = 0; slot < shared_msrs_global.nr; ++slot) {
172 values = &locals->values[slot];
173 if (values->host != values->curr) {
174 wrmsrl(shared_msrs_global.msrs[slot], values->host);
175 values->curr = values->host;
178 locals->registered = false;
179 user_return_notifier_unregister(urn);
182 static void shared_msr_update(unsigned slot, u32 msr)
184 struct kvm_shared_msrs *smsr;
185 u64 value;
187 smsr = &__get_cpu_var(shared_msrs);
188 /* only read, and nobody should modify it at this time,
189 * so don't need lock */
190 if (slot >= shared_msrs_global.nr) {
191 printk(KERN_ERR "kvm: invalid MSR slot!");
192 return;
194 rdmsrl_safe(msr, &value);
195 smsr->values[slot].host = value;
196 smsr->values[slot].curr = value;
199 void kvm_define_shared_msr(unsigned slot, u32 msr)
201 if (slot >= shared_msrs_global.nr)
202 shared_msrs_global.nr = slot + 1;
203 shared_msrs_global.msrs[slot] = msr;
204 /* we need ensured the shared_msr_global have been updated */
205 smp_wmb();
207 EXPORT_SYMBOL_GPL(kvm_define_shared_msr);
209 static void kvm_shared_msr_cpu_online(void)
211 unsigned i;
213 for (i = 0; i < shared_msrs_global.nr; ++i)
214 shared_msr_update(i, shared_msrs_global.msrs[i]);
217 void kvm_set_shared_msr(unsigned slot, u64 value, u64 mask)
219 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
221 if (((value ^ smsr->values[slot].curr) & mask) == 0)
222 return;
223 smsr->values[slot].curr = value;
224 wrmsrl(shared_msrs_global.msrs[slot], value);
225 if (!smsr->registered) {
226 smsr->urn.on_user_return = kvm_on_user_return;
227 user_return_notifier_register(&smsr->urn);
228 smsr->registered = true;
231 EXPORT_SYMBOL_GPL(kvm_set_shared_msr);
233 static void drop_user_return_notifiers(void *ignore)
235 struct kvm_shared_msrs *smsr = &__get_cpu_var(shared_msrs);
237 if (smsr->registered)
238 kvm_on_user_return(&smsr->urn);
241 u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
243 if (irqchip_in_kernel(vcpu->kvm))
244 return vcpu->arch.apic_base;
245 else
246 return vcpu->arch.apic_base;
248 EXPORT_SYMBOL_GPL(kvm_get_apic_base);
250 void kvm_set_apic_base(struct kvm_vcpu *vcpu, u64 data)
252 /* TODO: reserve bits check */
253 if (irqchip_in_kernel(vcpu->kvm))
254 kvm_lapic_set_base(vcpu, data);
255 else
256 vcpu->arch.apic_base = data;
258 EXPORT_SYMBOL_GPL(kvm_set_apic_base);
260 #define EXCPT_BENIGN 0
261 #define EXCPT_CONTRIBUTORY 1
262 #define EXCPT_PF 2
264 static int exception_class(int vector)
266 switch (vector) {
267 case PF_VECTOR:
268 return EXCPT_PF;
269 case DE_VECTOR:
270 case TS_VECTOR:
271 case NP_VECTOR:
272 case SS_VECTOR:
273 case GP_VECTOR:
274 return EXCPT_CONTRIBUTORY;
275 default:
276 break;
278 return EXCPT_BENIGN;
281 static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
282 unsigned nr, bool has_error, u32 error_code,
283 bool reinject)
285 u32 prev_nr;
286 int class1, class2;
288 kvm_make_request(KVM_REQ_EVENT, vcpu);
290 if (!vcpu->arch.exception.pending) {
291 queue:
292 vcpu->arch.exception.pending = true;
293 vcpu->arch.exception.has_error_code = has_error;
294 vcpu->arch.exception.nr = nr;
295 vcpu->arch.exception.error_code = error_code;
296 vcpu->arch.exception.reinject = reinject;
297 return;
300 /* to check exception */
301 prev_nr = vcpu->arch.exception.nr;
302 if (prev_nr == DF_VECTOR) {
303 /* triple fault -> shutdown */
304 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
305 return;
307 class1 = exception_class(prev_nr);
308 class2 = exception_class(nr);
309 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
310 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
311 /* generate double fault per SDM Table 5-5 */
312 vcpu->arch.exception.pending = true;
313 vcpu->arch.exception.has_error_code = true;
314 vcpu->arch.exception.nr = DF_VECTOR;
315 vcpu->arch.exception.error_code = 0;
316 } else
317 /* replace previous exception with a new one in a hope
318 that instruction re-execution will regenerate lost
319 exception */
320 goto queue;
323 void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
325 kvm_multiple_exception(vcpu, nr, false, 0, false);
327 EXPORT_SYMBOL_GPL(kvm_queue_exception);
329 void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
331 kvm_multiple_exception(vcpu, nr, false, 0, true);
333 EXPORT_SYMBOL_GPL(kvm_requeue_exception);
335 void kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
337 if (err)
338 kvm_inject_gp(vcpu, 0);
339 else
340 kvm_x86_ops->skip_emulated_instruction(vcpu);
342 EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
344 void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
346 ++vcpu->stat.pf_guest;
347 vcpu->arch.cr2 = fault->address;
348 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
350 EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
352 void kvm_propagate_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
354 if (mmu_is_nested(vcpu) && !fault->nested_page_fault)
355 vcpu->arch.nested_mmu.inject_page_fault(vcpu, fault);
356 else
357 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
360 void kvm_inject_nmi(struct kvm_vcpu *vcpu)
362 kvm_make_request(KVM_REQ_EVENT, vcpu);
363 vcpu->arch.nmi_pending = 1;
365 EXPORT_SYMBOL_GPL(kvm_inject_nmi);
367 void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
369 kvm_multiple_exception(vcpu, nr, true, error_code, false);
371 EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
373 void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
375 kvm_multiple_exception(vcpu, nr, true, error_code, true);
377 EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
380 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
381 * a #GP and return false.
383 bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
385 if (kvm_x86_ops->get_cpl(vcpu) <= required_cpl)
386 return true;
387 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
388 return false;
390 EXPORT_SYMBOL_GPL(kvm_require_cpl);
393 * This function will be used to read from the physical memory of the currently
394 * running guest. The difference to kvm_read_guest_page is that this function
395 * can read from guest physical or from the guest's guest physical memory.
397 int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
398 gfn_t ngfn, void *data, int offset, int len,
399 u32 access)
401 gfn_t real_gfn;
402 gpa_t ngpa;
404 ngpa = gfn_to_gpa(ngfn);
405 real_gfn = mmu->translate_gpa(vcpu, ngpa, access);
406 if (real_gfn == UNMAPPED_GVA)
407 return -EFAULT;
409 real_gfn = gpa_to_gfn(real_gfn);
411 return kvm_read_guest_page(vcpu->kvm, real_gfn, data, offset, len);
413 EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
415 int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
416 void *data, int offset, int len, u32 access)
418 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
419 data, offset, len, access);
423 * Load the pae pdptrs. Return true is they are all valid.
425 int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
427 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
428 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
429 int i;
430 int ret;
431 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
433 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
434 offset * sizeof(u64), sizeof(pdpte),
435 PFERR_USER_MASK|PFERR_WRITE_MASK);
436 if (ret < 0) {
437 ret = 0;
438 goto out;
440 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
441 if (is_present_gpte(pdpte[i]) &&
442 (pdpte[i] & vcpu->arch.mmu.rsvd_bits_mask[0][2])) {
443 ret = 0;
444 goto out;
447 ret = 1;
449 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
450 __set_bit(VCPU_EXREG_PDPTR,
451 (unsigned long *)&vcpu->arch.regs_avail);
452 __set_bit(VCPU_EXREG_PDPTR,
453 (unsigned long *)&vcpu->arch.regs_dirty);
454 out:
456 return ret;
458 EXPORT_SYMBOL_GPL(load_pdptrs);
460 static bool pdptrs_changed(struct kvm_vcpu *vcpu)
462 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
463 bool changed = true;
464 int offset;
465 gfn_t gfn;
466 int r;
468 if (is_long_mode(vcpu) || !is_pae(vcpu))
469 return false;
471 if (!test_bit(VCPU_EXREG_PDPTR,
472 (unsigned long *)&vcpu->arch.regs_avail))
473 return true;
475 gfn = (kvm_read_cr3(vcpu) & ~31u) >> PAGE_SHIFT;
476 offset = (kvm_read_cr3(vcpu) & ~31u) & (PAGE_SIZE - 1);
477 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
478 PFERR_USER_MASK | PFERR_WRITE_MASK);
479 if (r < 0)
480 goto out;
481 changed = memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
482 out:
484 return changed;
487 int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
489 unsigned long old_cr0 = kvm_read_cr0(vcpu);
490 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP |
491 X86_CR0_CD | X86_CR0_NW;
493 cr0 |= X86_CR0_ET;
495 #ifdef CONFIG_X86_64
496 if (cr0 & 0xffffffff00000000UL)
497 return 1;
498 #endif
500 cr0 &= ~CR0_RESERVED_BITS;
502 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
503 return 1;
505 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
506 return 1;
508 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
509 #ifdef CONFIG_X86_64
510 if ((vcpu->arch.efer & EFER_LME)) {
511 int cs_db, cs_l;
513 if (!is_pae(vcpu))
514 return 1;
515 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
516 if (cs_l)
517 return 1;
518 } else
519 #endif
520 if (is_pae(vcpu) && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
521 kvm_read_cr3(vcpu)))
522 return 1;
525 kvm_x86_ops->set_cr0(vcpu, cr0);
527 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
528 kvm_clear_async_pf_completion_queue(vcpu);
529 kvm_async_pf_hash_reset(vcpu);
532 if ((cr0 ^ old_cr0) & update_bits)
533 kvm_mmu_reset_context(vcpu);
534 return 0;
536 EXPORT_SYMBOL_GPL(kvm_set_cr0);
538 void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
540 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
542 EXPORT_SYMBOL_GPL(kvm_lmsw);
544 int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
546 u64 xcr0;
548 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
549 if (index != XCR_XFEATURE_ENABLED_MASK)
550 return 1;
551 xcr0 = xcr;
552 if (kvm_x86_ops->get_cpl(vcpu) != 0)
553 return 1;
554 if (!(xcr0 & XSTATE_FP))
555 return 1;
556 if ((xcr0 & XSTATE_YMM) && !(xcr0 & XSTATE_SSE))
557 return 1;
558 if (xcr0 & ~host_xcr0)
559 return 1;
560 vcpu->arch.xcr0 = xcr0;
561 vcpu->guest_xcr0_loaded = 0;
562 return 0;
565 int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
567 if (__kvm_set_xcr(vcpu, index, xcr)) {
568 kvm_inject_gp(vcpu, 0);
569 return 1;
571 return 0;
573 EXPORT_SYMBOL_GPL(kvm_set_xcr);
575 static bool guest_cpuid_has_xsave(struct kvm_vcpu *vcpu)
577 struct kvm_cpuid_entry2 *best;
579 best = kvm_find_cpuid_entry(vcpu, 1, 0);
580 return best && (best->ecx & bit(X86_FEATURE_XSAVE));
583 static bool guest_cpuid_has_smep(struct kvm_vcpu *vcpu)
585 struct kvm_cpuid_entry2 *best;
587 best = kvm_find_cpuid_entry(vcpu, 7, 0);
588 return best && (best->ebx & bit(X86_FEATURE_SMEP));
591 static bool guest_cpuid_has_fsgsbase(struct kvm_vcpu *vcpu)
593 struct kvm_cpuid_entry2 *best;
595 best = kvm_find_cpuid_entry(vcpu, 7, 0);
596 return best && (best->ebx & bit(X86_FEATURE_FSGSBASE));
599 static void update_cpuid(struct kvm_vcpu *vcpu)
601 struct kvm_cpuid_entry2 *best;
603 best = kvm_find_cpuid_entry(vcpu, 1, 0);
604 if (!best)
605 return;
607 /* Update OSXSAVE bit */
608 if (cpu_has_xsave && best->function == 0x1) {
609 best->ecx &= ~(bit(X86_FEATURE_OSXSAVE));
610 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE))
611 best->ecx |= bit(X86_FEATURE_OSXSAVE);
615 int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
617 unsigned long old_cr4 = kvm_read_cr4(vcpu);
618 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE |
619 X86_CR4_PAE | X86_CR4_SMEP;
620 if (cr4 & CR4_RESERVED_BITS)
621 return 1;
623 if (!guest_cpuid_has_xsave(vcpu) && (cr4 & X86_CR4_OSXSAVE))
624 return 1;
626 if (!guest_cpuid_has_smep(vcpu) && (cr4 & X86_CR4_SMEP))
627 return 1;
629 if (!guest_cpuid_has_fsgsbase(vcpu) && (cr4 & X86_CR4_RDWRGSFS))
630 return 1;
632 if (is_long_mode(vcpu)) {
633 if (!(cr4 & X86_CR4_PAE))
634 return 1;
635 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
636 && ((cr4 ^ old_cr4) & pdptr_bits)
637 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
638 kvm_read_cr3(vcpu)))
639 return 1;
641 if (kvm_x86_ops->set_cr4(vcpu, cr4))
642 return 1;
644 if ((cr4 ^ old_cr4) & pdptr_bits)
645 kvm_mmu_reset_context(vcpu);
647 if ((cr4 ^ old_cr4) & X86_CR4_OSXSAVE)
648 update_cpuid(vcpu);
650 return 0;
652 EXPORT_SYMBOL_GPL(kvm_set_cr4);
654 int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
656 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
657 kvm_mmu_sync_roots(vcpu);
658 kvm_mmu_flush_tlb(vcpu);
659 return 0;
662 if (is_long_mode(vcpu)) {
663 if (cr3 & CR3_L_MODE_RESERVED_BITS)
664 return 1;
665 } else {
666 if (is_pae(vcpu)) {
667 if (cr3 & CR3_PAE_RESERVED_BITS)
668 return 1;
669 if (is_paging(vcpu) &&
670 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
671 return 1;
674 * We don't check reserved bits in nonpae mode, because
675 * this isn't enforced, and VMware depends on this.
680 * Does the new cr3 value map to physical memory? (Note, we
681 * catch an invalid cr3 even in real-mode, because it would
682 * cause trouble later on when we turn on paging anyway.)
684 * A real CPU would silently accept an invalid cr3 and would
685 * attempt to use it - with largely undefined (and often hard
686 * to debug) behavior on the guest side.
688 if (unlikely(!gfn_to_memslot(vcpu->kvm, cr3 >> PAGE_SHIFT)))
689 return 1;
690 vcpu->arch.cr3 = cr3;
691 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
692 vcpu->arch.mmu.new_cr3(vcpu);
693 return 0;
695 EXPORT_SYMBOL_GPL(kvm_set_cr3);
697 int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
699 if (cr8 & CR8_RESERVED_BITS)
700 return 1;
701 if (irqchip_in_kernel(vcpu->kvm))
702 kvm_lapic_set_tpr(vcpu, cr8);
703 else
704 vcpu->arch.cr8 = cr8;
705 return 0;
707 EXPORT_SYMBOL_GPL(kvm_set_cr8);
709 unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
711 if (irqchip_in_kernel(vcpu->kvm))
712 return kvm_lapic_get_cr8(vcpu);
713 else
714 return vcpu->arch.cr8;
716 EXPORT_SYMBOL_GPL(kvm_get_cr8);
718 static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
720 switch (dr) {
721 case 0 ... 3:
722 vcpu->arch.db[dr] = val;
723 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
724 vcpu->arch.eff_db[dr] = val;
725 break;
726 case 4:
727 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
728 return 1; /* #UD */
729 /* fall through */
730 case 6:
731 if (val & 0xffffffff00000000ULL)
732 return -1; /* #GP */
733 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
734 break;
735 case 5:
736 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
737 return 1; /* #UD */
738 /* fall through */
739 default: /* 7 */
740 if (val & 0xffffffff00000000ULL)
741 return -1; /* #GP */
742 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
743 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
744 kvm_x86_ops->set_dr7(vcpu, vcpu->arch.dr7);
745 vcpu->arch.switch_db_regs = (val & DR7_BP_EN_MASK);
747 break;
750 return 0;
753 int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
755 int res;
757 res = __kvm_set_dr(vcpu, dr, val);
758 if (res > 0)
759 kvm_queue_exception(vcpu, UD_VECTOR);
760 else if (res < 0)
761 kvm_inject_gp(vcpu, 0);
763 return res;
765 EXPORT_SYMBOL_GPL(kvm_set_dr);
767 static int _kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
769 switch (dr) {
770 case 0 ... 3:
771 *val = vcpu->arch.db[dr];
772 break;
773 case 4:
774 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
775 return 1;
776 /* fall through */
777 case 6:
778 *val = vcpu->arch.dr6;
779 break;
780 case 5:
781 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE))
782 return 1;
783 /* fall through */
784 default: /* 7 */
785 *val = vcpu->arch.dr7;
786 break;
789 return 0;
792 int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
794 if (_kvm_get_dr(vcpu, dr, val)) {
795 kvm_queue_exception(vcpu, UD_VECTOR);
796 return 1;
798 return 0;
800 EXPORT_SYMBOL_GPL(kvm_get_dr);
803 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
804 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
806 * This list is modified at module load time to reflect the
807 * capabilities of the host cpu. This capabilities test skips MSRs that are
808 * kvm-specific. Those are put in the beginning of the list.
811 #define KVM_SAVE_MSRS_BEGIN 9
812 static u32 msrs_to_save[] = {
813 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
814 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
815 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
816 HV_X64_MSR_APIC_ASSIST_PAGE, MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
817 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
818 MSR_STAR,
819 #ifdef CONFIG_X86_64
820 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
821 #endif
822 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA
825 static unsigned num_msrs_to_save;
827 static u32 emulated_msrs[] = {
828 MSR_IA32_MISC_ENABLE,
829 MSR_IA32_MCG_STATUS,
830 MSR_IA32_MCG_CTL,
833 static int set_efer(struct kvm_vcpu *vcpu, u64 efer)
835 u64 old_efer = vcpu->arch.efer;
837 if (efer & efer_reserved_bits)
838 return 1;
840 if (is_paging(vcpu)
841 && (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
842 return 1;
844 if (efer & EFER_FFXSR) {
845 struct kvm_cpuid_entry2 *feat;
847 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
848 if (!feat || !(feat->edx & bit(X86_FEATURE_FXSR_OPT)))
849 return 1;
852 if (efer & EFER_SVME) {
853 struct kvm_cpuid_entry2 *feat;
855 feat = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
856 if (!feat || !(feat->ecx & bit(X86_FEATURE_SVM)))
857 return 1;
860 efer &= ~EFER_LMA;
861 efer |= vcpu->arch.efer & EFER_LMA;
863 kvm_x86_ops->set_efer(vcpu, efer);
865 vcpu->arch.mmu.base_role.nxe = (efer & EFER_NX) && !tdp_enabled;
867 /* Update reserved bits */
868 if ((efer ^ old_efer) & EFER_NX)
869 kvm_mmu_reset_context(vcpu);
871 return 0;
874 void kvm_enable_efer_bits(u64 mask)
876 efer_reserved_bits &= ~mask;
878 EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
882 * Writes msr value into into the appropriate "register".
883 * Returns 0 on success, non-0 otherwise.
884 * Assumes vcpu_load() was already called.
886 int kvm_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
888 return kvm_x86_ops->set_msr(vcpu, msr_index, data);
892 * Adapt set_msr() to msr_io()'s calling convention
894 static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
896 return kvm_set_msr(vcpu, index, *data);
899 static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
901 int version;
902 int r;
903 struct pvclock_wall_clock wc;
904 struct timespec boot;
906 if (!wall_clock)
907 return;
909 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
910 if (r)
911 return;
913 if (version & 1)
914 ++version; /* first time write, random junk */
916 ++version;
918 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
921 * The guest calculates current wall clock time by adding
922 * system time (updated by kvm_guest_time_update below) to the
923 * wall clock specified here. guest system time equals host
924 * system time for us, thus we must fill in host boot time here.
926 getboottime(&boot);
928 wc.sec = boot.tv_sec;
929 wc.nsec = boot.tv_nsec;
930 wc.version = version;
932 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
934 version++;
935 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
938 static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
940 uint32_t quotient, remainder;
942 /* Don't try to replace with do_div(), this one calculates
943 * "(dividend << 32) / divisor" */
944 __asm__ ( "divl %4"
945 : "=a" (quotient), "=d" (remainder)
946 : "0" (0), "1" (dividend), "r" (divisor) );
947 return quotient;
950 static void kvm_get_time_scale(uint32_t scaled_khz, uint32_t base_khz,
951 s8 *pshift, u32 *pmultiplier)
953 uint64_t scaled64;
954 int32_t shift = 0;
955 uint64_t tps64;
956 uint32_t tps32;
958 tps64 = base_khz * 1000LL;
959 scaled64 = scaled_khz * 1000LL;
960 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
961 tps64 >>= 1;
962 shift--;
965 tps32 = (uint32_t)tps64;
966 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
967 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
968 scaled64 >>= 1;
969 else
970 tps32 <<= 1;
971 shift++;
974 *pshift = shift;
975 *pmultiplier = div_frac(scaled64, tps32);
977 pr_debug("%s: base_khz %u => %u, shift %d, mul %u\n",
978 __func__, base_khz, scaled_khz, shift, *pmultiplier);
981 static inline u64 get_kernel_ns(void)
983 struct timespec ts;
985 WARN_ON(preemptible());
986 ktime_get_ts(&ts);
987 monotonic_to_bootbased(&ts);
988 return timespec_to_ns(&ts);
991 static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
992 unsigned long max_tsc_khz;
994 static inline int kvm_tsc_changes_freq(void)
996 int cpu = get_cpu();
997 int ret = !boot_cpu_has(X86_FEATURE_CONSTANT_TSC) &&
998 cpufreq_quick_get(cpu) != 0;
999 put_cpu();
1000 return ret;
1003 static u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu)
1005 if (vcpu->arch.virtual_tsc_khz)
1006 return vcpu->arch.virtual_tsc_khz;
1007 else
1008 return __this_cpu_read(cpu_tsc_khz);
1011 static inline u64 nsec_to_cycles(struct kvm_vcpu *vcpu, u64 nsec)
1013 u64 ret;
1015 WARN_ON(preemptible());
1016 if (kvm_tsc_changes_freq())
1017 printk_once(KERN_WARNING
1018 "kvm: unreliable cycle conversion on adjustable rate TSC\n");
1019 ret = nsec * vcpu_tsc_khz(vcpu);
1020 do_div(ret, USEC_PER_SEC);
1021 return ret;
1024 static void kvm_init_tsc_catchup(struct kvm_vcpu *vcpu, u32 this_tsc_khz)
1026 /* Compute a scale to convert nanoseconds in TSC cycles */
1027 kvm_get_time_scale(this_tsc_khz, NSEC_PER_SEC / 1000,
1028 &vcpu->arch.tsc_catchup_shift,
1029 &vcpu->arch.tsc_catchup_mult);
1032 static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
1034 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.last_tsc_nsec,
1035 vcpu->arch.tsc_catchup_mult,
1036 vcpu->arch.tsc_catchup_shift);
1037 tsc += vcpu->arch.last_tsc_write;
1038 return tsc;
1041 void kvm_write_tsc(struct kvm_vcpu *vcpu, u64 data)
1043 struct kvm *kvm = vcpu->kvm;
1044 u64 offset, ns, elapsed;
1045 unsigned long flags;
1046 s64 sdiff;
1048 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
1049 offset = kvm_x86_ops->compute_tsc_offset(vcpu, data);
1050 ns = get_kernel_ns();
1051 elapsed = ns - kvm->arch.last_tsc_nsec;
1052 sdiff = data - kvm->arch.last_tsc_write;
1053 if (sdiff < 0)
1054 sdiff = -sdiff;
1057 * Special case: close write to TSC within 5 seconds of
1058 * another CPU is interpreted as an attempt to synchronize
1059 * The 5 seconds is to accommodate host load / swapping as
1060 * well as any reset of TSC during the boot process.
1062 * In that case, for a reliable TSC, we can match TSC offsets,
1063 * or make a best guest using elapsed value.
1065 if (sdiff < nsec_to_cycles(vcpu, 5ULL * NSEC_PER_SEC) &&
1066 elapsed < 5ULL * NSEC_PER_SEC) {
1067 if (!check_tsc_unstable()) {
1068 offset = kvm->arch.last_tsc_offset;
1069 pr_debug("kvm: matched tsc offset for %llu\n", data);
1070 } else {
1071 u64 delta = nsec_to_cycles(vcpu, elapsed);
1072 offset += delta;
1073 pr_debug("kvm: adjusted tsc offset by %llu\n", delta);
1075 ns = kvm->arch.last_tsc_nsec;
1077 kvm->arch.last_tsc_nsec = ns;
1078 kvm->arch.last_tsc_write = data;
1079 kvm->arch.last_tsc_offset = offset;
1080 kvm_x86_ops->write_tsc_offset(vcpu, offset);
1081 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
1083 /* Reset of TSC must disable overshoot protection below */
1084 vcpu->arch.hv_clock.tsc_timestamp = 0;
1085 vcpu->arch.last_tsc_write = data;
1086 vcpu->arch.last_tsc_nsec = ns;
1088 EXPORT_SYMBOL_GPL(kvm_write_tsc);
1090 static int kvm_guest_time_update(struct kvm_vcpu *v)
1092 unsigned long flags;
1093 struct kvm_vcpu_arch *vcpu = &v->arch;
1094 void *shared_kaddr;
1095 unsigned long this_tsc_khz;
1096 s64 kernel_ns, max_kernel_ns;
1097 u64 tsc_timestamp;
1099 /* Keep irq disabled to prevent changes to the clock */
1100 local_irq_save(flags);
1101 kvm_get_msr(v, MSR_IA32_TSC, &tsc_timestamp);
1102 kernel_ns = get_kernel_ns();
1103 this_tsc_khz = vcpu_tsc_khz(v);
1104 if (unlikely(this_tsc_khz == 0)) {
1105 local_irq_restore(flags);
1106 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
1107 return 1;
1111 * We may have to catch up the TSC to match elapsed wall clock
1112 * time for two reasons, even if kvmclock is used.
1113 * 1) CPU could have been running below the maximum TSC rate
1114 * 2) Broken TSC compensation resets the base at each VCPU
1115 * entry to avoid unknown leaps of TSC even when running
1116 * again on the same CPU. This may cause apparent elapsed
1117 * time to disappear, and the guest to stand still or run
1118 * very slowly.
1120 if (vcpu->tsc_catchup) {
1121 u64 tsc = compute_guest_tsc(v, kernel_ns);
1122 if (tsc > tsc_timestamp) {
1123 kvm_x86_ops->adjust_tsc_offset(v, tsc - tsc_timestamp);
1124 tsc_timestamp = tsc;
1128 local_irq_restore(flags);
1130 if (!vcpu->time_page)
1131 return 0;
1134 * Time as measured by the TSC may go backwards when resetting the base
1135 * tsc_timestamp. The reason for this is that the TSC resolution is
1136 * higher than the resolution of the other clock scales. Thus, many
1137 * possible measurments of the TSC correspond to one measurement of any
1138 * other clock, and so a spread of values is possible. This is not a
1139 * problem for the computation of the nanosecond clock; with TSC rates
1140 * around 1GHZ, there can only be a few cycles which correspond to one
1141 * nanosecond value, and any path through this code will inevitably
1142 * take longer than that. However, with the kernel_ns value itself,
1143 * the precision may be much lower, down to HZ granularity. If the
1144 * first sampling of TSC against kernel_ns ends in the low part of the
1145 * range, and the second in the high end of the range, we can get:
1147 * (TSC - offset_low) * S + kns_old > (TSC - offset_high) * S + kns_new
1149 * As the sampling errors potentially range in the thousands of cycles,
1150 * it is possible such a time value has already been observed by the
1151 * guest. To protect against this, we must compute the system time as
1152 * observed by the guest and ensure the new system time is greater.
1154 max_kernel_ns = 0;
1155 if (vcpu->hv_clock.tsc_timestamp && vcpu->last_guest_tsc) {
1156 max_kernel_ns = vcpu->last_guest_tsc -
1157 vcpu->hv_clock.tsc_timestamp;
1158 max_kernel_ns = pvclock_scale_delta(max_kernel_ns,
1159 vcpu->hv_clock.tsc_to_system_mul,
1160 vcpu->hv_clock.tsc_shift);
1161 max_kernel_ns += vcpu->last_kernel_ns;
1164 if (unlikely(vcpu->hw_tsc_khz != this_tsc_khz)) {
1165 kvm_get_time_scale(NSEC_PER_SEC / 1000, this_tsc_khz,
1166 &vcpu->hv_clock.tsc_shift,
1167 &vcpu->hv_clock.tsc_to_system_mul);
1168 vcpu->hw_tsc_khz = this_tsc_khz;
1171 if (max_kernel_ns > kernel_ns)
1172 kernel_ns = max_kernel_ns;
1174 /* With all the info we got, fill in the values */
1175 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
1176 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
1177 vcpu->last_kernel_ns = kernel_ns;
1178 vcpu->last_guest_tsc = tsc_timestamp;
1179 vcpu->hv_clock.flags = 0;
1182 * The interface expects us to write an even number signaling that the
1183 * update is finished. Since the guest won't see the intermediate
1184 * state, we just increase by 2 at the end.
1186 vcpu->hv_clock.version += 2;
1188 shared_kaddr = kmap_atomic(vcpu->time_page, KM_USER0);
1190 memcpy(shared_kaddr + vcpu->time_offset, &vcpu->hv_clock,
1191 sizeof(vcpu->hv_clock));
1193 kunmap_atomic(shared_kaddr, KM_USER0);
1195 mark_page_dirty(v->kvm, vcpu->time >> PAGE_SHIFT);
1196 return 0;
1199 static bool msr_mtrr_valid(unsigned msr)
1201 switch (msr) {
1202 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
1203 case MSR_MTRRfix64K_00000:
1204 case MSR_MTRRfix16K_80000:
1205 case MSR_MTRRfix16K_A0000:
1206 case MSR_MTRRfix4K_C0000:
1207 case MSR_MTRRfix4K_C8000:
1208 case MSR_MTRRfix4K_D0000:
1209 case MSR_MTRRfix4K_D8000:
1210 case MSR_MTRRfix4K_E0000:
1211 case MSR_MTRRfix4K_E8000:
1212 case MSR_MTRRfix4K_F0000:
1213 case MSR_MTRRfix4K_F8000:
1214 case MSR_MTRRdefType:
1215 case MSR_IA32_CR_PAT:
1216 return true;
1217 case 0x2f8:
1218 return true;
1220 return false;
1223 static bool valid_pat_type(unsigned t)
1225 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
1228 static bool valid_mtrr_type(unsigned t)
1230 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
1233 static bool mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1235 int i;
1237 if (!msr_mtrr_valid(msr))
1238 return false;
1240 if (msr == MSR_IA32_CR_PAT) {
1241 for (i = 0; i < 8; i++)
1242 if (!valid_pat_type((data >> (i * 8)) & 0xff))
1243 return false;
1244 return true;
1245 } else if (msr == MSR_MTRRdefType) {
1246 if (data & ~0xcff)
1247 return false;
1248 return valid_mtrr_type(data & 0xff);
1249 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
1250 for (i = 0; i < 8 ; i++)
1251 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
1252 return false;
1253 return true;
1256 /* variable MTRRs */
1257 return valid_mtrr_type(data & 0xff);
1260 static int set_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1262 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1264 if (!mtrr_valid(vcpu, msr, data))
1265 return 1;
1267 if (msr == MSR_MTRRdefType) {
1268 vcpu->arch.mtrr_state.def_type = data;
1269 vcpu->arch.mtrr_state.enabled = (data & 0xc00) >> 10;
1270 } else if (msr == MSR_MTRRfix64K_00000)
1271 p[0] = data;
1272 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1273 p[1 + msr - MSR_MTRRfix16K_80000] = data;
1274 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1275 p[3 + msr - MSR_MTRRfix4K_C0000] = data;
1276 else if (msr == MSR_IA32_CR_PAT)
1277 vcpu->arch.pat = data;
1278 else { /* Variable MTRRs */
1279 int idx, is_mtrr_mask;
1280 u64 *pt;
1282 idx = (msr - 0x200) / 2;
1283 is_mtrr_mask = msr - 0x200 - 2 * idx;
1284 if (!is_mtrr_mask)
1285 pt =
1286 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1287 else
1288 pt =
1289 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1290 *pt = data;
1293 kvm_mmu_reset_context(vcpu);
1294 return 0;
1297 static int set_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1299 u64 mcg_cap = vcpu->arch.mcg_cap;
1300 unsigned bank_num = mcg_cap & 0xff;
1302 switch (msr) {
1303 case MSR_IA32_MCG_STATUS:
1304 vcpu->arch.mcg_status = data;
1305 break;
1306 case MSR_IA32_MCG_CTL:
1307 if (!(mcg_cap & MCG_CTL_P))
1308 return 1;
1309 if (data != 0 && data != ~(u64)0)
1310 return -1;
1311 vcpu->arch.mcg_ctl = data;
1312 break;
1313 default:
1314 if (msr >= MSR_IA32_MC0_CTL &&
1315 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1316 u32 offset = msr - MSR_IA32_MC0_CTL;
1317 /* only 0 or all 1s can be written to IA32_MCi_CTL
1318 * some Linux kernels though clear bit 10 in bank 4 to
1319 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
1320 * this to avoid an uncatched #GP in the guest
1322 if ((offset & 0x3) == 0 &&
1323 data != 0 && (data | (1 << 10)) != ~(u64)0)
1324 return -1;
1325 vcpu->arch.mce_banks[offset] = data;
1326 break;
1328 return 1;
1330 return 0;
1333 static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
1335 struct kvm *kvm = vcpu->kvm;
1336 int lm = is_long_mode(vcpu);
1337 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
1338 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
1339 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
1340 : kvm->arch.xen_hvm_config.blob_size_32;
1341 u32 page_num = data & ~PAGE_MASK;
1342 u64 page_addr = data & PAGE_MASK;
1343 u8 *page;
1344 int r;
1346 r = -E2BIG;
1347 if (page_num >= blob_size)
1348 goto out;
1349 r = -ENOMEM;
1350 page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1351 if (!page)
1352 goto out;
1353 r = -EFAULT;
1354 if (copy_from_user(page, blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE))
1355 goto out_free;
1356 if (kvm_write_guest(kvm, page_addr, page, PAGE_SIZE))
1357 goto out_free;
1358 r = 0;
1359 out_free:
1360 kfree(page);
1361 out:
1362 return r;
1365 static bool kvm_hv_hypercall_enabled(struct kvm *kvm)
1367 return kvm->arch.hv_hypercall & HV_X64_MSR_HYPERCALL_ENABLE;
1370 static bool kvm_hv_msr_partition_wide(u32 msr)
1372 bool r = false;
1373 switch (msr) {
1374 case HV_X64_MSR_GUEST_OS_ID:
1375 case HV_X64_MSR_HYPERCALL:
1376 r = true;
1377 break;
1380 return r;
1383 static int set_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1385 struct kvm *kvm = vcpu->kvm;
1387 switch (msr) {
1388 case HV_X64_MSR_GUEST_OS_ID:
1389 kvm->arch.hv_guest_os_id = data;
1390 /* setting guest os id to zero disables hypercall page */
1391 if (!kvm->arch.hv_guest_os_id)
1392 kvm->arch.hv_hypercall &= ~HV_X64_MSR_HYPERCALL_ENABLE;
1393 break;
1394 case HV_X64_MSR_HYPERCALL: {
1395 u64 gfn;
1396 unsigned long addr;
1397 u8 instructions[4];
1399 /* if guest os id is not set hypercall should remain disabled */
1400 if (!kvm->arch.hv_guest_os_id)
1401 break;
1402 if (!(data & HV_X64_MSR_HYPERCALL_ENABLE)) {
1403 kvm->arch.hv_hypercall = data;
1404 break;
1406 gfn = data >> HV_X64_MSR_HYPERCALL_PAGE_ADDRESS_SHIFT;
1407 addr = gfn_to_hva(kvm, gfn);
1408 if (kvm_is_error_hva(addr))
1409 return 1;
1410 kvm_x86_ops->patch_hypercall(vcpu, instructions);
1411 ((unsigned char *)instructions)[3] = 0xc3; /* ret */
1412 if (__copy_to_user((void __user *)addr, instructions, 4))
1413 return 1;
1414 kvm->arch.hv_hypercall = data;
1415 break;
1417 default:
1418 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1419 "data 0x%llx\n", msr, data);
1420 return 1;
1422 return 0;
1425 static int set_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1427 switch (msr) {
1428 case HV_X64_MSR_APIC_ASSIST_PAGE: {
1429 unsigned long addr;
1431 if (!(data & HV_X64_MSR_APIC_ASSIST_PAGE_ENABLE)) {
1432 vcpu->arch.hv_vapic = data;
1433 break;
1435 addr = gfn_to_hva(vcpu->kvm, data >>
1436 HV_X64_MSR_APIC_ASSIST_PAGE_ADDRESS_SHIFT);
1437 if (kvm_is_error_hva(addr))
1438 return 1;
1439 if (__clear_user((void __user *)addr, PAGE_SIZE))
1440 return 1;
1441 vcpu->arch.hv_vapic = data;
1442 break;
1444 case HV_X64_MSR_EOI:
1445 return kvm_hv_vapic_msr_write(vcpu, APIC_EOI, data);
1446 case HV_X64_MSR_ICR:
1447 return kvm_hv_vapic_msr_write(vcpu, APIC_ICR, data);
1448 case HV_X64_MSR_TPR:
1449 return kvm_hv_vapic_msr_write(vcpu, APIC_TASKPRI, data);
1450 default:
1451 pr_unimpl(vcpu, "HYPER-V unimplemented wrmsr: 0x%x "
1452 "data 0x%llx\n", msr, data);
1453 return 1;
1456 return 0;
1459 static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
1461 gpa_t gpa = data & ~0x3f;
1463 /* Bits 2:5 are resrved, Should be zero */
1464 if (data & 0x3c)
1465 return 1;
1467 vcpu->arch.apf.msr_val = data;
1469 if (!(data & KVM_ASYNC_PF_ENABLED)) {
1470 kvm_clear_async_pf_completion_queue(vcpu);
1471 kvm_async_pf_hash_reset(vcpu);
1472 return 0;
1475 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa))
1476 return 1;
1478 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
1479 kvm_async_pf_wakeup_all(vcpu);
1480 return 0;
1483 static void kvmclock_reset(struct kvm_vcpu *vcpu)
1485 if (vcpu->arch.time_page) {
1486 kvm_release_page_dirty(vcpu->arch.time_page);
1487 vcpu->arch.time_page = NULL;
1491 static void accumulate_steal_time(struct kvm_vcpu *vcpu)
1493 u64 delta;
1495 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1496 return;
1498 delta = current->sched_info.run_delay - vcpu->arch.st.last_steal;
1499 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1500 vcpu->arch.st.accum_steal = delta;
1503 static void record_steal_time(struct kvm_vcpu *vcpu)
1505 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
1506 return;
1508 if (unlikely(kvm_read_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1509 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time))))
1510 return;
1512 vcpu->arch.st.steal.steal += vcpu->arch.st.accum_steal;
1513 vcpu->arch.st.steal.version += 2;
1514 vcpu->arch.st.accum_steal = 0;
1516 kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.st.stime,
1517 &vcpu->arch.st.steal, sizeof(struct kvm_steal_time));
1520 int kvm_set_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 data)
1522 switch (msr) {
1523 case MSR_EFER:
1524 return set_efer(vcpu, data);
1525 case MSR_K7_HWCR:
1526 data &= ~(u64)0x40; /* ignore flush filter disable */
1527 data &= ~(u64)0x100; /* ignore ignne emulation enable */
1528 if (data != 0) {
1529 pr_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
1530 data);
1531 return 1;
1533 break;
1534 case MSR_FAM10H_MMIO_CONF_BASE:
1535 if (data != 0) {
1536 pr_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
1537 "0x%llx\n", data);
1538 return 1;
1540 break;
1541 case MSR_AMD64_NB_CFG:
1542 break;
1543 case MSR_IA32_DEBUGCTLMSR:
1544 if (!data) {
1545 /* We support the non-activated case already */
1546 break;
1547 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
1548 /* Values other than LBR and BTF are vendor-specific,
1549 thus reserved and should throw a #GP */
1550 return 1;
1552 pr_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
1553 __func__, data);
1554 break;
1555 case MSR_IA32_UCODE_REV:
1556 case MSR_IA32_UCODE_WRITE:
1557 case MSR_VM_HSAVE_PA:
1558 case MSR_AMD64_PATCH_LOADER:
1559 break;
1560 case 0x200 ... 0x2ff:
1561 return set_msr_mtrr(vcpu, msr, data);
1562 case MSR_IA32_APICBASE:
1563 kvm_set_apic_base(vcpu, data);
1564 break;
1565 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1566 return kvm_x2apic_msr_write(vcpu, msr, data);
1567 case MSR_IA32_MISC_ENABLE:
1568 vcpu->arch.ia32_misc_enable_msr = data;
1569 break;
1570 case MSR_KVM_WALL_CLOCK_NEW:
1571 case MSR_KVM_WALL_CLOCK:
1572 vcpu->kvm->arch.wall_clock = data;
1573 kvm_write_wall_clock(vcpu->kvm, data);
1574 break;
1575 case MSR_KVM_SYSTEM_TIME_NEW:
1576 case MSR_KVM_SYSTEM_TIME: {
1577 kvmclock_reset(vcpu);
1579 vcpu->arch.time = data;
1580 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
1582 /* we verify if the enable bit is set... */
1583 if (!(data & 1))
1584 break;
1586 /* ...but clean it before doing the actual write */
1587 vcpu->arch.time_offset = data & ~(PAGE_MASK | 1);
1589 vcpu->arch.time_page =
1590 gfn_to_page(vcpu->kvm, data >> PAGE_SHIFT);
1592 if (is_error_page(vcpu->arch.time_page)) {
1593 kvm_release_page_clean(vcpu->arch.time_page);
1594 vcpu->arch.time_page = NULL;
1596 break;
1598 case MSR_KVM_ASYNC_PF_EN:
1599 if (kvm_pv_enable_async_pf(vcpu, data))
1600 return 1;
1601 break;
1602 case MSR_KVM_STEAL_TIME:
1604 if (unlikely(!sched_info_on()))
1605 return 1;
1607 if (data & KVM_STEAL_RESERVED_MASK)
1608 return 1;
1610 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.st.stime,
1611 data & KVM_STEAL_VALID_BITS))
1612 return 1;
1614 vcpu->arch.st.msr_val = data;
1616 if (!(data & KVM_MSR_ENABLED))
1617 break;
1619 vcpu->arch.st.last_steal = current->sched_info.run_delay;
1621 preempt_disable();
1622 accumulate_steal_time(vcpu);
1623 preempt_enable();
1625 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
1627 break;
1629 case MSR_IA32_MCG_CTL:
1630 case MSR_IA32_MCG_STATUS:
1631 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1632 return set_msr_mce(vcpu, msr, data);
1634 /* Performance counters are not protected by a CPUID bit,
1635 * so we should check all of them in the generic path for the sake of
1636 * cross vendor migration.
1637 * Writing a zero into the event select MSRs disables them,
1638 * which we perfectly emulate ;-). Any other value should be at least
1639 * reported, some guests depend on them.
1641 case MSR_P6_EVNTSEL0:
1642 case MSR_P6_EVNTSEL1:
1643 case MSR_K7_EVNTSEL0:
1644 case MSR_K7_EVNTSEL1:
1645 case MSR_K7_EVNTSEL2:
1646 case MSR_K7_EVNTSEL3:
1647 if (data != 0)
1648 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1649 "0x%x data 0x%llx\n", msr, data);
1650 break;
1651 /* at least RHEL 4 unconditionally writes to the perfctr registers,
1652 * so we ignore writes to make it happy.
1654 case MSR_P6_PERFCTR0:
1655 case MSR_P6_PERFCTR1:
1656 case MSR_K7_PERFCTR0:
1657 case MSR_K7_PERFCTR1:
1658 case MSR_K7_PERFCTR2:
1659 case MSR_K7_PERFCTR3:
1660 pr_unimpl(vcpu, "unimplemented perfctr wrmsr: "
1661 "0x%x data 0x%llx\n", msr, data);
1662 break;
1663 case MSR_K7_CLK_CTL:
1665 * Ignore all writes to this no longer documented MSR.
1666 * Writes are only relevant for old K7 processors,
1667 * all pre-dating SVM, but a recommended workaround from
1668 * AMD for these chips. It is possible to speicify the
1669 * affected processor models on the command line, hence
1670 * the need to ignore the workaround.
1672 break;
1673 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1674 if (kvm_hv_msr_partition_wide(msr)) {
1675 int r;
1676 mutex_lock(&vcpu->kvm->lock);
1677 r = set_msr_hyperv_pw(vcpu, msr, data);
1678 mutex_unlock(&vcpu->kvm->lock);
1679 return r;
1680 } else
1681 return set_msr_hyperv(vcpu, msr, data);
1682 break;
1683 case MSR_IA32_BBL_CR_CTL3:
1684 /* Drop writes to this legacy MSR -- see rdmsr
1685 * counterpart for further detail.
1687 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n", msr, data);
1688 break;
1689 default:
1690 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
1691 return xen_hvm_config(vcpu, data);
1692 if (!ignore_msrs) {
1693 pr_unimpl(vcpu, "unhandled wrmsr: 0x%x data %llx\n",
1694 msr, data);
1695 return 1;
1696 } else {
1697 pr_unimpl(vcpu, "ignored wrmsr: 0x%x data %llx\n",
1698 msr, data);
1699 break;
1702 return 0;
1704 EXPORT_SYMBOL_GPL(kvm_set_msr_common);
1708 * Reads an msr value (of 'msr_index') into 'pdata'.
1709 * Returns 0 on success, non-0 otherwise.
1710 * Assumes vcpu_load() was already called.
1712 int kvm_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1714 return kvm_x86_ops->get_msr(vcpu, msr_index, pdata);
1717 static int get_msr_mtrr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1719 u64 *p = (u64 *)&vcpu->arch.mtrr_state.fixed_ranges;
1721 if (!msr_mtrr_valid(msr))
1722 return 1;
1724 if (msr == MSR_MTRRdefType)
1725 *pdata = vcpu->arch.mtrr_state.def_type +
1726 (vcpu->arch.mtrr_state.enabled << 10);
1727 else if (msr == MSR_MTRRfix64K_00000)
1728 *pdata = p[0];
1729 else if (msr == MSR_MTRRfix16K_80000 || msr == MSR_MTRRfix16K_A0000)
1730 *pdata = p[1 + msr - MSR_MTRRfix16K_80000];
1731 else if (msr >= MSR_MTRRfix4K_C0000 && msr <= MSR_MTRRfix4K_F8000)
1732 *pdata = p[3 + msr - MSR_MTRRfix4K_C0000];
1733 else if (msr == MSR_IA32_CR_PAT)
1734 *pdata = vcpu->arch.pat;
1735 else { /* Variable MTRRs */
1736 int idx, is_mtrr_mask;
1737 u64 *pt;
1739 idx = (msr - 0x200) / 2;
1740 is_mtrr_mask = msr - 0x200 - 2 * idx;
1741 if (!is_mtrr_mask)
1742 pt =
1743 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].base_lo;
1744 else
1745 pt =
1746 (u64 *)&vcpu->arch.mtrr_state.var_ranges[idx].mask_lo;
1747 *pdata = *pt;
1750 return 0;
1753 static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1755 u64 data;
1756 u64 mcg_cap = vcpu->arch.mcg_cap;
1757 unsigned bank_num = mcg_cap & 0xff;
1759 switch (msr) {
1760 case MSR_IA32_P5_MC_ADDR:
1761 case MSR_IA32_P5_MC_TYPE:
1762 data = 0;
1763 break;
1764 case MSR_IA32_MCG_CAP:
1765 data = vcpu->arch.mcg_cap;
1766 break;
1767 case MSR_IA32_MCG_CTL:
1768 if (!(mcg_cap & MCG_CTL_P))
1769 return 1;
1770 data = vcpu->arch.mcg_ctl;
1771 break;
1772 case MSR_IA32_MCG_STATUS:
1773 data = vcpu->arch.mcg_status;
1774 break;
1775 default:
1776 if (msr >= MSR_IA32_MC0_CTL &&
1777 msr < MSR_IA32_MC0_CTL + 4 * bank_num) {
1778 u32 offset = msr - MSR_IA32_MC0_CTL;
1779 data = vcpu->arch.mce_banks[offset];
1780 break;
1782 return 1;
1784 *pdata = data;
1785 return 0;
1788 static int get_msr_hyperv_pw(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1790 u64 data = 0;
1791 struct kvm *kvm = vcpu->kvm;
1793 switch (msr) {
1794 case HV_X64_MSR_GUEST_OS_ID:
1795 data = kvm->arch.hv_guest_os_id;
1796 break;
1797 case HV_X64_MSR_HYPERCALL:
1798 data = kvm->arch.hv_hypercall;
1799 break;
1800 default:
1801 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1802 return 1;
1805 *pdata = data;
1806 return 0;
1809 static int get_msr_hyperv(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1811 u64 data = 0;
1813 switch (msr) {
1814 case HV_X64_MSR_VP_INDEX: {
1815 int r;
1816 struct kvm_vcpu *v;
1817 kvm_for_each_vcpu(r, v, vcpu->kvm)
1818 if (v == vcpu)
1819 data = r;
1820 break;
1822 case HV_X64_MSR_EOI:
1823 return kvm_hv_vapic_msr_read(vcpu, APIC_EOI, pdata);
1824 case HV_X64_MSR_ICR:
1825 return kvm_hv_vapic_msr_read(vcpu, APIC_ICR, pdata);
1826 case HV_X64_MSR_TPR:
1827 return kvm_hv_vapic_msr_read(vcpu, APIC_TASKPRI, pdata);
1828 default:
1829 pr_unimpl(vcpu, "Hyper-V unhandled rdmsr: 0x%x\n", msr);
1830 return 1;
1832 *pdata = data;
1833 return 0;
1836 int kvm_get_msr_common(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
1838 u64 data;
1840 switch (msr) {
1841 case MSR_IA32_PLATFORM_ID:
1842 case MSR_IA32_UCODE_REV:
1843 case MSR_IA32_EBL_CR_POWERON:
1844 case MSR_IA32_DEBUGCTLMSR:
1845 case MSR_IA32_LASTBRANCHFROMIP:
1846 case MSR_IA32_LASTBRANCHTOIP:
1847 case MSR_IA32_LASTINTFROMIP:
1848 case MSR_IA32_LASTINTTOIP:
1849 case MSR_K8_SYSCFG:
1850 case MSR_K7_HWCR:
1851 case MSR_VM_HSAVE_PA:
1852 case MSR_P6_PERFCTR0:
1853 case MSR_P6_PERFCTR1:
1854 case MSR_P6_EVNTSEL0:
1855 case MSR_P6_EVNTSEL1:
1856 case MSR_K7_EVNTSEL0:
1857 case MSR_K7_PERFCTR0:
1858 case MSR_K8_INT_PENDING_MSG:
1859 case MSR_AMD64_NB_CFG:
1860 case MSR_FAM10H_MMIO_CONF_BASE:
1861 data = 0;
1862 break;
1863 case MSR_MTRRcap:
1864 data = 0x500 | KVM_NR_VAR_MTRR;
1865 break;
1866 case 0x200 ... 0x2ff:
1867 return get_msr_mtrr(vcpu, msr, pdata);
1868 case 0xcd: /* fsb frequency */
1869 data = 3;
1870 break;
1872 * MSR_EBC_FREQUENCY_ID
1873 * Conservative value valid for even the basic CPU models.
1874 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
1875 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
1876 * and 266MHz for model 3, or 4. Set Core Clock
1877 * Frequency to System Bus Frequency Ratio to 1 (bits
1878 * 31:24) even though these are only valid for CPU
1879 * models > 2, however guests may end up dividing or
1880 * multiplying by zero otherwise.
1882 case MSR_EBC_FREQUENCY_ID:
1883 data = 1 << 24;
1884 break;
1885 case MSR_IA32_APICBASE:
1886 data = kvm_get_apic_base(vcpu);
1887 break;
1888 case APIC_BASE_MSR ... APIC_BASE_MSR + 0x3ff:
1889 return kvm_x2apic_msr_read(vcpu, msr, pdata);
1890 break;
1891 case MSR_IA32_MISC_ENABLE:
1892 data = vcpu->arch.ia32_misc_enable_msr;
1893 break;
1894 case MSR_IA32_PERF_STATUS:
1895 /* TSC increment by tick */
1896 data = 1000ULL;
1897 /* CPU multiplier */
1898 data |= (((uint64_t)4ULL) << 40);
1899 break;
1900 case MSR_EFER:
1901 data = vcpu->arch.efer;
1902 break;
1903 case MSR_KVM_WALL_CLOCK:
1904 case MSR_KVM_WALL_CLOCK_NEW:
1905 data = vcpu->kvm->arch.wall_clock;
1906 break;
1907 case MSR_KVM_SYSTEM_TIME:
1908 case MSR_KVM_SYSTEM_TIME_NEW:
1909 data = vcpu->arch.time;
1910 break;
1911 case MSR_KVM_ASYNC_PF_EN:
1912 data = vcpu->arch.apf.msr_val;
1913 break;
1914 case MSR_KVM_STEAL_TIME:
1915 data = vcpu->arch.st.msr_val;
1916 break;
1917 case MSR_IA32_P5_MC_ADDR:
1918 case MSR_IA32_P5_MC_TYPE:
1919 case MSR_IA32_MCG_CAP:
1920 case MSR_IA32_MCG_CTL:
1921 case MSR_IA32_MCG_STATUS:
1922 case MSR_IA32_MC0_CTL ... MSR_IA32_MC0_CTL + 4 * KVM_MAX_MCE_BANKS - 1:
1923 return get_msr_mce(vcpu, msr, pdata);
1924 case MSR_K7_CLK_CTL:
1926 * Provide expected ramp-up count for K7. All other
1927 * are set to zero, indicating minimum divisors for
1928 * every field.
1930 * This prevents guest kernels on AMD host with CPU
1931 * type 6, model 8 and higher from exploding due to
1932 * the rdmsr failing.
1934 data = 0x20000000;
1935 break;
1936 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
1937 if (kvm_hv_msr_partition_wide(msr)) {
1938 int r;
1939 mutex_lock(&vcpu->kvm->lock);
1940 r = get_msr_hyperv_pw(vcpu, msr, pdata);
1941 mutex_unlock(&vcpu->kvm->lock);
1942 return r;
1943 } else
1944 return get_msr_hyperv(vcpu, msr, pdata);
1945 break;
1946 case MSR_IA32_BBL_CR_CTL3:
1947 /* This legacy MSR exists but isn't fully documented in current
1948 * silicon. It is however accessed by winxp in very narrow
1949 * scenarios where it sets bit #19, itself documented as
1950 * a "reserved" bit. Best effort attempt to source coherent
1951 * read data here should the balance of the register be
1952 * interpreted by the guest:
1954 * L2 cache control register 3: 64GB range, 256KB size,
1955 * enabled, latency 0x1, configured
1957 data = 0xbe702111;
1958 break;
1959 default:
1960 if (!ignore_msrs) {
1961 pr_unimpl(vcpu, "unhandled rdmsr: 0x%x\n", msr);
1962 return 1;
1963 } else {
1964 pr_unimpl(vcpu, "ignored rdmsr: 0x%x\n", msr);
1965 data = 0;
1967 break;
1969 *pdata = data;
1970 return 0;
1972 EXPORT_SYMBOL_GPL(kvm_get_msr_common);
1975 * Read or write a bunch of msrs. All parameters are kernel addresses.
1977 * @return number of msrs set successfully.
1979 static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
1980 struct kvm_msr_entry *entries,
1981 int (*do_msr)(struct kvm_vcpu *vcpu,
1982 unsigned index, u64 *data))
1984 int i, idx;
1986 idx = srcu_read_lock(&vcpu->kvm->srcu);
1987 for (i = 0; i < msrs->nmsrs; ++i)
1988 if (do_msr(vcpu, entries[i].index, &entries[i].data))
1989 break;
1990 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1992 return i;
1996 * Read or write a bunch of msrs. Parameters are user addresses.
1998 * @return number of msrs set successfully.
2000 static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
2001 int (*do_msr)(struct kvm_vcpu *vcpu,
2002 unsigned index, u64 *data),
2003 int writeback)
2005 struct kvm_msrs msrs;
2006 struct kvm_msr_entry *entries;
2007 int r, n;
2008 unsigned size;
2010 r = -EFAULT;
2011 if (copy_from_user(&msrs, user_msrs, sizeof msrs))
2012 goto out;
2014 r = -E2BIG;
2015 if (msrs.nmsrs >= MAX_IO_MSRS)
2016 goto out;
2018 r = -ENOMEM;
2019 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
2020 entries = kmalloc(size, GFP_KERNEL);
2021 if (!entries)
2022 goto out;
2024 r = -EFAULT;
2025 if (copy_from_user(entries, user_msrs->entries, size))
2026 goto out_free;
2028 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
2029 if (r < 0)
2030 goto out_free;
2032 r = -EFAULT;
2033 if (writeback && copy_to_user(user_msrs->entries, entries, size))
2034 goto out_free;
2036 r = n;
2038 out_free:
2039 kfree(entries);
2040 out:
2041 return r;
2044 int kvm_dev_ioctl_check_extension(long ext)
2046 int r;
2048 switch (ext) {
2049 case KVM_CAP_IRQCHIP:
2050 case KVM_CAP_HLT:
2051 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
2052 case KVM_CAP_SET_TSS_ADDR:
2053 case KVM_CAP_EXT_CPUID:
2054 case KVM_CAP_CLOCKSOURCE:
2055 case KVM_CAP_PIT:
2056 case KVM_CAP_NOP_IO_DELAY:
2057 case KVM_CAP_MP_STATE:
2058 case KVM_CAP_SYNC_MMU:
2059 case KVM_CAP_USER_NMI:
2060 case KVM_CAP_REINJECT_CONTROL:
2061 case KVM_CAP_IRQ_INJECT_STATUS:
2062 case KVM_CAP_ASSIGN_DEV_IRQ:
2063 case KVM_CAP_IRQFD:
2064 case KVM_CAP_IOEVENTFD:
2065 case KVM_CAP_PIT2:
2066 case KVM_CAP_PIT_STATE2:
2067 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
2068 case KVM_CAP_XEN_HVM:
2069 case KVM_CAP_ADJUST_CLOCK:
2070 case KVM_CAP_VCPU_EVENTS:
2071 case KVM_CAP_HYPERV:
2072 case KVM_CAP_HYPERV_VAPIC:
2073 case KVM_CAP_HYPERV_SPIN:
2074 case KVM_CAP_PCI_SEGMENT:
2075 case KVM_CAP_DEBUGREGS:
2076 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2077 case KVM_CAP_XSAVE:
2078 case KVM_CAP_ASYNC_PF:
2079 case KVM_CAP_GET_TSC_KHZ:
2080 r = 1;
2081 break;
2082 case KVM_CAP_COALESCED_MMIO:
2083 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
2084 break;
2085 case KVM_CAP_VAPIC:
2086 r = !kvm_x86_ops->cpu_has_accelerated_tpr();
2087 break;
2088 case KVM_CAP_NR_VCPUS:
2089 r = KVM_MAX_VCPUS;
2090 break;
2091 case KVM_CAP_NR_MEMSLOTS:
2092 r = KVM_MEMORY_SLOTS;
2093 break;
2094 case KVM_CAP_PV_MMU: /* obsolete */
2095 r = 0;
2096 break;
2097 case KVM_CAP_IOMMU:
2098 r = iommu_found();
2099 break;
2100 case KVM_CAP_MCE:
2101 r = KVM_MAX_MCE_BANKS;
2102 break;
2103 case KVM_CAP_XCRS:
2104 r = cpu_has_xsave;
2105 break;
2106 case KVM_CAP_TSC_CONTROL:
2107 r = kvm_has_tsc_control;
2108 break;
2109 default:
2110 r = 0;
2111 break;
2113 return r;
2117 long kvm_arch_dev_ioctl(struct file *filp,
2118 unsigned int ioctl, unsigned long arg)
2120 void __user *argp = (void __user *)arg;
2121 long r;
2123 switch (ioctl) {
2124 case KVM_GET_MSR_INDEX_LIST: {
2125 struct kvm_msr_list __user *user_msr_list = argp;
2126 struct kvm_msr_list msr_list;
2127 unsigned n;
2129 r = -EFAULT;
2130 if (copy_from_user(&msr_list, user_msr_list, sizeof msr_list))
2131 goto out;
2132 n = msr_list.nmsrs;
2133 msr_list.nmsrs = num_msrs_to_save + ARRAY_SIZE(emulated_msrs);
2134 if (copy_to_user(user_msr_list, &msr_list, sizeof msr_list))
2135 goto out;
2136 r = -E2BIG;
2137 if (n < msr_list.nmsrs)
2138 goto out;
2139 r = -EFAULT;
2140 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
2141 num_msrs_to_save * sizeof(u32)))
2142 goto out;
2143 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
2144 &emulated_msrs,
2145 ARRAY_SIZE(emulated_msrs) * sizeof(u32)))
2146 goto out;
2147 r = 0;
2148 break;
2150 case KVM_GET_SUPPORTED_CPUID: {
2151 struct kvm_cpuid2 __user *cpuid_arg = argp;
2152 struct kvm_cpuid2 cpuid;
2154 r = -EFAULT;
2155 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
2156 goto out;
2157 r = kvm_dev_ioctl_get_supported_cpuid(&cpuid,
2158 cpuid_arg->entries);
2159 if (r)
2160 goto out;
2162 r = -EFAULT;
2163 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
2164 goto out;
2165 r = 0;
2166 break;
2168 case KVM_X86_GET_MCE_CAP_SUPPORTED: {
2169 u64 mce_cap;
2171 mce_cap = KVM_MCE_CAP_SUPPORTED;
2172 r = -EFAULT;
2173 if (copy_to_user(argp, &mce_cap, sizeof mce_cap))
2174 goto out;
2175 r = 0;
2176 break;
2178 default:
2179 r = -EINVAL;
2181 out:
2182 return r;
2185 static void wbinvd_ipi(void *garbage)
2187 wbinvd();
2190 static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
2192 return vcpu->kvm->arch.iommu_domain &&
2193 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY);
2196 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2198 /* Address WBINVD may be executed by guest */
2199 if (need_emulate_wbinvd(vcpu)) {
2200 if (kvm_x86_ops->has_wbinvd_exit())
2201 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
2202 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
2203 smp_call_function_single(vcpu->cpu,
2204 wbinvd_ipi, NULL, 1);
2207 kvm_x86_ops->vcpu_load(vcpu, cpu);
2208 if (unlikely(vcpu->cpu != cpu) || check_tsc_unstable()) {
2209 /* Make sure TSC doesn't go backwards */
2210 s64 tsc_delta;
2211 u64 tsc;
2213 kvm_get_msr(vcpu, MSR_IA32_TSC, &tsc);
2214 tsc_delta = !vcpu->arch.last_guest_tsc ? 0 :
2215 tsc - vcpu->arch.last_guest_tsc;
2217 if (tsc_delta < 0)
2218 mark_tsc_unstable("KVM discovered backwards TSC");
2219 if (check_tsc_unstable()) {
2220 kvm_x86_ops->adjust_tsc_offset(vcpu, -tsc_delta);
2221 vcpu->arch.tsc_catchup = 1;
2223 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2224 if (vcpu->cpu != cpu)
2225 kvm_migrate_timers(vcpu);
2226 vcpu->cpu = cpu;
2229 accumulate_steal_time(vcpu);
2230 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
2233 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2235 kvm_x86_ops->vcpu_put(vcpu);
2236 kvm_put_guest_fpu(vcpu);
2237 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
2240 static int is_efer_nx(void)
2242 unsigned long long efer = 0;
2244 rdmsrl_safe(MSR_EFER, &efer);
2245 return efer & EFER_NX;
2248 static void cpuid_fix_nx_cap(struct kvm_vcpu *vcpu)
2250 int i;
2251 struct kvm_cpuid_entry2 *e, *entry;
2253 entry = NULL;
2254 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
2255 e = &vcpu->arch.cpuid_entries[i];
2256 if (e->function == 0x80000001) {
2257 entry = e;
2258 break;
2261 if (entry && (entry->edx & (1 << 20)) && !is_efer_nx()) {
2262 entry->edx &= ~(1 << 20);
2263 printk(KERN_INFO "kvm: guest NX capability removed\n");
2267 /* when an old userspace process fills a new kernel module */
2268 static int kvm_vcpu_ioctl_set_cpuid(struct kvm_vcpu *vcpu,
2269 struct kvm_cpuid *cpuid,
2270 struct kvm_cpuid_entry __user *entries)
2272 int r, i;
2273 struct kvm_cpuid_entry *cpuid_entries;
2275 r = -E2BIG;
2276 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2277 goto out;
2278 r = -ENOMEM;
2279 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry) * cpuid->nent);
2280 if (!cpuid_entries)
2281 goto out;
2282 r = -EFAULT;
2283 if (copy_from_user(cpuid_entries, entries,
2284 cpuid->nent * sizeof(struct kvm_cpuid_entry)))
2285 goto out_free;
2286 for (i = 0; i < cpuid->nent; i++) {
2287 vcpu->arch.cpuid_entries[i].function = cpuid_entries[i].function;
2288 vcpu->arch.cpuid_entries[i].eax = cpuid_entries[i].eax;
2289 vcpu->arch.cpuid_entries[i].ebx = cpuid_entries[i].ebx;
2290 vcpu->arch.cpuid_entries[i].ecx = cpuid_entries[i].ecx;
2291 vcpu->arch.cpuid_entries[i].edx = cpuid_entries[i].edx;
2292 vcpu->arch.cpuid_entries[i].index = 0;
2293 vcpu->arch.cpuid_entries[i].flags = 0;
2294 vcpu->arch.cpuid_entries[i].padding[0] = 0;
2295 vcpu->arch.cpuid_entries[i].padding[1] = 0;
2296 vcpu->arch.cpuid_entries[i].padding[2] = 0;
2298 vcpu->arch.cpuid_nent = cpuid->nent;
2299 cpuid_fix_nx_cap(vcpu);
2300 r = 0;
2301 kvm_apic_set_version(vcpu);
2302 kvm_x86_ops->cpuid_update(vcpu);
2303 update_cpuid(vcpu);
2305 out_free:
2306 vfree(cpuid_entries);
2307 out:
2308 return r;
2311 static int kvm_vcpu_ioctl_set_cpuid2(struct kvm_vcpu *vcpu,
2312 struct kvm_cpuid2 *cpuid,
2313 struct kvm_cpuid_entry2 __user *entries)
2315 int r;
2317 r = -E2BIG;
2318 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2319 goto out;
2320 r = -EFAULT;
2321 if (copy_from_user(&vcpu->arch.cpuid_entries, entries,
2322 cpuid->nent * sizeof(struct kvm_cpuid_entry2)))
2323 goto out;
2324 vcpu->arch.cpuid_nent = cpuid->nent;
2325 kvm_apic_set_version(vcpu);
2326 kvm_x86_ops->cpuid_update(vcpu);
2327 update_cpuid(vcpu);
2328 return 0;
2330 out:
2331 return r;
2334 static int kvm_vcpu_ioctl_get_cpuid2(struct kvm_vcpu *vcpu,
2335 struct kvm_cpuid2 *cpuid,
2336 struct kvm_cpuid_entry2 __user *entries)
2338 int r;
2340 r = -E2BIG;
2341 if (cpuid->nent < vcpu->arch.cpuid_nent)
2342 goto out;
2343 r = -EFAULT;
2344 if (copy_to_user(entries, &vcpu->arch.cpuid_entries,
2345 vcpu->arch.cpuid_nent * sizeof(struct kvm_cpuid_entry2)))
2346 goto out;
2347 return 0;
2349 out:
2350 cpuid->nent = vcpu->arch.cpuid_nent;
2351 return r;
2354 static void cpuid_mask(u32 *word, int wordnum)
2356 *word &= boot_cpu_data.x86_capability[wordnum];
2359 static void do_cpuid_1_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2360 u32 index)
2362 entry->function = function;
2363 entry->index = index;
2364 cpuid_count(entry->function, entry->index,
2365 &entry->eax, &entry->ebx, &entry->ecx, &entry->edx);
2366 entry->flags = 0;
2369 static bool supported_xcr0_bit(unsigned bit)
2371 u64 mask = ((u64)1 << bit);
2373 return mask & (XSTATE_FP | XSTATE_SSE | XSTATE_YMM) & host_xcr0;
2376 #define F(x) bit(X86_FEATURE_##x)
2378 static void do_cpuid_ent(struct kvm_cpuid_entry2 *entry, u32 function,
2379 u32 index, int *nent, int maxnent)
2381 unsigned f_nx = is_efer_nx() ? F(NX) : 0;
2382 #ifdef CONFIG_X86_64
2383 unsigned f_gbpages = (kvm_x86_ops->get_lpage_level() == PT_PDPE_LEVEL)
2384 ? F(GBPAGES) : 0;
2385 unsigned f_lm = F(LM);
2386 #else
2387 unsigned f_gbpages = 0;
2388 unsigned f_lm = 0;
2389 #endif
2390 unsigned f_rdtscp = kvm_x86_ops->rdtscp_supported() ? F(RDTSCP) : 0;
2392 /* cpuid 1.edx */
2393 const u32 kvm_supported_word0_x86_features =
2394 F(FPU) | F(VME) | F(DE) | F(PSE) |
2395 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2396 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SEP) |
2397 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2398 F(PAT) | F(PSE36) | 0 /* PSN */ | F(CLFLSH) |
2399 0 /* Reserved, DS, ACPI */ | F(MMX) |
2400 F(FXSR) | F(XMM) | F(XMM2) | F(SELFSNOOP) |
2401 0 /* HTT, TM, Reserved, PBE */;
2402 /* cpuid 0x80000001.edx */
2403 const u32 kvm_supported_word1_x86_features =
2404 F(FPU) | F(VME) | F(DE) | F(PSE) |
2405 F(TSC) | F(MSR) | F(PAE) | F(MCE) |
2406 F(CX8) | F(APIC) | 0 /* Reserved */ | F(SYSCALL) |
2407 F(MTRR) | F(PGE) | F(MCA) | F(CMOV) |
2408 F(PAT) | F(PSE36) | 0 /* Reserved */ |
2409 f_nx | 0 /* Reserved */ | F(MMXEXT) | F(MMX) |
2410 F(FXSR) | F(FXSR_OPT) | f_gbpages | f_rdtscp |
2411 0 /* Reserved */ | f_lm | F(3DNOWEXT) | F(3DNOW);
2412 /* cpuid 1.ecx */
2413 const u32 kvm_supported_word4_x86_features =
2414 F(XMM3) | F(PCLMULQDQ) | 0 /* DTES64, MONITOR */ |
2415 0 /* DS-CPL, VMX, SMX, EST */ |
2416 0 /* TM2 */ | F(SSSE3) | 0 /* CNXT-ID */ | 0 /* Reserved */ |
2417 0 /* Reserved */ | F(CX16) | 0 /* xTPR Update, PDCM */ |
2418 0 /* Reserved, DCA */ | F(XMM4_1) |
2419 F(XMM4_2) | F(X2APIC) | F(MOVBE) | F(POPCNT) |
2420 0 /* Reserved*/ | F(AES) | F(XSAVE) | 0 /* OSXSAVE */ | F(AVX) |
2421 F(F16C) | F(RDRAND);
2422 /* cpuid 0x80000001.ecx */
2423 const u32 kvm_supported_word6_x86_features =
2424 F(LAHF_LM) | F(CMP_LEGACY) | 0 /*SVM*/ | 0 /* ExtApicSpace */ |
2425 F(CR8_LEGACY) | F(ABM) | F(SSE4A) | F(MISALIGNSSE) |
2426 F(3DNOWPREFETCH) | 0 /* OSVW */ | 0 /* IBS */ | F(XOP) |
2427 0 /* SKINIT, WDT, LWP */ | F(FMA4) | F(TBM);
2429 /* cpuid 0xC0000001.edx */
2430 const u32 kvm_supported_word5_x86_features =
2431 F(XSTORE) | F(XSTORE_EN) | F(XCRYPT) | F(XCRYPT_EN) |
2432 F(ACE2) | F(ACE2_EN) | F(PHE) | F(PHE_EN) |
2433 F(PMM) | F(PMM_EN);
2435 /* cpuid 7.0.ebx */
2436 const u32 kvm_supported_word9_x86_features =
2437 F(SMEP) | F(FSGSBASE) | F(ERMS);
2439 /* all calls to cpuid_count() should be made on the same cpu */
2440 get_cpu();
2441 do_cpuid_1_ent(entry, function, index);
2442 ++*nent;
2444 switch (function) {
2445 case 0:
2446 entry->eax = min(entry->eax, (u32)0xd);
2447 break;
2448 case 1:
2449 entry->edx &= kvm_supported_word0_x86_features;
2450 cpuid_mask(&entry->edx, 0);
2451 entry->ecx &= kvm_supported_word4_x86_features;
2452 cpuid_mask(&entry->ecx, 4);
2453 /* we support x2apic emulation even if host does not support
2454 * it since we emulate x2apic in software */
2455 entry->ecx |= F(X2APIC);
2456 break;
2457 /* function 2 entries are STATEFUL. That is, repeated cpuid commands
2458 * may return different values. This forces us to get_cpu() before
2459 * issuing the first command, and also to emulate this annoying behavior
2460 * in kvm_emulate_cpuid() using KVM_CPUID_FLAG_STATE_READ_NEXT */
2461 case 2: {
2462 int t, times = entry->eax & 0xff;
2464 entry->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2465 entry->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
2466 for (t = 1; t < times && *nent < maxnent; ++t) {
2467 do_cpuid_1_ent(&entry[t], function, 0);
2468 entry[t].flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
2469 ++*nent;
2471 break;
2473 /* function 4 has additional index. */
2474 case 4: {
2475 int i, cache_type;
2477 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2478 /* read more entries until cache_type is zero */
2479 for (i = 1; *nent < maxnent; ++i) {
2480 cache_type = entry[i - 1].eax & 0x1f;
2481 if (!cache_type)
2482 break;
2483 do_cpuid_1_ent(&entry[i], function, i);
2484 entry[i].flags |=
2485 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2486 ++*nent;
2488 break;
2490 case 7: {
2491 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2492 /* Mask ebx against host capbability word 9 */
2493 if (index == 0) {
2494 entry->ebx &= kvm_supported_word9_x86_features;
2495 cpuid_mask(&entry->ebx, 9);
2496 } else
2497 entry->ebx = 0;
2498 entry->eax = 0;
2499 entry->ecx = 0;
2500 entry->edx = 0;
2501 break;
2503 case 9:
2504 break;
2505 /* function 0xb has additional index. */
2506 case 0xb: {
2507 int i, level_type;
2509 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2510 /* read more entries until level_type is zero */
2511 for (i = 1; *nent < maxnent; ++i) {
2512 level_type = entry[i - 1].ecx & 0xff00;
2513 if (!level_type)
2514 break;
2515 do_cpuid_1_ent(&entry[i], function, i);
2516 entry[i].flags |=
2517 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2518 ++*nent;
2520 break;
2522 case 0xd: {
2523 int idx, i;
2525 entry->flags |= KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2526 for (idx = 1, i = 1; *nent < maxnent && idx < 64; ++idx) {
2527 do_cpuid_1_ent(&entry[i], function, idx);
2528 if (entry[i].eax == 0 || !supported_xcr0_bit(idx))
2529 continue;
2530 entry[i].flags |=
2531 KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
2532 ++*nent;
2533 ++i;
2535 break;
2537 case KVM_CPUID_SIGNATURE: {
2538 char signature[12] = "KVMKVMKVM\0\0";
2539 u32 *sigptr = (u32 *)signature;
2540 entry->eax = 0;
2541 entry->ebx = sigptr[0];
2542 entry->ecx = sigptr[1];
2543 entry->edx = sigptr[2];
2544 break;
2546 case KVM_CPUID_FEATURES:
2547 entry->eax = (1 << KVM_FEATURE_CLOCKSOURCE) |
2548 (1 << KVM_FEATURE_NOP_IO_DELAY) |
2549 (1 << KVM_FEATURE_CLOCKSOURCE2) |
2550 (1 << KVM_FEATURE_ASYNC_PF) |
2551 (1 << KVM_FEATURE_CLOCKSOURCE_STABLE_BIT);
2553 if (sched_info_on())
2554 entry->eax |= (1 << KVM_FEATURE_STEAL_TIME);
2556 entry->ebx = 0;
2557 entry->ecx = 0;
2558 entry->edx = 0;
2559 break;
2560 case 0x80000000:
2561 entry->eax = min(entry->eax, 0x8000001a);
2562 break;
2563 case 0x80000001:
2564 entry->edx &= kvm_supported_word1_x86_features;
2565 cpuid_mask(&entry->edx, 1);
2566 entry->ecx &= kvm_supported_word6_x86_features;
2567 cpuid_mask(&entry->ecx, 6);
2568 break;
2569 case 0x80000008: {
2570 unsigned g_phys_as = (entry->eax >> 16) & 0xff;
2571 unsigned virt_as = max((entry->eax >> 8) & 0xff, 48U);
2572 unsigned phys_as = entry->eax & 0xff;
2574 if (!g_phys_as)
2575 g_phys_as = phys_as;
2576 entry->eax = g_phys_as | (virt_as << 8);
2577 entry->ebx = entry->edx = 0;
2578 break;
2580 case 0x80000019:
2581 entry->ecx = entry->edx = 0;
2582 break;
2583 case 0x8000001a:
2584 break;
2585 case 0x8000001d:
2586 break;
2587 /*Add support for Centaur's CPUID instruction*/
2588 case 0xC0000000:
2589 /*Just support up to 0xC0000004 now*/
2590 entry->eax = min(entry->eax, 0xC0000004);
2591 break;
2592 case 0xC0000001:
2593 entry->edx &= kvm_supported_word5_x86_features;
2594 cpuid_mask(&entry->edx, 5);
2595 break;
2596 case 3: /* Processor serial number */
2597 case 5: /* MONITOR/MWAIT */
2598 case 6: /* Thermal management */
2599 case 0xA: /* Architectural Performance Monitoring */
2600 case 0x80000007: /* Advanced power management */
2601 case 0xC0000002:
2602 case 0xC0000003:
2603 case 0xC0000004:
2604 default:
2605 entry->eax = entry->ebx = entry->ecx = entry->edx = 0;
2606 break;
2609 kvm_x86_ops->set_supported_cpuid(function, entry);
2611 put_cpu();
2614 #undef F
2616 static int kvm_dev_ioctl_get_supported_cpuid(struct kvm_cpuid2 *cpuid,
2617 struct kvm_cpuid_entry2 __user *entries)
2619 struct kvm_cpuid_entry2 *cpuid_entries;
2620 int limit, nent = 0, r = -E2BIG;
2621 u32 func;
2623 if (cpuid->nent < 1)
2624 goto out;
2625 if (cpuid->nent > KVM_MAX_CPUID_ENTRIES)
2626 cpuid->nent = KVM_MAX_CPUID_ENTRIES;
2627 r = -ENOMEM;
2628 cpuid_entries = vmalloc(sizeof(struct kvm_cpuid_entry2) * cpuid->nent);
2629 if (!cpuid_entries)
2630 goto out;
2632 do_cpuid_ent(&cpuid_entries[0], 0, 0, &nent, cpuid->nent);
2633 limit = cpuid_entries[0].eax;
2634 for (func = 1; func <= limit && nent < cpuid->nent; ++func)
2635 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2636 &nent, cpuid->nent);
2637 r = -E2BIG;
2638 if (nent >= cpuid->nent)
2639 goto out_free;
2641 do_cpuid_ent(&cpuid_entries[nent], 0x80000000, 0, &nent, cpuid->nent);
2642 limit = cpuid_entries[nent - 1].eax;
2643 for (func = 0x80000001; func <= limit && nent < cpuid->nent; ++func)
2644 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2645 &nent, cpuid->nent);
2649 r = -E2BIG;
2650 if (nent >= cpuid->nent)
2651 goto out_free;
2653 /* Add support for Centaur's CPUID instruction. */
2654 if (boot_cpu_data.x86_vendor == X86_VENDOR_CENTAUR) {
2655 do_cpuid_ent(&cpuid_entries[nent], 0xC0000000, 0,
2656 &nent, cpuid->nent);
2658 r = -E2BIG;
2659 if (nent >= cpuid->nent)
2660 goto out_free;
2662 limit = cpuid_entries[nent - 1].eax;
2663 for (func = 0xC0000001;
2664 func <= limit && nent < cpuid->nent; ++func)
2665 do_cpuid_ent(&cpuid_entries[nent], func, 0,
2666 &nent, cpuid->nent);
2668 r = -E2BIG;
2669 if (nent >= cpuid->nent)
2670 goto out_free;
2673 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_SIGNATURE, 0, &nent,
2674 cpuid->nent);
2676 r = -E2BIG;
2677 if (nent >= cpuid->nent)
2678 goto out_free;
2680 do_cpuid_ent(&cpuid_entries[nent], KVM_CPUID_FEATURES, 0, &nent,
2681 cpuid->nent);
2683 r = -E2BIG;
2684 if (nent >= cpuid->nent)
2685 goto out_free;
2687 r = -EFAULT;
2688 if (copy_to_user(entries, cpuid_entries,
2689 nent * sizeof(struct kvm_cpuid_entry2)))
2690 goto out_free;
2691 cpuid->nent = nent;
2692 r = 0;
2694 out_free:
2695 vfree(cpuid_entries);
2696 out:
2697 return r;
2700 static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
2701 struct kvm_lapic_state *s)
2703 memcpy(s->regs, vcpu->arch.apic->regs, sizeof *s);
2705 return 0;
2708 static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
2709 struct kvm_lapic_state *s)
2711 memcpy(vcpu->arch.apic->regs, s->regs, sizeof *s);
2712 kvm_apic_post_state_restore(vcpu);
2713 update_cr8_intercept(vcpu);
2715 return 0;
2718 static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
2719 struct kvm_interrupt *irq)
2721 if (irq->irq < 0 || irq->irq >= 256)
2722 return -EINVAL;
2723 if (irqchip_in_kernel(vcpu->kvm))
2724 return -ENXIO;
2726 kvm_queue_interrupt(vcpu, irq->irq, false);
2727 kvm_make_request(KVM_REQ_EVENT, vcpu);
2729 return 0;
2732 static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
2734 kvm_inject_nmi(vcpu);
2736 return 0;
2739 static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
2740 struct kvm_tpr_access_ctl *tac)
2742 if (tac->flags)
2743 return -EINVAL;
2744 vcpu->arch.tpr_access_reporting = !!tac->enabled;
2745 return 0;
2748 static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
2749 u64 mcg_cap)
2751 int r;
2752 unsigned bank_num = mcg_cap & 0xff, bank;
2754 r = -EINVAL;
2755 if (!bank_num || bank_num >= KVM_MAX_MCE_BANKS)
2756 goto out;
2757 if (mcg_cap & ~(KVM_MCE_CAP_SUPPORTED | 0xff | 0xff0000))
2758 goto out;
2759 r = 0;
2760 vcpu->arch.mcg_cap = mcg_cap;
2761 /* Init IA32_MCG_CTL to all 1s */
2762 if (mcg_cap & MCG_CTL_P)
2763 vcpu->arch.mcg_ctl = ~(u64)0;
2764 /* Init IA32_MCi_CTL to all 1s */
2765 for (bank = 0; bank < bank_num; bank++)
2766 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
2767 out:
2768 return r;
2771 static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
2772 struct kvm_x86_mce *mce)
2774 u64 mcg_cap = vcpu->arch.mcg_cap;
2775 unsigned bank_num = mcg_cap & 0xff;
2776 u64 *banks = vcpu->arch.mce_banks;
2778 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
2779 return -EINVAL;
2781 * if IA32_MCG_CTL is not all 1s, the uncorrected error
2782 * reporting is disabled
2784 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
2785 vcpu->arch.mcg_ctl != ~(u64)0)
2786 return 0;
2787 banks += 4 * mce->bank;
2789 * if IA32_MCi_CTL is not all 1s, the uncorrected error
2790 * reporting is disabled for the bank
2792 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
2793 return 0;
2794 if (mce->status & MCI_STATUS_UC) {
2795 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
2796 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
2797 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
2798 return 0;
2800 if (banks[1] & MCI_STATUS_VAL)
2801 mce->status |= MCI_STATUS_OVER;
2802 banks[2] = mce->addr;
2803 banks[3] = mce->misc;
2804 vcpu->arch.mcg_status = mce->mcg_status;
2805 banks[1] = mce->status;
2806 kvm_queue_exception(vcpu, MC_VECTOR);
2807 } else if (!(banks[1] & MCI_STATUS_VAL)
2808 || !(banks[1] & MCI_STATUS_UC)) {
2809 if (banks[1] & MCI_STATUS_VAL)
2810 mce->status |= MCI_STATUS_OVER;
2811 banks[2] = mce->addr;
2812 banks[3] = mce->misc;
2813 banks[1] = mce->status;
2814 } else
2815 banks[1] |= MCI_STATUS_OVER;
2816 return 0;
2819 static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
2820 struct kvm_vcpu_events *events)
2822 events->exception.injected =
2823 vcpu->arch.exception.pending &&
2824 !kvm_exception_is_soft(vcpu->arch.exception.nr);
2825 events->exception.nr = vcpu->arch.exception.nr;
2826 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
2827 events->exception.pad = 0;
2828 events->exception.error_code = vcpu->arch.exception.error_code;
2830 events->interrupt.injected =
2831 vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft;
2832 events->interrupt.nr = vcpu->arch.interrupt.nr;
2833 events->interrupt.soft = 0;
2834 events->interrupt.shadow =
2835 kvm_x86_ops->get_interrupt_shadow(vcpu,
2836 KVM_X86_SHADOW_INT_MOV_SS | KVM_X86_SHADOW_INT_STI);
2838 events->nmi.injected = vcpu->arch.nmi_injected;
2839 events->nmi.pending = vcpu->arch.nmi_pending;
2840 events->nmi.masked = kvm_x86_ops->get_nmi_mask(vcpu);
2841 events->nmi.pad = 0;
2843 events->sipi_vector = vcpu->arch.sipi_vector;
2845 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
2846 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2847 | KVM_VCPUEVENT_VALID_SHADOW);
2848 memset(&events->reserved, 0, sizeof(events->reserved));
2851 static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
2852 struct kvm_vcpu_events *events)
2854 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
2855 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
2856 | KVM_VCPUEVENT_VALID_SHADOW))
2857 return -EINVAL;
2859 vcpu->arch.exception.pending = events->exception.injected;
2860 vcpu->arch.exception.nr = events->exception.nr;
2861 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
2862 vcpu->arch.exception.error_code = events->exception.error_code;
2864 vcpu->arch.interrupt.pending = events->interrupt.injected;
2865 vcpu->arch.interrupt.nr = events->interrupt.nr;
2866 vcpu->arch.interrupt.soft = events->interrupt.soft;
2867 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
2868 kvm_x86_ops->set_interrupt_shadow(vcpu,
2869 events->interrupt.shadow);
2871 vcpu->arch.nmi_injected = events->nmi.injected;
2872 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
2873 vcpu->arch.nmi_pending = events->nmi.pending;
2874 kvm_x86_ops->set_nmi_mask(vcpu, events->nmi.masked);
2876 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR)
2877 vcpu->arch.sipi_vector = events->sipi_vector;
2879 kvm_make_request(KVM_REQ_EVENT, vcpu);
2881 return 0;
2884 static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
2885 struct kvm_debugregs *dbgregs)
2887 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
2888 dbgregs->dr6 = vcpu->arch.dr6;
2889 dbgregs->dr7 = vcpu->arch.dr7;
2890 dbgregs->flags = 0;
2891 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
2894 static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
2895 struct kvm_debugregs *dbgregs)
2897 if (dbgregs->flags)
2898 return -EINVAL;
2900 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
2901 vcpu->arch.dr6 = dbgregs->dr6;
2902 vcpu->arch.dr7 = dbgregs->dr7;
2904 return 0;
2907 static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
2908 struct kvm_xsave *guest_xsave)
2910 if (cpu_has_xsave)
2911 memcpy(guest_xsave->region,
2912 &vcpu->arch.guest_fpu.state->xsave,
2913 xstate_size);
2914 else {
2915 memcpy(guest_xsave->region,
2916 &vcpu->arch.guest_fpu.state->fxsave,
2917 sizeof(struct i387_fxsave_struct));
2918 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
2919 XSTATE_FPSSE;
2923 static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
2924 struct kvm_xsave *guest_xsave)
2926 u64 xstate_bv =
2927 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
2929 if (cpu_has_xsave)
2930 memcpy(&vcpu->arch.guest_fpu.state->xsave,
2931 guest_xsave->region, xstate_size);
2932 else {
2933 if (xstate_bv & ~XSTATE_FPSSE)
2934 return -EINVAL;
2935 memcpy(&vcpu->arch.guest_fpu.state->fxsave,
2936 guest_xsave->region, sizeof(struct i387_fxsave_struct));
2938 return 0;
2941 static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
2942 struct kvm_xcrs *guest_xcrs)
2944 if (!cpu_has_xsave) {
2945 guest_xcrs->nr_xcrs = 0;
2946 return;
2949 guest_xcrs->nr_xcrs = 1;
2950 guest_xcrs->flags = 0;
2951 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
2952 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
2955 static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
2956 struct kvm_xcrs *guest_xcrs)
2958 int i, r = 0;
2960 if (!cpu_has_xsave)
2961 return -EINVAL;
2963 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
2964 return -EINVAL;
2966 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
2967 /* Only support XCR0 currently */
2968 if (guest_xcrs->xcrs[0].xcr == XCR_XFEATURE_ENABLED_MASK) {
2969 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
2970 guest_xcrs->xcrs[0].value);
2971 break;
2973 if (r)
2974 r = -EINVAL;
2975 return r;
2978 long kvm_arch_vcpu_ioctl(struct file *filp,
2979 unsigned int ioctl, unsigned long arg)
2981 struct kvm_vcpu *vcpu = filp->private_data;
2982 void __user *argp = (void __user *)arg;
2983 int r;
2984 union {
2985 struct kvm_lapic_state *lapic;
2986 struct kvm_xsave *xsave;
2987 struct kvm_xcrs *xcrs;
2988 void *buffer;
2989 } u;
2991 u.buffer = NULL;
2992 switch (ioctl) {
2993 case KVM_GET_LAPIC: {
2994 r = -EINVAL;
2995 if (!vcpu->arch.apic)
2996 goto out;
2997 u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
2999 r = -ENOMEM;
3000 if (!u.lapic)
3001 goto out;
3002 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
3003 if (r)
3004 goto out;
3005 r = -EFAULT;
3006 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
3007 goto out;
3008 r = 0;
3009 break;
3011 case KVM_SET_LAPIC: {
3012 r = -EINVAL;
3013 if (!vcpu->arch.apic)
3014 goto out;
3015 u.lapic = kmalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL);
3016 r = -ENOMEM;
3017 if (!u.lapic)
3018 goto out;
3019 r = -EFAULT;
3020 if (copy_from_user(u.lapic, argp, sizeof(struct kvm_lapic_state)))
3021 goto out;
3022 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
3023 if (r)
3024 goto out;
3025 r = 0;
3026 break;
3028 case KVM_INTERRUPT: {
3029 struct kvm_interrupt irq;
3031 r = -EFAULT;
3032 if (copy_from_user(&irq, argp, sizeof irq))
3033 goto out;
3034 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
3035 if (r)
3036 goto out;
3037 r = 0;
3038 break;
3040 case KVM_NMI: {
3041 r = kvm_vcpu_ioctl_nmi(vcpu);
3042 if (r)
3043 goto out;
3044 r = 0;
3045 break;
3047 case KVM_SET_CPUID: {
3048 struct kvm_cpuid __user *cpuid_arg = argp;
3049 struct kvm_cpuid cpuid;
3051 r = -EFAULT;
3052 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3053 goto out;
3054 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3055 if (r)
3056 goto out;
3057 break;
3059 case KVM_SET_CPUID2: {
3060 struct kvm_cpuid2 __user *cpuid_arg = argp;
3061 struct kvm_cpuid2 cpuid;
3063 r = -EFAULT;
3064 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3065 goto out;
3066 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
3067 cpuid_arg->entries);
3068 if (r)
3069 goto out;
3070 break;
3072 case KVM_GET_CPUID2: {
3073 struct kvm_cpuid2 __user *cpuid_arg = argp;
3074 struct kvm_cpuid2 cpuid;
3076 r = -EFAULT;
3077 if (copy_from_user(&cpuid, cpuid_arg, sizeof cpuid))
3078 goto out;
3079 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
3080 cpuid_arg->entries);
3081 if (r)
3082 goto out;
3083 r = -EFAULT;
3084 if (copy_to_user(cpuid_arg, &cpuid, sizeof cpuid))
3085 goto out;
3086 r = 0;
3087 break;
3089 case KVM_GET_MSRS:
3090 r = msr_io(vcpu, argp, kvm_get_msr, 1);
3091 break;
3092 case KVM_SET_MSRS:
3093 r = msr_io(vcpu, argp, do_set_msr, 0);
3094 break;
3095 case KVM_TPR_ACCESS_REPORTING: {
3096 struct kvm_tpr_access_ctl tac;
3098 r = -EFAULT;
3099 if (copy_from_user(&tac, argp, sizeof tac))
3100 goto out;
3101 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
3102 if (r)
3103 goto out;
3104 r = -EFAULT;
3105 if (copy_to_user(argp, &tac, sizeof tac))
3106 goto out;
3107 r = 0;
3108 break;
3110 case KVM_SET_VAPIC_ADDR: {
3111 struct kvm_vapic_addr va;
3113 r = -EINVAL;
3114 if (!irqchip_in_kernel(vcpu->kvm))
3115 goto out;
3116 r = -EFAULT;
3117 if (copy_from_user(&va, argp, sizeof va))
3118 goto out;
3119 r = 0;
3120 kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
3121 break;
3123 case KVM_X86_SETUP_MCE: {
3124 u64 mcg_cap;
3126 r = -EFAULT;
3127 if (copy_from_user(&mcg_cap, argp, sizeof mcg_cap))
3128 goto out;
3129 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
3130 break;
3132 case KVM_X86_SET_MCE: {
3133 struct kvm_x86_mce mce;
3135 r = -EFAULT;
3136 if (copy_from_user(&mce, argp, sizeof mce))
3137 goto out;
3138 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
3139 break;
3141 case KVM_GET_VCPU_EVENTS: {
3142 struct kvm_vcpu_events events;
3144 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
3146 r = -EFAULT;
3147 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
3148 break;
3149 r = 0;
3150 break;
3152 case KVM_SET_VCPU_EVENTS: {
3153 struct kvm_vcpu_events events;
3155 r = -EFAULT;
3156 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
3157 break;
3159 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
3160 break;
3162 case KVM_GET_DEBUGREGS: {
3163 struct kvm_debugregs dbgregs;
3165 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
3167 r = -EFAULT;
3168 if (copy_to_user(argp, &dbgregs,
3169 sizeof(struct kvm_debugregs)))
3170 break;
3171 r = 0;
3172 break;
3174 case KVM_SET_DEBUGREGS: {
3175 struct kvm_debugregs dbgregs;
3177 r = -EFAULT;
3178 if (copy_from_user(&dbgregs, argp,
3179 sizeof(struct kvm_debugregs)))
3180 break;
3182 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
3183 break;
3185 case KVM_GET_XSAVE: {
3186 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3187 r = -ENOMEM;
3188 if (!u.xsave)
3189 break;
3191 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
3193 r = -EFAULT;
3194 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
3195 break;
3196 r = 0;
3197 break;
3199 case KVM_SET_XSAVE: {
3200 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL);
3201 r = -ENOMEM;
3202 if (!u.xsave)
3203 break;
3205 r = -EFAULT;
3206 if (copy_from_user(u.xsave, argp, sizeof(struct kvm_xsave)))
3207 break;
3209 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
3210 break;
3212 case KVM_GET_XCRS: {
3213 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3214 r = -ENOMEM;
3215 if (!u.xcrs)
3216 break;
3218 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
3220 r = -EFAULT;
3221 if (copy_to_user(argp, u.xcrs,
3222 sizeof(struct kvm_xcrs)))
3223 break;
3224 r = 0;
3225 break;
3227 case KVM_SET_XCRS: {
3228 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL);
3229 r = -ENOMEM;
3230 if (!u.xcrs)
3231 break;
3233 r = -EFAULT;
3234 if (copy_from_user(u.xcrs, argp,
3235 sizeof(struct kvm_xcrs)))
3236 break;
3238 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
3239 break;
3241 case KVM_SET_TSC_KHZ: {
3242 u32 user_tsc_khz;
3244 r = -EINVAL;
3245 if (!kvm_has_tsc_control)
3246 break;
3248 user_tsc_khz = (u32)arg;
3250 if (user_tsc_khz >= kvm_max_guest_tsc_khz)
3251 goto out;
3253 kvm_x86_ops->set_tsc_khz(vcpu, user_tsc_khz);
3255 r = 0;
3256 goto out;
3258 case KVM_GET_TSC_KHZ: {
3259 r = -EIO;
3260 if (check_tsc_unstable())
3261 goto out;
3263 r = vcpu_tsc_khz(vcpu);
3265 goto out;
3267 default:
3268 r = -EINVAL;
3270 out:
3271 kfree(u.buffer);
3272 return r;
3275 static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
3277 int ret;
3279 if (addr > (unsigned int)(-3 * PAGE_SIZE))
3280 return -1;
3281 ret = kvm_x86_ops->set_tss_addr(kvm, addr);
3282 return ret;
3285 static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
3286 u64 ident_addr)
3288 kvm->arch.ept_identity_map_addr = ident_addr;
3289 return 0;
3292 static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
3293 u32 kvm_nr_mmu_pages)
3295 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
3296 return -EINVAL;
3298 mutex_lock(&kvm->slots_lock);
3299 spin_lock(&kvm->mmu_lock);
3301 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
3302 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
3304 spin_unlock(&kvm->mmu_lock);
3305 mutex_unlock(&kvm->slots_lock);
3306 return 0;
3309 static int kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
3311 return kvm->arch.n_max_mmu_pages;
3314 static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3316 int r;
3318 r = 0;
3319 switch (chip->chip_id) {
3320 case KVM_IRQCHIP_PIC_MASTER:
3321 memcpy(&chip->chip.pic,
3322 &pic_irqchip(kvm)->pics[0],
3323 sizeof(struct kvm_pic_state));
3324 break;
3325 case KVM_IRQCHIP_PIC_SLAVE:
3326 memcpy(&chip->chip.pic,
3327 &pic_irqchip(kvm)->pics[1],
3328 sizeof(struct kvm_pic_state));
3329 break;
3330 case KVM_IRQCHIP_IOAPIC:
3331 r = kvm_get_ioapic(kvm, &chip->chip.ioapic);
3332 break;
3333 default:
3334 r = -EINVAL;
3335 break;
3337 return r;
3340 static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
3342 int r;
3344 r = 0;
3345 switch (chip->chip_id) {
3346 case KVM_IRQCHIP_PIC_MASTER:
3347 spin_lock(&pic_irqchip(kvm)->lock);
3348 memcpy(&pic_irqchip(kvm)->pics[0],
3349 &chip->chip.pic,
3350 sizeof(struct kvm_pic_state));
3351 spin_unlock(&pic_irqchip(kvm)->lock);
3352 break;
3353 case KVM_IRQCHIP_PIC_SLAVE:
3354 spin_lock(&pic_irqchip(kvm)->lock);
3355 memcpy(&pic_irqchip(kvm)->pics[1],
3356 &chip->chip.pic,
3357 sizeof(struct kvm_pic_state));
3358 spin_unlock(&pic_irqchip(kvm)->lock);
3359 break;
3360 case KVM_IRQCHIP_IOAPIC:
3361 r = kvm_set_ioapic(kvm, &chip->chip.ioapic);
3362 break;
3363 default:
3364 r = -EINVAL;
3365 break;
3367 kvm_pic_update_irq(pic_irqchip(kvm));
3368 return r;
3371 static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3373 int r = 0;
3375 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3376 memcpy(ps, &kvm->arch.vpit->pit_state, sizeof(struct kvm_pit_state));
3377 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3378 return r;
3381 static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
3383 int r = 0;
3385 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3386 memcpy(&kvm->arch.vpit->pit_state, ps, sizeof(struct kvm_pit_state));
3387 kvm_pit_load_count(kvm, 0, ps->channels[0].count, 0);
3388 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3389 return r;
3392 static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3394 int r = 0;
3396 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3397 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
3398 sizeof(ps->channels));
3399 ps->flags = kvm->arch.vpit->pit_state.flags;
3400 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3401 memset(&ps->reserved, 0, sizeof(ps->reserved));
3402 return r;
3405 static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
3407 int r = 0, start = 0;
3408 u32 prev_legacy, cur_legacy;
3409 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3410 prev_legacy = kvm->arch.vpit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
3411 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
3412 if (!prev_legacy && cur_legacy)
3413 start = 1;
3414 memcpy(&kvm->arch.vpit->pit_state.channels, &ps->channels,
3415 sizeof(kvm->arch.vpit->pit_state.channels));
3416 kvm->arch.vpit->pit_state.flags = ps->flags;
3417 kvm_pit_load_count(kvm, 0, kvm->arch.vpit->pit_state.channels[0].count, start);
3418 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3419 return r;
3422 static int kvm_vm_ioctl_reinject(struct kvm *kvm,
3423 struct kvm_reinject_control *control)
3425 if (!kvm->arch.vpit)
3426 return -ENXIO;
3427 mutex_lock(&kvm->arch.vpit->pit_state.lock);
3428 kvm->arch.vpit->pit_state.pit_timer.reinject = control->pit_reinject;
3429 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
3430 return 0;
3434 * Get (and clear) the dirty memory log for a memory slot.
3436 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
3437 struct kvm_dirty_log *log)
3439 int r, i;
3440 struct kvm_memory_slot *memslot;
3441 unsigned long n;
3442 unsigned long is_dirty = 0;
3444 mutex_lock(&kvm->slots_lock);
3446 r = -EINVAL;
3447 if (log->slot >= KVM_MEMORY_SLOTS)
3448 goto out;
3450 memslot = &kvm->memslots->memslots[log->slot];
3451 r = -ENOENT;
3452 if (!memslot->dirty_bitmap)
3453 goto out;
3455 n = kvm_dirty_bitmap_bytes(memslot);
3457 for (i = 0; !is_dirty && i < n/sizeof(long); i++)
3458 is_dirty = memslot->dirty_bitmap[i];
3460 /* If nothing is dirty, don't bother messing with page tables. */
3461 if (is_dirty) {
3462 struct kvm_memslots *slots, *old_slots;
3463 unsigned long *dirty_bitmap;
3465 dirty_bitmap = memslot->dirty_bitmap_head;
3466 if (memslot->dirty_bitmap == dirty_bitmap)
3467 dirty_bitmap += n / sizeof(long);
3468 memset(dirty_bitmap, 0, n);
3470 r = -ENOMEM;
3471 slots = kzalloc(sizeof(struct kvm_memslots), GFP_KERNEL);
3472 if (!slots)
3473 goto out;
3474 memcpy(slots, kvm->memslots, sizeof(struct kvm_memslots));
3475 slots->memslots[log->slot].dirty_bitmap = dirty_bitmap;
3476 slots->generation++;
3478 old_slots = kvm->memslots;
3479 rcu_assign_pointer(kvm->memslots, slots);
3480 synchronize_srcu_expedited(&kvm->srcu);
3481 dirty_bitmap = old_slots->memslots[log->slot].dirty_bitmap;
3482 kfree(old_slots);
3484 spin_lock(&kvm->mmu_lock);
3485 kvm_mmu_slot_remove_write_access(kvm, log->slot);
3486 spin_unlock(&kvm->mmu_lock);
3488 r = -EFAULT;
3489 if (copy_to_user(log->dirty_bitmap, dirty_bitmap, n))
3490 goto out;
3491 } else {
3492 r = -EFAULT;
3493 if (clear_user(log->dirty_bitmap, n))
3494 goto out;
3497 r = 0;
3498 out:
3499 mutex_unlock(&kvm->slots_lock);
3500 return r;
3503 long kvm_arch_vm_ioctl(struct file *filp,
3504 unsigned int ioctl, unsigned long arg)
3506 struct kvm *kvm = filp->private_data;
3507 void __user *argp = (void __user *)arg;
3508 int r = -ENOTTY;
3510 * This union makes it completely explicit to gcc-3.x
3511 * that these two variables' stack usage should be
3512 * combined, not added together.
3514 union {
3515 struct kvm_pit_state ps;
3516 struct kvm_pit_state2 ps2;
3517 struct kvm_pit_config pit_config;
3518 } u;
3520 switch (ioctl) {
3521 case KVM_SET_TSS_ADDR:
3522 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
3523 if (r < 0)
3524 goto out;
3525 break;
3526 case KVM_SET_IDENTITY_MAP_ADDR: {
3527 u64 ident_addr;
3529 r = -EFAULT;
3530 if (copy_from_user(&ident_addr, argp, sizeof ident_addr))
3531 goto out;
3532 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
3533 if (r < 0)
3534 goto out;
3535 break;
3537 case KVM_SET_NR_MMU_PAGES:
3538 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
3539 if (r)
3540 goto out;
3541 break;
3542 case KVM_GET_NR_MMU_PAGES:
3543 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
3544 break;
3545 case KVM_CREATE_IRQCHIP: {
3546 struct kvm_pic *vpic;
3548 mutex_lock(&kvm->lock);
3549 r = -EEXIST;
3550 if (kvm->arch.vpic)
3551 goto create_irqchip_unlock;
3552 r = -ENOMEM;
3553 vpic = kvm_create_pic(kvm);
3554 if (vpic) {
3555 r = kvm_ioapic_init(kvm);
3556 if (r) {
3557 mutex_lock(&kvm->slots_lock);
3558 kvm_io_bus_unregister_dev(kvm, KVM_PIO_BUS,
3559 &vpic->dev);
3560 mutex_unlock(&kvm->slots_lock);
3561 kfree(vpic);
3562 goto create_irqchip_unlock;
3564 } else
3565 goto create_irqchip_unlock;
3566 smp_wmb();
3567 kvm->arch.vpic = vpic;
3568 smp_wmb();
3569 r = kvm_setup_default_irq_routing(kvm);
3570 if (r) {
3571 mutex_lock(&kvm->slots_lock);
3572 mutex_lock(&kvm->irq_lock);
3573 kvm_ioapic_destroy(kvm);
3574 kvm_destroy_pic(kvm);
3575 mutex_unlock(&kvm->irq_lock);
3576 mutex_unlock(&kvm->slots_lock);
3578 create_irqchip_unlock:
3579 mutex_unlock(&kvm->lock);
3580 break;
3582 case KVM_CREATE_PIT:
3583 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
3584 goto create_pit;
3585 case KVM_CREATE_PIT2:
3586 r = -EFAULT;
3587 if (copy_from_user(&u.pit_config, argp,
3588 sizeof(struct kvm_pit_config)))
3589 goto out;
3590 create_pit:
3591 mutex_lock(&kvm->slots_lock);
3592 r = -EEXIST;
3593 if (kvm->arch.vpit)
3594 goto create_pit_unlock;
3595 r = -ENOMEM;
3596 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
3597 if (kvm->arch.vpit)
3598 r = 0;
3599 create_pit_unlock:
3600 mutex_unlock(&kvm->slots_lock);
3601 break;
3602 case KVM_IRQ_LINE_STATUS:
3603 case KVM_IRQ_LINE: {
3604 struct kvm_irq_level irq_event;
3606 r = -EFAULT;
3607 if (copy_from_user(&irq_event, argp, sizeof irq_event))
3608 goto out;
3609 r = -ENXIO;
3610 if (irqchip_in_kernel(kvm)) {
3611 __s32 status;
3612 status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
3613 irq_event.irq, irq_event.level);
3614 if (ioctl == KVM_IRQ_LINE_STATUS) {
3615 r = -EFAULT;
3616 irq_event.status = status;
3617 if (copy_to_user(argp, &irq_event,
3618 sizeof irq_event))
3619 goto out;
3621 r = 0;
3623 break;
3625 case KVM_GET_IRQCHIP: {
3626 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3627 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3629 r = -ENOMEM;
3630 if (!chip)
3631 goto out;
3632 r = -EFAULT;
3633 if (copy_from_user(chip, argp, sizeof *chip))
3634 goto get_irqchip_out;
3635 r = -ENXIO;
3636 if (!irqchip_in_kernel(kvm))
3637 goto get_irqchip_out;
3638 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
3639 if (r)
3640 goto get_irqchip_out;
3641 r = -EFAULT;
3642 if (copy_to_user(argp, chip, sizeof *chip))
3643 goto get_irqchip_out;
3644 r = 0;
3645 get_irqchip_out:
3646 kfree(chip);
3647 if (r)
3648 goto out;
3649 break;
3651 case KVM_SET_IRQCHIP: {
3652 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
3653 struct kvm_irqchip *chip = kmalloc(sizeof(*chip), GFP_KERNEL);
3655 r = -ENOMEM;
3656 if (!chip)
3657 goto out;
3658 r = -EFAULT;
3659 if (copy_from_user(chip, argp, sizeof *chip))
3660 goto set_irqchip_out;
3661 r = -ENXIO;
3662 if (!irqchip_in_kernel(kvm))
3663 goto set_irqchip_out;
3664 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
3665 if (r)
3666 goto set_irqchip_out;
3667 r = 0;
3668 set_irqchip_out:
3669 kfree(chip);
3670 if (r)
3671 goto out;
3672 break;
3674 case KVM_GET_PIT: {
3675 r = -EFAULT;
3676 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
3677 goto out;
3678 r = -ENXIO;
3679 if (!kvm->arch.vpit)
3680 goto out;
3681 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
3682 if (r)
3683 goto out;
3684 r = -EFAULT;
3685 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
3686 goto out;
3687 r = 0;
3688 break;
3690 case KVM_SET_PIT: {
3691 r = -EFAULT;
3692 if (copy_from_user(&u.ps, argp, sizeof u.ps))
3693 goto out;
3694 r = -ENXIO;
3695 if (!kvm->arch.vpit)
3696 goto out;
3697 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
3698 if (r)
3699 goto out;
3700 r = 0;
3701 break;
3703 case KVM_GET_PIT2: {
3704 r = -ENXIO;
3705 if (!kvm->arch.vpit)
3706 goto out;
3707 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
3708 if (r)
3709 goto out;
3710 r = -EFAULT;
3711 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
3712 goto out;
3713 r = 0;
3714 break;
3716 case KVM_SET_PIT2: {
3717 r = -EFAULT;
3718 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
3719 goto out;
3720 r = -ENXIO;
3721 if (!kvm->arch.vpit)
3722 goto out;
3723 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
3724 if (r)
3725 goto out;
3726 r = 0;
3727 break;
3729 case KVM_REINJECT_CONTROL: {
3730 struct kvm_reinject_control control;
3731 r = -EFAULT;
3732 if (copy_from_user(&control, argp, sizeof(control)))
3733 goto out;
3734 r = kvm_vm_ioctl_reinject(kvm, &control);
3735 if (r)
3736 goto out;
3737 r = 0;
3738 break;
3740 case KVM_XEN_HVM_CONFIG: {
3741 r = -EFAULT;
3742 if (copy_from_user(&kvm->arch.xen_hvm_config, argp,
3743 sizeof(struct kvm_xen_hvm_config)))
3744 goto out;
3745 r = -EINVAL;
3746 if (kvm->arch.xen_hvm_config.flags)
3747 goto out;
3748 r = 0;
3749 break;
3751 case KVM_SET_CLOCK: {
3752 struct kvm_clock_data user_ns;
3753 u64 now_ns;
3754 s64 delta;
3756 r = -EFAULT;
3757 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
3758 goto out;
3760 r = -EINVAL;
3761 if (user_ns.flags)
3762 goto out;
3764 r = 0;
3765 local_irq_disable();
3766 now_ns = get_kernel_ns();
3767 delta = user_ns.clock - now_ns;
3768 local_irq_enable();
3769 kvm->arch.kvmclock_offset = delta;
3770 break;
3772 case KVM_GET_CLOCK: {
3773 struct kvm_clock_data user_ns;
3774 u64 now_ns;
3776 local_irq_disable();
3777 now_ns = get_kernel_ns();
3778 user_ns.clock = kvm->arch.kvmclock_offset + now_ns;
3779 local_irq_enable();
3780 user_ns.flags = 0;
3781 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
3783 r = -EFAULT;
3784 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
3785 goto out;
3786 r = 0;
3787 break;
3790 default:
3793 out:
3794 return r;
3797 static void kvm_init_msr_list(void)
3799 u32 dummy[2];
3800 unsigned i, j;
3802 /* skip the first msrs in the list. KVM-specific */
3803 for (i = j = KVM_SAVE_MSRS_BEGIN; i < ARRAY_SIZE(msrs_to_save); i++) {
3804 if (rdmsr_safe(msrs_to_save[i], &dummy[0], &dummy[1]) < 0)
3805 continue;
3806 if (j < i)
3807 msrs_to_save[j] = msrs_to_save[i];
3808 j++;
3810 num_msrs_to_save = j;
3813 static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
3814 const void *v)
3816 int handled = 0;
3817 int n;
3819 do {
3820 n = min(len, 8);
3821 if (!(vcpu->arch.apic &&
3822 !kvm_iodevice_write(&vcpu->arch.apic->dev, addr, n, v))
3823 && kvm_io_bus_write(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3824 break;
3825 handled += n;
3826 addr += n;
3827 len -= n;
3828 v += n;
3829 } while (len);
3831 return handled;
3834 static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
3836 int handled = 0;
3837 int n;
3839 do {
3840 n = min(len, 8);
3841 if (!(vcpu->arch.apic &&
3842 !kvm_iodevice_read(&vcpu->arch.apic->dev, addr, n, v))
3843 && kvm_io_bus_read(vcpu->kvm, KVM_MMIO_BUS, addr, n, v))
3844 break;
3845 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, *(u64 *)v);
3846 handled += n;
3847 addr += n;
3848 len -= n;
3849 v += n;
3850 } while (len);
3852 return handled;
3855 static void kvm_set_segment(struct kvm_vcpu *vcpu,
3856 struct kvm_segment *var, int seg)
3858 kvm_x86_ops->set_segment(vcpu, var, seg);
3861 void kvm_get_segment(struct kvm_vcpu *vcpu,
3862 struct kvm_segment *var, int seg)
3864 kvm_x86_ops->get_segment(vcpu, var, seg);
3867 static gpa_t translate_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3869 return gpa;
3872 static gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access)
3874 gpa_t t_gpa;
3875 struct x86_exception exception;
3877 BUG_ON(!mmu_is_nested(vcpu));
3879 /* NPT walks are always user-walks */
3880 access |= PFERR_USER_MASK;
3881 t_gpa = vcpu->arch.mmu.gva_to_gpa(vcpu, gpa, access, &exception);
3883 return t_gpa;
3886 gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
3887 struct x86_exception *exception)
3889 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3890 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3893 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
3894 struct x86_exception *exception)
3896 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3897 access |= PFERR_FETCH_MASK;
3898 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3901 gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
3902 struct x86_exception *exception)
3904 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3905 access |= PFERR_WRITE_MASK;
3906 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
3909 /* uses this to access any guest's mapped memory without checking CPL */
3910 gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
3911 struct x86_exception *exception)
3913 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
3916 static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
3917 struct kvm_vcpu *vcpu, u32 access,
3918 struct x86_exception *exception)
3920 void *data = val;
3921 int r = X86EMUL_CONTINUE;
3923 while (bytes) {
3924 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
3925 exception);
3926 unsigned offset = addr & (PAGE_SIZE-1);
3927 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
3928 int ret;
3930 if (gpa == UNMAPPED_GVA)
3931 return X86EMUL_PROPAGATE_FAULT;
3932 ret = kvm_read_guest(vcpu->kvm, gpa, data, toread);
3933 if (ret < 0) {
3934 r = X86EMUL_IO_NEEDED;
3935 goto out;
3938 bytes -= toread;
3939 data += toread;
3940 addr += toread;
3942 out:
3943 return r;
3946 /* used for instruction fetching */
3947 static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
3948 gva_t addr, void *val, unsigned int bytes,
3949 struct x86_exception *exception)
3951 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3952 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3954 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu,
3955 access | PFERR_FETCH_MASK,
3956 exception);
3959 int kvm_read_guest_virt(struct x86_emulate_ctxt *ctxt,
3960 gva_t addr, void *val, unsigned int bytes,
3961 struct x86_exception *exception)
3963 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3964 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
3966 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
3967 exception);
3969 EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
3971 static int kvm_read_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3972 gva_t addr, void *val, unsigned int bytes,
3973 struct x86_exception *exception)
3975 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3976 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, 0, exception);
3979 int kvm_write_guest_virt_system(struct x86_emulate_ctxt *ctxt,
3980 gva_t addr, void *val,
3981 unsigned int bytes,
3982 struct x86_exception *exception)
3984 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3985 void *data = val;
3986 int r = X86EMUL_CONTINUE;
3988 while (bytes) {
3989 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
3990 PFERR_WRITE_MASK,
3991 exception);
3992 unsigned offset = addr & (PAGE_SIZE-1);
3993 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
3994 int ret;
3996 if (gpa == UNMAPPED_GVA)
3997 return X86EMUL_PROPAGATE_FAULT;
3998 ret = kvm_write_guest(vcpu->kvm, gpa, data, towrite);
3999 if (ret < 0) {
4000 r = X86EMUL_IO_NEEDED;
4001 goto out;
4004 bytes -= towrite;
4005 data += towrite;
4006 addr += towrite;
4008 out:
4009 return r;
4011 EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
4013 static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
4014 gpa_t *gpa, struct x86_exception *exception,
4015 bool write)
4017 u32 access = (kvm_x86_ops->get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
4019 if (vcpu_match_mmio_gva(vcpu, gva) &&
4020 check_write_user_access(vcpu, write, access,
4021 vcpu->arch.access)) {
4022 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
4023 (gva & (PAGE_SIZE - 1));
4024 trace_vcpu_match_mmio(gva, *gpa, write, false);
4025 return 1;
4028 if (write)
4029 access |= PFERR_WRITE_MASK;
4031 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
4033 if (*gpa == UNMAPPED_GVA)
4034 return -1;
4036 /* For APIC access vmexit */
4037 if ((*gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4038 return 1;
4040 if (vcpu_match_mmio_gpa(vcpu, *gpa)) {
4041 trace_vcpu_match_mmio(gva, *gpa, write, true);
4042 return 1;
4045 return 0;
4048 static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
4049 unsigned long addr,
4050 void *val,
4051 unsigned int bytes,
4052 struct x86_exception *exception)
4054 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4055 gpa_t gpa;
4056 int handled, ret;
4058 if (vcpu->mmio_read_completed) {
4059 memcpy(val, vcpu->mmio_data, bytes);
4060 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
4061 vcpu->mmio_phys_addr, *(u64 *)val);
4062 vcpu->mmio_read_completed = 0;
4063 return X86EMUL_CONTINUE;
4066 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, false);
4068 if (ret < 0)
4069 return X86EMUL_PROPAGATE_FAULT;
4071 if (ret)
4072 goto mmio;
4074 if (kvm_read_guest_virt(ctxt, addr, val, bytes, exception)
4075 == X86EMUL_CONTINUE)
4076 return X86EMUL_CONTINUE;
4078 mmio:
4080 * Is this MMIO handled locally?
4082 handled = vcpu_mmio_read(vcpu, gpa, bytes, val);
4084 if (handled == bytes)
4085 return X86EMUL_CONTINUE;
4087 gpa += handled;
4088 bytes -= handled;
4089 val += handled;
4091 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, 0);
4093 vcpu->mmio_needed = 1;
4094 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4095 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
4096 vcpu->mmio_size = bytes;
4097 vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
4098 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 0;
4099 vcpu->mmio_index = 0;
4101 return X86EMUL_IO_NEEDED;
4104 int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
4105 const void *val, int bytes)
4107 int ret;
4109 ret = kvm_write_guest(vcpu->kvm, gpa, val, bytes);
4110 if (ret < 0)
4111 return 0;
4112 kvm_mmu_pte_write(vcpu, gpa, val, bytes, 1);
4113 return 1;
4116 static int emulator_write_emulated_onepage(unsigned long addr,
4117 const void *val,
4118 unsigned int bytes,
4119 struct x86_exception *exception,
4120 struct kvm_vcpu *vcpu)
4122 gpa_t gpa;
4123 int handled, ret;
4125 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, true);
4127 if (ret < 0)
4128 return X86EMUL_PROPAGATE_FAULT;
4130 /* For APIC access vmexit */
4131 if (ret)
4132 goto mmio;
4134 if (emulator_write_phys(vcpu, gpa, val, bytes))
4135 return X86EMUL_CONTINUE;
4137 mmio:
4138 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, *(u64 *)val);
4140 * Is this MMIO handled locally?
4142 handled = vcpu_mmio_write(vcpu, gpa, bytes, val);
4143 if (handled == bytes)
4144 return X86EMUL_CONTINUE;
4146 gpa += handled;
4147 bytes -= handled;
4148 val += handled;
4150 vcpu->mmio_needed = 1;
4151 memcpy(vcpu->mmio_data, val, bytes);
4152 vcpu->run->exit_reason = KVM_EXIT_MMIO;
4153 vcpu->run->mmio.phys_addr = vcpu->mmio_phys_addr = gpa;
4154 vcpu->mmio_size = bytes;
4155 vcpu->run->mmio.len = min(vcpu->mmio_size, 8);
4156 vcpu->run->mmio.is_write = vcpu->mmio_is_write = 1;
4157 memcpy(vcpu->run->mmio.data, vcpu->mmio_data, 8);
4158 vcpu->mmio_index = 0;
4160 return X86EMUL_CONTINUE;
4163 int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
4164 unsigned long addr,
4165 const void *val,
4166 unsigned int bytes,
4167 struct x86_exception *exception)
4169 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4171 /* Crossing a page boundary? */
4172 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
4173 int rc, now;
4175 now = -addr & ~PAGE_MASK;
4176 rc = emulator_write_emulated_onepage(addr, val, now, exception,
4177 vcpu);
4178 if (rc != X86EMUL_CONTINUE)
4179 return rc;
4180 addr += now;
4181 val += now;
4182 bytes -= now;
4184 return emulator_write_emulated_onepage(addr, val, bytes, exception,
4185 vcpu);
4188 #define CMPXCHG_TYPE(t, ptr, old, new) \
4189 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
4191 #ifdef CONFIG_X86_64
4192 # define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
4193 #else
4194 # define CMPXCHG64(ptr, old, new) \
4195 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
4196 #endif
4198 static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
4199 unsigned long addr,
4200 const void *old,
4201 const void *new,
4202 unsigned int bytes,
4203 struct x86_exception *exception)
4205 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4206 gpa_t gpa;
4207 struct page *page;
4208 char *kaddr;
4209 bool exchanged;
4211 /* guests cmpxchg8b have to be emulated atomically */
4212 if (bytes > 8 || (bytes & (bytes - 1)))
4213 goto emul_write;
4215 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
4217 if (gpa == UNMAPPED_GVA ||
4218 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
4219 goto emul_write;
4221 if (((gpa + bytes - 1) & PAGE_MASK) != (gpa & PAGE_MASK))
4222 goto emul_write;
4224 page = gfn_to_page(vcpu->kvm, gpa >> PAGE_SHIFT);
4225 if (is_error_page(page)) {
4226 kvm_release_page_clean(page);
4227 goto emul_write;
4230 kaddr = kmap_atomic(page, KM_USER0);
4231 kaddr += offset_in_page(gpa);
4232 switch (bytes) {
4233 case 1:
4234 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
4235 break;
4236 case 2:
4237 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
4238 break;
4239 case 4:
4240 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
4241 break;
4242 case 8:
4243 exchanged = CMPXCHG64(kaddr, old, new);
4244 break;
4245 default:
4246 BUG();
4248 kunmap_atomic(kaddr, KM_USER0);
4249 kvm_release_page_dirty(page);
4251 if (!exchanged)
4252 return X86EMUL_CMPXCHG_FAILED;
4254 kvm_mmu_pte_write(vcpu, gpa, new, bytes, 1);
4256 return X86EMUL_CONTINUE;
4258 emul_write:
4259 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
4261 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
4264 static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
4266 /* TODO: String I/O for in kernel device */
4267 int r;
4269 if (vcpu->arch.pio.in)
4270 r = kvm_io_bus_read(vcpu->kvm, KVM_PIO_BUS, vcpu->arch.pio.port,
4271 vcpu->arch.pio.size, pd);
4272 else
4273 r = kvm_io_bus_write(vcpu->kvm, KVM_PIO_BUS,
4274 vcpu->arch.pio.port, vcpu->arch.pio.size,
4275 pd);
4276 return r;
4280 static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
4281 int size, unsigned short port, void *val,
4282 unsigned int count)
4284 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4286 if (vcpu->arch.pio.count)
4287 goto data_avail;
4289 trace_kvm_pio(0, port, size, count);
4291 vcpu->arch.pio.port = port;
4292 vcpu->arch.pio.in = 1;
4293 vcpu->arch.pio.count = count;
4294 vcpu->arch.pio.size = size;
4296 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4297 data_avail:
4298 memcpy(val, vcpu->arch.pio_data, size * count);
4299 vcpu->arch.pio.count = 0;
4300 return 1;
4303 vcpu->run->exit_reason = KVM_EXIT_IO;
4304 vcpu->run->io.direction = KVM_EXIT_IO_IN;
4305 vcpu->run->io.size = size;
4306 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4307 vcpu->run->io.count = count;
4308 vcpu->run->io.port = port;
4310 return 0;
4313 static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
4314 int size, unsigned short port,
4315 const void *val, unsigned int count)
4317 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4319 trace_kvm_pio(1, port, size, count);
4321 vcpu->arch.pio.port = port;
4322 vcpu->arch.pio.in = 0;
4323 vcpu->arch.pio.count = count;
4324 vcpu->arch.pio.size = size;
4326 memcpy(vcpu->arch.pio_data, val, size * count);
4328 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
4329 vcpu->arch.pio.count = 0;
4330 return 1;
4333 vcpu->run->exit_reason = KVM_EXIT_IO;
4334 vcpu->run->io.direction = KVM_EXIT_IO_OUT;
4335 vcpu->run->io.size = size;
4336 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
4337 vcpu->run->io.count = count;
4338 vcpu->run->io.port = port;
4340 return 0;
4343 static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
4345 return kvm_x86_ops->get_segment_base(vcpu, seg);
4348 static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
4350 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
4353 int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
4355 if (!need_emulate_wbinvd(vcpu))
4356 return X86EMUL_CONTINUE;
4358 if (kvm_x86_ops->has_wbinvd_exit()) {
4359 int cpu = get_cpu();
4361 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4362 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
4363 wbinvd_ipi, NULL, 1);
4364 put_cpu();
4365 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
4366 } else
4367 wbinvd();
4368 return X86EMUL_CONTINUE;
4370 EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
4372 static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
4374 kvm_emulate_wbinvd(emul_to_vcpu(ctxt));
4377 int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long *dest)
4379 return _kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
4382 int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, unsigned long value)
4385 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
4388 static u64 mk_cr_64(u64 curr_cr, u32 new_val)
4390 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
4393 static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
4395 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4396 unsigned long value;
4398 switch (cr) {
4399 case 0:
4400 value = kvm_read_cr0(vcpu);
4401 break;
4402 case 2:
4403 value = vcpu->arch.cr2;
4404 break;
4405 case 3:
4406 value = kvm_read_cr3(vcpu);
4407 break;
4408 case 4:
4409 value = kvm_read_cr4(vcpu);
4410 break;
4411 case 8:
4412 value = kvm_get_cr8(vcpu);
4413 break;
4414 default:
4415 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4416 return 0;
4419 return value;
4422 static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
4424 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4425 int res = 0;
4427 switch (cr) {
4428 case 0:
4429 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
4430 break;
4431 case 2:
4432 vcpu->arch.cr2 = val;
4433 break;
4434 case 3:
4435 res = kvm_set_cr3(vcpu, val);
4436 break;
4437 case 4:
4438 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
4439 break;
4440 case 8:
4441 res = kvm_set_cr8(vcpu, val);
4442 break;
4443 default:
4444 vcpu_printf(vcpu, "%s: unexpected cr %u\n", __func__, cr);
4445 res = -1;
4448 return res;
4451 static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
4453 return kvm_x86_ops->get_cpl(emul_to_vcpu(ctxt));
4456 static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4458 kvm_x86_ops->get_gdt(emul_to_vcpu(ctxt), dt);
4461 static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4463 kvm_x86_ops->get_idt(emul_to_vcpu(ctxt), dt);
4466 static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4468 kvm_x86_ops->set_gdt(emul_to_vcpu(ctxt), dt);
4471 static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
4473 kvm_x86_ops->set_idt(emul_to_vcpu(ctxt), dt);
4476 static unsigned long emulator_get_cached_segment_base(
4477 struct x86_emulate_ctxt *ctxt, int seg)
4479 return get_segment_base(emul_to_vcpu(ctxt), seg);
4482 static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
4483 struct desc_struct *desc, u32 *base3,
4484 int seg)
4486 struct kvm_segment var;
4488 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
4489 *selector = var.selector;
4491 if (var.unusable)
4492 return false;
4494 if (var.g)
4495 var.limit >>= 12;
4496 set_desc_limit(desc, var.limit);
4497 set_desc_base(desc, (unsigned long)var.base);
4498 #ifdef CONFIG_X86_64
4499 if (base3)
4500 *base3 = var.base >> 32;
4501 #endif
4502 desc->type = var.type;
4503 desc->s = var.s;
4504 desc->dpl = var.dpl;
4505 desc->p = var.present;
4506 desc->avl = var.avl;
4507 desc->l = var.l;
4508 desc->d = var.db;
4509 desc->g = var.g;
4511 return true;
4514 static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
4515 struct desc_struct *desc, u32 base3,
4516 int seg)
4518 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
4519 struct kvm_segment var;
4521 var.selector = selector;
4522 var.base = get_desc_base(desc);
4523 #ifdef CONFIG_X86_64
4524 var.base |= ((u64)base3) << 32;
4525 #endif
4526 var.limit = get_desc_limit(desc);
4527 if (desc->g)
4528 var.limit = (var.limit << 12) | 0xfff;
4529 var.type = desc->type;
4530 var.present = desc->p;
4531 var.dpl = desc->dpl;
4532 var.db = desc->d;
4533 var.s = desc->s;
4534 var.l = desc->l;
4535 var.g = desc->g;
4536 var.avl = desc->avl;
4537 var.present = desc->p;
4538 var.unusable = !var.present;
4539 var.padding = 0;
4541 kvm_set_segment(vcpu, &var, seg);
4542 return;
4545 static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
4546 u32 msr_index, u64 *pdata)
4548 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
4551 static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
4552 u32 msr_index, u64 data)
4554 return kvm_set_msr(emul_to_vcpu(ctxt), msr_index, data);
4557 static void emulator_halt(struct x86_emulate_ctxt *ctxt)
4559 emul_to_vcpu(ctxt)->arch.halt_request = 1;
4562 static void emulator_get_fpu(struct x86_emulate_ctxt *ctxt)
4564 preempt_disable();
4565 kvm_load_guest_fpu(emul_to_vcpu(ctxt));
4567 * CR0.TS may reference the host fpu state, not the guest fpu state,
4568 * so it may be clear at this point.
4570 clts();
4573 static void emulator_put_fpu(struct x86_emulate_ctxt *ctxt)
4575 preempt_enable();
4578 static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
4579 struct x86_instruction_info *info,
4580 enum x86_intercept_stage stage)
4582 return kvm_x86_ops->check_intercept(emul_to_vcpu(ctxt), info, stage);
4585 static struct x86_emulate_ops emulate_ops = {
4586 .read_std = kvm_read_guest_virt_system,
4587 .write_std = kvm_write_guest_virt_system,
4588 .fetch = kvm_fetch_guest_virt,
4589 .read_emulated = emulator_read_emulated,
4590 .write_emulated = emulator_write_emulated,
4591 .cmpxchg_emulated = emulator_cmpxchg_emulated,
4592 .invlpg = emulator_invlpg,
4593 .pio_in_emulated = emulator_pio_in_emulated,
4594 .pio_out_emulated = emulator_pio_out_emulated,
4595 .get_segment = emulator_get_segment,
4596 .set_segment = emulator_set_segment,
4597 .get_cached_segment_base = emulator_get_cached_segment_base,
4598 .get_gdt = emulator_get_gdt,
4599 .get_idt = emulator_get_idt,
4600 .set_gdt = emulator_set_gdt,
4601 .set_idt = emulator_set_idt,
4602 .get_cr = emulator_get_cr,
4603 .set_cr = emulator_set_cr,
4604 .cpl = emulator_get_cpl,
4605 .get_dr = emulator_get_dr,
4606 .set_dr = emulator_set_dr,
4607 .set_msr = emulator_set_msr,
4608 .get_msr = emulator_get_msr,
4609 .halt = emulator_halt,
4610 .wbinvd = emulator_wbinvd,
4611 .fix_hypercall = emulator_fix_hypercall,
4612 .get_fpu = emulator_get_fpu,
4613 .put_fpu = emulator_put_fpu,
4614 .intercept = emulator_intercept,
4617 static void cache_all_regs(struct kvm_vcpu *vcpu)
4619 kvm_register_read(vcpu, VCPU_REGS_RAX);
4620 kvm_register_read(vcpu, VCPU_REGS_RSP);
4621 kvm_register_read(vcpu, VCPU_REGS_RIP);
4622 vcpu->arch.regs_dirty = ~0;
4625 static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
4627 u32 int_shadow = kvm_x86_ops->get_interrupt_shadow(vcpu, mask);
4629 * an sti; sti; sequence only disable interrupts for the first
4630 * instruction. So, if the last instruction, be it emulated or
4631 * not, left the system with the INT_STI flag enabled, it
4632 * means that the last instruction is an sti. We should not
4633 * leave the flag on in this case. The same goes for mov ss
4635 if (!(int_shadow & mask))
4636 kvm_x86_ops->set_interrupt_shadow(vcpu, mask);
4639 static void inject_emulated_exception(struct kvm_vcpu *vcpu)
4641 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4642 if (ctxt->exception.vector == PF_VECTOR)
4643 kvm_propagate_fault(vcpu, &ctxt->exception);
4644 else if (ctxt->exception.error_code_valid)
4645 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
4646 ctxt->exception.error_code);
4647 else
4648 kvm_queue_exception(vcpu, ctxt->exception.vector);
4651 static void init_decode_cache(struct x86_emulate_ctxt *ctxt,
4652 const unsigned long *regs)
4654 memset(&ctxt->twobyte, 0,
4655 (void *)&ctxt->regs - (void *)&ctxt->twobyte);
4656 memcpy(ctxt->regs, regs, sizeof(ctxt->regs));
4658 ctxt->fetch.start = 0;
4659 ctxt->fetch.end = 0;
4660 ctxt->io_read.pos = 0;
4661 ctxt->io_read.end = 0;
4662 ctxt->mem_read.pos = 0;
4663 ctxt->mem_read.end = 0;
4666 static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
4668 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4669 int cs_db, cs_l;
4672 * TODO: fix emulate.c to use guest_read/write_register
4673 * instead of direct ->regs accesses, can save hundred cycles
4674 * on Intel for instructions that don't read/change RSP, for
4675 * for example.
4677 cache_all_regs(vcpu);
4679 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
4681 ctxt->eflags = kvm_get_rflags(vcpu);
4682 ctxt->eip = kvm_rip_read(vcpu);
4683 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
4684 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
4685 cs_l ? X86EMUL_MODE_PROT64 :
4686 cs_db ? X86EMUL_MODE_PROT32 :
4687 X86EMUL_MODE_PROT16;
4688 ctxt->guest_mode = is_guest_mode(vcpu);
4690 init_decode_cache(ctxt, vcpu->arch.regs);
4691 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4694 int kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
4696 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4697 int ret;
4699 init_emulate_ctxt(vcpu);
4701 ctxt->op_bytes = 2;
4702 ctxt->ad_bytes = 2;
4703 ctxt->_eip = ctxt->eip + inc_eip;
4704 ret = emulate_int_real(ctxt, irq);
4706 if (ret != X86EMUL_CONTINUE)
4707 return EMULATE_FAIL;
4709 ctxt->eip = ctxt->_eip;
4710 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4711 kvm_rip_write(vcpu, ctxt->eip);
4712 kvm_set_rflags(vcpu, ctxt->eflags);
4714 if (irq == NMI_VECTOR)
4715 vcpu->arch.nmi_pending = false;
4716 else
4717 vcpu->arch.interrupt.pending = false;
4719 return EMULATE_DONE;
4721 EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
4723 static int handle_emulation_failure(struct kvm_vcpu *vcpu)
4725 int r = EMULATE_DONE;
4727 ++vcpu->stat.insn_emulation_fail;
4728 trace_kvm_emulate_insn_failed(vcpu);
4729 if (!is_guest_mode(vcpu)) {
4730 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4731 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4732 vcpu->run->internal.ndata = 0;
4733 r = EMULATE_FAIL;
4735 kvm_queue_exception(vcpu, UD_VECTOR);
4737 return r;
4740 static bool reexecute_instruction(struct kvm_vcpu *vcpu, gva_t gva)
4742 gpa_t gpa;
4744 if (tdp_enabled)
4745 return false;
4748 * if emulation was due to access to shadowed page table
4749 * and it failed try to unshadow page and re-entetr the
4750 * guest to let CPU execute the instruction.
4752 if (kvm_mmu_unprotect_page_virt(vcpu, gva))
4753 return true;
4755 gpa = kvm_mmu_gva_to_gpa_system(vcpu, gva, NULL);
4757 if (gpa == UNMAPPED_GVA)
4758 return true; /* let cpu generate fault */
4760 if (!kvm_is_error_hva(gfn_to_hva(vcpu->kvm, gpa >> PAGE_SHIFT)))
4761 return true;
4763 return false;
4766 int x86_emulate_instruction(struct kvm_vcpu *vcpu,
4767 unsigned long cr2,
4768 int emulation_type,
4769 void *insn,
4770 int insn_len)
4772 int r;
4773 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
4774 bool writeback = true;
4776 kvm_clear_exception_queue(vcpu);
4778 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4779 init_emulate_ctxt(vcpu);
4780 ctxt->interruptibility = 0;
4781 ctxt->have_exception = false;
4782 ctxt->perm_ok = false;
4784 ctxt->only_vendor_specific_insn
4785 = emulation_type & EMULTYPE_TRAP_UD;
4787 r = x86_decode_insn(ctxt, insn, insn_len);
4789 trace_kvm_emulate_insn_start(vcpu);
4790 ++vcpu->stat.insn_emulation;
4791 if (r) {
4792 if (emulation_type & EMULTYPE_TRAP_UD)
4793 return EMULATE_FAIL;
4794 if (reexecute_instruction(vcpu, cr2))
4795 return EMULATE_DONE;
4796 if (emulation_type & EMULTYPE_SKIP)
4797 return EMULATE_FAIL;
4798 return handle_emulation_failure(vcpu);
4802 if (emulation_type & EMULTYPE_SKIP) {
4803 kvm_rip_write(vcpu, ctxt->_eip);
4804 return EMULATE_DONE;
4807 /* this is needed for vmware backdoor interface to work since it
4808 changes registers values during IO operation */
4809 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
4810 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
4811 memcpy(ctxt->regs, vcpu->arch.regs, sizeof ctxt->regs);
4814 restart:
4815 r = x86_emulate_insn(ctxt);
4817 if (r == EMULATION_INTERCEPTED)
4818 return EMULATE_DONE;
4820 if (r == EMULATION_FAILED) {
4821 if (reexecute_instruction(vcpu, cr2))
4822 return EMULATE_DONE;
4824 return handle_emulation_failure(vcpu);
4827 if (ctxt->have_exception) {
4828 inject_emulated_exception(vcpu);
4829 r = EMULATE_DONE;
4830 } else if (vcpu->arch.pio.count) {
4831 if (!vcpu->arch.pio.in)
4832 vcpu->arch.pio.count = 0;
4833 else
4834 writeback = false;
4835 r = EMULATE_DO_MMIO;
4836 } else if (vcpu->mmio_needed) {
4837 if (!vcpu->mmio_is_write)
4838 writeback = false;
4839 r = EMULATE_DO_MMIO;
4840 } else if (r == EMULATION_RESTART)
4841 goto restart;
4842 else
4843 r = EMULATE_DONE;
4845 if (writeback) {
4846 toggle_interruptibility(vcpu, ctxt->interruptibility);
4847 kvm_set_rflags(vcpu, ctxt->eflags);
4848 kvm_make_request(KVM_REQ_EVENT, vcpu);
4849 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
4850 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
4851 kvm_rip_write(vcpu, ctxt->eip);
4852 } else
4853 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
4855 return r;
4857 EXPORT_SYMBOL_GPL(x86_emulate_instruction);
4859 int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, unsigned short port)
4861 unsigned long val = kvm_register_read(vcpu, VCPU_REGS_RAX);
4862 int ret = emulator_pio_out_emulated(&vcpu->arch.emulate_ctxt,
4863 size, port, &val, 1);
4864 /* do not return to emulator after return from userspace */
4865 vcpu->arch.pio.count = 0;
4866 return ret;
4868 EXPORT_SYMBOL_GPL(kvm_fast_pio_out);
4870 static void tsc_bad(void *info)
4872 __this_cpu_write(cpu_tsc_khz, 0);
4875 static void tsc_khz_changed(void *data)
4877 struct cpufreq_freqs *freq = data;
4878 unsigned long khz = 0;
4880 if (data)
4881 khz = freq->new;
4882 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
4883 khz = cpufreq_quick_get(raw_smp_processor_id());
4884 if (!khz)
4885 khz = tsc_khz;
4886 __this_cpu_write(cpu_tsc_khz, khz);
4889 static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
4890 void *data)
4892 struct cpufreq_freqs *freq = data;
4893 struct kvm *kvm;
4894 struct kvm_vcpu *vcpu;
4895 int i, send_ipi = 0;
4898 * We allow guests to temporarily run on slowing clocks,
4899 * provided we notify them after, or to run on accelerating
4900 * clocks, provided we notify them before. Thus time never
4901 * goes backwards.
4903 * However, we have a problem. We can't atomically update
4904 * the frequency of a given CPU from this function; it is
4905 * merely a notifier, which can be called from any CPU.
4906 * Changing the TSC frequency at arbitrary points in time
4907 * requires a recomputation of local variables related to
4908 * the TSC for each VCPU. We must flag these local variables
4909 * to be updated and be sure the update takes place with the
4910 * new frequency before any guests proceed.
4912 * Unfortunately, the combination of hotplug CPU and frequency
4913 * change creates an intractable locking scenario; the order
4914 * of when these callouts happen is undefined with respect to
4915 * CPU hotplug, and they can race with each other. As such,
4916 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
4917 * undefined; you can actually have a CPU frequency change take
4918 * place in between the computation of X and the setting of the
4919 * variable. To protect against this problem, all updates of
4920 * the per_cpu tsc_khz variable are done in an interrupt
4921 * protected IPI, and all callers wishing to update the value
4922 * must wait for a synchronous IPI to complete (which is trivial
4923 * if the caller is on the CPU already). This establishes the
4924 * necessary total order on variable updates.
4926 * Note that because a guest time update may take place
4927 * anytime after the setting of the VCPU's request bit, the
4928 * correct TSC value must be set before the request. However,
4929 * to ensure the update actually makes it to any guest which
4930 * starts running in hardware virtualization between the set
4931 * and the acquisition of the spinlock, we must also ping the
4932 * CPU after setting the request bit.
4936 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
4937 return 0;
4938 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
4939 return 0;
4941 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4943 raw_spin_lock(&kvm_lock);
4944 list_for_each_entry(kvm, &vm_list, vm_list) {
4945 kvm_for_each_vcpu(i, vcpu, kvm) {
4946 if (vcpu->cpu != freq->cpu)
4947 continue;
4948 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4949 if (vcpu->cpu != smp_processor_id())
4950 send_ipi = 1;
4953 raw_spin_unlock(&kvm_lock);
4955 if (freq->old < freq->new && send_ipi) {
4957 * We upscale the frequency. Must make the guest
4958 * doesn't see old kvmclock values while running with
4959 * the new frequency, otherwise we risk the guest sees
4960 * time go backwards.
4962 * In case we update the frequency for another cpu
4963 * (which might be in guest context) send an interrupt
4964 * to kick the cpu out of guest context. Next time
4965 * guest context is entered kvmclock will be updated,
4966 * so the guest will not see stale values.
4968 smp_call_function_single(freq->cpu, tsc_khz_changed, freq, 1);
4970 return 0;
4973 static struct notifier_block kvmclock_cpufreq_notifier_block = {
4974 .notifier_call = kvmclock_cpufreq_notifier
4977 static int kvmclock_cpu_notifier(struct notifier_block *nfb,
4978 unsigned long action, void *hcpu)
4980 unsigned int cpu = (unsigned long)hcpu;
4982 switch (action) {
4983 case CPU_ONLINE:
4984 case CPU_DOWN_FAILED:
4985 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
4986 break;
4987 case CPU_DOWN_PREPARE:
4988 smp_call_function_single(cpu, tsc_bad, NULL, 1);
4989 break;
4991 return NOTIFY_OK;
4994 static struct notifier_block kvmclock_cpu_notifier_block = {
4995 .notifier_call = kvmclock_cpu_notifier,
4996 .priority = -INT_MAX
4999 static void kvm_timer_init(void)
5001 int cpu;
5003 max_tsc_khz = tsc_khz;
5004 register_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5005 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
5006 #ifdef CONFIG_CPU_FREQ
5007 struct cpufreq_policy policy;
5008 memset(&policy, 0, sizeof(policy));
5009 cpu = get_cpu();
5010 cpufreq_get_policy(&policy, cpu);
5011 if (policy.cpuinfo.max_freq)
5012 max_tsc_khz = policy.cpuinfo.max_freq;
5013 put_cpu();
5014 #endif
5015 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
5016 CPUFREQ_TRANSITION_NOTIFIER);
5018 pr_debug("kvm: max_tsc_khz = %ld\n", max_tsc_khz);
5019 for_each_online_cpu(cpu)
5020 smp_call_function_single(cpu, tsc_khz_changed, NULL, 1);
5023 static DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
5025 static int kvm_is_in_guest(void)
5027 return percpu_read(current_vcpu) != NULL;
5030 static int kvm_is_user_mode(void)
5032 int user_mode = 3;
5034 if (percpu_read(current_vcpu))
5035 user_mode = kvm_x86_ops->get_cpl(percpu_read(current_vcpu));
5037 return user_mode != 0;
5040 static unsigned long kvm_get_guest_ip(void)
5042 unsigned long ip = 0;
5044 if (percpu_read(current_vcpu))
5045 ip = kvm_rip_read(percpu_read(current_vcpu));
5047 return ip;
5050 static struct perf_guest_info_callbacks kvm_guest_cbs = {
5051 .is_in_guest = kvm_is_in_guest,
5052 .is_user_mode = kvm_is_user_mode,
5053 .get_guest_ip = kvm_get_guest_ip,
5056 void kvm_before_handle_nmi(struct kvm_vcpu *vcpu)
5058 percpu_write(current_vcpu, vcpu);
5060 EXPORT_SYMBOL_GPL(kvm_before_handle_nmi);
5062 void kvm_after_handle_nmi(struct kvm_vcpu *vcpu)
5064 percpu_write(current_vcpu, NULL);
5066 EXPORT_SYMBOL_GPL(kvm_after_handle_nmi);
5068 static void kvm_set_mmio_spte_mask(void)
5070 u64 mask;
5071 int maxphyaddr = boot_cpu_data.x86_phys_bits;
5074 * Set the reserved bits and the present bit of an paging-structure
5075 * entry to generate page fault with PFER.RSV = 1.
5077 mask = ((1ull << (62 - maxphyaddr + 1)) - 1) << maxphyaddr;
5078 mask |= 1ull;
5080 #ifdef CONFIG_X86_64
5082 * If reserved bit is not supported, clear the present bit to disable
5083 * mmio page fault.
5085 if (maxphyaddr == 52)
5086 mask &= ~1ull;
5087 #endif
5089 kvm_mmu_set_mmio_spte_mask(mask);
5092 int kvm_arch_init(void *opaque)
5094 int r;
5095 struct kvm_x86_ops *ops = (struct kvm_x86_ops *)opaque;
5097 if (kvm_x86_ops) {
5098 printk(KERN_ERR "kvm: already loaded the other module\n");
5099 r = -EEXIST;
5100 goto out;
5103 if (!ops->cpu_has_kvm_support()) {
5104 printk(KERN_ERR "kvm: no hardware support\n");
5105 r = -EOPNOTSUPP;
5106 goto out;
5108 if (ops->disabled_by_bios()) {
5109 printk(KERN_ERR "kvm: disabled by bios\n");
5110 r = -EOPNOTSUPP;
5111 goto out;
5114 r = kvm_mmu_module_init();
5115 if (r)
5116 goto out;
5118 kvm_set_mmio_spte_mask();
5119 kvm_init_msr_list();
5121 kvm_x86_ops = ops;
5122 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
5123 PT_DIRTY_MASK, PT64_NX_MASK, 0);
5125 kvm_timer_init();
5127 perf_register_guest_info_callbacks(&kvm_guest_cbs);
5129 if (cpu_has_xsave)
5130 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
5132 return 0;
5134 out:
5135 return r;
5138 void kvm_arch_exit(void)
5140 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
5142 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
5143 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
5144 CPUFREQ_TRANSITION_NOTIFIER);
5145 unregister_hotcpu_notifier(&kvmclock_cpu_notifier_block);
5146 kvm_x86_ops = NULL;
5147 kvm_mmu_module_exit();
5150 int kvm_emulate_halt(struct kvm_vcpu *vcpu)
5152 ++vcpu->stat.halt_exits;
5153 if (irqchip_in_kernel(vcpu->kvm)) {
5154 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
5155 return 1;
5156 } else {
5157 vcpu->run->exit_reason = KVM_EXIT_HLT;
5158 return 0;
5161 EXPORT_SYMBOL_GPL(kvm_emulate_halt);
5163 static inline gpa_t hc_gpa(struct kvm_vcpu *vcpu, unsigned long a0,
5164 unsigned long a1)
5166 if (is_long_mode(vcpu))
5167 return a0;
5168 else
5169 return a0 | ((gpa_t)a1 << 32);
5172 int kvm_hv_hypercall(struct kvm_vcpu *vcpu)
5174 u64 param, ingpa, outgpa, ret;
5175 uint16_t code, rep_idx, rep_cnt, res = HV_STATUS_SUCCESS, rep_done = 0;
5176 bool fast, longmode;
5177 int cs_db, cs_l;
5180 * hypercall generates UD from non zero cpl and real mode
5181 * per HYPER-V spec
5183 if (kvm_x86_ops->get_cpl(vcpu) != 0 || !is_protmode(vcpu)) {
5184 kvm_queue_exception(vcpu, UD_VECTOR);
5185 return 0;
5188 kvm_x86_ops->get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
5189 longmode = is_long_mode(vcpu) && cs_l == 1;
5191 if (!longmode) {
5192 param = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDX) << 32) |
5193 (kvm_register_read(vcpu, VCPU_REGS_RAX) & 0xffffffff);
5194 ingpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RBX) << 32) |
5195 (kvm_register_read(vcpu, VCPU_REGS_RCX) & 0xffffffff);
5196 outgpa = ((u64)kvm_register_read(vcpu, VCPU_REGS_RDI) << 32) |
5197 (kvm_register_read(vcpu, VCPU_REGS_RSI) & 0xffffffff);
5199 #ifdef CONFIG_X86_64
5200 else {
5201 param = kvm_register_read(vcpu, VCPU_REGS_RCX);
5202 ingpa = kvm_register_read(vcpu, VCPU_REGS_RDX);
5203 outgpa = kvm_register_read(vcpu, VCPU_REGS_R8);
5205 #endif
5207 code = param & 0xffff;
5208 fast = (param >> 16) & 0x1;
5209 rep_cnt = (param >> 32) & 0xfff;
5210 rep_idx = (param >> 48) & 0xfff;
5212 trace_kvm_hv_hypercall(code, fast, rep_cnt, rep_idx, ingpa, outgpa);
5214 switch (code) {
5215 case HV_X64_HV_NOTIFY_LONG_SPIN_WAIT:
5216 kvm_vcpu_on_spin(vcpu);
5217 break;
5218 default:
5219 res = HV_STATUS_INVALID_HYPERCALL_CODE;
5220 break;
5223 ret = res | (((u64)rep_done & 0xfff) << 32);
5224 if (longmode) {
5225 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5226 } else {
5227 kvm_register_write(vcpu, VCPU_REGS_RDX, ret >> 32);
5228 kvm_register_write(vcpu, VCPU_REGS_RAX, ret & 0xffffffff);
5231 return 1;
5234 int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
5236 unsigned long nr, a0, a1, a2, a3, ret;
5237 int r = 1;
5239 if (kvm_hv_hypercall_enabled(vcpu->kvm))
5240 return kvm_hv_hypercall(vcpu);
5242 nr = kvm_register_read(vcpu, VCPU_REGS_RAX);
5243 a0 = kvm_register_read(vcpu, VCPU_REGS_RBX);
5244 a1 = kvm_register_read(vcpu, VCPU_REGS_RCX);
5245 a2 = kvm_register_read(vcpu, VCPU_REGS_RDX);
5246 a3 = kvm_register_read(vcpu, VCPU_REGS_RSI);
5248 trace_kvm_hypercall(nr, a0, a1, a2, a3);
5250 if (!is_long_mode(vcpu)) {
5251 nr &= 0xFFFFFFFF;
5252 a0 &= 0xFFFFFFFF;
5253 a1 &= 0xFFFFFFFF;
5254 a2 &= 0xFFFFFFFF;
5255 a3 &= 0xFFFFFFFF;
5258 if (kvm_x86_ops->get_cpl(vcpu) != 0) {
5259 ret = -KVM_EPERM;
5260 goto out;
5263 switch (nr) {
5264 case KVM_HC_VAPIC_POLL_IRQ:
5265 ret = 0;
5266 break;
5267 case KVM_HC_MMU_OP:
5268 r = kvm_pv_mmu_op(vcpu, a0, hc_gpa(vcpu, a1, a2), &ret);
5269 break;
5270 default:
5271 ret = -KVM_ENOSYS;
5272 break;
5274 out:
5275 kvm_register_write(vcpu, VCPU_REGS_RAX, ret);
5276 ++vcpu->stat.hypercalls;
5277 return r;
5279 EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
5281 int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
5283 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5284 char instruction[3];
5285 unsigned long rip = kvm_rip_read(vcpu);
5288 * Blow out the MMU to ensure that no other VCPU has an active mapping
5289 * to ensure that the updated hypercall appears atomically across all
5290 * VCPUs.
5292 kvm_mmu_zap_all(vcpu->kvm);
5294 kvm_x86_ops->patch_hypercall(vcpu, instruction);
5296 return emulator_write_emulated(ctxt, rip, instruction, 3, NULL);
5299 static int move_to_next_stateful_cpuid_entry(struct kvm_vcpu *vcpu, int i)
5301 struct kvm_cpuid_entry2 *e = &vcpu->arch.cpuid_entries[i];
5302 int j, nent = vcpu->arch.cpuid_nent;
5304 e->flags &= ~KVM_CPUID_FLAG_STATE_READ_NEXT;
5305 /* when no next entry is found, the current entry[i] is reselected */
5306 for (j = i + 1; ; j = (j + 1) % nent) {
5307 struct kvm_cpuid_entry2 *ej = &vcpu->arch.cpuid_entries[j];
5308 if (ej->function == e->function) {
5309 ej->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
5310 return j;
5313 return 0; /* silence gcc, even though control never reaches here */
5316 /* find an entry with matching function, matching index (if needed), and that
5317 * should be read next (if it's stateful) */
5318 static int is_matching_cpuid_entry(struct kvm_cpuid_entry2 *e,
5319 u32 function, u32 index)
5321 if (e->function != function)
5322 return 0;
5323 if ((e->flags & KVM_CPUID_FLAG_SIGNIFCANT_INDEX) && e->index != index)
5324 return 0;
5325 if ((e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC) &&
5326 !(e->flags & KVM_CPUID_FLAG_STATE_READ_NEXT))
5327 return 0;
5328 return 1;
5331 struct kvm_cpuid_entry2 *kvm_find_cpuid_entry(struct kvm_vcpu *vcpu,
5332 u32 function, u32 index)
5334 int i;
5335 struct kvm_cpuid_entry2 *best = NULL;
5337 for (i = 0; i < vcpu->arch.cpuid_nent; ++i) {
5338 struct kvm_cpuid_entry2 *e;
5340 e = &vcpu->arch.cpuid_entries[i];
5341 if (is_matching_cpuid_entry(e, function, index)) {
5342 if (e->flags & KVM_CPUID_FLAG_STATEFUL_FUNC)
5343 move_to_next_stateful_cpuid_entry(vcpu, i);
5344 best = e;
5345 break;
5348 return best;
5350 EXPORT_SYMBOL_GPL(kvm_find_cpuid_entry);
5352 int cpuid_maxphyaddr(struct kvm_vcpu *vcpu)
5354 struct kvm_cpuid_entry2 *best;
5356 best = kvm_find_cpuid_entry(vcpu, 0x80000000, 0);
5357 if (!best || best->eax < 0x80000008)
5358 goto not_found;
5359 best = kvm_find_cpuid_entry(vcpu, 0x80000008, 0);
5360 if (best)
5361 return best->eax & 0xff;
5362 not_found:
5363 return 36;
5367 * If no match is found, check whether we exceed the vCPU's limit
5368 * and return the content of the highest valid _standard_ leaf instead.
5369 * This is to satisfy the CPUID specification.
5371 static struct kvm_cpuid_entry2* check_cpuid_limit(struct kvm_vcpu *vcpu,
5372 u32 function, u32 index)
5374 struct kvm_cpuid_entry2 *maxlevel;
5376 maxlevel = kvm_find_cpuid_entry(vcpu, function & 0x80000000, 0);
5377 if (!maxlevel || maxlevel->eax >= function)
5378 return NULL;
5379 if (function & 0x80000000) {
5380 maxlevel = kvm_find_cpuid_entry(vcpu, 0, 0);
5381 if (!maxlevel)
5382 return NULL;
5384 return kvm_find_cpuid_entry(vcpu, maxlevel->eax, index);
5387 void kvm_emulate_cpuid(struct kvm_vcpu *vcpu)
5389 u32 function, index;
5390 struct kvm_cpuid_entry2 *best;
5392 function = kvm_register_read(vcpu, VCPU_REGS_RAX);
5393 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5394 kvm_register_write(vcpu, VCPU_REGS_RAX, 0);
5395 kvm_register_write(vcpu, VCPU_REGS_RBX, 0);
5396 kvm_register_write(vcpu, VCPU_REGS_RCX, 0);
5397 kvm_register_write(vcpu, VCPU_REGS_RDX, 0);
5398 best = kvm_find_cpuid_entry(vcpu, function, index);
5400 if (!best)
5401 best = check_cpuid_limit(vcpu, function, index);
5403 if (best) {
5404 kvm_register_write(vcpu, VCPU_REGS_RAX, best->eax);
5405 kvm_register_write(vcpu, VCPU_REGS_RBX, best->ebx);
5406 kvm_register_write(vcpu, VCPU_REGS_RCX, best->ecx);
5407 kvm_register_write(vcpu, VCPU_REGS_RDX, best->edx);
5409 kvm_x86_ops->skip_emulated_instruction(vcpu);
5410 trace_kvm_cpuid(function,
5411 kvm_register_read(vcpu, VCPU_REGS_RAX),
5412 kvm_register_read(vcpu, VCPU_REGS_RBX),
5413 kvm_register_read(vcpu, VCPU_REGS_RCX),
5414 kvm_register_read(vcpu, VCPU_REGS_RDX));
5416 EXPORT_SYMBOL_GPL(kvm_emulate_cpuid);
5419 * Check if userspace requested an interrupt window, and that the
5420 * interrupt window is open.
5422 * No need to exit to userspace if we already have an interrupt queued.
5424 static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
5426 return (!irqchip_in_kernel(vcpu->kvm) && !kvm_cpu_has_interrupt(vcpu) &&
5427 vcpu->run->request_interrupt_window &&
5428 kvm_arch_interrupt_allowed(vcpu));
5431 static void post_kvm_run_save(struct kvm_vcpu *vcpu)
5433 struct kvm_run *kvm_run = vcpu->run;
5435 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
5436 kvm_run->cr8 = kvm_get_cr8(vcpu);
5437 kvm_run->apic_base = kvm_get_apic_base(vcpu);
5438 if (irqchip_in_kernel(vcpu->kvm))
5439 kvm_run->ready_for_interrupt_injection = 1;
5440 else
5441 kvm_run->ready_for_interrupt_injection =
5442 kvm_arch_interrupt_allowed(vcpu) &&
5443 !kvm_cpu_has_interrupt(vcpu) &&
5444 !kvm_event_needs_reinjection(vcpu);
5447 static void vapic_enter(struct kvm_vcpu *vcpu)
5449 struct kvm_lapic *apic = vcpu->arch.apic;
5450 struct page *page;
5452 if (!apic || !apic->vapic_addr)
5453 return;
5455 page = gfn_to_page(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5457 vcpu->arch.apic->vapic_page = page;
5460 static void vapic_exit(struct kvm_vcpu *vcpu)
5462 struct kvm_lapic *apic = vcpu->arch.apic;
5463 int idx;
5465 if (!apic || !apic->vapic_addr)
5466 return;
5468 idx = srcu_read_lock(&vcpu->kvm->srcu);
5469 kvm_release_page_dirty(apic->vapic_page);
5470 mark_page_dirty(vcpu->kvm, apic->vapic_addr >> PAGE_SHIFT);
5471 srcu_read_unlock(&vcpu->kvm->srcu, idx);
5474 static void update_cr8_intercept(struct kvm_vcpu *vcpu)
5476 int max_irr, tpr;
5478 if (!kvm_x86_ops->update_cr8_intercept)
5479 return;
5481 if (!vcpu->arch.apic)
5482 return;
5484 if (!vcpu->arch.apic->vapic_addr)
5485 max_irr = kvm_lapic_find_highest_irr(vcpu);
5486 else
5487 max_irr = -1;
5489 if (max_irr != -1)
5490 max_irr >>= 4;
5492 tpr = kvm_lapic_get_cr8(vcpu);
5494 kvm_x86_ops->update_cr8_intercept(vcpu, tpr, max_irr);
5497 static void inject_pending_event(struct kvm_vcpu *vcpu)
5499 /* try to reinject previous events if any */
5500 if (vcpu->arch.exception.pending) {
5501 trace_kvm_inj_exception(vcpu->arch.exception.nr,
5502 vcpu->arch.exception.has_error_code,
5503 vcpu->arch.exception.error_code);
5504 kvm_x86_ops->queue_exception(vcpu, vcpu->arch.exception.nr,
5505 vcpu->arch.exception.has_error_code,
5506 vcpu->arch.exception.error_code,
5507 vcpu->arch.exception.reinject);
5508 return;
5511 if (vcpu->arch.nmi_injected) {
5512 kvm_x86_ops->set_nmi(vcpu);
5513 return;
5516 if (vcpu->arch.interrupt.pending) {
5517 kvm_x86_ops->set_irq(vcpu);
5518 return;
5521 /* try to inject new event if pending */
5522 if (vcpu->arch.nmi_pending) {
5523 if (kvm_x86_ops->nmi_allowed(vcpu)) {
5524 vcpu->arch.nmi_pending = false;
5525 vcpu->arch.nmi_injected = true;
5526 kvm_x86_ops->set_nmi(vcpu);
5528 } else if (kvm_cpu_has_interrupt(vcpu)) {
5529 if (kvm_x86_ops->interrupt_allowed(vcpu)) {
5530 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu),
5531 false);
5532 kvm_x86_ops->set_irq(vcpu);
5537 static void kvm_load_guest_xcr0(struct kvm_vcpu *vcpu)
5539 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE) &&
5540 !vcpu->guest_xcr0_loaded) {
5541 /* kvm_set_xcr() also depends on this */
5542 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
5543 vcpu->guest_xcr0_loaded = 1;
5547 static void kvm_put_guest_xcr0(struct kvm_vcpu *vcpu)
5549 if (vcpu->guest_xcr0_loaded) {
5550 if (vcpu->arch.xcr0 != host_xcr0)
5551 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
5552 vcpu->guest_xcr0_loaded = 0;
5556 static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
5558 int r;
5559 bool nmi_pending;
5560 bool req_int_win = !irqchip_in_kernel(vcpu->kvm) &&
5561 vcpu->run->request_interrupt_window;
5563 if (vcpu->requests) {
5564 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
5565 kvm_mmu_unload(vcpu);
5566 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
5567 __kvm_migrate_timers(vcpu);
5568 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
5569 r = kvm_guest_time_update(vcpu);
5570 if (unlikely(r))
5571 goto out;
5573 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
5574 kvm_mmu_sync_roots(vcpu);
5575 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
5576 kvm_x86_ops->tlb_flush(vcpu);
5577 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
5578 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
5579 r = 0;
5580 goto out;
5582 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
5583 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
5584 r = 0;
5585 goto out;
5587 if (kvm_check_request(KVM_REQ_DEACTIVATE_FPU, vcpu)) {
5588 vcpu->fpu_active = 0;
5589 kvm_x86_ops->fpu_deactivate(vcpu);
5591 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
5592 /* Page is swapped out. Do synthetic halt */
5593 vcpu->arch.apf.halted = true;
5594 r = 1;
5595 goto out;
5597 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
5598 record_steal_time(vcpu);
5602 r = kvm_mmu_reload(vcpu);
5603 if (unlikely(r))
5604 goto out;
5607 * An NMI can be injected between local nmi_pending read and
5608 * vcpu->arch.nmi_pending read inside inject_pending_event().
5609 * But in that case, KVM_REQ_EVENT will be set, which makes
5610 * the race described above benign.
5612 nmi_pending = ACCESS_ONCE(vcpu->arch.nmi_pending);
5614 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
5615 inject_pending_event(vcpu);
5617 /* enable NMI/IRQ window open exits if needed */
5618 if (nmi_pending)
5619 kvm_x86_ops->enable_nmi_window(vcpu);
5620 else if (kvm_cpu_has_interrupt(vcpu) || req_int_win)
5621 kvm_x86_ops->enable_irq_window(vcpu);
5623 if (kvm_lapic_enabled(vcpu)) {
5624 update_cr8_intercept(vcpu);
5625 kvm_lapic_sync_to_vapic(vcpu);
5629 preempt_disable();
5631 kvm_x86_ops->prepare_guest_switch(vcpu);
5632 if (vcpu->fpu_active)
5633 kvm_load_guest_fpu(vcpu);
5634 kvm_load_guest_xcr0(vcpu);
5636 vcpu->mode = IN_GUEST_MODE;
5638 /* We should set ->mode before check ->requests,
5639 * see the comment in make_all_cpus_request.
5641 smp_mb();
5643 local_irq_disable();
5645 if (vcpu->mode == EXITING_GUEST_MODE || vcpu->requests
5646 || need_resched() || signal_pending(current)) {
5647 vcpu->mode = OUTSIDE_GUEST_MODE;
5648 smp_wmb();
5649 local_irq_enable();
5650 preempt_enable();
5651 kvm_x86_ops->cancel_injection(vcpu);
5652 r = 1;
5653 goto out;
5656 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5658 kvm_guest_enter();
5660 if (unlikely(vcpu->arch.switch_db_regs)) {
5661 set_debugreg(0, 7);
5662 set_debugreg(vcpu->arch.eff_db[0], 0);
5663 set_debugreg(vcpu->arch.eff_db[1], 1);
5664 set_debugreg(vcpu->arch.eff_db[2], 2);
5665 set_debugreg(vcpu->arch.eff_db[3], 3);
5668 trace_kvm_entry(vcpu->vcpu_id);
5669 kvm_x86_ops->run(vcpu);
5672 * If the guest has used debug registers, at least dr7
5673 * will be disabled while returning to the host.
5674 * If we don't have active breakpoints in the host, we don't
5675 * care about the messed up debug address registers. But if
5676 * we have some of them active, restore the old state.
5678 if (hw_breakpoint_active())
5679 hw_breakpoint_restore();
5681 kvm_get_msr(vcpu, MSR_IA32_TSC, &vcpu->arch.last_guest_tsc);
5683 vcpu->mode = OUTSIDE_GUEST_MODE;
5684 smp_wmb();
5685 local_irq_enable();
5687 ++vcpu->stat.exits;
5690 * We must have an instruction between local_irq_enable() and
5691 * kvm_guest_exit(), so the timer interrupt isn't delayed by
5692 * the interrupt shadow. The stat.exits increment will do nicely.
5693 * But we need to prevent reordering, hence this barrier():
5695 barrier();
5697 kvm_guest_exit();
5699 preempt_enable();
5701 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5704 * Profile KVM exit RIPs:
5706 if (unlikely(prof_on == KVM_PROFILING)) {
5707 unsigned long rip = kvm_rip_read(vcpu);
5708 profile_hit(KVM_PROFILING, (void *)rip);
5712 kvm_lapic_sync_from_vapic(vcpu);
5714 r = kvm_x86_ops->handle_exit(vcpu);
5715 out:
5716 return r;
5720 static int __vcpu_run(struct kvm_vcpu *vcpu)
5722 int r;
5723 struct kvm *kvm = vcpu->kvm;
5725 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED)) {
5726 pr_debug("vcpu %d received sipi with vector # %x\n",
5727 vcpu->vcpu_id, vcpu->arch.sipi_vector);
5728 kvm_lapic_reset(vcpu);
5729 r = kvm_arch_vcpu_reset(vcpu);
5730 if (r)
5731 return r;
5732 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
5735 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5736 vapic_enter(vcpu);
5738 r = 1;
5739 while (r > 0) {
5740 if (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
5741 !vcpu->arch.apf.halted)
5742 r = vcpu_enter_guest(vcpu);
5743 else {
5744 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5745 kvm_vcpu_block(vcpu);
5746 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5747 if (kvm_check_request(KVM_REQ_UNHALT, vcpu))
5749 switch(vcpu->arch.mp_state) {
5750 case KVM_MP_STATE_HALTED:
5751 vcpu->arch.mp_state =
5752 KVM_MP_STATE_RUNNABLE;
5753 case KVM_MP_STATE_RUNNABLE:
5754 vcpu->arch.apf.halted = false;
5755 break;
5756 case KVM_MP_STATE_SIPI_RECEIVED:
5757 default:
5758 r = -EINTR;
5759 break;
5764 if (r <= 0)
5765 break;
5767 clear_bit(KVM_REQ_PENDING_TIMER, &vcpu->requests);
5768 if (kvm_cpu_has_pending_timer(vcpu))
5769 kvm_inject_pending_timer_irqs(vcpu);
5771 if (dm_request_for_irq_injection(vcpu)) {
5772 r = -EINTR;
5773 vcpu->run->exit_reason = KVM_EXIT_INTR;
5774 ++vcpu->stat.request_irq_exits;
5777 kvm_check_async_pf_completion(vcpu);
5779 if (signal_pending(current)) {
5780 r = -EINTR;
5781 vcpu->run->exit_reason = KVM_EXIT_INTR;
5782 ++vcpu->stat.signal_exits;
5784 if (need_resched()) {
5785 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5786 kvm_resched(vcpu);
5787 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
5791 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
5793 vapic_exit(vcpu);
5795 return r;
5798 static int complete_mmio(struct kvm_vcpu *vcpu)
5800 struct kvm_run *run = vcpu->run;
5801 int r;
5803 if (!(vcpu->arch.pio.count || vcpu->mmio_needed))
5804 return 1;
5806 if (vcpu->mmio_needed) {
5807 vcpu->mmio_needed = 0;
5808 if (!vcpu->mmio_is_write)
5809 memcpy(vcpu->mmio_data + vcpu->mmio_index,
5810 run->mmio.data, 8);
5811 vcpu->mmio_index += 8;
5812 if (vcpu->mmio_index < vcpu->mmio_size) {
5813 run->exit_reason = KVM_EXIT_MMIO;
5814 run->mmio.phys_addr = vcpu->mmio_phys_addr + vcpu->mmio_index;
5815 memcpy(run->mmio.data, vcpu->mmio_data + vcpu->mmio_index, 8);
5816 run->mmio.len = min(vcpu->mmio_size - vcpu->mmio_index, 8);
5817 run->mmio.is_write = vcpu->mmio_is_write;
5818 vcpu->mmio_needed = 1;
5819 return 0;
5821 if (vcpu->mmio_is_write)
5822 return 1;
5823 vcpu->mmio_read_completed = 1;
5825 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
5826 r = emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
5827 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
5828 if (r != EMULATE_DONE)
5829 return 0;
5830 return 1;
5833 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
5835 int r;
5836 sigset_t sigsaved;
5838 if (!tsk_used_math(current) && init_fpu(current))
5839 return -ENOMEM;
5841 if (vcpu->sigset_active)
5842 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
5844 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
5845 kvm_vcpu_block(vcpu);
5846 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
5847 r = -EAGAIN;
5848 goto out;
5851 /* re-sync apic's tpr */
5852 if (!irqchip_in_kernel(vcpu->kvm)) {
5853 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
5854 r = -EINVAL;
5855 goto out;
5859 r = complete_mmio(vcpu);
5860 if (r <= 0)
5861 goto out;
5863 if (kvm_run->exit_reason == KVM_EXIT_HYPERCALL)
5864 kvm_register_write(vcpu, VCPU_REGS_RAX,
5865 kvm_run->hypercall.ret);
5867 r = __vcpu_run(vcpu);
5869 out:
5870 post_kvm_run_save(vcpu);
5871 if (vcpu->sigset_active)
5872 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
5874 return r;
5877 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5879 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
5881 * We are here if userspace calls get_regs() in the middle of
5882 * instruction emulation. Registers state needs to be copied
5883 * back from emulation context to vcpu. Usrapace shouldn't do
5884 * that usually, but some bad designed PV devices (vmware
5885 * backdoor interface) need this to work
5887 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
5888 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
5889 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5891 regs->rax = kvm_register_read(vcpu, VCPU_REGS_RAX);
5892 regs->rbx = kvm_register_read(vcpu, VCPU_REGS_RBX);
5893 regs->rcx = kvm_register_read(vcpu, VCPU_REGS_RCX);
5894 regs->rdx = kvm_register_read(vcpu, VCPU_REGS_RDX);
5895 regs->rsi = kvm_register_read(vcpu, VCPU_REGS_RSI);
5896 regs->rdi = kvm_register_read(vcpu, VCPU_REGS_RDI);
5897 regs->rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
5898 regs->rbp = kvm_register_read(vcpu, VCPU_REGS_RBP);
5899 #ifdef CONFIG_X86_64
5900 regs->r8 = kvm_register_read(vcpu, VCPU_REGS_R8);
5901 regs->r9 = kvm_register_read(vcpu, VCPU_REGS_R9);
5902 regs->r10 = kvm_register_read(vcpu, VCPU_REGS_R10);
5903 regs->r11 = kvm_register_read(vcpu, VCPU_REGS_R11);
5904 regs->r12 = kvm_register_read(vcpu, VCPU_REGS_R12);
5905 regs->r13 = kvm_register_read(vcpu, VCPU_REGS_R13);
5906 regs->r14 = kvm_register_read(vcpu, VCPU_REGS_R14);
5907 regs->r15 = kvm_register_read(vcpu, VCPU_REGS_R15);
5908 #endif
5910 regs->rip = kvm_rip_read(vcpu);
5911 regs->rflags = kvm_get_rflags(vcpu);
5913 return 0;
5916 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
5918 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
5919 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5921 kvm_register_write(vcpu, VCPU_REGS_RAX, regs->rax);
5922 kvm_register_write(vcpu, VCPU_REGS_RBX, regs->rbx);
5923 kvm_register_write(vcpu, VCPU_REGS_RCX, regs->rcx);
5924 kvm_register_write(vcpu, VCPU_REGS_RDX, regs->rdx);
5925 kvm_register_write(vcpu, VCPU_REGS_RSI, regs->rsi);
5926 kvm_register_write(vcpu, VCPU_REGS_RDI, regs->rdi);
5927 kvm_register_write(vcpu, VCPU_REGS_RSP, regs->rsp);
5928 kvm_register_write(vcpu, VCPU_REGS_RBP, regs->rbp);
5929 #ifdef CONFIG_X86_64
5930 kvm_register_write(vcpu, VCPU_REGS_R8, regs->r8);
5931 kvm_register_write(vcpu, VCPU_REGS_R9, regs->r9);
5932 kvm_register_write(vcpu, VCPU_REGS_R10, regs->r10);
5933 kvm_register_write(vcpu, VCPU_REGS_R11, regs->r11);
5934 kvm_register_write(vcpu, VCPU_REGS_R12, regs->r12);
5935 kvm_register_write(vcpu, VCPU_REGS_R13, regs->r13);
5936 kvm_register_write(vcpu, VCPU_REGS_R14, regs->r14);
5937 kvm_register_write(vcpu, VCPU_REGS_R15, regs->r15);
5938 #endif
5940 kvm_rip_write(vcpu, regs->rip);
5941 kvm_set_rflags(vcpu, regs->rflags);
5943 vcpu->arch.exception.pending = false;
5945 kvm_make_request(KVM_REQ_EVENT, vcpu);
5947 return 0;
5950 void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
5952 struct kvm_segment cs;
5954 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
5955 *db = cs.db;
5956 *l = cs.l;
5958 EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
5960 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
5961 struct kvm_sregs *sregs)
5963 struct desc_ptr dt;
5965 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
5966 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
5967 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
5968 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
5969 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
5970 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
5972 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
5973 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
5975 kvm_x86_ops->get_idt(vcpu, &dt);
5976 sregs->idt.limit = dt.size;
5977 sregs->idt.base = dt.address;
5978 kvm_x86_ops->get_gdt(vcpu, &dt);
5979 sregs->gdt.limit = dt.size;
5980 sregs->gdt.base = dt.address;
5982 sregs->cr0 = kvm_read_cr0(vcpu);
5983 sregs->cr2 = vcpu->arch.cr2;
5984 sregs->cr3 = kvm_read_cr3(vcpu);
5985 sregs->cr4 = kvm_read_cr4(vcpu);
5986 sregs->cr8 = kvm_get_cr8(vcpu);
5987 sregs->efer = vcpu->arch.efer;
5988 sregs->apic_base = kvm_get_apic_base(vcpu);
5990 memset(sregs->interrupt_bitmap, 0, sizeof sregs->interrupt_bitmap);
5992 if (vcpu->arch.interrupt.pending && !vcpu->arch.interrupt.soft)
5993 set_bit(vcpu->arch.interrupt.nr,
5994 (unsigned long *)sregs->interrupt_bitmap);
5996 return 0;
5999 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
6000 struct kvm_mp_state *mp_state)
6002 mp_state->mp_state = vcpu->arch.mp_state;
6003 return 0;
6006 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
6007 struct kvm_mp_state *mp_state)
6009 vcpu->arch.mp_state = mp_state->mp_state;
6010 kvm_make_request(KVM_REQ_EVENT, vcpu);
6011 return 0;
6014 int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int reason,
6015 bool has_error_code, u32 error_code)
6017 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
6018 int ret;
6020 init_emulate_ctxt(vcpu);
6022 ret = emulator_task_switch(ctxt, tss_selector, reason,
6023 has_error_code, error_code);
6025 if (ret)
6026 return EMULATE_FAIL;
6028 memcpy(vcpu->arch.regs, ctxt->regs, sizeof ctxt->regs);
6029 kvm_rip_write(vcpu, ctxt->eip);
6030 kvm_set_rflags(vcpu, ctxt->eflags);
6031 kvm_make_request(KVM_REQ_EVENT, vcpu);
6032 return EMULATE_DONE;
6034 EXPORT_SYMBOL_GPL(kvm_task_switch);
6036 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
6037 struct kvm_sregs *sregs)
6039 int mmu_reset_needed = 0;
6040 int pending_vec, max_bits, idx;
6041 struct desc_ptr dt;
6043 dt.size = sregs->idt.limit;
6044 dt.address = sregs->idt.base;
6045 kvm_x86_ops->set_idt(vcpu, &dt);
6046 dt.size = sregs->gdt.limit;
6047 dt.address = sregs->gdt.base;
6048 kvm_x86_ops->set_gdt(vcpu, &dt);
6050 vcpu->arch.cr2 = sregs->cr2;
6051 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
6052 vcpu->arch.cr3 = sregs->cr3;
6053 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
6055 kvm_set_cr8(vcpu, sregs->cr8);
6057 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
6058 kvm_x86_ops->set_efer(vcpu, sregs->efer);
6059 kvm_set_apic_base(vcpu, sregs->apic_base);
6061 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
6062 kvm_x86_ops->set_cr0(vcpu, sregs->cr0);
6063 vcpu->arch.cr0 = sregs->cr0;
6065 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
6066 kvm_x86_ops->set_cr4(vcpu, sregs->cr4);
6067 if (sregs->cr4 & X86_CR4_OSXSAVE)
6068 update_cpuid(vcpu);
6070 idx = srcu_read_lock(&vcpu->kvm->srcu);
6071 if (!is_long_mode(vcpu) && is_pae(vcpu)) {
6072 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
6073 mmu_reset_needed = 1;
6075 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6077 if (mmu_reset_needed)
6078 kvm_mmu_reset_context(vcpu);
6080 max_bits = (sizeof sregs->interrupt_bitmap) << 3;
6081 pending_vec = find_first_bit(
6082 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6083 if (pending_vec < max_bits) {
6084 kvm_queue_interrupt(vcpu, pending_vec, false);
6085 pr_debug("Set back pending irq %d\n", pending_vec);
6088 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
6089 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
6090 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
6091 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
6092 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
6093 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
6095 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
6096 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
6098 update_cr8_intercept(vcpu);
6100 /* Older userspace won't unhalt the vcpu on reset. */
6101 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
6102 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
6103 !is_protmode(vcpu))
6104 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6106 kvm_make_request(KVM_REQ_EVENT, vcpu);
6108 return 0;
6111 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
6112 struct kvm_guest_debug *dbg)
6114 unsigned long rflags;
6115 int i, r;
6117 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
6118 r = -EBUSY;
6119 if (vcpu->arch.exception.pending)
6120 goto out;
6121 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
6122 kvm_queue_exception(vcpu, DB_VECTOR);
6123 else
6124 kvm_queue_exception(vcpu, BP_VECTOR);
6128 * Read rflags as long as potentially injected trace flags are still
6129 * filtered out.
6131 rflags = kvm_get_rflags(vcpu);
6133 vcpu->guest_debug = dbg->control;
6134 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
6135 vcpu->guest_debug = 0;
6137 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
6138 for (i = 0; i < KVM_NR_DB_REGS; ++i)
6139 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
6140 vcpu->arch.switch_db_regs =
6141 (dbg->arch.debugreg[7] & DR7_BP_EN_MASK);
6142 } else {
6143 for (i = 0; i < KVM_NR_DB_REGS; i++)
6144 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
6145 vcpu->arch.switch_db_regs = (vcpu->arch.dr7 & DR7_BP_EN_MASK);
6148 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6149 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
6150 get_segment_base(vcpu, VCPU_SREG_CS);
6153 * Trigger an rflags update that will inject or remove the trace
6154 * flags.
6156 kvm_set_rflags(vcpu, rflags);
6158 kvm_x86_ops->set_guest_debug(vcpu, dbg);
6160 r = 0;
6162 out:
6164 return r;
6168 * Translate a guest virtual address to a guest physical address.
6170 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
6171 struct kvm_translation *tr)
6173 unsigned long vaddr = tr->linear_address;
6174 gpa_t gpa;
6175 int idx;
6177 idx = srcu_read_lock(&vcpu->kvm->srcu);
6178 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
6179 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6180 tr->physical_address = gpa;
6181 tr->valid = gpa != UNMAPPED_GVA;
6182 tr->writeable = 1;
6183 tr->usermode = 0;
6185 return 0;
6188 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6190 struct i387_fxsave_struct *fxsave =
6191 &vcpu->arch.guest_fpu.state->fxsave;
6193 memcpy(fpu->fpr, fxsave->st_space, 128);
6194 fpu->fcw = fxsave->cwd;
6195 fpu->fsw = fxsave->swd;
6196 fpu->ftwx = fxsave->twd;
6197 fpu->last_opcode = fxsave->fop;
6198 fpu->last_ip = fxsave->rip;
6199 fpu->last_dp = fxsave->rdp;
6200 memcpy(fpu->xmm, fxsave->xmm_space, sizeof fxsave->xmm_space);
6202 return 0;
6205 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
6207 struct i387_fxsave_struct *fxsave =
6208 &vcpu->arch.guest_fpu.state->fxsave;
6210 memcpy(fxsave->st_space, fpu->fpr, 128);
6211 fxsave->cwd = fpu->fcw;
6212 fxsave->swd = fpu->fsw;
6213 fxsave->twd = fpu->ftwx;
6214 fxsave->fop = fpu->last_opcode;
6215 fxsave->rip = fpu->last_ip;
6216 fxsave->rdp = fpu->last_dp;
6217 memcpy(fxsave->xmm_space, fpu->xmm, sizeof fxsave->xmm_space);
6219 return 0;
6222 int fx_init(struct kvm_vcpu *vcpu)
6224 int err;
6226 err = fpu_alloc(&vcpu->arch.guest_fpu);
6227 if (err)
6228 return err;
6230 fpu_finit(&vcpu->arch.guest_fpu);
6233 * Ensure guest xcr0 is valid for loading
6235 vcpu->arch.xcr0 = XSTATE_FP;
6237 vcpu->arch.cr0 |= X86_CR0_ET;
6239 return 0;
6241 EXPORT_SYMBOL_GPL(fx_init);
6243 static void fx_free(struct kvm_vcpu *vcpu)
6245 fpu_free(&vcpu->arch.guest_fpu);
6248 void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
6250 if (vcpu->guest_fpu_loaded)
6251 return;
6254 * Restore all possible states in the guest,
6255 * and assume host would use all available bits.
6256 * Guest xcr0 would be loaded later.
6258 kvm_put_guest_xcr0(vcpu);
6259 vcpu->guest_fpu_loaded = 1;
6260 unlazy_fpu(current);
6261 fpu_restore_checking(&vcpu->arch.guest_fpu);
6262 trace_kvm_fpu(1);
6265 void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
6267 kvm_put_guest_xcr0(vcpu);
6269 if (!vcpu->guest_fpu_loaded)
6270 return;
6272 vcpu->guest_fpu_loaded = 0;
6273 fpu_save_init(&vcpu->arch.guest_fpu);
6274 ++vcpu->stat.fpu_reload;
6275 kvm_make_request(KVM_REQ_DEACTIVATE_FPU, vcpu);
6276 trace_kvm_fpu(0);
6279 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
6281 kvmclock_reset(vcpu);
6283 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
6284 fx_free(vcpu);
6285 kvm_x86_ops->vcpu_free(vcpu);
6288 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
6289 unsigned int id)
6291 if (check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
6292 printk_once(KERN_WARNING
6293 "kvm: SMP vm created on host with unstable TSC; "
6294 "guest TSC will not be reliable\n");
6295 return kvm_x86_ops->vcpu_create(kvm, id);
6298 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
6300 int r;
6302 vcpu->arch.mtrr_state.have_fixed = 1;
6303 vcpu_load(vcpu);
6304 r = kvm_arch_vcpu_reset(vcpu);
6305 if (r == 0)
6306 r = kvm_mmu_setup(vcpu);
6307 vcpu_put(vcpu);
6309 return r;
6312 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
6314 vcpu->arch.apf.msr_val = 0;
6316 vcpu_load(vcpu);
6317 kvm_mmu_unload(vcpu);
6318 vcpu_put(vcpu);
6320 fx_free(vcpu);
6321 kvm_x86_ops->vcpu_free(vcpu);
6324 int kvm_arch_vcpu_reset(struct kvm_vcpu *vcpu)
6326 vcpu->arch.nmi_pending = false;
6327 vcpu->arch.nmi_injected = false;
6329 vcpu->arch.switch_db_regs = 0;
6330 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
6331 vcpu->arch.dr6 = DR6_FIXED_1;
6332 vcpu->arch.dr7 = DR7_FIXED_1;
6334 kvm_make_request(KVM_REQ_EVENT, vcpu);
6335 vcpu->arch.apf.msr_val = 0;
6336 vcpu->arch.st.msr_val = 0;
6338 kvmclock_reset(vcpu);
6340 kvm_clear_async_pf_completion_queue(vcpu);
6341 kvm_async_pf_hash_reset(vcpu);
6342 vcpu->arch.apf.halted = false;
6344 return kvm_x86_ops->vcpu_reset(vcpu);
6347 int kvm_arch_hardware_enable(void *garbage)
6349 struct kvm *kvm;
6350 struct kvm_vcpu *vcpu;
6351 int i;
6353 kvm_shared_msr_cpu_online();
6354 list_for_each_entry(kvm, &vm_list, vm_list)
6355 kvm_for_each_vcpu(i, vcpu, kvm)
6356 if (vcpu->cpu == smp_processor_id())
6357 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
6358 return kvm_x86_ops->hardware_enable(garbage);
6361 void kvm_arch_hardware_disable(void *garbage)
6363 kvm_x86_ops->hardware_disable(garbage);
6364 drop_user_return_notifiers(garbage);
6367 int kvm_arch_hardware_setup(void)
6369 return kvm_x86_ops->hardware_setup();
6372 void kvm_arch_hardware_unsetup(void)
6374 kvm_x86_ops->hardware_unsetup();
6377 void kvm_arch_check_processor_compat(void *rtn)
6379 kvm_x86_ops->check_processor_compatibility(rtn);
6382 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
6384 struct page *page;
6385 struct kvm *kvm;
6386 int r;
6388 BUG_ON(vcpu->kvm == NULL);
6389 kvm = vcpu->kvm;
6391 vcpu->arch.emulate_ctxt.ops = &emulate_ops;
6392 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
6393 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
6394 vcpu->arch.mmu.translate_gpa = translate_gpa;
6395 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6396 if (!irqchip_in_kernel(kvm) || kvm_vcpu_is_bsp(vcpu))
6397 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
6398 else
6399 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
6401 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
6402 if (!page) {
6403 r = -ENOMEM;
6404 goto fail;
6406 vcpu->arch.pio_data = page_address(page);
6408 kvm_init_tsc_catchup(vcpu, max_tsc_khz);
6410 r = kvm_mmu_create(vcpu);
6411 if (r < 0)
6412 goto fail_free_pio_data;
6414 if (irqchip_in_kernel(kvm)) {
6415 r = kvm_create_lapic(vcpu);
6416 if (r < 0)
6417 goto fail_mmu_destroy;
6420 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
6421 GFP_KERNEL);
6422 if (!vcpu->arch.mce_banks) {
6423 r = -ENOMEM;
6424 goto fail_free_lapic;
6426 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
6428 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, GFP_KERNEL))
6429 goto fail_free_mce_banks;
6431 kvm_async_pf_hash_reset(vcpu);
6433 return 0;
6434 fail_free_mce_banks:
6435 kfree(vcpu->arch.mce_banks);
6436 fail_free_lapic:
6437 kvm_free_lapic(vcpu);
6438 fail_mmu_destroy:
6439 kvm_mmu_destroy(vcpu);
6440 fail_free_pio_data:
6441 free_page((unsigned long)vcpu->arch.pio_data);
6442 fail:
6443 return r;
6446 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
6448 int idx;
6450 kfree(vcpu->arch.mce_banks);
6451 kvm_free_lapic(vcpu);
6452 idx = srcu_read_lock(&vcpu->kvm->srcu);
6453 kvm_mmu_destroy(vcpu);
6454 srcu_read_unlock(&vcpu->kvm->srcu, idx);
6455 free_page((unsigned long)vcpu->arch.pio_data);
6458 int kvm_arch_init_vm(struct kvm *kvm)
6460 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
6461 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
6463 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
6464 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
6466 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
6468 return 0;
6471 static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
6473 vcpu_load(vcpu);
6474 kvm_mmu_unload(vcpu);
6475 vcpu_put(vcpu);
6478 static void kvm_free_vcpus(struct kvm *kvm)
6480 unsigned int i;
6481 struct kvm_vcpu *vcpu;
6484 * Unpin any mmu pages first.
6486 kvm_for_each_vcpu(i, vcpu, kvm) {
6487 kvm_clear_async_pf_completion_queue(vcpu);
6488 kvm_unload_vcpu_mmu(vcpu);
6490 kvm_for_each_vcpu(i, vcpu, kvm)
6491 kvm_arch_vcpu_free(vcpu);
6493 mutex_lock(&kvm->lock);
6494 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
6495 kvm->vcpus[i] = NULL;
6497 atomic_set(&kvm->online_vcpus, 0);
6498 mutex_unlock(&kvm->lock);
6501 void kvm_arch_sync_events(struct kvm *kvm)
6503 kvm_free_all_assigned_devices(kvm);
6504 kvm_free_pit(kvm);
6507 void kvm_arch_destroy_vm(struct kvm *kvm)
6509 kvm_iommu_unmap_guest(kvm);
6510 kfree(kvm->arch.vpic);
6511 kfree(kvm->arch.vioapic);
6512 kvm_free_vcpus(kvm);
6513 if (kvm->arch.apic_access_page)
6514 put_page(kvm->arch.apic_access_page);
6515 if (kvm->arch.ept_identity_pagetable)
6516 put_page(kvm->arch.ept_identity_pagetable);
6519 int kvm_arch_prepare_memory_region(struct kvm *kvm,
6520 struct kvm_memory_slot *memslot,
6521 struct kvm_memory_slot old,
6522 struct kvm_userspace_memory_region *mem,
6523 int user_alloc)
6525 int npages = memslot->npages;
6526 int map_flags = MAP_PRIVATE | MAP_ANONYMOUS;
6528 /* Prevent internal slot pages from being moved by fork()/COW. */
6529 if (memslot->id >= KVM_MEMORY_SLOTS)
6530 map_flags = MAP_SHARED | MAP_ANONYMOUS;
6532 /*To keep backward compatibility with older userspace,
6533 *x86 needs to hanlde !user_alloc case.
6535 if (!user_alloc) {
6536 if (npages && !old.rmap) {
6537 unsigned long userspace_addr;
6539 down_write(&current->mm->mmap_sem);
6540 userspace_addr = do_mmap(NULL, 0,
6541 npages * PAGE_SIZE,
6542 PROT_READ | PROT_WRITE,
6543 map_flags,
6545 up_write(&current->mm->mmap_sem);
6547 if (IS_ERR((void *)userspace_addr))
6548 return PTR_ERR((void *)userspace_addr);
6550 memslot->userspace_addr = userspace_addr;
6555 return 0;
6558 void kvm_arch_commit_memory_region(struct kvm *kvm,
6559 struct kvm_userspace_memory_region *mem,
6560 struct kvm_memory_slot old,
6561 int user_alloc)
6564 int nr_mmu_pages = 0, npages = mem->memory_size >> PAGE_SHIFT;
6566 if (!user_alloc && !old.user_alloc && old.rmap && !npages) {
6567 int ret;
6569 down_write(&current->mm->mmap_sem);
6570 ret = do_munmap(current->mm, old.userspace_addr,
6571 old.npages * PAGE_SIZE);
6572 up_write(&current->mm->mmap_sem);
6573 if (ret < 0)
6574 printk(KERN_WARNING
6575 "kvm_vm_ioctl_set_memory_region: "
6576 "failed to munmap memory\n");
6579 if (!kvm->arch.n_requested_mmu_pages)
6580 nr_mmu_pages = kvm_mmu_calculate_mmu_pages(kvm);
6582 spin_lock(&kvm->mmu_lock);
6583 if (nr_mmu_pages)
6584 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
6585 kvm_mmu_slot_remove_write_access(kvm, mem->slot);
6586 spin_unlock(&kvm->mmu_lock);
6589 void kvm_arch_flush_shadow(struct kvm *kvm)
6591 kvm_mmu_zap_all(kvm);
6592 kvm_reload_remote_mmus(kvm);
6595 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
6597 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
6598 !vcpu->arch.apf.halted)
6599 || !list_empty_careful(&vcpu->async_pf.done)
6600 || vcpu->arch.mp_state == KVM_MP_STATE_SIPI_RECEIVED
6601 || vcpu->arch.nmi_pending ||
6602 (kvm_arch_interrupt_allowed(vcpu) &&
6603 kvm_cpu_has_interrupt(vcpu));
6606 void kvm_vcpu_kick(struct kvm_vcpu *vcpu)
6608 int me;
6609 int cpu = vcpu->cpu;
6611 if (waitqueue_active(&vcpu->wq)) {
6612 wake_up_interruptible(&vcpu->wq);
6613 ++vcpu->stat.halt_wakeup;
6616 me = get_cpu();
6617 if (cpu != me && (unsigned)cpu < nr_cpu_ids && cpu_online(cpu))
6618 if (kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE)
6619 smp_send_reschedule(cpu);
6620 put_cpu();
6623 int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
6625 return kvm_x86_ops->interrupt_allowed(vcpu);
6628 bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
6630 unsigned long current_rip = kvm_rip_read(vcpu) +
6631 get_segment_base(vcpu, VCPU_SREG_CS);
6633 return current_rip == linear_rip;
6635 EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
6637 unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
6639 unsigned long rflags;
6641 rflags = kvm_x86_ops->get_rflags(vcpu);
6642 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6643 rflags &= ~X86_EFLAGS_TF;
6644 return rflags;
6646 EXPORT_SYMBOL_GPL(kvm_get_rflags);
6648 void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
6650 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
6651 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
6652 rflags |= X86_EFLAGS_TF;
6653 kvm_x86_ops->set_rflags(vcpu, rflags);
6654 kvm_make_request(KVM_REQ_EVENT, vcpu);
6656 EXPORT_SYMBOL_GPL(kvm_set_rflags);
6658 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
6660 int r;
6662 if ((vcpu->arch.mmu.direct_map != work->arch.direct_map) ||
6663 is_error_page(work->page))
6664 return;
6666 r = kvm_mmu_reload(vcpu);
6667 if (unlikely(r))
6668 return;
6670 if (!vcpu->arch.mmu.direct_map &&
6671 work->arch.cr3 != vcpu->arch.mmu.get_cr3(vcpu))
6672 return;
6674 vcpu->arch.mmu.page_fault(vcpu, work->gva, 0, true);
6677 static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
6679 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
6682 static inline u32 kvm_async_pf_next_probe(u32 key)
6684 return (key + 1) & (roundup_pow_of_two(ASYNC_PF_PER_VCPU) - 1);
6687 static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6689 u32 key = kvm_async_pf_hash_fn(gfn);
6691 while (vcpu->arch.apf.gfns[key] != ~0)
6692 key = kvm_async_pf_next_probe(key);
6694 vcpu->arch.apf.gfns[key] = gfn;
6697 static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
6699 int i;
6700 u32 key = kvm_async_pf_hash_fn(gfn);
6702 for (i = 0; i < roundup_pow_of_two(ASYNC_PF_PER_VCPU) &&
6703 (vcpu->arch.apf.gfns[key] != gfn &&
6704 vcpu->arch.apf.gfns[key] != ~0); i++)
6705 key = kvm_async_pf_next_probe(key);
6707 return key;
6710 bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6712 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
6715 static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
6717 u32 i, j, k;
6719 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
6720 while (true) {
6721 vcpu->arch.apf.gfns[i] = ~0;
6722 do {
6723 j = kvm_async_pf_next_probe(j);
6724 if (vcpu->arch.apf.gfns[j] == ~0)
6725 return;
6726 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
6728 * k lies cyclically in ]i,j]
6729 * | i.k.j |
6730 * |....j i.k.| or |.k..j i...|
6732 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
6733 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
6734 i = j;
6738 static int apf_put_user(struct kvm_vcpu *vcpu, u32 val)
6741 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &val,
6742 sizeof(val));
6745 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
6746 struct kvm_async_pf *work)
6748 struct x86_exception fault;
6750 trace_kvm_async_pf_not_present(work->arch.token, work->gva);
6751 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
6753 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) ||
6754 (vcpu->arch.apf.send_user_only &&
6755 kvm_x86_ops->get_cpl(vcpu) == 0))
6756 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
6757 else if (!apf_put_user(vcpu, KVM_PV_REASON_PAGE_NOT_PRESENT)) {
6758 fault.vector = PF_VECTOR;
6759 fault.error_code_valid = true;
6760 fault.error_code = 0;
6761 fault.nested_page_fault = false;
6762 fault.address = work->arch.token;
6763 kvm_inject_page_fault(vcpu, &fault);
6767 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
6768 struct kvm_async_pf *work)
6770 struct x86_exception fault;
6772 trace_kvm_async_pf_ready(work->arch.token, work->gva);
6773 if (is_error_page(work->page))
6774 work->arch.token = ~0; /* broadcast wakeup */
6775 else
6776 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
6778 if ((vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED) &&
6779 !apf_put_user(vcpu, KVM_PV_REASON_PAGE_READY)) {
6780 fault.vector = PF_VECTOR;
6781 fault.error_code_valid = true;
6782 fault.error_code = 0;
6783 fault.nested_page_fault = false;
6784 fault.address = work->arch.token;
6785 kvm_inject_page_fault(vcpu, &fault);
6787 vcpu->arch.apf.halted = false;
6790 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
6792 if (!(vcpu->arch.apf.msr_val & KVM_ASYNC_PF_ENABLED))
6793 return true;
6794 else
6795 return !kvm_event_needs_reinjection(vcpu) &&
6796 kvm_x86_ops->interrupt_allowed(vcpu);
6799 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
6800 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
6801 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
6802 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
6803 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
6804 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
6805 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
6806 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
6807 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
6808 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
6809 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
6810 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);