2 * libata-sff.c - helper library for PCI IDE BMDMA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2006 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2006 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
35 #include <linux/kernel.h>
36 #include <linux/gfp.h>
37 #include <linux/pci.h>
38 #include <linux/libata.h>
39 #include <linux/highmem.h>
43 static struct workqueue_struct
*ata_sff_wq
;
45 const struct ata_port_operations ata_sff_port_ops
= {
46 .inherits
= &ata_base_port_ops
,
48 .qc_prep
= ata_noop_qc_prep
,
49 .qc_issue
= ata_sff_qc_issue
,
50 .qc_fill_rtf
= ata_sff_qc_fill_rtf
,
52 .freeze
= ata_sff_freeze
,
54 .prereset
= ata_sff_prereset
,
55 .softreset
= ata_sff_softreset
,
56 .hardreset
= sata_sff_hardreset
,
57 .postreset
= ata_sff_postreset
,
58 .error_handler
= ata_sff_error_handler
,
60 .sff_dev_select
= ata_sff_dev_select
,
61 .sff_check_status
= ata_sff_check_status
,
62 .sff_tf_load
= ata_sff_tf_load
,
63 .sff_tf_read
= ata_sff_tf_read
,
64 .sff_exec_command
= ata_sff_exec_command
,
65 .sff_data_xfer
= ata_sff_data_xfer
,
66 .sff_drain_fifo
= ata_sff_drain_fifo
,
68 .lost_interrupt
= ata_sff_lost_interrupt
,
70 EXPORT_SYMBOL_GPL(ata_sff_port_ops
);
73 * ata_sff_check_status - Read device status reg & clear interrupt
74 * @ap: port where the device is
76 * Reads ATA taskfile status register for currently-selected device
77 * and return its value. This also clears pending interrupts
81 * Inherited from caller.
83 u8
ata_sff_check_status(struct ata_port
*ap
)
85 return ioread8(ap
->ioaddr
.status_addr
);
87 EXPORT_SYMBOL_GPL(ata_sff_check_status
);
90 * ata_sff_altstatus - Read device alternate status reg
91 * @ap: port where the device is
93 * Reads ATA taskfile alternate status register for
94 * currently-selected device and return its value.
96 * Note: may NOT be used as the check_altstatus() entry in
97 * ata_port_operations.
100 * Inherited from caller.
102 static u8
ata_sff_altstatus(struct ata_port
*ap
)
104 if (ap
->ops
->sff_check_altstatus
)
105 return ap
->ops
->sff_check_altstatus(ap
);
107 return ioread8(ap
->ioaddr
.altstatus_addr
);
111 * ata_sff_irq_status - Check if the device is busy
112 * @ap: port where the device is
114 * Determine if the port is currently busy. Uses altstatus
115 * if available in order to avoid clearing shared IRQ status
116 * when finding an IRQ source. Non ctl capable devices don't
117 * share interrupt lines fortunately for us.
120 * Inherited from caller.
122 static u8
ata_sff_irq_status(struct ata_port
*ap
)
126 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
127 status
= ata_sff_altstatus(ap
);
128 /* Not us: We are busy */
129 if (status
& ATA_BUSY
)
132 /* Clear INTRQ latch */
133 status
= ap
->ops
->sff_check_status(ap
);
138 * ata_sff_sync - Flush writes
139 * @ap: Port to wait for.
142 * If we have an mmio device with no ctl and no altstatus
143 * method this will fail. No such devices are known to exist.
146 * Inherited from caller.
149 static void ata_sff_sync(struct ata_port
*ap
)
151 if (ap
->ops
->sff_check_altstatus
)
152 ap
->ops
->sff_check_altstatus(ap
);
153 else if (ap
->ioaddr
.altstatus_addr
)
154 ioread8(ap
->ioaddr
.altstatus_addr
);
158 * ata_sff_pause - Flush writes and wait 400nS
159 * @ap: Port to pause for.
162 * If we have an mmio device with no ctl and no altstatus
163 * method this will fail. No such devices are known to exist.
166 * Inherited from caller.
169 void ata_sff_pause(struct ata_port
*ap
)
174 EXPORT_SYMBOL_GPL(ata_sff_pause
);
177 * ata_sff_dma_pause - Pause before commencing DMA
178 * @ap: Port to pause for.
180 * Perform I/O fencing and ensure sufficient cycle delays occur
181 * for the HDMA1:0 transition
184 void ata_sff_dma_pause(struct ata_port
*ap
)
186 if (ap
->ops
->sff_check_altstatus
|| ap
->ioaddr
.altstatus_addr
) {
187 /* An altstatus read will cause the needed delay without
188 messing up the IRQ status */
189 ata_sff_altstatus(ap
);
192 /* There are no DMA controllers without ctl. BUG here to ensure
193 we never violate the HDMA1:0 transition timing and risk
197 EXPORT_SYMBOL_GPL(ata_sff_dma_pause
);
200 * ata_sff_busy_sleep - sleep until BSY clears, or timeout
201 * @ap: port containing status register to be polled
202 * @tmout_pat: impatience timeout in msecs
203 * @tmout: overall timeout in msecs
205 * Sleep until ATA Status register bit BSY clears,
206 * or a timeout occurs.
209 * Kernel thread context (may sleep).
212 * 0 on success, -errno otherwise.
214 int ata_sff_busy_sleep(struct ata_port
*ap
,
215 unsigned long tmout_pat
, unsigned long tmout
)
217 unsigned long timer_start
, timeout
;
220 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 300);
221 timer_start
= jiffies
;
222 timeout
= ata_deadline(timer_start
, tmout_pat
);
223 while (status
!= 0xff && (status
& ATA_BUSY
) &&
224 time_before(jiffies
, timeout
)) {
226 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 3);
229 if (status
!= 0xff && (status
& ATA_BUSY
))
231 "port is slow to respond, please be patient (Status 0x%x)\n",
234 timeout
= ata_deadline(timer_start
, tmout
);
235 while (status
!= 0xff && (status
& ATA_BUSY
) &&
236 time_before(jiffies
, timeout
)) {
238 status
= ap
->ops
->sff_check_status(ap
);
244 if (status
& ATA_BUSY
) {
246 "port failed to respond (%lu secs, Status 0x%x)\n",
247 DIV_ROUND_UP(tmout
, 1000), status
);
253 EXPORT_SYMBOL_GPL(ata_sff_busy_sleep
);
255 static int ata_sff_check_ready(struct ata_link
*link
)
257 u8 status
= link
->ap
->ops
->sff_check_status(link
->ap
);
259 return ata_check_ready(status
);
263 * ata_sff_wait_ready - sleep until BSY clears, or timeout
264 * @link: SFF link to wait ready status for
265 * @deadline: deadline jiffies for the operation
267 * Sleep until ATA Status register bit BSY clears, or timeout
271 * Kernel thread context (may sleep).
274 * 0 on success, -errno otherwise.
276 int ata_sff_wait_ready(struct ata_link
*link
, unsigned long deadline
)
278 return ata_wait_ready(link
, deadline
, ata_sff_check_ready
);
280 EXPORT_SYMBOL_GPL(ata_sff_wait_ready
);
283 * ata_sff_set_devctl - Write device control reg
284 * @ap: port where the device is
285 * @ctl: value to write
287 * Writes ATA taskfile device control register.
289 * Note: may NOT be used as the sff_set_devctl() entry in
290 * ata_port_operations.
293 * Inherited from caller.
295 static void ata_sff_set_devctl(struct ata_port
*ap
, u8 ctl
)
297 if (ap
->ops
->sff_set_devctl
)
298 ap
->ops
->sff_set_devctl(ap
, ctl
);
300 iowrite8(ctl
, ap
->ioaddr
.ctl_addr
);
304 * ata_sff_dev_select - Select device 0/1 on ATA bus
305 * @ap: ATA channel to manipulate
306 * @device: ATA device (numbered from zero) to select
308 * Use the method defined in the ATA specification to
309 * make either device 0, or device 1, active on the
310 * ATA channel. Works with both PIO and MMIO.
312 * May be used as the dev_select() entry in ata_port_operations.
317 void ata_sff_dev_select(struct ata_port
*ap
, unsigned int device
)
322 tmp
= ATA_DEVICE_OBS
;
324 tmp
= ATA_DEVICE_OBS
| ATA_DEV1
;
326 iowrite8(tmp
, ap
->ioaddr
.device_addr
);
327 ata_sff_pause(ap
); /* needed; also flushes, for mmio */
329 EXPORT_SYMBOL_GPL(ata_sff_dev_select
);
332 * ata_dev_select - Select device 0/1 on ATA bus
333 * @ap: ATA channel to manipulate
334 * @device: ATA device (numbered from zero) to select
335 * @wait: non-zero to wait for Status register BSY bit to clear
336 * @can_sleep: non-zero if context allows sleeping
338 * Use the method defined in the ATA specification to
339 * make either device 0, or device 1, active on the
342 * This is a high-level version of ata_sff_dev_select(), which
343 * additionally provides the services of inserting the proper
344 * pauses and status polling, where needed.
349 static void ata_dev_select(struct ata_port
*ap
, unsigned int device
,
350 unsigned int wait
, unsigned int can_sleep
)
352 if (ata_msg_probe(ap
))
353 ata_port_info(ap
, "ata_dev_select: ENTER, device %u, wait %u\n",
359 ap
->ops
->sff_dev_select(ap
, device
);
362 if (can_sleep
&& ap
->link
.device
[device
].class == ATA_DEV_ATAPI
)
369 * ata_sff_irq_on - Enable interrupts on a port.
370 * @ap: Port on which interrupts are enabled.
372 * Enable interrupts on a legacy IDE device using MMIO or PIO,
373 * wait for idle, clear any pending interrupts.
375 * Note: may NOT be used as the sff_irq_on() entry in
376 * ata_port_operations.
379 * Inherited from caller.
381 void ata_sff_irq_on(struct ata_port
*ap
)
383 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
385 if (ap
->ops
->sff_irq_on
) {
386 ap
->ops
->sff_irq_on(ap
);
390 ap
->ctl
&= ~ATA_NIEN
;
391 ap
->last_ctl
= ap
->ctl
;
393 if (ap
->ops
->sff_set_devctl
|| ioaddr
->ctl_addr
)
394 ata_sff_set_devctl(ap
, ap
->ctl
);
397 if (ap
->ops
->sff_irq_clear
)
398 ap
->ops
->sff_irq_clear(ap
);
400 EXPORT_SYMBOL_GPL(ata_sff_irq_on
);
403 * ata_sff_tf_load - send taskfile registers to host controller
404 * @ap: Port to which output is sent
405 * @tf: ATA taskfile register set
407 * Outputs ATA taskfile to standard ATA host controller.
410 * Inherited from caller.
412 void ata_sff_tf_load(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
414 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
415 unsigned int is_addr
= tf
->flags
& ATA_TFLAG_ISADDR
;
417 if (tf
->ctl
!= ap
->last_ctl
) {
418 if (ioaddr
->ctl_addr
)
419 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
420 ap
->last_ctl
= tf
->ctl
;
424 if (is_addr
&& (tf
->flags
& ATA_TFLAG_LBA48
)) {
425 WARN_ON_ONCE(!ioaddr
->ctl_addr
);
426 iowrite8(tf
->hob_feature
, ioaddr
->feature_addr
);
427 iowrite8(tf
->hob_nsect
, ioaddr
->nsect_addr
);
428 iowrite8(tf
->hob_lbal
, ioaddr
->lbal_addr
);
429 iowrite8(tf
->hob_lbam
, ioaddr
->lbam_addr
);
430 iowrite8(tf
->hob_lbah
, ioaddr
->lbah_addr
);
431 VPRINTK("hob: feat 0x%X nsect 0x%X, lba 0x%X 0x%X 0x%X\n",
440 iowrite8(tf
->feature
, ioaddr
->feature_addr
);
441 iowrite8(tf
->nsect
, ioaddr
->nsect_addr
);
442 iowrite8(tf
->lbal
, ioaddr
->lbal_addr
);
443 iowrite8(tf
->lbam
, ioaddr
->lbam_addr
);
444 iowrite8(tf
->lbah
, ioaddr
->lbah_addr
);
445 VPRINTK("feat 0x%X nsect 0x%X lba 0x%X 0x%X 0x%X\n",
453 if (tf
->flags
& ATA_TFLAG_DEVICE
) {
454 iowrite8(tf
->device
, ioaddr
->device_addr
);
455 VPRINTK("device 0x%X\n", tf
->device
);
460 EXPORT_SYMBOL_GPL(ata_sff_tf_load
);
463 * ata_sff_tf_read - input device's ATA taskfile shadow registers
464 * @ap: Port from which input is read
465 * @tf: ATA taskfile register set for storing input
467 * Reads ATA taskfile registers for currently-selected device
468 * into @tf. Assumes the device has a fully SFF compliant task file
469 * layout and behaviour. If you device does not (eg has a different
470 * status method) then you will need to provide a replacement tf_read
473 * Inherited from caller.
475 void ata_sff_tf_read(struct ata_port
*ap
, struct ata_taskfile
*tf
)
477 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
479 tf
->command
= ata_sff_check_status(ap
);
480 tf
->feature
= ioread8(ioaddr
->error_addr
);
481 tf
->nsect
= ioread8(ioaddr
->nsect_addr
);
482 tf
->lbal
= ioread8(ioaddr
->lbal_addr
);
483 tf
->lbam
= ioread8(ioaddr
->lbam_addr
);
484 tf
->lbah
= ioread8(ioaddr
->lbah_addr
);
485 tf
->device
= ioread8(ioaddr
->device_addr
);
487 if (tf
->flags
& ATA_TFLAG_LBA48
) {
488 if (likely(ioaddr
->ctl_addr
)) {
489 iowrite8(tf
->ctl
| ATA_HOB
, ioaddr
->ctl_addr
);
490 tf
->hob_feature
= ioread8(ioaddr
->error_addr
);
491 tf
->hob_nsect
= ioread8(ioaddr
->nsect_addr
);
492 tf
->hob_lbal
= ioread8(ioaddr
->lbal_addr
);
493 tf
->hob_lbam
= ioread8(ioaddr
->lbam_addr
);
494 tf
->hob_lbah
= ioread8(ioaddr
->lbah_addr
);
495 iowrite8(tf
->ctl
, ioaddr
->ctl_addr
);
496 ap
->last_ctl
= tf
->ctl
;
501 EXPORT_SYMBOL_GPL(ata_sff_tf_read
);
504 * ata_sff_exec_command - issue ATA command to host controller
505 * @ap: port to which command is being issued
506 * @tf: ATA taskfile register set
508 * Issues ATA command, with proper synchronization with interrupt
509 * handler / other threads.
512 * spin_lock_irqsave(host lock)
514 void ata_sff_exec_command(struct ata_port
*ap
, const struct ata_taskfile
*tf
)
516 DPRINTK("ata%u: cmd 0x%X\n", ap
->print_id
, tf
->command
);
518 iowrite8(tf
->command
, ap
->ioaddr
.command_addr
);
521 EXPORT_SYMBOL_GPL(ata_sff_exec_command
);
524 * ata_tf_to_host - issue ATA taskfile to host controller
525 * @ap: port to which command is being issued
526 * @tf: ATA taskfile register set
528 * Issues ATA taskfile register set to ATA host controller,
529 * with proper synchronization with interrupt handler and
533 * spin_lock_irqsave(host lock)
535 static inline void ata_tf_to_host(struct ata_port
*ap
,
536 const struct ata_taskfile
*tf
)
538 ap
->ops
->sff_tf_load(ap
, tf
);
539 ap
->ops
->sff_exec_command(ap
, tf
);
543 * ata_sff_data_xfer - Transfer data by PIO
544 * @dev: device to target
546 * @buflen: buffer length
549 * Transfer data from/to the device data register by PIO.
552 * Inherited from caller.
557 unsigned int ata_sff_data_xfer(struct ata_device
*dev
, unsigned char *buf
,
558 unsigned int buflen
, int rw
)
560 struct ata_port
*ap
= dev
->link
->ap
;
561 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
562 unsigned int words
= buflen
>> 1;
564 /* Transfer multiple of 2 bytes */
566 ioread16_rep(data_addr
, buf
, words
);
568 iowrite16_rep(data_addr
, buf
, words
);
570 /* Transfer trailing byte, if any. */
571 if (unlikely(buflen
& 0x01)) {
572 unsigned char pad
[2] = { };
574 /* Point buf to the tail of buffer */
578 * Use io*16_rep() accessors here as well to avoid pointlessly
579 * swapping bytes to and from on the big endian machines...
582 ioread16_rep(data_addr
, pad
, 1);
586 iowrite16_rep(data_addr
, pad
, 1);
593 EXPORT_SYMBOL_GPL(ata_sff_data_xfer
);
596 * ata_sff_data_xfer32 - Transfer data by PIO
597 * @dev: device to target
599 * @buflen: buffer length
602 * Transfer data from/to the device data register by PIO using 32bit
606 * Inherited from caller.
612 unsigned int ata_sff_data_xfer32(struct ata_device
*dev
, unsigned char *buf
,
613 unsigned int buflen
, int rw
)
615 struct ata_port
*ap
= dev
->link
->ap
;
616 void __iomem
*data_addr
= ap
->ioaddr
.data_addr
;
617 unsigned int words
= buflen
>> 2;
618 int slop
= buflen
& 3;
620 if (!(ap
->pflags
& ATA_PFLAG_PIO32
))
621 return ata_sff_data_xfer(dev
, buf
, buflen
, rw
);
623 /* Transfer multiple of 4 bytes */
625 ioread32_rep(data_addr
, buf
, words
);
627 iowrite32_rep(data_addr
, buf
, words
);
629 /* Transfer trailing bytes, if any */
630 if (unlikely(slop
)) {
631 unsigned char pad
[4] = { };
633 /* Point buf to the tail of buffer */
634 buf
+= buflen
- slop
;
637 * Use io*_rep() accessors here as well to avoid pointlessly
638 * swapping bytes to and from on the big endian machines...
642 ioread16_rep(data_addr
, pad
, 1);
644 ioread32_rep(data_addr
, pad
, 1);
645 memcpy(buf
, pad
, slop
);
647 memcpy(pad
, buf
, slop
);
649 iowrite16_rep(data_addr
, pad
, 1);
651 iowrite32_rep(data_addr
, pad
, 1);
654 return (buflen
+ 1) & ~1;
656 EXPORT_SYMBOL_GPL(ata_sff_data_xfer32
);
659 * ata_sff_data_xfer_noirq - Transfer data by PIO
660 * @dev: device to target
662 * @buflen: buffer length
665 * Transfer data from/to the device data register by PIO. Do the
666 * transfer with interrupts disabled.
669 * Inherited from caller.
674 unsigned int ata_sff_data_xfer_noirq(struct ata_device
*dev
, unsigned char *buf
,
675 unsigned int buflen
, int rw
)
678 unsigned int consumed
;
680 local_irq_save(flags
);
681 consumed
= ata_sff_data_xfer32(dev
, buf
, buflen
, rw
);
682 local_irq_restore(flags
);
686 EXPORT_SYMBOL_GPL(ata_sff_data_xfer_noirq
);
689 * ata_pio_sector - Transfer a sector of data.
690 * @qc: Command on going
692 * Transfer qc->sect_size bytes of data from/to the ATA device.
695 * Inherited from caller.
697 static void ata_pio_sector(struct ata_queued_cmd
*qc
)
699 int do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
700 struct ata_port
*ap
= qc
->ap
;
705 if (qc
->curbytes
== qc
->nbytes
- qc
->sect_size
)
706 ap
->hsm_task_state
= HSM_ST_LAST
;
708 page
= sg_page(qc
->cursg
);
709 offset
= qc
->cursg
->offset
+ qc
->cursg_ofs
;
711 /* get the current page and offset */
712 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
715 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
717 if (PageHighMem(page
)) {
720 /* FIXME: use a bounce buffer */
721 local_irq_save(flags
);
722 buf
= kmap_atomic(page
, KM_IRQ0
);
724 /* do the actual data transfer */
725 ap
->ops
->sff_data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
,
728 kunmap_atomic(buf
, KM_IRQ0
);
729 local_irq_restore(flags
);
731 buf
= page_address(page
);
732 ap
->ops
->sff_data_xfer(qc
->dev
, buf
+ offset
, qc
->sect_size
,
736 if (!do_write
&& !PageSlab(page
))
737 flush_dcache_page(page
);
739 qc
->curbytes
+= qc
->sect_size
;
740 qc
->cursg_ofs
+= qc
->sect_size
;
742 if (qc
->cursg_ofs
== qc
->cursg
->length
) {
743 qc
->cursg
= sg_next(qc
->cursg
);
749 * ata_pio_sectors - Transfer one or many sectors.
750 * @qc: Command on going
752 * Transfer one or many sectors of data from/to the
753 * ATA device for the DRQ request.
756 * Inherited from caller.
758 static void ata_pio_sectors(struct ata_queued_cmd
*qc
)
760 if (is_multi_taskfile(&qc
->tf
)) {
761 /* READ/WRITE MULTIPLE */
764 WARN_ON_ONCE(qc
->dev
->multi_count
== 0);
766 nsect
= min((qc
->nbytes
- qc
->curbytes
) / qc
->sect_size
,
767 qc
->dev
->multi_count
);
773 ata_sff_sync(qc
->ap
); /* flush */
777 * atapi_send_cdb - Write CDB bytes to hardware
778 * @ap: Port to which ATAPI device is attached.
779 * @qc: Taskfile currently active
781 * When device has indicated its readiness to accept
782 * a CDB, this function is called. Send the CDB.
787 static void atapi_send_cdb(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
790 DPRINTK("send cdb\n");
791 WARN_ON_ONCE(qc
->dev
->cdb_len
< 12);
793 ap
->ops
->sff_data_xfer(qc
->dev
, qc
->cdb
, qc
->dev
->cdb_len
, 1);
795 /* FIXME: If the CDB is for DMA do we need to do the transition delay
796 or is bmdma_start guaranteed to do it ? */
797 switch (qc
->tf
.protocol
) {
799 ap
->hsm_task_state
= HSM_ST
;
801 case ATAPI_PROT_NODATA
:
802 ap
->hsm_task_state
= HSM_ST_LAST
;
804 #ifdef CONFIG_ATA_BMDMA
806 ap
->hsm_task_state
= HSM_ST_LAST
;
808 ap
->ops
->bmdma_start(qc
);
810 #endif /* CONFIG_ATA_BMDMA */
817 * __atapi_pio_bytes - Transfer data from/to the ATAPI device.
818 * @qc: Command on going
819 * @bytes: number of bytes
821 * Transfer Transfer data from/to the ATAPI device.
824 * Inherited from caller.
827 static int __atapi_pio_bytes(struct ata_queued_cmd
*qc
, unsigned int bytes
)
829 int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? WRITE
: READ
;
830 struct ata_port
*ap
= qc
->ap
;
831 struct ata_device
*dev
= qc
->dev
;
832 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
833 struct scatterlist
*sg
;
836 unsigned int offset
, count
, consumed
;
841 ata_ehi_push_desc(ehi
, "unexpected or too much trailing data "
842 "buf=%u cur=%u bytes=%u",
843 qc
->nbytes
, qc
->curbytes
, bytes
);
848 offset
= sg
->offset
+ qc
->cursg_ofs
;
850 /* get the current page and offset */
851 page
= nth_page(page
, (offset
>> PAGE_SHIFT
));
854 /* don't overrun current sg */
855 count
= min(sg
->length
- qc
->cursg_ofs
, bytes
);
857 /* don't cross page boundaries */
858 count
= min(count
, (unsigned int)PAGE_SIZE
- offset
);
860 DPRINTK("data %s\n", qc
->tf
.flags
& ATA_TFLAG_WRITE
? "write" : "read");
862 if (PageHighMem(page
)) {
865 /* FIXME: use bounce buffer */
866 local_irq_save(flags
);
867 buf
= kmap_atomic(page
, KM_IRQ0
);
869 /* do the actual data transfer */
870 consumed
= ap
->ops
->sff_data_xfer(dev
, buf
+ offset
,
873 kunmap_atomic(buf
, KM_IRQ0
);
874 local_irq_restore(flags
);
876 buf
= page_address(page
);
877 consumed
= ap
->ops
->sff_data_xfer(dev
, buf
+ offset
,
881 bytes
-= min(bytes
, consumed
);
882 qc
->curbytes
+= count
;
883 qc
->cursg_ofs
+= count
;
885 if (qc
->cursg_ofs
== sg
->length
) {
886 qc
->cursg
= sg_next(qc
->cursg
);
891 * There used to be a WARN_ON_ONCE(qc->cursg && count != consumed);
892 * Unfortunately __atapi_pio_bytes doesn't know enough to do the WARN
893 * check correctly as it doesn't know if it is the last request being
894 * made. Somebody should implement a proper sanity check.
902 * atapi_pio_bytes - Transfer data from/to the ATAPI device.
903 * @qc: Command on going
905 * Transfer Transfer data from/to the ATAPI device.
908 * Inherited from caller.
910 static void atapi_pio_bytes(struct ata_queued_cmd
*qc
)
912 struct ata_port
*ap
= qc
->ap
;
913 struct ata_device
*dev
= qc
->dev
;
914 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
915 unsigned int ireason
, bc_lo
, bc_hi
, bytes
;
916 int i_write
, do_write
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
918 /* Abuse qc->result_tf for temp storage of intermediate TF
919 * here to save some kernel stack usage.
920 * For normal completion, qc->result_tf is not relevant. For
921 * error, qc->result_tf is later overwritten by ata_qc_complete().
922 * So, the correctness of qc->result_tf is not affected.
924 ap
->ops
->sff_tf_read(ap
, &qc
->result_tf
);
925 ireason
= qc
->result_tf
.nsect
;
926 bc_lo
= qc
->result_tf
.lbam
;
927 bc_hi
= qc
->result_tf
.lbah
;
928 bytes
= (bc_hi
<< 8) | bc_lo
;
930 /* shall be cleared to zero, indicating xfer of data */
931 if (unlikely(ireason
& (1 << 0)))
934 /* make sure transfer direction matches expected */
935 i_write
= ((ireason
& (1 << 1)) == 0) ? 1 : 0;
936 if (unlikely(do_write
!= i_write
))
939 if (unlikely(!bytes
))
942 VPRINTK("ata%u: xfering %d bytes\n", ap
->print_id
, bytes
);
944 if (unlikely(__atapi_pio_bytes(qc
, bytes
)))
946 ata_sff_sync(ap
); /* flush */
951 ata_ehi_push_desc(ehi
, "ATAPI check failed (ireason=0x%x bytes=%u)",
954 qc
->err_mask
|= AC_ERR_HSM
;
955 ap
->hsm_task_state
= HSM_ST_ERR
;
959 * ata_hsm_ok_in_wq - Check if the qc can be handled in the workqueue.
960 * @ap: the target ata_port
964 * 1 if ok in workqueue, 0 otherwise.
966 static inline int ata_hsm_ok_in_wq(struct ata_port
*ap
,
967 struct ata_queued_cmd
*qc
)
969 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
972 if (ap
->hsm_task_state
== HSM_ST_FIRST
) {
973 if (qc
->tf
.protocol
== ATA_PROT_PIO
&&
974 (qc
->tf
.flags
& ATA_TFLAG_WRITE
))
977 if (ata_is_atapi(qc
->tf
.protocol
) &&
978 !(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
986 * ata_hsm_qc_complete - finish a qc running on standard HSM
987 * @qc: Command to complete
988 * @in_wq: 1 if called from workqueue, 0 otherwise
990 * Finish @qc which is running on standard HSM.
993 * If @in_wq is zero, spin_lock_irqsave(host lock).
994 * Otherwise, none on entry and grabs host lock.
996 static void ata_hsm_qc_complete(struct ata_queued_cmd
*qc
, int in_wq
)
998 struct ata_port
*ap
= qc
->ap
;
1001 if (ap
->ops
->error_handler
) {
1003 spin_lock_irqsave(ap
->lock
, flags
);
1005 /* EH might have kicked in while host lock is
1008 qc
= ata_qc_from_tag(ap
, qc
->tag
);
1010 if (likely(!(qc
->err_mask
& AC_ERR_HSM
))) {
1012 ata_qc_complete(qc
);
1014 ata_port_freeze(ap
);
1017 spin_unlock_irqrestore(ap
->lock
, flags
);
1019 if (likely(!(qc
->err_mask
& AC_ERR_HSM
)))
1020 ata_qc_complete(qc
);
1022 ata_port_freeze(ap
);
1026 spin_lock_irqsave(ap
->lock
, flags
);
1028 ata_qc_complete(qc
);
1029 spin_unlock_irqrestore(ap
->lock
, flags
);
1031 ata_qc_complete(qc
);
1036 * ata_sff_hsm_move - move the HSM to the next state.
1037 * @ap: the target ata_port
1039 * @status: current device status
1040 * @in_wq: 1 if called from workqueue, 0 otherwise
1043 * 1 when poll next status needed, 0 otherwise.
1045 int ata_sff_hsm_move(struct ata_port
*ap
, struct ata_queued_cmd
*qc
,
1046 u8 status
, int in_wq
)
1048 struct ata_link
*link
= qc
->dev
->link
;
1049 struct ata_eh_info
*ehi
= &link
->eh_info
;
1050 unsigned long flags
= 0;
1053 WARN_ON_ONCE((qc
->flags
& ATA_QCFLAG_ACTIVE
) == 0);
1055 /* Make sure ata_sff_qc_issue() does not throw things
1056 * like DMA polling into the workqueue. Notice that
1057 * in_wq is not equivalent to (qc->tf.flags & ATA_TFLAG_POLLING).
1059 WARN_ON_ONCE(in_wq
!= ata_hsm_ok_in_wq(ap
, qc
));
1062 DPRINTK("ata%u: protocol %d task_state %d (dev_stat 0x%X)\n",
1063 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
, status
);
1065 switch (ap
->hsm_task_state
) {
1067 /* Send first data block or PACKET CDB */
1069 /* If polling, we will stay in the work queue after
1070 * sending the data. Otherwise, interrupt handler
1071 * takes over after sending the data.
1073 poll_next
= (qc
->tf
.flags
& ATA_TFLAG_POLLING
);
1075 /* check device status */
1076 if (unlikely((status
& ATA_DRQ
) == 0)) {
1077 /* handle BSY=0, DRQ=0 as error */
1078 if (likely(status
& (ATA_ERR
| ATA_DF
)))
1079 /* device stops HSM for abort/error */
1080 qc
->err_mask
|= AC_ERR_DEV
;
1082 /* HSM violation. Let EH handle this */
1083 ata_ehi_push_desc(ehi
,
1084 "ST_FIRST: !(DRQ|ERR|DF)");
1085 qc
->err_mask
|= AC_ERR_HSM
;
1088 ap
->hsm_task_state
= HSM_ST_ERR
;
1092 /* Device should not ask for data transfer (DRQ=1)
1093 * when it finds something wrong.
1094 * We ignore DRQ here and stop the HSM by
1095 * changing hsm_task_state to HSM_ST_ERR and
1096 * let the EH abort the command or reset the device.
1098 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1099 /* Some ATAPI tape drives forget to clear the ERR bit
1100 * when doing the next command (mostly request sense).
1101 * We ignore ERR here to workaround and proceed sending
1104 if (!(qc
->dev
->horkage
& ATA_HORKAGE_STUCK_ERR
)) {
1105 ata_ehi_push_desc(ehi
, "ST_FIRST: "
1106 "DRQ=1 with device error, "
1107 "dev_stat 0x%X", status
);
1108 qc
->err_mask
|= AC_ERR_HSM
;
1109 ap
->hsm_task_state
= HSM_ST_ERR
;
1114 /* Send the CDB (atapi) or the first data block (ata pio out).
1115 * During the state transition, interrupt handler shouldn't
1116 * be invoked before the data transfer is complete and
1117 * hsm_task_state is changed. Hence, the following locking.
1120 spin_lock_irqsave(ap
->lock
, flags
);
1122 if (qc
->tf
.protocol
== ATA_PROT_PIO
) {
1123 /* PIO data out protocol.
1124 * send first data block.
1127 /* ata_pio_sectors() might change the state
1128 * to HSM_ST_LAST. so, the state is changed here
1129 * before ata_pio_sectors().
1131 ap
->hsm_task_state
= HSM_ST
;
1132 ata_pio_sectors(qc
);
1135 atapi_send_cdb(ap
, qc
);
1138 spin_unlock_irqrestore(ap
->lock
, flags
);
1140 /* if polling, ata_sff_pio_task() handles the rest.
1141 * otherwise, interrupt handler takes over from here.
1146 /* complete command or read/write the data register */
1147 if (qc
->tf
.protocol
== ATAPI_PROT_PIO
) {
1148 /* ATAPI PIO protocol */
1149 if ((status
& ATA_DRQ
) == 0) {
1150 /* No more data to transfer or device error.
1151 * Device error will be tagged in HSM_ST_LAST.
1153 ap
->hsm_task_state
= HSM_ST_LAST
;
1157 /* Device should not ask for data transfer (DRQ=1)
1158 * when it finds something wrong.
1159 * We ignore DRQ here and stop the HSM by
1160 * changing hsm_task_state to HSM_ST_ERR and
1161 * let the EH abort the command or reset the device.
1163 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1164 ata_ehi_push_desc(ehi
, "ST-ATAPI: "
1165 "DRQ=1 with device error, "
1166 "dev_stat 0x%X", status
);
1167 qc
->err_mask
|= AC_ERR_HSM
;
1168 ap
->hsm_task_state
= HSM_ST_ERR
;
1172 atapi_pio_bytes(qc
);
1174 if (unlikely(ap
->hsm_task_state
== HSM_ST_ERR
))
1175 /* bad ireason reported by device */
1179 /* ATA PIO protocol */
1180 if (unlikely((status
& ATA_DRQ
) == 0)) {
1181 /* handle BSY=0, DRQ=0 as error */
1182 if (likely(status
& (ATA_ERR
| ATA_DF
))) {
1183 /* device stops HSM for abort/error */
1184 qc
->err_mask
|= AC_ERR_DEV
;
1186 /* If diagnostic failed and this is
1187 * IDENTIFY, it's likely a phantom
1188 * device. Mark hint.
1190 if (qc
->dev
->horkage
&
1191 ATA_HORKAGE_DIAGNOSTIC
)
1195 /* HSM violation. Let EH handle this.
1196 * Phantom devices also trigger this
1197 * condition. Mark hint.
1199 ata_ehi_push_desc(ehi
, "ST-ATA: "
1200 "DRQ=0 without device error, "
1201 "dev_stat 0x%X", status
);
1202 qc
->err_mask
|= AC_ERR_HSM
|
1206 ap
->hsm_task_state
= HSM_ST_ERR
;
1210 /* For PIO reads, some devices may ask for
1211 * data transfer (DRQ=1) alone with ERR=1.
1212 * We respect DRQ here and transfer one
1213 * block of junk data before changing the
1214 * hsm_task_state to HSM_ST_ERR.
1216 * For PIO writes, ERR=1 DRQ=1 doesn't make
1217 * sense since the data block has been
1218 * transferred to the device.
1220 if (unlikely(status
& (ATA_ERR
| ATA_DF
))) {
1221 /* data might be corrputed */
1222 qc
->err_mask
|= AC_ERR_DEV
;
1224 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
)) {
1225 ata_pio_sectors(qc
);
1226 status
= ata_wait_idle(ap
);
1229 if (status
& (ATA_BUSY
| ATA_DRQ
)) {
1230 ata_ehi_push_desc(ehi
, "ST-ATA: "
1231 "BUSY|DRQ persists on ERR|DF, "
1232 "dev_stat 0x%X", status
);
1233 qc
->err_mask
|= AC_ERR_HSM
;
1236 /* There are oddball controllers with
1237 * status register stuck at 0x7f and
1238 * lbal/m/h at zero which makes it
1239 * pass all other presence detection
1240 * mechanisms we have. Set NODEV_HINT
1241 * for it. Kernel bz#7241.
1244 qc
->err_mask
|= AC_ERR_NODEV_HINT
;
1246 /* ata_pio_sectors() might change the
1247 * state to HSM_ST_LAST. so, the state
1248 * is changed after ata_pio_sectors().
1250 ap
->hsm_task_state
= HSM_ST_ERR
;
1254 ata_pio_sectors(qc
);
1256 if (ap
->hsm_task_state
== HSM_ST_LAST
&&
1257 (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))) {
1259 status
= ata_wait_idle(ap
);
1268 if (unlikely(!ata_ok(status
))) {
1269 qc
->err_mask
|= __ac_err_mask(status
);
1270 ap
->hsm_task_state
= HSM_ST_ERR
;
1274 /* no more data to transfer */
1275 DPRINTK("ata%u: dev %u command complete, drv_stat 0x%x\n",
1276 ap
->print_id
, qc
->dev
->devno
, status
);
1278 WARN_ON_ONCE(qc
->err_mask
& (AC_ERR_DEV
| AC_ERR_HSM
));
1280 ap
->hsm_task_state
= HSM_ST_IDLE
;
1282 /* complete taskfile transaction */
1283 ata_hsm_qc_complete(qc
, in_wq
);
1289 ap
->hsm_task_state
= HSM_ST_IDLE
;
1291 /* complete taskfile transaction */
1292 ata_hsm_qc_complete(qc
, in_wq
);
1303 EXPORT_SYMBOL_GPL(ata_sff_hsm_move
);
1305 void ata_sff_queue_work(struct work_struct
*work
)
1307 queue_work(ata_sff_wq
, work
);
1309 EXPORT_SYMBOL_GPL(ata_sff_queue_work
);
1311 void ata_sff_queue_delayed_work(struct delayed_work
*dwork
, unsigned long delay
)
1313 queue_delayed_work(ata_sff_wq
, dwork
, delay
);
1315 EXPORT_SYMBOL_GPL(ata_sff_queue_delayed_work
);
1317 void ata_sff_queue_pio_task(struct ata_link
*link
, unsigned long delay
)
1319 struct ata_port
*ap
= link
->ap
;
1321 WARN_ON((ap
->sff_pio_task_link
!= NULL
) &&
1322 (ap
->sff_pio_task_link
!= link
));
1323 ap
->sff_pio_task_link
= link
;
1325 /* may fail if ata_sff_flush_pio_task() in progress */
1326 ata_sff_queue_delayed_work(&ap
->sff_pio_task
, msecs_to_jiffies(delay
));
1328 EXPORT_SYMBOL_GPL(ata_sff_queue_pio_task
);
1330 void ata_sff_flush_pio_task(struct ata_port
*ap
)
1334 cancel_delayed_work_sync(&ap
->sff_pio_task
);
1335 ap
->hsm_task_state
= HSM_ST_IDLE
;
1336 ap
->sff_pio_task_link
= NULL
;
1338 if (ata_msg_ctl(ap
))
1339 ata_port_dbg(ap
, "%s: EXIT\n", __func__
);
1342 static void ata_sff_pio_task(struct work_struct
*work
)
1344 struct ata_port
*ap
=
1345 container_of(work
, struct ata_port
, sff_pio_task
.work
);
1346 struct ata_link
*link
= ap
->sff_pio_task_link
;
1347 struct ata_queued_cmd
*qc
;
1351 BUG_ON(ap
->sff_pio_task_link
== NULL
);
1352 /* qc can be NULL if timeout occurred */
1353 qc
= ata_qc_from_tag(ap
, link
->active_tag
);
1355 ap
->sff_pio_task_link
= NULL
;
1360 WARN_ON_ONCE(ap
->hsm_task_state
== HSM_ST_IDLE
);
1363 * This is purely heuristic. This is a fast path.
1364 * Sometimes when we enter, BSY will be cleared in
1365 * a chk-status or two. If not, the drive is probably seeking
1366 * or something. Snooze for a couple msecs, then
1367 * chk-status again. If still busy, queue delayed work.
1369 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 5);
1370 if (status
& ATA_BUSY
) {
1372 status
= ata_sff_busy_wait(ap
, ATA_BUSY
, 10);
1373 if (status
& ATA_BUSY
) {
1374 ata_sff_queue_pio_task(link
, ATA_SHORT_PAUSE
);
1380 * hsm_move() may trigger another command to be processed.
1381 * clean the link beforehand.
1383 ap
->sff_pio_task_link
= NULL
;
1385 poll_next
= ata_sff_hsm_move(ap
, qc
, status
, 1);
1387 /* another command or interrupt handler
1388 * may be running at this point.
1395 * ata_sff_qc_issue - issue taskfile to a SFF controller
1396 * @qc: command to issue to device
1398 * This function issues a PIO or NODATA command to a SFF
1402 * spin_lock_irqsave(host lock)
1405 * Zero on success, AC_ERR_* mask on failure
1407 unsigned int ata_sff_qc_issue(struct ata_queued_cmd
*qc
)
1409 struct ata_port
*ap
= qc
->ap
;
1410 struct ata_link
*link
= qc
->dev
->link
;
1412 /* Use polling pio if the LLD doesn't handle
1413 * interrupt driven pio and atapi CDB interrupt.
1415 if (ap
->flags
& ATA_FLAG_PIO_POLLING
)
1416 qc
->tf
.flags
|= ATA_TFLAG_POLLING
;
1418 /* select the device */
1419 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
1421 /* start the command */
1422 switch (qc
->tf
.protocol
) {
1423 case ATA_PROT_NODATA
:
1424 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1425 ata_qc_set_polling(qc
);
1427 ata_tf_to_host(ap
, &qc
->tf
);
1428 ap
->hsm_task_state
= HSM_ST_LAST
;
1430 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1431 ata_sff_queue_pio_task(link
, 0);
1436 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1437 ata_qc_set_polling(qc
);
1439 ata_tf_to_host(ap
, &qc
->tf
);
1441 if (qc
->tf
.flags
& ATA_TFLAG_WRITE
) {
1442 /* PIO data out protocol */
1443 ap
->hsm_task_state
= HSM_ST_FIRST
;
1444 ata_sff_queue_pio_task(link
, 0);
1446 /* always send first data block using the
1447 * ata_sff_pio_task() codepath.
1450 /* PIO data in protocol */
1451 ap
->hsm_task_state
= HSM_ST
;
1453 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1454 ata_sff_queue_pio_task(link
, 0);
1456 /* if polling, ata_sff_pio_task() handles the
1457 * rest. otherwise, interrupt handler takes
1464 case ATAPI_PROT_PIO
:
1465 case ATAPI_PROT_NODATA
:
1466 if (qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1467 ata_qc_set_polling(qc
);
1469 ata_tf_to_host(ap
, &qc
->tf
);
1471 ap
->hsm_task_state
= HSM_ST_FIRST
;
1473 /* send cdb by polling if no cdb interrupt */
1474 if ((!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
)) ||
1475 (qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1476 ata_sff_queue_pio_task(link
, 0);
1481 return AC_ERR_SYSTEM
;
1486 EXPORT_SYMBOL_GPL(ata_sff_qc_issue
);
1489 * ata_sff_qc_fill_rtf - fill result TF using ->sff_tf_read
1490 * @qc: qc to fill result TF for
1492 * @qc is finished and result TF needs to be filled. Fill it
1493 * using ->sff_tf_read.
1496 * spin_lock_irqsave(host lock)
1499 * true indicating that result TF is successfully filled.
1501 bool ata_sff_qc_fill_rtf(struct ata_queued_cmd
*qc
)
1503 qc
->ap
->ops
->sff_tf_read(qc
->ap
, &qc
->result_tf
);
1506 EXPORT_SYMBOL_GPL(ata_sff_qc_fill_rtf
);
1508 static unsigned int ata_sff_idle_irq(struct ata_port
*ap
)
1510 ap
->stats
.idle_irq
++;
1513 if ((ap
->stats
.idle_irq
% 1000) == 0) {
1514 ap
->ops
->sff_check_status(ap
);
1515 if (ap
->ops
->sff_irq_clear
)
1516 ap
->ops
->sff_irq_clear(ap
);
1517 ata_port_warn(ap
, "irq trap\n");
1521 return 0; /* irq not handled */
1524 static unsigned int __ata_sff_port_intr(struct ata_port
*ap
,
1525 struct ata_queued_cmd
*qc
,
1530 VPRINTK("ata%u: protocol %d task_state %d\n",
1531 ap
->print_id
, qc
->tf
.protocol
, ap
->hsm_task_state
);
1533 /* Check whether we are expecting interrupt in this state */
1534 switch (ap
->hsm_task_state
) {
1536 /* Some pre-ATAPI-4 devices assert INTRQ
1537 * at this state when ready to receive CDB.
1540 /* Check the ATA_DFLAG_CDB_INTR flag is enough here.
1541 * The flag was turned on only for atapi devices. No
1542 * need to check ata_is_atapi(qc->tf.protocol) again.
1544 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
1545 return ata_sff_idle_irq(ap
);
1548 return ata_sff_idle_irq(ap
);
1553 /* check main status, clearing INTRQ if needed */
1554 status
= ata_sff_irq_status(ap
);
1555 if (status
& ATA_BUSY
) {
1557 /* BMDMA engine is already stopped, we're screwed */
1558 qc
->err_mask
|= AC_ERR_HSM
;
1559 ap
->hsm_task_state
= HSM_ST_ERR
;
1561 return ata_sff_idle_irq(ap
);
1564 /* clear irq events */
1565 if (ap
->ops
->sff_irq_clear
)
1566 ap
->ops
->sff_irq_clear(ap
);
1568 ata_sff_hsm_move(ap
, qc
, status
, 0);
1570 return 1; /* irq handled */
1574 * ata_sff_port_intr - Handle SFF port interrupt
1575 * @ap: Port on which interrupt arrived (possibly...)
1576 * @qc: Taskfile currently active in engine
1578 * Handle port interrupt for given queued command.
1581 * spin_lock_irqsave(host lock)
1584 * One if interrupt was handled, zero if not (shared irq).
1586 unsigned int ata_sff_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
1588 return __ata_sff_port_intr(ap
, qc
, false);
1590 EXPORT_SYMBOL_GPL(ata_sff_port_intr
);
1592 static inline irqreturn_t
__ata_sff_interrupt(int irq
, void *dev_instance
,
1593 unsigned int (*port_intr
)(struct ata_port
*, struct ata_queued_cmd
*))
1595 struct ata_host
*host
= dev_instance
;
1596 bool retried
= false;
1598 unsigned int handled
, idle
, polling
;
1599 unsigned long flags
;
1601 /* TODO: make _irqsave conditional on x86 PCI IDE legacy mode */
1602 spin_lock_irqsave(&host
->lock
, flags
);
1605 handled
= idle
= polling
= 0;
1606 for (i
= 0; i
< host
->n_ports
; i
++) {
1607 struct ata_port
*ap
= host
->ports
[i
];
1608 struct ata_queued_cmd
*qc
;
1610 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1612 if (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
))
1613 handled
|= port_intr(ap
, qc
);
1621 * If no port was expecting IRQ but the controller is actually
1622 * asserting IRQ line, nobody cared will ensue. Check IRQ
1623 * pending status if available and clear spurious IRQ.
1625 if (!handled
&& !retried
) {
1628 for (i
= 0; i
< host
->n_ports
; i
++) {
1629 struct ata_port
*ap
= host
->ports
[i
];
1631 if (polling
& (1 << i
))
1634 if (!ap
->ops
->sff_irq_check
||
1635 !ap
->ops
->sff_irq_check(ap
))
1638 if (idle
& (1 << i
)) {
1639 ap
->ops
->sff_check_status(ap
);
1640 if (ap
->ops
->sff_irq_clear
)
1641 ap
->ops
->sff_irq_clear(ap
);
1643 /* clear INTRQ and check if BUSY cleared */
1644 if (!(ap
->ops
->sff_check_status(ap
) & ATA_BUSY
))
1647 * With command in flight, we can't do
1648 * sff_irq_clear() w/o racing with completion.
1659 spin_unlock_irqrestore(&host
->lock
, flags
);
1661 return IRQ_RETVAL(handled
);
1665 * ata_sff_interrupt - Default SFF ATA host interrupt handler
1666 * @irq: irq line (unused)
1667 * @dev_instance: pointer to our ata_host information structure
1669 * Default interrupt handler for PCI IDE devices. Calls
1670 * ata_sff_port_intr() for each port that is not disabled.
1673 * Obtains host lock during operation.
1676 * IRQ_NONE or IRQ_HANDLED.
1678 irqreturn_t
ata_sff_interrupt(int irq
, void *dev_instance
)
1680 return __ata_sff_interrupt(irq
, dev_instance
, ata_sff_port_intr
);
1682 EXPORT_SYMBOL_GPL(ata_sff_interrupt
);
1685 * ata_sff_lost_interrupt - Check for an apparent lost interrupt
1686 * @ap: port that appears to have timed out
1688 * Called from the libata error handlers when the core code suspects
1689 * an interrupt has been lost. If it has complete anything we can and
1690 * then return. Interface must support altstatus for this faster
1691 * recovery to occur.
1694 * Caller holds host lock
1697 void ata_sff_lost_interrupt(struct ata_port
*ap
)
1700 struct ata_queued_cmd
*qc
;
1702 /* Only one outstanding command per SFF channel */
1703 qc
= ata_qc_from_tag(ap
, ap
->link
.active_tag
);
1704 /* We cannot lose an interrupt on a non-existent or polled command */
1705 if (!qc
|| qc
->tf
.flags
& ATA_TFLAG_POLLING
)
1707 /* See if the controller thinks it is still busy - if so the command
1708 isn't a lost IRQ but is still in progress */
1709 status
= ata_sff_altstatus(ap
);
1710 if (status
& ATA_BUSY
)
1713 /* There was a command running, we are no longer busy and we have
1715 ata_port_warn(ap
, "lost interrupt (Status 0x%x)\n",
1717 /* Run the host interrupt logic as if the interrupt had not been
1719 ata_sff_port_intr(ap
, qc
);
1721 EXPORT_SYMBOL_GPL(ata_sff_lost_interrupt
);
1724 * ata_sff_freeze - Freeze SFF controller port
1725 * @ap: port to freeze
1727 * Freeze SFF controller port.
1730 * Inherited from caller.
1732 void ata_sff_freeze(struct ata_port
*ap
)
1734 ap
->ctl
|= ATA_NIEN
;
1735 ap
->last_ctl
= ap
->ctl
;
1737 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
)
1738 ata_sff_set_devctl(ap
, ap
->ctl
);
1740 /* Under certain circumstances, some controllers raise IRQ on
1741 * ATA_NIEN manipulation. Also, many controllers fail to mask
1742 * previously pending IRQ on ATA_NIEN assertion. Clear it.
1744 ap
->ops
->sff_check_status(ap
);
1746 if (ap
->ops
->sff_irq_clear
)
1747 ap
->ops
->sff_irq_clear(ap
);
1749 EXPORT_SYMBOL_GPL(ata_sff_freeze
);
1752 * ata_sff_thaw - Thaw SFF controller port
1755 * Thaw SFF controller port.
1758 * Inherited from caller.
1760 void ata_sff_thaw(struct ata_port
*ap
)
1762 /* clear & re-enable interrupts */
1763 ap
->ops
->sff_check_status(ap
);
1764 if (ap
->ops
->sff_irq_clear
)
1765 ap
->ops
->sff_irq_clear(ap
);
1768 EXPORT_SYMBOL_GPL(ata_sff_thaw
);
1771 * ata_sff_prereset - prepare SFF link for reset
1772 * @link: SFF link to be reset
1773 * @deadline: deadline jiffies for the operation
1775 * SFF link @link is about to be reset. Initialize it. It first
1776 * calls ata_std_prereset() and wait for !BSY if the port is
1780 * Kernel thread context (may sleep)
1783 * 0 on success, -errno otherwise.
1785 int ata_sff_prereset(struct ata_link
*link
, unsigned long deadline
)
1787 struct ata_eh_context
*ehc
= &link
->eh_context
;
1790 rc
= ata_std_prereset(link
, deadline
);
1794 /* if we're about to do hardreset, nothing more to do */
1795 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
1798 /* wait for !BSY if we don't know that no device is attached */
1799 if (!ata_link_offline(link
)) {
1800 rc
= ata_sff_wait_ready(link
, deadline
);
1801 if (rc
&& rc
!= -ENODEV
) {
1803 "device not ready (errno=%d), forcing hardreset\n",
1805 ehc
->i
.action
|= ATA_EH_HARDRESET
;
1811 EXPORT_SYMBOL_GPL(ata_sff_prereset
);
1814 * ata_devchk - PATA device presence detection
1815 * @ap: ATA channel to examine
1816 * @device: Device to examine (starting at zero)
1818 * This technique was originally described in
1819 * Hale Landis's ATADRVR (www.ata-atapi.com), and
1820 * later found its way into the ATA/ATAPI spec.
1822 * Write a pattern to the ATA shadow registers,
1823 * and if a device is present, it will respond by
1824 * correctly storing and echoing back the
1825 * ATA shadow register contents.
1830 static unsigned int ata_devchk(struct ata_port
*ap
, unsigned int device
)
1832 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1835 ap
->ops
->sff_dev_select(ap
, device
);
1837 iowrite8(0x55, ioaddr
->nsect_addr
);
1838 iowrite8(0xaa, ioaddr
->lbal_addr
);
1840 iowrite8(0xaa, ioaddr
->nsect_addr
);
1841 iowrite8(0x55, ioaddr
->lbal_addr
);
1843 iowrite8(0x55, ioaddr
->nsect_addr
);
1844 iowrite8(0xaa, ioaddr
->lbal_addr
);
1846 nsect
= ioread8(ioaddr
->nsect_addr
);
1847 lbal
= ioread8(ioaddr
->lbal_addr
);
1849 if ((nsect
== 0x55) && (lbal
== 0xaa))
1850 return 1; /* we found a device */
1852 return 0; /* nothing found */
1856 * ata_sff_dev_classify - Parse returned ATA device signature
1857 * @dev: ATA device to classify (starting at zero)
1858 * @present: device seems present
1859 * @r_err: Value of error register on completion
1861 * After an event -- SRST, E.D.D., or SATA COMRESET -- occurs,
1862 * an ATA/ATAPI-defined set of values is placed in the ATA
1863 * shadow registers, indicating the results of device detection
1866 * Select the ATA device, and read the values from the ATA shadow
1867 * registers. Then parse according to the Error register value,
1868 * and the spec-defined values examined by ata_dev_classify().
1874 * Device type - %ATA_DEV_ATA, %ATA_DEV_ATAPI or %ATA_DEV_NONE.
1876 unsigned int ata_sff_dev_classify(struct ata_device
*dev
, int present
,
1879 struct ata_port
*ap
= dev
->link
->ap
;
1880 struct ata_taskfile tf
;
1884 ap
->ops
->sff_dev_select(ap
, dev
->devno
);
1886 memset(&tf
, 0, sizeof(tf
));
1888 ap
->ops
->sff_tf_read(ap
, &tf
);
1893 /* see if device passed diags: continue and warn later */
1895 /* diagnostic fail : do nothing _YET_ */
1896 dev
->horkage
|= ATA_HORKAGE_DIAGNOSTIC
;
1899 else if ((dev
->devno
== 0) && (err
== 0x81))
1902 return ATA_DEV_NONE
;
1904 /* determine if device is ATA or ATAPI */
1905 class = ata_dev_classify(&tf
);
1907 if (class == ATA_DEV_UNKNOWN
) {
1908 /* If the device failed diagnostic, it's likely to
1909 * have reported incorrect device signature too.
1910 * Assume ATA device if the device seems present but
1911 * device signature is invalid with diagnostic
1914 if (present
&& (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
))
1915 class = ATA_DEV_ATA
;
1917 class = ATA_DEV_NONE
;
1918 } else if ((class == ATA_DEV_ATA
) &&
1919 (ap
->ops
->sff_check_status(ap
) == 0))
1920 class = ATA_DEV_NONE
;
1924 EXPORT_SYMBOL_GPL(ata_sff_dev_classify
);
1927 * ata_sff_wait_after_reset - wait for devices to become ready after reset
1928 * @link: SFF link which is just reset
1929 * @devmask: mask of present devices
1930 * @deadline: deadline jiffies for the operation
1932 * Wait devices attached to SFF @link to become ready after
1933 * reset. It contains preceding 150ms wait to avoid accessing TF
1934 * status register too early.
1937 * Kernel thread context (may sleep).
1940 * 0 on success, -ENODEV if some or all of devices in @devmask
1941 * don't seem to exist. -errno on other errors.
1943 int ata_sff_wait_after_reset(struct ata_link
*link
, unsigned int devmask
,
1944 unsigned long deadline
)
1946 struct ata_port
*ap
= link
->ap
;
1947 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
1948 unsigned int dev0
= devmask
& (1 << 0);
1949 unsigned int dev1
= devmask
& (1 << 1);
1952 ata_msleep(ap
, ATA_WAIT_AFTER_RESET
);
1954 /* always check readiness of the master device */
1955 rc
= ata_sff_wait_ready(link
, deadline
);
1956 /* -ENODEV means the odd clown forgot the D7 pulldown resistor
1957 * and TF status is 0xff, bail out on it too.
1962 /* if device 1 was found in ata_devchk, wait for register
1963 * access briefly, then wait for BSY to clear.
1968 ap
->ops
->sff_dev_select(ap
, 1);
1970 /* Wait for register access. Some ATAPI devices fail
1971 * to set nsect/lbal after reset, so don't waste too
1972 * much time on it. We're gonna wait for !BSY anyway.
1974 for (i
= 0; i
< 2; i
++) {
1977 nsect
= ioread8(ioaddr
->nsect_addr
);
1978 lbal
= ioread8(ioaddr
->lbal_addr
);
1979 if ((nsect
== 1) && (lbal
== 1))
1981 ata_msleep(ap
, 50); /* give drive a breather */
1984 rc
= ata_sff_wait_ready(link
, deadline
);
1992 /* is all this really necessary? */
1993 ap
->ops
->sff_dev_select(ap
, 0);
1995 ap
->ops
->sff_dev_select(ap
, 1);
1997 ap
->ops
->sff_dev_select(ap
, 0);
2001 EXPORT_SYMBOL_GPL(ata_sff_wait_after_reset
);
2003 static int ata_bus_softreset(struct ata_port
*ap
, unsigned int devmask
,
2004 unsigned long deadline
)
2006 struct ata_ioports
*ioaddr
= &ap
->ioaddr
;
2008 DPRINTK("ata%u: bus reset via SRST\n", ap
->print_id
);
2010 /* software reset. causes dev0 to be selected */
2011 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2012 udelay(20); /* FIXME: flush */
2013 iowrite8(ap
->ctl
| ATA_SRST
, ioaddr
->ctl_addr
);
2014 udelay(20); /* FIXME: flush */
2015 iowrite8(ap
->ctl
, ioaddr
->ctl_addr
);
2016 ap
->last_ctl
= ap
->ctl
;
2018 /* wait the port to become ready */
2019 return ata_sff_wait_after_reset(&ap
->link
, devmask
, deadline
);
2023 * ata_sff_softreset - reset host port via ATA SRST
2024 * @link: ATA link to reset
2025 * @classes: resulting classes of attached devices
2026 * @deadline: deadline jiffies for the operation
2028 * Reset host port using ATA SRST.
2031 * Kernel thread context (may sleep)
2034 * 0 on success, -errno otherwise.
2036 int ata_sff_softreset(struct ata_link
*link
, unsigned int *classes
,
2037 unsigned long deadline
)
2039 struct ata_port
*ap
= link
->ap
;
2040 unsigned int slave_possible
= ap
->flags
& ATA_FLAG_SLAVE_POSS
;
2041 unsigned int devmask
= 0;
2047 /* determine if device 0/1 are present */
2048 if (ata_devchk(ap
, 0))
2049 devmask
|= (1 << 0);
2050 if (slave_possible
&& ata_devchk(ap
, 1))
2051 devmask
|= (1 << 1);
2053 /* select device 0 again */
2054 ap
->ops
->sff_dev_select(ap
, 0);
2056 /* issue bus reset */
2057 DPRINTK("about to softreset, devmask=%x\n", devmask
);
2058 rc
= ata_bus_softreset(ap
, devmask
, deadline
);
2059 /* if link is occupied, -ENODEV too is an error */
2060 if (rc
&& (rc
!= -ENODEV
|| sata_scr_valid(link
))) {
2061 ata_link_err(link
, "SRST failed (errno=%d)\n", rc
);
2065 /* determine by signature whether we have ATA or ATAPI devices */
2066 classes
[0] = ata_sff_dev_classify(&link
->device
[0],
2067 devmask
& (1 << 0), &err
);
2068 if (slave_possible
&& err
!= 0x81)
2069 classes
[1] = ata_sff_dev_classify(&link
->device
[1],
2070 devmask
& (1 << 1), &err
);
2072 DPRINTK("EXIT, classes[0]=%u [1]=%u\n", classes
[0], classes
[1]);
2075 EXPORT_SYMBOL_GPL(ata_sff_softreset
);
2078 * sata_sff_hardreset - reset host port via SATA phy reset
2079 * @link: link to reset
2080 * @class: resulting class of attached device
2081 * @deadline: deadline jiffies for the operation
2083 * SATA phy-reset host port using DET bits of SControl register,
2084 * wait for !BSY and classify the attached device.
2087 * Kernel thread context (may sleep)
2090 * 0 on success, -errno otherwise.
2092 int sata_sff_hardreset(struct ata_link
*link
, unsigned int *class,
2093 unsigned long deadline
)
2095 struct ata_eh_context
*ehc
= &link
->eh_context
;
2096 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
2100 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
,
2101 ata_sff_check_ready
);
2103 *class = ata_sff_dev_classify(link
->device
, 1, NULL
);
2105 DPRINTK("EXIT, class=%u\n", *class);
2108 EXPORT_SYMBOL_GPL(sata_sff_hardreset
);
2111 * ata_sff_postreset - SFF postreset callback
2112 * @link: the target SFF ata_link
2113 * @classes: classes of attached devices
2115 * This function is invoked after a successful reset. It first
2116 * calls ata_std_postreset() and performs SFF specific postreset
2120 * Kernel thread context (may sleep)
2122 void ata_sff_postreset(struct ata_link
*link
, unsigned int *classes
)
2124 struct ata_port
*ap
= link
->ap
;
2126 ata_std_postreset(link
, classes
);
2128 /* is double-select really necessary? */
2129 if (classes
[0] != ATA_DEV_NONE
)
2130 ap
->ops
->sff_dev_select(ap
, 1);
2131 if (classes
[1] != ATA_DEV_NONE
)
2132 ap
->ops
->sff_dev_select(ap
, 0);
2134 /* bail out if no device is present */
2135 if (classes
[0] == ATA_DEV_NONE
&& classes
[1] == ATA_DEV_NONE
) {
2136 DPRINTK("EXIT, no device\n");
2140 /* set up device control */
2141 if (ap
->ops
->sff_set_devctl
|| ap
->ioaddr
.ctl_addr
) {
2142 ata_sff_set_devctl(ap
, ap
->ctl
);
2143 ap
->last_ctl
= ap
->ctl
;
2146 EXPORT_SYMBOL_GPL(ata_sff_postreset
);
2149 * ata_sff_drain_fifo - Stock FIFO drain logic for SFF controllers
2152 * Drain the FIFO and device of any stuck data following a command
2153 * failing to complete. In some cases this is necessary before a
2154 * reset will recover the device.
2158 void ata_sff_drain_fifo(struct ata_queued_cmd
*qc
)
2161 struct ata_port
*ap
;
2163 /* We only need to flush incoming data when a command was running */
2164 if (qc
== NULL
|| qc
->dma_dir
== DMA_TO_DEVICE
)
2168 /* Drain up to 64K of data before we give up this recovery method */
2169 for (count
= 0; (ap
->ops
->sff_check_status(ap
) & ATA_DRQ
)
2170 && count
< 65536; count
+= 2)
2171 ioread16(ap
->ioaddr
.data_addr
);
2173 /* Can become DEBUG later */
2175 ata_port_dbg(ap
, "drained %d bytes to clear DRQ\n", count
);
2178 EXPORT_SYMBOL_GPL(ata_sff_drain_fifo
);
2181 * ata_sff_error_handler - Stock error handler for SFF controller
2182 * @ap: port to handle error for
2184 * Stock error handler for SFF controller. It can handle both
2185 * PATA and SATA controllers. Many controllers should be able to
2186 * use this EH as-is or with some added handling before and
2190 * Kernel thread context (may sleep)
2192 void ata_sff_error_handler(struct ata_port
*ap
)
2194 ata_reset_fn_t softreset
= ap
->ops
->softreset
;
2195 ata_reset_fn_t hardreset
= ap
->ops
->hardreset
;
2196 struct ata_queued_cmd
*qc
;
2197 unsigned long flags
;
2199 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2200 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2203 spin_lock_irqsave(ap
->lock
, flags
);
2206 * We *MUST* do FIFO draining before we issue a reset as
2207 * several devices helpfully clear their internal state and
2208 * will lock solid if we touch the data port post reset. Pass
2209 * qc in case anyone wants to do different PIO/DMA recovery or
2210 * has per command fixups
2212 if (ap
->ops
->sff_drain_fifo
)
2213 ap
->ops
->sff_drain_fifo(qc
);
2215 spin_unlock_irqrestore(ap
->lock
, flags
);
2217 /* ignore ata_sff_softreset if ctl isn't accessible */
2218 if (softreset
== ata_sff_softreset
&& !ap
->ioaddr
.ctl_addr
)
2221 /* ignore built-in hardresets if SCR access is not available */
2222 if ((hardreset
== sata_std_hardreset
||
2223 hardreset
== sata_sff_hardreset
) && !sata_scr_valid(&ap
->link
))
2226 ata_do_eh(ap
, ap
->ops
->prereset
, softreset
, hardreset
,
2227 ap
->ops
->postreset
);
2229 EXPORT_SYMBOL_GPL(ata_sff_error_handler
);
2232 * ata_sff_std_ports - initialize ioaddr with standard port offsets.
2233 * @ioaddr: IO address structure to be initialized
2235 * Utility function which initializes data_addr, error_addr,
2236 * feature_addr, nsect_addr, lbal_addr, lbam_addr, lbah_addr,
2237 * device_addr, status_addr, and command_addr to standard offsets
2238 * relative to cmd_addr.
2240 * Does not set ctl_addr, altstatus_addr, bmdma_addr, or scr_addr.
2242 void ata_sff_std_ports(struct ata_ioports
*ioaddr
)
2244 ioaddr
->data_addr
= ioaddr
->cmd_addr
+ ATA_REG_DATA
;
2245 ioaddr
->error_addr
= ioaddr
->cmd_addr
+ ATA_REG_ERR
;
2246 ioaddr
->feature_addr
= ioaddr
->cmd_addr
+ ATA_REG_FEATURE
;
2247 ioaddr
->nsect_addr
= ioaddr
->cmd_addr
+ ATA_REG_NSECT
;
2248 ioaddr
->lbal_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAL
;
2249 ioaddr
->lbam_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAM
;
2250 ioaddr
->lbah_addr
= ioaddr
->cmd_addr
+ ATA_REG_LBAH
;
2251 ioaddr
->device_addr
= ioaddr
->cmd_addr
+ ATA_REG_DEVICE
;
2252 ioaddr
->status_addr
= ioaddr
->cmd_addr
+ ATA_REG_STATUS
;
2253 ioaddr
->command_addr
= ioaddr
->cmd_addr
+ ATA_REG_CMD
;
2255 EXPORT_SYMBOL_GPL(ata_sff_std_ports
);
2259 static int ata_resources_present(struct pci_dev
*pdev
, int port
)
2263 /* Check the PCI resources for this channel are enabled */
2265 for (i
= 0; i
< 2; i
++) {
2266 if (pci_resource_start(pdev
, port
+ i
) == 0 ||
2267 pci_resource_len(pdev
, port
+ i
) == 0)
2274 * ata_pci_sff_init_host - acquire native PCI ATA resources and init host
2275 * @host: target ATA host
2277 * Acquire native PCI ATA resources for @host and initialize the
2278 * first two ports of @host accordingly. Ports marked dummy are
2279 * skipped and allocation failure makes the port dummy.
2281 * Note that native PCI resources are valid even for legacy hosts
2282 * as we fix up pdev resources array early in boot, so this
2283 * function can be used for both native and legacy SFF hosts.
2286 * Inherited from calling layer (may sleep).
2289 * 0 if at least one port is initialized, -ENODEV if no port is
2292 int ata_pci_sff_init_host(struct ata_host
*host
)
2294 struct device
*gdev
= host
->dev
;
2295 struct pci_dev
*pdev
= to_pci_dev(gdev
);
2296 unsigned int mask
= 0;
2299 /* request, iomap BARs and init port addresses accordingly */
2300 for (i
= 0; i
< 2; i
++) {
2301 struct ata_port
*ap
= host
->ports
[i
];
2303 void __iomem
* const *iomap
;
2305 if (ata_port_is_dummy(ap
))
2308 /* Discard disabled ports. Some controllers show
2309 * their unused channels this way. Disabled ports are
2312 if (!ata_resources_present(pdev
, i
)) {
2313 ap
->ops
= &ata_dummy_port_ops
;
2317 rc
= pcim_iomap_regions(pdev
, 0x3 << base
,
2318 dev_driver_string(gdev
));
2321 "failed to request/iomap BARs for port %d (errno=%d)\n",
2324 pcim_pin_device(pdev
);
2325 ap
->ops
= &ata_dummy_port_ops
;
2328 host
->iomap
= iomap
= pcim_iomap_table(pdev
);
2330 ap
->ioaddr
.cmd_addr
= iomap
[base
];
2331 ap
->ioaddr
.altstatus_addr
=
2332 ap
->ioaddr
.ctl_addr
= (void __iomem
*)
2333 ((unsigned long)iomap
[base
+ 1] | ATA_PCI_CTL_OFS
);
2334 ata_sff_std_ports(&ap
->ioaddr
);
2336 ata_port_desc(ap
, "cmd 0x%llx ctl 0x%llx",
2337 (unsigned long long)pci_resource_start(pdev
, base
),
2338 (unsigned long long)pci_resource_start(pdev
, base
+ 1));
2344 dev_err(gdev
, "no available native port\n");
2350 EXPORT_SYMBOL_GPL(ata_pci_sff_init_host
);
2353 * ata_pci_sff_prepare_host - helper to prepare PCI PIO-only SFF ATA host
2354 * @pdev: target PCI device
2355 * @ppi: array of port_info, must be enough for two ports
2356 * @r_host: out argument for the initialized ATA host
2358 * Helper to allocate PIO-only SFF ATA host for @pdev, acquire
2359 * all PCI resources and initialize it accordingly in one go.
2362 * Inherited from calling layer (may sleep).
2365 * 0 on success, -errno otherwise.
2367 int ata_pci_sff_prepare_host(struct pci_dev
*pdev
,
2368 const struct ata_port_info
* const *ppi
,
2369 struct ata_host
**r_host
)
2371 struct ata_host
*host
;
2374 if (!devres_open_group(&pdev
->dev
, NULL
, GFP_KERNEL
))
2377 host
= ata_host_alloc_pinfo(&pdev
->dev
, ppi
, 2);
2379 dev_err(&pdev
->dev
, "failed to allocate ATA host\n");
2384 rc
= ata_pci_sff_init_host(host
);
2388 devres_remove_group(&pdev
->dev
, NULL
);
2393 devres_release_group(&pdev
->dev
, NULL
);
2396 EXPORT_SYMBOL_GPL(ata_pci_sff_prepare_host
);
2399 * ata_pci_sff_activate_host - start SFF host, request IRQ and register it
2400 * @host: target SFF ATA host
2401 * @irq_handler: irq_handler used when requesting IRQ(s)
2402 * @sht: scsi_host_template to use when registering the host
2404 * This is the counterpart of ata_host_activate() for SFF ATA
2405 * hosts. This separate helper is necessary because SFF hosts
2406 * use two separate interrupts in legacy mode.
2409 * Inherited from calling layer (may sleep).
2412 * 0 on success, -errno otherwise.
2414 int ata_pci_sff_activate_host(struct ata_host
*host
,
2415 irq_handler_t irq_handler
,
2416 struct scsi_host_template
*sht
)
2418 struct device
*dev
= host
->dev
;
2419 struct pci_dev
*pdev
= to_pci_dev(dev
);
2420 const char *drv_name
= dev_driver_string(host
->dev
);
2421 int legacy_mode
= 0, rc
;
2423 rc
= ata_host_start(host
);
2427 if ((pdev
->class >> 8) == PCI_CLASS_STORAGE_IDE
) {
2430 /* TODO: What if one channel is in native mode ... */
2431 pci_read_config_byte(pdev
, PCI_CLASS_PROG
, &tmp8
);
2432 mask
= (1 << 2) | (1 << 0);
2433 if ((tmp8
& mask
) != mask
)
2435 #if defined(CONFIG_NO_ATA_LEGACY)
2436 /* Some platforms with PCI limits cannot address compat
2437 port space. In that case we punt if their firmware has
2438 left a device in compatibility mode */
2440 printk(KERN_ERR
"ata: Compatibility mode ATA is not supported on this platform, skipping.\n");
2446 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2449 if (!legacy_mode
&& pdev
->irq
) {
2452 rc
= devm_request_irq(dev
, pdev
->irq
, irq_handler
,
2453 IRQF_SHARED
, drv_name
, host
);
2457 for (i
= 0; i
< 2; i
++) {
2458 if (ata_port_is_dummy(host
->ports
[i
]))
2460 ata_port_desc(host
->ports
[i
], "irq %d", pdev
->irq
);
2462 } else if (legacy_mode
) {
2463 if (!ata_port_is_dummy(host
->ports
[0])) {
2464 rc
= devm_request_irq(dev
, ATA_PRIMARY_IRQ(pdev
),
2465 irq_handler
, IRQF_SHARED
,
2470 ata_port_desc(host
->ports
[0], "irq %d",
2471 ATA_PRIMARY_IRQ(pdev
));
2474 if (!ata_port_is_dummy(host
->ports
[1])) {
2475 rc
= devm_request_irq(dev
, ATA_SECONDARY_IRQ(pdev
),
2476 irq_handler
, IRQF_SHARED
,
2481 ata_port_desc(host
->ports
[1], "irq %d",
2482 ATA_SECONDARY_IRQ(pdev
));
2486 rc
= ata_host_register(host
, sht
);
2489 devres_remove_group(dev
, NULL
);
2491 devres_release_group(dev
, NULL
);
2495 EXPORT_SYMBOL_GPL(ata_pci_sff_activate_host
);
2497 static const struct ata_port_info
*ata_sff_find_valid_pi(
2498 const struct ata_port_info
* const *ppi
)
2502 /* look up the first valid port_info */
2503 for (i
= 0; i
< 2 && ppi
[i
]; i
++)
2504 if (ppi
[i
]->port_ops
!= &ata_dummy_port_ops
)
2510 static int ata_pci_init_one(struct pci_dev
*pdev
,
2511 const struct ata_port_info
* const *ppi
,
2512 struct scsi_host_template
*sht
, void *host_priv
,
2513 int hflags
, bool bmdma
)
2515 struct device
*dev
= &pdev
->dev
;
2516 const struct ata_port_info
*pi
;
2517 struct ata_host
*host
= NULL
;
2522 pi
= ata_sff_find_valid_pi(ppi
);
2524 dev_err(&pdev
->dev
, "no valid port_info specified\n");
2528 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
2531 rc
= pcim_enable_device(pdev
);
2536 /* prepare and activate BMDMA host */
2537 rc
= ata_pci_bmdma_prepare_host(pdev
, ppi
, &host
);
2539 /* prepare and activate SFF host */
2540 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, &host
);
2543 host
->private_data
= host_priv
;
2544 host
->flags
|= hflags
;
2547 pci_set_master(pdev
);
2548 rc
= ata_pci_sff_activate_host(host
, ata_bmdma_interrupt
, sht
);
2550 rc
= ata_pci_sff_activate_host(host
, ata_sff_interrupt
, sht
);
2553 devres_remove_group(&pdev
->dev
, NULL
);
2555 devres_release_group(&pdev
->dev
, NULL
);
2561 * ata_pci_sff_init_one - Initialize/register PIO-only PCI IDE controller
2562 * @pdev: Controller to be initialized
2563 * @ppi: array of port_info, must be enough for two ports
2564 * @sht: scsi_host_template to use when registering the host
2565 * @host_priv: host private_data
2566 * @hflag: host flags
2568 * This is a helper function which can be called from a driver's
2569 * xxx_init_one() probe function if the hardware uses traditional
2570 * IDE taskfile registers and is PIO only.
2573 * Nobody makes a single channel controller that appears solely as
2574 * the secondary legacy port on PCI.
2577 * Inherited from PCI layer (may sleep).
2580 * Zero on success, negative on errno-based value on error.
2582 int ata_pci_sff_init_one(struct pci_dev
*pdev
,
2583 const struct ata_port_info
* const *ppi
,
2584 struct scsi_host_template
*sht
, void *host_priv
, int hflag
)
2586 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflag
, 0);
2588 EXPORT_SYMBOL_GPL(ata_pci_sff_init_one
);
2590 #endif /* CONFIG_PCI */
2596 #ifdef CONFIG_ATA_BMDMA
2598 const struct ata_port_operations ata_bmdma_port_ops
= {
2599 .inherits
= &ata_sff_port_ops
,
2601 .error_handler
= ata_bmdma_error_handler
,
2602 .post_internal_cmd
= ata_bmdma_post_internal_cmd
,
2604 .qc_prep
= ata_bmdma_qc_prep
,
2605 .qc_issue
= ata_bmdma_qc_issue
,
2607 .sff_irq_clear
= ata_bmdma_irq_clear
,
2608 .bmdma_setup
= ata_bmdma_setup
,
2609 .bmdma_start
= ata_bmdma_start
,
2610 .bmdma_stop
= ata_bmdma_stop
,
2611 .bmdma_status
= ata_bmdma_status
,
2613 .port_start
= ata_bmdma_port_start
,
2615 EXPORT_SYMBOL_GPL(ata_bmdma_port_ops
);
2617 const struct ata_port_operations ata_bmdma32_port_ops
= {
2618 .inherits
= &ata_bmdma_port_ops
,
2620 .sff_data_xfer
= ata_sff_data_xfer32
,
2621 .port_start
= ata_bmdma_port_start32
,
2623 EXPORT_SYMBOL_GPL(ata_bmdma32_port_ops
);
2626 * ata_bmdma_fill_sg - Fill PCI IDE PRD table
2627 * @qc: Metadata associated with taskfile to be transferred
2629 * Fill PCI IDE PRD (scatter-gather) table with segments
2630 * associated with the current disk command.
2633 * spin_lock_irqsave(host lock)
2636 static void ata_bmdma_fill_sg(struct ata_queued_cmd
*qc
)
2638 struct ata_port
*ap
= qc
->ap
;
2639 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2640 struct scatterlist
*sg
;
2641 unsigned int si
, pi
;
2644 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2648 /* determine if physical DMA addr spans 64K boundary.
2649 * Note h/w doesn't support 64-bit, so we unconditionally
2650 * truncate dma_addr_t to u32.
2652 addr
= (u32
) sg_dma_address(sg
);
2653 sg_len
= sg_dma_len(sg
);
2656 offset
= addr
& 0xffff;
2658 if ((offset
+ sg_len
) > 0x10000)
2659 len
= 0x10000 - offset
;
2661 prd
[pi
].addr
= cpu_to_le32(addr
);
2662 prd
[pi
].flags_len
= cpu_to_le32(len
& 0xffff);
2663 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2671 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2675 * ata_bmdma_fill_sg_dumb - Fill PCI IDE PRD table
2676 * @qc: Metadata associated with taskfile to be transferred
2678 * Fill PCI IDE PRD (scatter-gather) table with segments
2679 * associated with the current disk command. Perform the fill
2680 * so that we avoid writing any length 64K records for
2681 * controllers that don't follow the spec.
2684 * spin_lock_irqsave(host lock)
2687 static void ata_bmdma_fill_sg_dumb(struct ata_queued_cmd
*qc
)
2689 struct ata_port
*ap
= qc
->ap
;
2690 struct ata_bmdma_prd
*prd
= ap
->bmdma_prd
;
2691 struct scatterlist
*sg
;
2692 unsigned int si
, pi
;
2695 for_each_sg(qc
->sg
, sg
, qc
->n_elem
, si
) {
2697 u32 sg_len
, len
, blen
;
2699 /* determine if physical DMA addr spans 64K boundary.
2700 * Note h/w doesn't support 64-bit, so we unconditionally
2701 * truncate dma_addr_t to u32.
2703 addr
= (u32
) sg_dma_address(sg
);
2704 sg_len
= sg_dma_len(sg
);
2707 offset
= addr
& 0xffff;
2709 if ((offset
+ sg_len
) > 0x10000)
2710 len
= 0x10000 - offset
;
2712 blen
= len
& 0xffff;
2713 prd
[pi
].addr
= cpu_to_le32(addr
);
2715 /* Some PATA chipsets like the CS5530 can't
2716 cope with 0x0000 meaning 64K as the spec
2718 prd
[pi
].flags_len
= cpu_to_le32(0x8000);
2720 prd
[++pi
].addr
= cpu_to_le32(addr
+ 0x8000);
2722 prd
[pi
].flags_len
= cpu_to_le32(blen
);
2723 VPRINTK("PRD[%u] = (0x%X, 0x%X)\n", pi
, addr
, len
);
2731 prd
[pi
- 1].flags_len
|= cpu_to_le32(ATA_PRD_EOT
);
2735 * ata_bmdma_qc_prep - Prepare taskfile for submission
2736 * @qc: Metadata associated with taskfile to be prepared
2738 * Prepare ATA taskfile for submission.
2741 * spin_lock_irqsave(host lock)
2743 void ata_bmdma_qc_prep(struct ata_queued_cmd
*qc
)
2745 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2748 ata_bmdma_fill_sg(qc
);
2750 EXPORT_SYMBOL_GPL(ata_bmdma_qc_prep
);
2753 * ata_bmdma_dumb_qc_prep - Prepare taskfile for submission
2754 * @qc: Metadata associated with taskfile to be prepared
2756 * Prepare ATA taskfile for submission.
2759 * spin_lock_irqsave(host lock)
2761 void ata_bmdma_dumb_qc_prep(struct ata_queued_cmd
*qc
)
2763 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
2766 ata_bmdma_fill_sg_dumb(qc
);
2768 EXPORT_SYMBOL_GPL(ata_bmdma_dumb_qc_prep
);
2771 * ata_bmdma_qc_issue - issue taskfile to a BMDMA controller
2772 * @qc: command to issue to device
2774 * This function issues a PIO, NODATA or DMA command to a
2775 * SFF/BMDMA controller. PIO and NODATA are handled by
2776 * ata_sff_qc_issue().
2779 * spin_lock_irqsave(host lock)
2782 * Zero on success, AC_ERR_* mask on failure
2784 unsigned int ata_bmdma_qc_issue(struct ata_queued_cmd
*qc
)
2786 struct ata_port
*ap
= qc
->ap
;
2787 struct ata_link
*link
= qc
->dev
->link
;
2789 /* defer PIO handling to sff_qc_issue */
2790 if (!ata_is_dma(qc
->tf
.protocol
))
2791 return ata_sff_qc_issue(qc
);
2793 /* select the device */
2794 ata_dev_select(ap
, qc
->dev
->devno
, 1, 0);
2796 /* start the command */
2797 switch (qc
->tf
.protocol
) {
2799 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2801 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2802 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2803 ap
->ops
->bmdma_start(qc
); /* initiate bmdma */
2804 ap
->hsm_task_state
= HSM_ST_LAST
;
2807 case ATAPI_PROT_DMA
:
2808 WARN_ON_ONCE(qc
->tf
.flags
& ATA_TFLAG_POLLING
);
2810 ap
->ops
->sff_tf_load(ap
, &qc
->tf
); /* load tf registers */
2811 ap
->ops
->bmdma_setup(qc
); /* set up bmdma */
2812 ap
->hsm_task_state
= HSM_ST_FIRST
;
2814 /* send cdb by polling if no cdb interrupt */
2815 if (!(qc
->dev
->flags
& ATA_DFLAG_CDB_INTR
))
2816 ata_sff_queue_pio_task(link
, 0);
2821 return AC_ERR_SYSTEM
;
2826 EXPORT_SYMBOL_GPL(ata_bmdma_qc_issue
);
2829 * ata_bmdma_port_intr - Handle BMDMA port interrupt
2830 * @ap: Port on which interrupt arrived (possibly...)
2831 * @qc: Taskfile currently active in engine
2833 * Handle port interrupt for given queued command.
2836 * spin_lock_irqsave(host lock)
2839 * One if interrupt was handled, zero if not (shared irq).
2841 unsigned int ata_bmdma_port_intr(struct ata_port
*ap
, struct ata_queued_cmd
*qc
)
2843 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
2845 bool bmdma_stopped
= false;
2846 unsigned int handled
;
2848 if (ap
->hsm_task_state
== HSM_ST_LAST
&& ata_is_dma(qc
->tf
.protocol
)) {
2849 /* check status of DMA engine */
2850 host_stat
= ap
->ops
->bmdma_status(ap
);
2851 VPRINTK("ata%u: host_stat 0x%X\n", ap
->print_id
, host_stat
);
2853 /* if it's not our irq... */
2854 if (!(host_stat
& ATA_DMA_INTR
))
2855 return ata_sff_idle_irq(ap
);
2857 /* before we do anything else, clear DMA-Start bit */
2858 ap
->ops
->bmdma_stop(qc
);
2859 bmdma_stopped
= true;
2861 if (unlikely(host_stat
& ATA_DMA_ERR
)) {
2862 /* error when transferring data to/from memory */
2863 qc
->err_mask
|= AC_ERR_HOST_BUS
;
2864 ap
->hsm_task_state
= HSM_ST_ERR
;
2868 handled
= __ata_sff_port_intr(ap
, qc
, bmdma_stopped
);
2870 if (unlikely(qc
->err_mask
) && ata_is_dma(qc
->tf
.protocol
))
2871 ata_ehi_push_desc(ehi
, "BMDMA stat 0x%x", host_stat
);
2875 EXPORT_SYMBOL_GPL(ata_bmdma_port_intr
);
2878 * ata_bmdma_interrupt - Default BMDMA ATA host interrupt handler
2879 * @irq: irq line (unused)
2880 * @dev_instance: pointer to our ata_host information structure
2882 * Default interrupt handler for PCI IDE devices. Calls
2883 * ata_bmdma_port_intr() for each port that is not disabled.
2886 * Obtains host lock during operation.
2889 * IRQ_NONE or IRQ_HANDLED.
2891 irqreturn_t
ata_bmdma_interrupt(int irq
, void *dev_instance
)
2893 return __ata_sff_interrupt(irq
, dev_instance
, ata_bmdma_port_intr
);
2895 EXPORT_SYMBOL_GPL(ata_bmdma_interrupt
);
2898 * ata_bmdma_error_handler - Stock error handler for BMDMA controller
2899 * @ap: port to handle error for
2901 * Stock error handler for BMDMA controller. It can handle both
2902 * PATA and SATA controllers. Most BMDMA controllers should be
2903 * able to use this EH as-is or with some added handling before
2907 * Kernel thread context (may sleep)
2909 void ata_bmdma_error_handler(struct ata_port
*ap
)
2911 struct ata_queued_cmd
*qc
;
2912 unsigned long flags
;
2915 qc
= __ata_qc_from_tag(ap
, ap
->link
.active_tag
);
2916 if (qc
&& !(qc
->flags
& ATA_QCFLAG_FAILED
))
2919 /* reset PIO HSM and stop DMA engine */
2920 spin_lock_irqsave(ap
->lock
, flags
);
2922 if (qc
&& ata_is_dma(qc
->tf
.protocol
)) {
2925 host_stat
= ap
->ops
->bmdma_status(ap
);
2927 /* BMDMA controllers indicate host bus error by
2928 * setting DMA_ERR bit and timing out. As it wasn't
2929 * really a timeout event, adjust error mask and
2930 * cancel frozen state.
2932 if (qc
->err_mask
== AC_ERR_TIMEOUT
&& (host_stat
& ATA_DMA_ERR
)) {
2933 qc
->err_mask
= AC_ERR_HOST_BUS
;
2937 ap
->ops
->bmdma_stop(qc
);
2939 /* if we're gonna thaw, make sure IRQ is clear */
2941 ap
->ops
->sff_check_status(ap
);
2942 if (ap
->ops
->sff_irq_clear
)
2943 ap
->ops
->sff_irq_clear(ap
);
2947 spin_unlock_irqrestore(ap
->lock
, flags
);
2950 ata_eh_thaw_port(ap
);
2952 ata_sff_error_handler(ap
);
2954 EXPORT_SYMBOL_GPL(ata_bmdma_error_handler
);
2957 * ata_bmdma_post_internal_cmd - Stock post_internal_cmd for BMDMA
2958 * @qc: internal command to clean up
2961 * Kernel thread context (may sleep)
2963 void ata_bmdma_post_internal_cmd(struct ata_queued_cmd
*qc
)
2965 struct ata_port
*ap
= qc
->ap
;
2966 unsigned long flags
;
2968 if (ata_is_dma(qc
->tf
.protocol
)) {
2969 spin_lock_irqsave(ap
->lock
, flags
);
2970 ap
->ops
->bmdma_stop(qc
);
2971 spin_unlock_irqrestore(ap
->lock
, flags
);
2974 EXPORT_SYMBOL_GPL(ata_bmdma_post_internal_cmd
);
2977 * ata_bmdma_irq_clear - Clear PCI IDE BMDMA interrupt.
2978 * @ap: Port associated with this ATA transaction.
2980 * Clear interrupt and error flags in DMA status register.
2982 * May be used as the irq_clear() entry in ata_port_operations.
2985 * spin_lock_irqsave(host lock)
2987 void ata_bmdma_irq_clear(struct ata_port
*ap
)
2989 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
2994 iowrite8(ioread8(mmio
+ ATA_DMA_STATUS
), mmio
+ ATA_DMA_STATUS
);
2996 EXPORT_SYMBOL_GPL(ata_bmdma_irq_clear
);
2999 * ata_bmdma_setup - Set up PCI IDE BMDMA transaction
3000 * @qc: Info associated with this ATA transaction.
3003 * spin_lock_irqsave(host lock)
3005 void ata_bmdma_setup(struct ata_queued_cmd
*qc
)
3007 struct ata_port
*ap
= qc
->ap
;
3008 unsigned int rw
= (qc
->tf
.flags
& ATA_TFLAG_WRITE
);
3011 /* load PRD table addr. */
3012 mb(); /* make sure PRD table writes are visible to controller */
3013 iowrite32(ap
->bmdma_prd_dma
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_TABLE_OFS
);
3015 /* specify data direction, triple-check start bit is clear */
3016 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3017 dmactl
&= ~(ATA_DMA_WR
| ATA_DMA_START
);
3019 dmactl
|= ATA_DMA_WR
;
3020 iowrite8(dmactl
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3022 /* issue r/w command */
3023 ap
->ops
->sff_exec_command(ap
, &qc
->tf
);
3025 EXPORT_SYMBOL_GPL(ata_bmdma_setup
);
3028 * ata_bmdma_start - Start a PCI IDE BMDMA transaction
3029 * @qc: Info associated with this ATA transaction.
3032 * spin_lock_irqsave(host lock)
3034 void ata_bmdma_start(struct ata_queued_cmd
*qc
)
3036 struct ata_port
*ap
= qc
->ap
;
3039 /* start host DMA transaction */
3040 dmactl
= ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3041 iowrite8(dmactl
| ATA_DMA_START
, ap
->ioaddr
.bmdma_addr
+ ATA_DMA_CMD
);
3043 /* Strictly, one may wish to issue an ioread8() here, to
3044 * flush the mmio write. However, control also passes
3045 * to the hardware at this point, and it will interrupt
3046 * us when we are to resume control. So, in effect,
3047 * we don't care when the mmio write flushes.
3048 * Further, a read of the DMA status register _immediately_
3049 * following the write may not be what certain flaky hardware
3050 * is expected, so I think it is best to not add a readb()
3051 * without first all the MMIO ATA cards/mobos.
3052 * Or maybe I'm just being paranoid.
3054 * FIXME: The posting of this write means I/O starts are
3055 * unnecessarily delayed for MMIO
3058 EXPORT_SYMBOL_GPL(ata_bmdma_start
);
3061 * ata_bmdma_stop - Stop PCI IDE BMDMA transfer
3062 * @qc: Command we are ending DMA for
3064 * Clears the ATA_DMA_START flag in the dma control register
3066 * May be used as the bmdma_stop() entry in ata_port_operations.
3069 * spin_lock_irqsave(host lock)
3071 void ata_bmdma_stop(struct ata_queued_cmd
*qc
)
3073 struct ata_port
*ap
= qc
->ap
;
3074 void __iomem
*mmio
= ap
->ioaddr
.bmdma_addr
;
3076 /* clear start/stop bit */
3077 iowrite8(ioread8(mmio
+ ATA_DMA_CMD
) & ~ATA_DMA_START
,
3078 mmio
+ ATA_DMA_CMD
);
3080 /* one-PIO-cycle guaranteed wait, per spec, for HDMA1:0 transition */
3081 ata_sff_dma_pause(ap
);
3083 EXPORT_SYMBOL_GPL(ata_bmdma_stop
);
3086 * ata_bmdma_status - Read PCI IDE BMDMA status
3087 * @ap: Port associated with this ATA transaction.
3089 * Read and return BMDMA status register.
3091 * May be used as the bmdma_status() entry in ata_port_operations.
3094 * spin_lock_irqsave(host lock)
3096 u8
ata_bmdma_status(struct ata_port
*ap
)
3098 return ioread8(ap
->ioaddr
.bmdma_addr
+ ATA_DMA_STATUS
);
3100 EXPORT_SYMBOL_GPL(ata_bmdma_status
);
3104 * ata_bmdma_port_start - Set port up for bmdma.
3105 * @ap: Port to initialize
3107 * Called just after data structures for each port are
3108 * initialized. Allocates space for PRD table.
3110 * May be used as the port_start() entry in ata_port_operations.
3113 * Inherited from caller.
3115 int ata_bmdma_port_start(struct ata_port
*ap
)
3117 if (ap
->mwdma_mask
|| ap
->udma_mask
) {
3119 dmam_alloc_coherent(ap
->host
->dev
, ATA_PRD_TBL_SZ
,
3120 &ap
->bmdma_prd_dma
, GFP_KERNEL
);
3127 EXPORT_SYMBOL_GPL(ata_bmdma_port_start
);
3130 * ata_bmdma_port_start32 - Set port up for dma.
3131 * @ap: Port to initialize
3133 * Called just after data structures for each port are
3134 * initialized. Enables 32bit PIO and allocates space for PRD
3137 * May be used as the port_start() entry in ata_port_operations for
3138 * devices that are capable of 32bit PIO.
3141 * Inherited from caller.
3143 int ata_bmdma_port_start32(struct ata_port
*ap
)
3145 ap
->pflags
|= ATA_PFLAG_PIO32
| ATA_PFLAG_PIO32CHANGE
;
3146 return ata_bmdma_port_start(ap
);
3148 EXPORT_SYMBOL_GPL(ata_bmdma_port_start32
);
3153 * ata_pci_bmdma_clear_simplex - attempt to kick device out of simplex
3156 * Some PCI ATA devices report simplex mode but in fact can be told to
3157 * enter non simplex mode. This implements the necessary logic to
3158 * perform the task on such devices. Calling it on other devices will
3159 * have -undefined- behaviour.
3161 int ata_pci_bmdma_clear_simplex(struct pci_dev
*pdev
)
3163 unsigned long bmdma
= pci_resource_start(pdev
, 4);
3169 simplex
= inb(bmdma
+ 0x02);
3170 outb(simplex
& 0x60, bmdma
+ 0x02);
3171 simplex
= inb(bmdma
+ 0x02);
3176 EXPORT_SYMBOL_GPL(ata_pci_bmdma_clear_simplex
);
3178 static void ata_bmdma_nodma(struct ata_host
*host
, const char *reason
)
3182 dev_err(host
->dev
, "BMDMA: %s, falling back to PIO\n", reason
);
3184 for (i
= 0; i
< 2; i
++) {
3185 host
->ports
[i
]->mwdma_mask
= 0;
3186 host
->ports
[i
]->udma_mask
= 0;
3191 * ata_pci_bmdma_init - acquire PCI BMDMA resources and init ATA host
3192 * @host: target ATA host
3194 * Acquire PCI BMDMA resources and initialize @host accordingly.
3197 * Inherited from calling layer (may sleep).
3199 void ata_pci_bmdma_init(struct ata_host
*host
)
3201 struct device
*gdev
= host
->dev
;
3202 struct pci_dev
*pdev
= to_pci_dev(gdev
);
3205 /* No BAR4 allocation: No DMA */
3206 if (pci_resource_start(pdev
, 4) == 0) {
3207 ata_bmdma_nodma(host
, "BAR4 is zero");
3212 * Some controllers require BMDMA region to be initialized
3213 * even if DMA is not in use to clear IRQ status via
3214 * ->sff_irq_clear method. Try to initialize bmdma_addr
3215 * regardless of dma masks.
3217 rc
= pci_set_dma_mask(pdev
, ATA_DMA_MASK
);
3219 ata_bmdma_nodma(host
, "failed to set dma mask");
3221 rc
= pci_set_consistent_dma_mask(pdev
, ATA_DMA_MASK
);
3223 ata_bmdma_nodma(host
,
3224 "failed to set consistent dma mask");
3227 /* request and iomap DMA region */
3228 rc
= pcim_iomap_regions(pdev
, 1 << 4, dev_driver_string(gdev
));
3230 ata_bmdma_nodma(host
, "failed to request/iomap BAR4");
3233 host
->iomap
= pcim_iomap_table(pdev
);
3235 for (i
= 0; i
< 2; i
++) {
3236 struct ata_port
*ap
= host
->ports
[i
];
3237 void __iomem
*bmdma
= host
->iomap
[4] + 8 * i
;
3239 if (ata_port_is_dummy(ap
))
3242 ap
->ioaddr
.bmdma_addr
= bmdma
;
3243 if ((!(ap
->flags
& ATA_FLAG_IGN_SIMPLEX
)) &&
3244 (ioread8(bmdma
+ 2) & 0x80))
3245 host
->flags
|= ATA_HOST_SIMPLEX
;
3247 ata_port_desc(ap
, "bmdma 0x%llx",
3248 (unsigned long long)pci_resource_start(pdev
, 4) + 8 * i
);
3251 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init
);
3254 * ata_pci_bmdma_prepare_host - helper to prepare PCI BMDMA ATA host
3255 * @pdev: target PCI device
3256 * @ppi: array of port_info, must be enough for two ports
3257 * @r_host: out argument for the initialized ATA host
3259 * Helper to allocate BMDMA ATA host for @pdev, acquire all PCI
3260 * resources and initialize it accordingly in one go.
3263 * Inherited from calling layer (may sleep).
3266 * 0 on success, -errno otherwise.
3268 int ata_pci_bmdma_prepare_host(struct pci_dev
*pdev
,
3269 const struct ata_port_info
* const * ppi
,
3270 struct ata_host
**r_host
)
3274 rc
= ata_pci_sff_prepare_host(pdev
, ppi
, r_host
);
3278 ata_pci_bmdma_init(*r_host
);
3281 EXPORT_SYMBOL_GPL(ata_pci_bmdma_prepare_host
);
3284 * ata_pci_bmdma_init_one - Initialize/register BMDMA PCI IDE controller
3285 * @pdev: Controller to be initialized
3286 * @ppi: array of port_info, must be enough for two ports
3287 * @sht: scsi_host_template to use when registering the host
3288 * @host_priv: host private_data
3289 * @hflags: host flags
3291 * This function is similar to ata_pci_sff_init_one() but also
3292 * takes care of BMDMA initialization.
3295 * Inherited from PCI layer (may sleep).
3298 * Zero on success, negative on errno-based value on error.
3300 int ata_pci_bmdma_init_one(struct pci_dev
*pdev
,
3301 const struct ata_port_info
* const * ppi
,
3302 struct scsi_host_template
*sht
, void *host_priv
,
3305 return ata_pci_init_one(pdev
, ppi
, sht
, host_priv
, hflags
, 1);
3307 EXPORT_SYMBOL_GPL(ata_pci_bmdma_init_one
);
3309 #endif /* CONFIG_PCI */
3310 #endif /* CONFIG_ATA_BMDMA */
3313 * ata_sff_port_init - Initialize SFF/BMDMA ATA port
3314 * @ap: Port to initialize
3316 * Called on port allocation to initialize SFF/BMDMA specific
3322 void ata_sff_port_init(struct ata_port
*ap
)
3324 INIT_DELAYED_WORK(&ap
->sff_pio_task
, ata_sff_pio_task
);
3325 ap
->ctl
= ATA_DEVCTL_OBS
;
3326 ap
->last_ctl
= 0xFF;
3329 int __init
ata_sff_init(void)
3331 ata_sff_wq
= alloc_workqueue("ata_sff", WQ_MEM_RECLAIM
, WQ_MAX_ACTIVE
);
3338 void ata_sff_exit(void)
3340 destroy_workqueue(ata_sff_wq
);