Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / drivers / cpufreq / cpufreq_conservative.c
blobc97b468ee9f7020ef3bd2e3e976f8b0036662450
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2009 Alexander Clouter <alex@digriz.org.uk>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/cpufreq.h>
18 #include <linux/cpu.h>
19 #include <linux/jiffies.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/mutex.h>
22 #include <linux/hrtimer.h>
23 #include <linux/tick.h>
24 #include <linux/ktime.h>
25 #include <linux/sched.h>
28 * dbs is used in this file as a shortform for demandbased switching
29 * It helps to keep variable names smaller, simpler
32 #define DEF_FREQUENCY_UP_THRESHOLD (80)
33 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
36 * The polling frequency of this governor depends on the capability of
37 * the processor. Default polling frequency is 1000 times the transition
38 * latency of the processor. The governor will work on any processor with
39 * transition latency <= 10mS, using appropriate sampling
40 * rate.
41 * For CPUs with transition latency > 10mS (mostly drivers with CPUFREQ_ETERNAL)
42 * this governor will not work.
43 * All times here are in uS.
45 #define MIN_SAMPLING_RATE_RATIO (2)
47 static unsigned int min_sampling_rate;
49 #define LATENCY_MULTIPLIER (1000)
50 #define MIN_LATENCY_MULTIPLIER (100)
51 #define DEF_SAMPLING_DOWN_FACTOR (1)
52 #define MAX_SAMPLING_DOWN_FACTOR (10)
53 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
55 static void do_dbs_timer(struct work_struct *work);
57 struct cpu_dbs_info_s {
58 cputime64_t prev_cpu_idle;
59 cputime64_t prev_cpu_wall;
60 cputime64_t prev_cpu_nice;
61 struct cpufreq_policy *cur_policy;
62 struct delayed_work work;
63 unsigned int down_skip;
64 unsigned int requested_freq;
65 int cpu;
66 unsigned int enable:1;
68 * percpu mutex that serializes governor limit change with
69 * do_dbs_timer invocation. We do not want do_dbs_timer to run
70 * when user is changing the governor or limits.
72 struct mutex timer_mutex;
74 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cs_cpu_dbs_info);
76 static unsigned int dbs_enable; /* number of CPUs using this policy */
79 * dbs_mutex protects dbs_enable in governor start/stop.
81 static DEFINE_MUTEX(dbs_mutex);
83 static struct dbs_tuners {
84 unsigned int sampling_rate;
85 unsigned int sampling_down_factor;
86 unsigned int up_threshold;
87 unsigned int down_threshold;
88 unsigned int ignore_nice;
89 unsigned int freq_step;
90 } dbs_tuners_ins = {
91 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
92 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
93 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
94 .ignore_nice = 0,
95 .freq_step = 5,
98 static inline cputime64_t get_cpu_idle_time_jiffy(unsigned int cpu,
99 cputime64_t *wall)
101 cputime64_t idle_time;
102 cputime64_t cur_wall_time;
103 cputime64_t busy_time;
105 cur_wall_time = jiffies64_to_cputime64(get_jiffies_64());
106 busy_time = cputime64_add(kstat_cpu(cpu).cpustat.user,
107 kstat_cpu(cpu).cpustat.system);
109 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.irq);
110 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.softirq);
111 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.steal);
112 busy_time = cputime64_add(busy_time, kstat_cpu(cpu).cpustat.nice);
114 idle_time = cputime64_sub(cur_wall_time, busy_time);
115 if (wall)
116 *wall = (cputime64_t)jiffies_to_usecs(cur_wall_time);
118 return (cputime64_t)jiffies_to_usecs(idle_time);
121 static inline cputime64_t get_cpu_idle_time(unsigned int cpu, cputime64_t *wall)
123 u64 idle_time = get_cpu_idle_time_us(cpu, NULL);
125 if (idle_time == -1ULL)
126 return get_cpu_idle_time_jiffy(cpu, wall);
127 else
128 idle_time += get_cpu_iowait_time_us(cpu, wall);
130 return idle_time;
133 /* keep track of frequency transitions */
134 static int
135 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
136 void *data)
138 struct cpufreq_freqs *freq = data;
139 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cs_cpu_dbs_info,
140 freq->cpu);
142 struct cpufreq_policy *policy;
144 if (!this_dbs_info->enable)
145 return 0;
147 policy = this_dbs_info->cur_policy;
150 * we only care if our internally tracked freq moves outside
151 * the 'valid' ranges of freqency available to us otherwise
152 * we do not change it
154 if (this_dbs_info->requested_freq > policy->max
155 || this_dbs_info->requested_freq < policy->min)
156 this_dbs_info->requested_freq = freq->new;
158 return 0;
161 static struct notifier_block dbs_cpufreq_notifier_block = {
162 .notifier_call = dbs_cpufreq_notifier
165 /************************** sysfs interface ************************/
166 static ssize_t show_sampling_rate_min(struct kobject *kobj,
167 struct attribute *attr, char *buf)
169 return sprintf(buf, "%u\n", min_sampling_rate);
172 define_one_global_ro(sampling_rate_min);
174 /* cpufreq_conservative Governor Tunables */
175 #define show_one(file_name, object) \
176 static ssize_t show_##file_name \
177 (struct kobject *kobj, struct attribute *attr, char *buf) \
179 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
181 show_one(sampling_rate, sampling_rate);
182 show_one(sampling_down_factor, sampling_down_factor);
183 show_one(up_threshold, up_threshold);
184 show_one(down_threshold, down_threshold);
185 show_one(ignore_nice_load, ignore_nice);
186 show_one(freq_step, freq_step);
188 static ssize_t store_sampling_down_factor(struct kobject *a,
189 struct attribute *b,
190 const char *buf, size_t count)
192 unsigned int input;
193 int ret;
194 ret = sscanf(buf, "%u", &input);
196 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
197 return -EINVAL;
199 dbs_tuners_ins.sampling_down_factor = input;
200 return count;
203 static ssize_t store_sampling_rate(struct kobject *a, struct attribute *b,
204 const char *buf, size_t count)
206 unsigned int input;
207 int ret;
208 ret = sscanf(buf, "%u", &input);
210 if (ret != 1)
211 return -EINVAL;
213 dbs_tuners_ins.sampling_rate = max(input, min_sampling_rate);
214 return count;
217 static ssize_t store_up_threshold(struct kobject *a, struct attribute *b,
218 const char *buf, size_t count)
220 unsigned int input;
221 int ret;
222 ret = sscanf(buf, "%u", &input);
224 if (ret != 1 || input > 100 ||
225 input <= dbs_tuners_ins.down_threshold)
226 return -EINVAL;
228 dbs_tuners_ins.up_threshold = input;
229 return count;
232 static ssize_t store_down_threshold(struct kobject *a, struct attribute *b,
233 const char *buf, size_t count)
235 unsigned int input;
236 int ret;
237 ret = sscanf(buf, "%u", &input);
239 /* cannot be lower than 11 otherwise freq will not fall */
240 if (ret != 1 || input < 11 || input > 100 ||
241 input >= dbs_tuners_ins.up_threshold)
242 return -EINVAL;
244 dbs_tuners_ins.down_threshold = input;
245 return count;
248 static ssize_t store_ignore_nice_load(struct kobject *a, struct attribute *b,
249 const char *buf, size_t count)
251 unsigned int input;
252 int ret;
254 unsigned int j;
256 ret = sscanf(buf, "%u", &input);
257 if (ret != 1)
258 return -EINVAL;
260 if (input > 1)
261 input = 1;
263 if (input == dbs_tuners_ins.ignore_nice) /* nothing to do */
264 return count;
266 dbs_tuners_ins.ignore_nice = input;
268 /* we need to re-evaluate prev_cpu_idle */
269 for_each_online_cpu(j) {
270 struct cpu_dbs_info_s *dbs_info;
271 dbs_info = &per_cpu(cs_cpu_dbs_info, j);
272 dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
273 &dbs_info->prev_cpu_wall);
274 if (dbs_tuners_ins.ignore_nice)
275 dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
277 return count;
280 static ssize_t store_freq_step(struct kobject *a, struct attribute *b,
281 const char *buf, size_t count)
283 unsigned int input;
284 int ret;
285 ret = sscanf(buf, "%u", &input);
287 if (ret != 1)
288 return -EINVAL;
290 if (input > 100)
291 input = 100;
293 /* no need to test here if freq_step is zero as the user might actually
294 * want this, they would be crazy though :) */
295 dbs_tuners_ins.freq_step = input;
296 return count;
299 define_one_global_rw(sampling_rate);
300 define_one_global_rw(sampling_down_factor);
301 define_one_global_rw(up_threshold);
302 define_one_global_rw(down_threshold);
303 define_one_global_rw(ignore_nice_load);
304 define_one_global_rw(freq_step);
306 static struct attribute *dbs_attributes[] = {
307 &sampling_rate_min.attr,
308 &sampling_rate.attr,
309 &sampling_down_factor.attr,
310 &up_threshold.attr,
311 &down_threshold.attr,
312 &ignore_nice_load.attr,
313 &freq_step.attr,
314 NULL
317 static struct attribute_group dbs_attr_group = {
318 .attrs = dbs_attributes,
319 .name = "conservative",
322 /************************** sysfs end ************************/
324 static void dbs_check_cpu(struct cpu_dbs_info_s *this_dbs_info)
326 unsigned int load = 0;
327 unsigned int max_load = 0;
328 unsigned int freq_target;
330 struct cpufreq_policy *policy;
331 unsigned int j;
333 policy = this_dbs_info->cur_policy;
336 * Every sampling_rate, we check, if current idle time is less
337 * than 20% (default), then we try to increase frequency
338 * Every sampling_rate*sampling_down_factor, we check, if current
339 * idle time is more than 80%, then we try to decrease frequency
341 * Any frequency increase takes it to the maximum frequency.
342 * Frequency reduction happens at minimum steps of
343 * 5% (default) of maximum frequency
346 /* Get Absolute Load */
347 for_each_cpu(j, policy->cpus) {
348 struct cpu_dbs_info_s *j_dbs_info;
349 cputime64_t cur_wall_time, cur_idle_time;
350 unsigned int idle_time, wall_time;
352 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
354 cur_idle_time = get_cpu_idle_time(j, &cur_wall_time);
356 wall_time = (unsigned int) cputime64_sub(cur_wall_time,
357 j_dbs_info->prev_cpu_wall);
358 j_dbs_info->prev_cpu_wall = cur_wall_time;
360 idle_time = (unsigned int) cputime64_sub(cur_idle_time,
361 j_dbs_info->prev_cpu_idle);
362 j_dbs_info->prev_cpu_idle = cur_idle_time;
364 if (dbs_tuners_ins.ignore_nice) {
365 cputime64_t cur_nice;
366 unsigned long cur_nice_jiffies;
368 cur_nice = cputime64_sub(kstat_cpu(j).cpustat.nice,
369 j_dbs_info->prev_cpu_nice);
371 * Assumption: nice time between sampling periods will
372 * be less than 2^32 jiffies for 32 bit sys
374 cur_nice_jiffies = (unsigned long)
375 cputime64_to_jiffies64(cur_nice);
377 j_dbs_info->prev_cpu_nice = kstat_cpu(j).cpustat.nice;
378 idle_time += jiffies_to_usecs(cur_nice_jiffies);
381 if (unlikely(!wall_time || wall_time < idle_time))
382 continue;
384 load = 100 * (wall_time - idle_time) / wall_time;
386 if (load > max_load)
387 max_load = load;
391 * break out if we 'cannot' reduce the speed as the user might
392 * want freq_step to be zero
394 if (dbs_tuners_ins.freq_step == 0)
395 return;
397 /* Check for frequency increase */
398 if (max_load > dbs_tuners_ins.up_threshold) {
399 this_dbs_info->down_skip = 0;
401 /* if we are already at full speed then break out early */
402 if (this_dbs_info->requested_freq == policy->max)
403 return;
405 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
407 /* max freq cannot be less than 100. But who knows.... */
408 if (unlikely(freq_target == 0))
409 freq_target = 5;
411 this_dbs_info->requested_freq += freq_target;
412 if (this_dbs_info->requested_freq > policy->max)
413 this_dbs_info->requested_freq = policy->max;
415 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
416 CPUFREQ_RELATION_H);
417 return;
421 * The optimal frequency is the frequency that is the lowest that
422 * can support the current CPU usage without triggering the up
423 * policy. To be safe, we focus 10 points under the threshold.
425 if (max_load < (dbs_tuners_ins.down_threshold - 10)) {
426 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
428 this_dbs_info->requested_freq -= freq_target;
429 if (this_dbs_info->requested_freq < policy->min)
430 this_dbs_info->requested_freq = policy->min;
433 * if we cannot reduce the frequency anymore, break out early
435 if (policy->cur == policy->min)
436 return;
438 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
439 CPUFREQ_RELATION_H);
440 return;
444 static void do_dbs_timer(struct work_struct *work)
446 struct cpu_dbs_info_s *dbs_info =
447 container_of(work, struct cpu_dbs_info_s, work.work);
448 unsigned int cpu = dbs_info->cpu;
450 /* We want all CPUs to do sampling nearly on same jiffy */
451 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
453 delay -= jiffies % delay;
455 mutex_lock(&dbs_info->timer_mutex);
457 dbs_check_cpu(dbs_info);
459 schedule_delayed_work_on(cpu, &dbs_info->work, delay);
460 mutex_unlock(&dbs_info->timer_mutex);
463 static inline void dbs_timer_init(struct cpu_dbs_info_s *dbs_info)
465 /* We want all CPUs to do sampling nearly on same jiffy */
466 int delay = usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
467 delay -= jiffies % delay;
469 dbs_info->enable = 1;
470 INIT_DELAYED_WORK_DEFERRABLE(&dbs_info->work, do_dbs_timer);
471 schedule_delayed_work_on(dbs_info->cpu, &dbs_info->work, delay);
474 static inline void dbs_timer_exit(struct cpu_dbs_info_s *dbs_info)
476 dbs_info->enable = 0;
477 cancel_delayed_work_sync(&dbs_info->work);
480 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
481 unsigned int event)
483 unsigned int cpu = policy->cpu;
484 struct cpu_dbs_info_s *this_dbs_info;
485 unsigned int j;
486 int rc;
488 this_dbs_info = &per_cpu(cs_cpu_dbs_info, cpu);
490 switch (event) {
491 case CPUFREQ_GOV_START:
492 if ((!cpu_online(cpu)) || (!policy->cur))
493 return -EINVAL;
495 mutex_lock(&dbs_mutex);
497 for_each_cpu(j, policy->cpus) {
498 struct cpu_dbs_info_s *j_dbs_info;
499 j_dbs_info = &per_cpu(cs_cpu_dbs_info, j);
500 j_dbs_info->cur_policy = policy;
502 j_dbs_info->prev_cpu_idle = get_cpu_idle_time(j,
503 &j_dbs_info->prev_cpu_wall);
504 if (dbs_tuners_ins.ignore_nice) {
505 j_dbs_info->prev_cpu_nice =
506 kstat_cpu(j).cpustat.nice;
509 this_dbs_info->down_skip = 0;
510 this_dbs_info->requested_freq = policy->cur;
512 mutex_init(&this_dbs_info->timer_mutex);
513 dbs_enable++;
515 * Start the timerschedule work, when this governor
516 * is used for first time
518 if (dbs_enable == 1) {
519 unsigned int latency;
520 /* policy latency is in nS. Convert it to uS first */
521 latency = policy->cpuinfo.transition_latency / 1000;
522 if (latency == 0)
523 latency = 1;
525 rc = sysfs_create_group(cpufreq_global_kobject,
526 &dbs_attr_group);
527 if (rc) {
528 mutex_unlock(&dbs_mutex);
529 return rc;
533 * conservative does not implement micro like ondemand
534 * governor, thus we are bound to jiffes/HZ
536 min_sampling_rate =
537 MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10);
538 /* Bring kernel and HW constraints together */
539 min_sampling_rate = max(min_sampling_rate,
540 MIN_LATENCY_MULTIPLIER * latency);
541 dbs_tuners_ins.sampling_rate =
542 max(min_sampling_rate,
543 latency * LATENCY_MULTIPLIER);
545 cpufreq_register_notifier(
546 &dbs_cpufreq_notifier_block,
547 CPUFREQ_TRANSITION_NOTIFIER);
549 mutex_unlock(&dbs_mutex);
551 dbs_timer_init(this_dbs_info);
553 break;
555 case CPUFREQ_GOV_STOP:
556 dbs_timer_exit(this_dbs_info);
558 mutex_lock(&dbs_mutex);
559 dbs_enable--;
560 mutex_destroy(&this_dbs_info->timer_mutex);
563 * Stop the timerschedule work, when this governor
564 * is used for first time
566 if (dbs_enable == 0)
567 cpufreq_unregister_notifier(
568 &dbs_cpufreq_notifier_block,
569 CPUFREQ_TRANSITION_NOTIFIER);
571 mutex_unlock(&dbs_mutex);
572 if (!dbs_enable)
573 sysfs_remove_group(cpufreq_global_kobject,
574 &dbs_attr_group);
576 break;
578 case CPUFREQ_GOV_LIMITS:
579 mutex_lock(&this_dbs_info->timer_mutex);
580 if (policy->max < this_dbs_info->cur_policy->cur)
581 __cpufreq_driver_target(
582 this_dbs_info->cur_policy,
583 policy->max, CPUFREQ_RELATION_H);
584 else if (policy->min > this_dbs_info->cur_policy->cur)
585 __cpufreq_driver_target(
586 this_dbs_info->cur_policy,
587 policy->min, CPUFREQ_RELATION_L);
588 mutex_unlock(&this_dbs_info->timer_mutex);
590 break;
592 return 0;
595 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
596 static
597 #endif
598 struct cpufreq_governor cpufreq_gov_conservative = {
599 .name = "conservative",
600 .governor = cpufreq_governor_dbs,
601 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
602 .owner = THIS_MODULE,
605 static int __init cpufreq_gov_dbs_init(void)
607 return cpufreq_register_governor(&cpufreq_gov_conservative);
610 static void __exit cpufreq_gov_dbs_exit(void)
612 cpufreq_unregister_governor(&cpufreq_gov_conservative);
616 MODULE_AUTHOR("Alexander Clouter <alex@digriz.org.uk>");
617 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
618 "Low Latency Frequency Transition capable processors "
619 "optimised for use in a battery environment");
620 MODULE_LICENSE("GPL");
622 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
623 fs_initcall(cpufreq_gov_dbs_init);
624 #else
625 module_init(cpufreq_gov_dbs_init);
626 #endif
627 module_exit(cpufreq_gov_dbs_exit);