2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/cpufreq.h>
28 #include <linux/module.h>
29 #include <linux/input.h>
30 #include <linux/i2c.h>
31 #include <linux/kernel.h>
32 #include <linux/slab.h>
33 #include <linux/vgaarb.h>
35 #include "intel_drv.h"
38 #include "i915_trace.h"
39 #include "drm_dp_helper.h"
41 #include "drm_crtc_helper.h"
43 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
45 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
);
46 static void intel_update_watermarks(struct drm_device
*dev
);
47 static void intel_increase_pllclock(struct drm_crtc
*crtc
);
48 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
, bool on
);
71 #define INTEL_P2_NUM 2
72 typedef struct intel_limit intel_limit_t
;
74 intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
76 bool (* find_pll
)(const intel_limit_t
*, struct drm_crtc
*,
77 int, int, intel_clock_t
*);
81 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
84 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
85 int target
, int refclk
, intel_clock_t
*best_clock
);
87 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
88 int target
, int refclk
, intel_clock_t
*best_clock
);
91 intel_find_pll_g4x_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
92 int target
, int refclk
, intel_clock_t
*best_clock
);
94 intel_find_pll_ironlake_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
95 int target
, int refclk
, intel_clock_t
*best_clock
);
97 static inline u32
/* units of 100MHz */
98 intel_fdi_link_freq(struct drm_device
*dev
)
101 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
102 return (I915_READ(FDI_PLL_BIOS_0
) & FDI_PLL_FB_CLOCK_MASK
) + 2;
107 static const intel_limit_t intel_limits_i8xx_dvo
= {
108 .dot
= { .min
= 25000, .max
= 350000 },
109 .vco
= { .min
= 930000, .max
= 1400000 },
110 .n
= { .min
= 3, .max
= 16 },
111 .m
= { .min
= 96, .max
= 140 },
112 .m1
= { .min
= 18, .max
= 26 },
113 .m2
= { .min
= 6, .max
= 16 },
114 .p
= { .min
= 4, .max
= 128 },
115 .p1
= { .min
= 2, .max
= 33 },
116 .p2
= { .dot_limit
= 165000,
117 .p2_slow
= 4, .p2_fast
= 2 },
118 .find_pll
= intel_find_best_PLL
,
121 static const intel_limit_t intel_limits_i8xx_lvds
= {
122 .dot
= { .min
= 25000, .max
= 350000 },
123 .vco
= { .min
= 930000, .max
= 1400000 },
124 .n
= { .min
= 3, .max
= 16 },
125 .m
= { .min
= 96, .max
= 140 },
126 .m1
= { .min
= 18, .max
= 26 },
127 .m2
= { .min
= 6, .max
= 16 },
128 .p
= { .min
= 4, .max
= 128 },
129 .p1
= { .min
= 1, .max
= 6 },
130 .p2
= { .dot_limit
= 165000,
131 .p2_slow
= 14, .p2_fast
= 7 },
132 .find_pll
= intel_find_best_PLL
,
135 static const intel_limit_t intel_limits_i9xx_sdvo
= {
136 .dot
= { .min
= 20000, .max
= 400000 },
137 .vco
= { .min
= 1400000, .max
= 2800000 },
138 .n
= { .min
= 1, .max
= 6 },
139 .m
= { .min
= 70, .max
= 120 },
140 .m1
= { .min
= 10, .max
= 22 },
141 .m2
= { .min
= 5, .max
= 9 },
142 .p
= { .min
= 5, .max
= 80 },
143 .p1
= { .min
= 1, .max
= 8 },
144 .p2
= { .dot_limit
= 200000,
145 .p2_slow
= 10, .p2_fast
= 5 },
146 .find_pll
= intel_find_best_PLL
,
149 static const intel_limit_t intel_limits_i9xx_lvds
= {
150 .dot
= { .min
= 20000, .max
= 400000 },
151 .vco
= { .min
= 1400000, .max
= 2800000 },
152 .n
= { .min
= 1, .max
= 6 },
153 .m
= { .min
= 70, .max
= 120 },
154 .m1
= { .min
= 10, .max
= 22 },
155 .m2
= { .min
= 5, .max
= 9 },
156 .p
= { .min
= 7, .max
= 98 },
157 .p1
= { .min
= 1, .max
= 8 },
158 .p2
= { .dot_limit
= 112000,
159 .p2_slow
= 14, .p2_fast
= 7 },
160 .find_pll
= intel_find_best_PLL
,
164 static const intel_limit_t intel_limits_g4x_sdvo
= {
165 .dot
= { .min
= 25000, .max
= 270000 },
166 .vco
= { .min
= 1750000, .max
= 3500000},
167 .n
= { .min
= 1, .max
= 4 },
168 .m
= { .min
= 104, .max
= 138 },
169 .m1
= { .min
= 17, .max
= 23 },
170 .m2
= { .min
= 5, .max
= 11 },
171 .p
= { .min
= 10, .max
= 30 },
172 .p1
= { .min
= 1, .max
= 3},
173 .p2
= { .dot_limit
= 270000,
177 .find_pll
= intel_g4x_find_best_PLL
,
180 static const intel_limit_t intel_limits_g4x_hdmi
= {
181 .dot
= { .min
= 22000, .max
= 400000 },
182 .vco
= { .min
= 1750000, .max
= 3500000},
183 .n
= { .min
= 1, .max
= 4 },
184 .m
= { .min
= 104, .max
= 138 },
185 .m1
= { .min
= 16, .max
= 23 },
186 .m2
= { .min
= 5, .max
= 11 },
187 .p
= { .min
= 5, .max
= 80 },
188 .p1
= { .min
= 1, .max
= 8},
189 .p2
= { .dot_limit
= 165000,
190 .p2_slow
= 10, .p2_fast
= 5 },
191 .find_pll
= intel_g4x_find_best_PLL
,
194 static const intel_limit_t intel_limits_g4x_single_channel_lvds
= {
195 .dot
= { .min
= 20000, .max
= 115000 },
196 .vco
= { .min
= 1750000, .max
= 3500000 },
197 .n
= { .min
= 1, .max
= 3 },
198 .m
= { .min
= 104, .max
= 138 },
199 .m1
= { .min
= 17, .max
= 23 },
200 .m2
= { .min
= 5, .max
= 11 },
201 .p
= { .min
= 28, .max
= 112 },
202 .p1
= { .min
= 2, .max
= 8 },
203 .p2
= { .dot_limit
= 0,
204 .p2_slow
= 14, .p2_fast
= 14
206 .find_pll
= intel_g4x_find_best_PLL
,
209 static const intel_limit_t intel_limits_g4x_dual_channel_lvds
= {
210 .dot
= { .min
= 80000, .max
= 224000 },
211 .vco
= { .min
= 1750000, .max
= 3500000 },
212 .n
= { .min
= 1, .max
= 3 },
213 .m
= { .min
= 104, .max
= 138 },
214 .m1
= { .min
= 17, .max
= 23 },
215 .m2
= { .min
= 5, .max
= 11 },
216 .p
= { .min
= 14, .max
= 42 },
217 .p1
= { .min
= 2, .max
= 6 },
218 .p2
= { .dot_limit
= 0,
219 .p2_slow
= 7, .p2_fast
= 7
221 .find_pll
= intel_g4x_find_best_PLL
,
224 static const intel_limit_t intel_limits_g4x_display_port
= {
225 .dot
= { .min
= 161670, .max
= 227000 },
226 .vco
= { .min
= 1750000, .max
= 3500000},
227 .n
= { .min
= 1, .max
= 2 },
228 .m
= { .min
= 97, .max
= 108 },
229 .m1
= { .min
= 0x10, .max
= 0x12 },
230 .m2
= { .min
= 0x05, .max
= 0x06 },
231 .p
= { .min
= 10, .max
= 20 },
232 .p1
= { .min
= 1, .max
= 2},
233 .p2
= { .dot_limit
= 0,
234 .p2_slow
= 10, .p2_fast
= 10 },
235 .find_pll
= intel_find_pll_g4x_dp
,
238 static const intel_limit_t intel_limits_pineview_sdvo
= {
239 .dot
= { .min
= 20000, .max
= 400000},
240 .vco
= { .min
= 1700000, .max
= 3500000 },
241 /* Pineview's Ncounter is a ring counter */
242 .n
= { .min
= 3, .max
= 6 },
243 .m
= { .min
= 2, .max
= 256 },
244 /* Pineview only has one combined m divider, which we treat as m2. */
245 .m1
= { .min
= 0, .max
= 0 },
246 .m2
= { .min
= 0, .max
= 254 },
247 .p
= { .min
= 5, .max
= 80 },
248 .p1
= { .min
= 1, .max
= 8 },
249 .p2
= { .dot_limit
= 200000,
250 .p2_slow
= 10, .p2_fast
= 5 },
251 .find_pll
= intel_find_best_PLL
,
254 static const intel_limit_t intel_limits_pineview_lvds
= {
255 .dot
= { .min
= 20000, .max
= 400000 },
256 .vco
= { .min
= 1700000, .max
= 3500000 },
257 .n
= { .min
= 3, .max
= 6 },
258 .m
= { .min
= 2, .max
= 256 },
259 .m1
= { .min
= 0, .max
= 0 },
260 .m2
= { .min
= 0, .max
= 254 },
261 .p
= { .min
= 7, .max
= 112 },
262 .p1
= { .min
= 1, .max
= 8 },
263 .p2
= { .dot_limit
= 112000,
264 .p2_slow
= 14, .p2_fast
= 14 },
265 .find_pll
= intel_find_best_PLL
,
268 /* Ironlake / Sandybridge
270 * We calculate clock using (register_value + 2) for N/M1/M2, so here
271 * the range value for them is (actual_value - 2).
273 static const intel_limit_t intel_limits_ironlake_dac
= {
274 .dot
= { .min
= 25000, .max
= 350000 },
275 .vco
= { .min
= 1760000, .max
= 3510000 },
276 .n
= { .min
= 1, .max
= 5 },
277 .m
= { .min
= 79, .max
= 127 },
278 .m1
= { .min
= 12, .max
= 22 },
279 .m2
= { .min
= 5, .max
= 9 },
280 .p
= { .min
= 5, .max
= 80 },
281 .p1
= { .min
= 1, .max
= 8 },
282 .p2
= { .dot_limit
= 225000,
283 .p2_slow
= 10, .p2_fast
= 5 },
284 .find_pll
= intel_g4x_find_best_PLL
,
287 static const intel_limit_t intel_limits_ironlake_single_lvds
= {
288 .dot
= { .min
= 25000, .max
= 350000 },
289 .vco
= { .min
= 1760000, .max
= 3510000 },
290 .n
= { .min
= 1, .max
= 3 },
291 .m
= { .min
= 79, .max
= 118 },
292 .m1
= { .min
= 12, .max
= 22 },
293 .m2
= { .min
= 5, .max
= 9 },
294 .p
= { .min
= 28, .max
= 112 },
295 .p1
= { .min
= 2, .max
= 8 },
296 .p2
= { .dot_limit
= 225000,
297 .p2_slow
= 14, .p2_fast
= 14 },
298 .find_pll
= intel_g4x_find_best_PLL
,
301 static const intel_limit_t intel_limits_ironlake_dual_lvds
= {
302 .dot
= { .min
= 25000, .max
= 350000 },
303 .vco
= { .min
= 1760000, .max
= 3510000 },
304 .n
= { .min
= 1, .max
= 3 },
305 .m
= { .min
= 79, .max
= 127 },
306 .m1
= { .min
= 12, .max
= 22 },
307 .m2
= { .min
= 5, .max
= 9 },
308 .p
= { .min
= 14, .max
= 56 },
309 .p1
= { .min
= 2, .max
= 8 },
310 .p2
= { .dot_limit
= 225000,
311 .p2_slow
= 7, .p2_fast
= 7 },
312 .find_pll
= intel_g4x_find_best_PLL
,
315 /* LVDS 100mhz refclk limits. */
316 static const intel_limit_t intel_limits_ironlake_single_lvds_100m
= {
317 .dot
= { .min
= 25000, .max
= 350000 },
318 .vco
= { .min
= 1760000, .max
= 3510000 },
319 .n
= { .min
= 1, .max
= 2 },
320 .m
= { .min
= 79, .max
= 126 },
321 .m1
= { .min
= 12, .max
= 22 },
322 .m2
= { .min
= 5, .max
= 9 },
323 .p
= { .min
= 28, .max
= 112 },
324 .p1
= { .min
= 2,.max
= 8 },
325 .p2
= { .dot_limit
= 225000,
326 .p2_slow
= 14, .p2_fast
= 14 },
327 .find_pll
= intel_g4x_find_best_PLL
,
330 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m
= {
331 .dot
= { .min
= 25000, .max
= 350000 },
332 .vco
= { .min
= 1760000, .max
= 3510000 },
333 .n
= { .min
= 1, .max
= 3 },
334 .m
= { .min
= 79, .max
= 126 },
335 .m1
= { .min
= 12, .max
= 22 },
336 .m2
= { .min
= 5, .max
= 9 },
337 .p
= { .min
= 14, .max
= 42 },
338 .p1
= { .min
= 2,.max
= 6 },
339 .p2
= { .dot_limit
= 225000,
340 .p2_slow
= 7, .p2_fast
= 7 },
341 .find_pll
= intel_g4x_find_best_PLL
,
344 static const intel_limit_t intel_limits_ironlake_display_port
= {
345 .dot
= { .min
= 25000, .max
= 350000 },
346 .vco
= { .min
= 1760000, .max
= 3510000},
347 .n
= { .min
= 1, .max
= 2 },
348 .m
= { .min
= 81, .max
= 90 },
349 .m1
= { .min
= 12, .max
= 22 },
350 .m2
= { .min
= 5, .max
= 9 },
351 .p
= { .min
= 10, .max
= 20 },
352 .p1
= { .min
= 1, .max
= 2},
353 .p2
= { .dot_limit
= 0,
354 .p2_slow
= 10, .p2_fast
= 10 },
355 .find_pll
= intel_find_pll_ironlake_dp
,
358 static const intel_limit_t
*intel_ironlake_limit(struct drm_crtc
*crtc
,
361 struct drm_device
*dev
= crtc
->dev
;
362 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
363 const intel_limit_t
*limit
;
365 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
366 if ((I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) ==
367 LVDS_CLKB_POWER_UP
) {
368 /* LVDS dual channel */
369 if (refclk
== 100000)
370 limit
= &intel_limits_ironlake_dual_lvds_100m
;
372 limit
= &intel_limits_ironlake_dual_lvds
;
374 if (refclk
== 100000)
375 limit
= &intel_limits_ironlake_single_lvds_100m
;
377 limit
= &intel_limits_ironlake_single_lvds
;
379 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
) ||
381 limit
= &intel_limits_ironlake_display_port
;
383 limit
= &intel_limits_ironlake_dac
;
388 static const intel_limit_t
*intel_g4x_limit(struct drm_crtc
*crtc
)
390 struct drm_device
*dev
= crtc
->dev
;
391 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
392 const intel_limit_t
*limit
;
394 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
395 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
397 /* LVDS with dual channel */
398 limit
= &intel_limits_g4x_dual_channel_lvds
;
400 /* LVDS with dual channel */
401 limit
= &intel_limits_g4x_single_channel_lvds
;
402 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
) ||
403 intel_pipe_has_type(crtc
, INTEL_OUTPUT_ANALOG
)) {
404 limit
= &intel_limits_g4x_hdmi
;
405 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_SDVO
)) {
406 limit
= &intel_limits_g4x_sdvo
;
407 } else if (intel_pipe_has_type (crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
408 limit
= &intel_limits_g4x_display_port
;
409 } else /* The option is for other outputs */
410 limit
= &intel_limits_i9xx_sdvo
;
415 static const intel_limit_t
*intel_limit(struct drm_crtc
*crtc
, int refclk
)
417 struct drm_device
*dev
= crtc
->dev
;
418 const intel_limit_t
*limit
;
420 if (HAS_PCH_SPLIT(dev
))
421 limit
= intel_ironlake_limit(crtc
, refclk
);
422 else if (IS_G4X(dev
)) {
423 limit
= intel_g4x_limit(crtc
);
424 } else if (IS_PINEVIEW(dev
)) {
425 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
426 limit
= &intel_limits_pineview_lvds
;
428 limit
= &intel_limits_pineview_sdvo
;
429 } else if (!IS_GEN2(dev
)) {
430 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
431 limit
= &intel_limits_i9xx_lvds
;
433 limit
= &intel_limits_i9xx_sdvo
;
435 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
436 limit
= &intel_limits_i8xx_lvds
;
438 limit
= &intel_limits_i8xx_dvo
;
443 /* m1 is reserved as 0 in Pineview, n is a ring counter */
444 static void pineview_clock(int refclk
, intel_clock_t
*clock
)
446 clock
->m
= clock
->m2
+ 2;
447 clock
->p
= clock
->p1
* clock
->p2
;
448 clock
->vco
= refclk
* clock
->m
/ clock
->n
;
449 clock
->dot
= clock
->vco
/ clock
->p
;
452 static void intel_clock(struct drm_device
*dev
, int refclk
, intel_clock_t
*clock
)
454 if (IS_PINEVIEW(dev
)) {
455 pineview_clock(refclk
, clock
);
458 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
459 clock
->p
= clock
->p1
* clock
->p2
;
460 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
461 clock
->dot
= clock
->vco
/ clock
->p
;
465 * Returns whether any output on the specified pipe is of the specified type
467 bool intel_pipe_has_type(struct drm_crtc
*crtc
, int type
)
469 struct drm_device
*dev
= crtc
->dev
;
470 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
471 struct intel_encoder
*encoder
;
473 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
)
474 if (encoder
->base
.crtc
== crtc
&& encoder
->type
== type
)
480 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
482 * Returns whether the given set of divisors are valid for a given refclk with
483 * the given connectors.
486 static bool intel_PLL_is_valid(struct drm_device
*dev
,
487 const intel_limit_t
*limit
,
488 const intel_clock_t
*clock
)
490 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
491 INTELPllInvalid ("p1 out of range\n");
492 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
493 INTELPllInvalid ("p out of range\n");
494 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
495 INTELPllInvalid ("m2 out of range\n");
496 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
497 INTELPllInvalid ("m1 out of range\n");
498 if (clock
->m1
<= clock
->m2
&& !IS_PINEVIEW(dev
))
499 INTELPllInvalid ("m1 <= m2\n");
500 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
501 INTELPllInvalid ("m out of range\n");
502 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
503 INTELPllInvalid ("n out of range\n");
504 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
505 INTELPllInvalid ("vco out of range\n");
506 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
507 * connector, etc., rather than just a single range.
509 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
510 INTELPllInvalid ("dot out of range\n");
516 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
517 int target
, int refclk
, intel_clock_t
*best_clock
)
520 struct drm_device
*dev
= crtc
->dev
;
521 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
525 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
526 (I915_READ(LVDS
)) != 0) {
528 * For LVDS, if the panel is on, just rely on its current
529 * settings for dual-channel. We haven't figured out how to
530 * reliably set up different single/dual channel state, if we
533 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
535 clock
.p2
= limit
->p2
.p2_fast
;
537 clock
.p2
= limit
->p2
.p2_slow
;
539 if (target
< limit
->p2
.dot_limit
)
540 clock
.p2
= limit
->p2
.p2_slow
;
542 clock
.p2
= limit
->p2
.p2_fast
;
545 memset (best_clock
, 0, sizeof (*best_clock
));
547 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
549 for (clock
.m2
= limit
->m2
.min
;
550 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
551 /* m1 is always 0 in Pineview */
552 if (clock
.m2
>= clock
.m1
&& !IS_PINEVIEW(dev
))
554 for (clock
.n
= limit
->n
.min
;
555 clock
.n
<= limit
->n
.max
; clock
.n
++) {
556 for (clock
.p1
= limit
->p1
.min
;
557 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
560 intel_clock(dev
, refclk
, &clock
);
561 if (!intel_PLL_is_valid(dev
, limit
,
565 this_err
= abs(clock
.dot
- target
);
566 if (this_err
< err
) {
575 return (err
!= target
);
579 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
580 int target
, int refclk
, intel_clock_t
*best_clock
)
582 struct drm_device
*dev
= crtc
->dev
;
583 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
587 /* approximately equals target * 0.00585 */
588 int err_most
= (target
>> 8) + (target
>> 9);
591 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
594 if (HAS_PCH_SPLIT(dev
))
598 if ((I915_READ(lvds_reg
) & LVDS_CLKB_POWER_MASK
) ==
600 clock
.p2
= limit
->p2
.p2_fast
;
602 clock
.p2
= limit
->p2
.p2_slow
;
604 if (target
< limit
->p2
.dot_limit
)
605 clock
.p2
= limit
->p2
.p2_slow
;
607 clock
.p2
= limit
->p2
.p2_fast
;
610 memset(best_clock
, 0, sizeof(*best_clock
));
611 max_n
= limit
->n
.max
;
612 /* based on hardware requirement, prefer smaller n to precision */
613 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
614 /* based on hardware requirement, prefere larger m1,m2 */
615 for (clock
.m1
= limit
->m1
.max
;
616 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
617 for (clock
.m2
= limit
->m2
.max
;
618 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
619 for (clock
.p1
= limit
->p1
.max
;
620 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
623 intel_clock(dev
, refclk
, &clock
);
624 if (!intel_PLL_is_valid(dev
, limit
,
628 this_err
= abs(clock
.dot
- target
);
629 if (this_err
< err_most
) {
643 intel_find_pll_ironlake_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
644 int target
, int refclk
, intel_clock_t
*best_clock
)
646 struct drm_device
*dev
= crtc
->dev
;
649 if (target
< 200000) {
662 intel_clock(dev
, refclk
, &clock
);
663 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
667 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
669 intel_find_pll_g4x_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
670 int target
, int refclk
, intel_clock_t
*best_clock
)
673 if (target
< 200000) {
686 clock
.m
= 5 * (clock
.m1
+ 2) + (clock
.m2
+ 2);
687 clock
.p
= (clock
.p1
* clock
.p2
);
688 clock
.dot
= 96000 * clock
.m
/ (clock
.n
+ 2) / clock
.p
;
690 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
695 * intel_wait_for_vblank - wait for vblank on a given pipe
697 * @pipe: pipe to wait for
699 * Wait for vblank to occur on a given pipe. Needed for various bits of
702 void intel_wait_for_vblank(struct drm_device
*dev
, int pipe
)
704 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
705 int pipestat_reg
= PIPESTAT(pipe
);
707 /* Clear existing vblank status. Note this will clear any other
708 * sticky status fields as well.
710 * This races with i915_driver_irq_handler() with the result
711 * that either function could miss a vblank event. Here it is not
712 * fatal, as we will either wait upon the next vblank interrupt or
713 * timeout. Generally speaking intel_wait_for_vblank() is only
714 * called during modeset at which time the GPU should be idle and
715 * should *not* be performing page flips and thus not waiting on
717 * Currently, the result of us stealing a vblank from the irq
718 * handler is that a single frame will be skipped during swapbuffers.
720 I915_WRITE(pipestat_reg
,
721 I915_READ(pipestat_reg
) | PIPE_VBLANK_INTERRUPT_STATUS
);
723 /* Wait for vblank interrupt bit to set */
724 if (wait_for(I915_READ(pipestat_reg
) &
725 PIPE_VBLANK_INTERRUPT_STATUS
,
727 DRM_DEBUG_KMS("vblank wait timed out\n");
731 * intel_wait_for_pipe_off - wait for pipe to turn off
733 * @pipe: pipe to wait for
735 * After disabling a pipe, we can't wait for vblank in the usual way,
736 * spinning on the vblank interrupt status bit, since we won't actually
737 * see an interrupt when the pipe is disabled.
740 * wait for the pipe register state bit to turn off
743 * wait for the display line value to settle (it usually
744 * ends up stopping at the start of the next frame).
747 void intel_wait_for_pipe_off(struct drm_device
*dev
, int pipe
)
749 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
751 if (INTEL_INFO(dev
)->gen
>= 4) {
752 int reg
= PIPECONF(pipe
);
754 /* Wait for the Pipe State to go off */
755 if (wait_for((I915_READ(reg
) & I965_PIPECONF_ACTIVE
) == 0,
757 DRM_DEBUG_KMS("pipe_off wait timed out\n");
760 int reg
= PIPEDSL(pipe
);
761 unsigned long timeout
= jiffies
+ msecs_to_jiffies(100);
763 /* Wait for the display line to settle */
765 last_line
= I915_READ(reg
) & DSL_LINEMASK
;
767 } while (((I915_READ(reg
) & DSL_LINEMASK
) != last_line
) &&
768 time_after(timeout
, jiffies
));
769 if (time_after(jiffies
, timeout
))
770 DRM_DEBUG_KMS("pipe_off wait timed out\n");
774 static const char *state_string(bool enabled
)
776 return enabled
? "on" : "off";
779 /* Only for pre-ILK configs */
780 static void assert_pll(struct drm_i915_private
*dev_priv
,
781 enum pipe pipe
, bool state
)
788 val
= I915_READ(reg
);
789 cur_state
= !!(val
& DPLL_VCO_ENABLE
);
790 WARN(cur_state
!= state
,
791 "PLL state assertion failure (expected %s, current %s)\n",
792 state_string(state
), state_string(cur_state
));
794 #define assert_pll_enabled(d, p) assert_pll(d, p, true)
795 #define assert_pll_disabled(d, p) assert_pll(d, p, false)
798 static void assert_pch_pll(struct drm_i915_private
*dev_priv
,
799 enum pipe pipe
, bool state
)
805 reg
= PCH_DPLL(pipe
);
806 val
= I915_READ(reg
);
807 cur_state
= !!(val
& DPLL_VCO_ENABLE
);
808 WARN(cur_state
!= state
,
809 "PCH PLL state assertion failure (expected %s, current %s)\n",
810 state_string(state
), state_string(cur_state
));
812 #define assert_pch_pll_enabled(d, p) assert_pch_pll(d, p, true)
813 #define assert_pch_pll_disabled(d, p) assert_pch_pll(d, p, false)
815 static void assert_fdi_tx(struct drm_i915_private
*dev_priv
,
816 enum pipe pipe
, bool state
)
822 reg
= FDI_TX_CTL(pipe
);
823 val
= I915_READ(reg
);
824 cur_state
= !!(val
& FDI_TX_ENABLE
);
825 WARN(cur_state
!= state
,
826 "FDI TX state assertion failure (expected %s, current %s)\n",
827 state_string(state
), state_string(cur_state
));
829 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
830 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
832 static void assert_fdi_rx(struct drm_i915_private
*dev_priv
,
833 enum pipe pipe
, bool state
)
839 reg
= FDI_RX_CTL(pipe
);
840 val
= I915_READ(reg
);
841 cur_state
= !!(val
& FDI_RX_ENABLE
);
842 WARN(cur_state
!= state
,
843 "FDI RX state assertion failure (expected %s, current %s)\n",
844 state_string(state
), state_string(cur_state
));
846 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
847 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
849 static void assert_fdi_tx_pll_enabled(struct drm_i915_private
*dev_priv
,
855 /* ILK FDI PLL is always enabled */
856 if (dev_priv
->info
->gen
== 5)
859 reg
= FDI_TX_CTL(pipe
);
860 val
= I915_READ(reg
);
861 WARN(!(val
& FDI_TX_PLL_ENABLE
), "FDI TX PLL assertion failure, should be active but is disabled\n");
864 static void assert_fdi_rx_pll_enabled(struct drm_i915_private
*dev_priv
,
870 reg
= FDI_RX_CTL(pipe
);
871 val
= I915_READ(reg
);
872 WARN(!(val
& FDI_RX_PLL_ENABLE
), "FDI RX PLL assertion failure, should be active but is disabled\n");
875 static void assert_panel_unlocked(struct drm_i915_private
*dev_priv
,
878 int pp_reg
, lvds_reg
;
880 enum pipe panel_pipe
= PIPE_A
;
883 if (HAS_PCH_SPLIT(dev_priv
->dev
)) {
884 pp_reg
= PCH_PP_CONTROL
;
891 val
= I915_READ(pp_reg
);
892 if (!(val
& PANEL_POWER_ON
) ||
893 ((val
& PANEL_UNLOCK_REGS
) == PANEL_UNLOCK_REGS
))
896 if (I915_READ(lvds_reg
) & LVDS_PIPEB_SELECT
)
899 WARN(panel_pipe
== pipe
&& locked
,
900 "panel assertion failure, pipe %c regs locked\n",
904 static void assert_pipe(struct drm_i915_private
*dev_priv
,
905 enum pipe pipe
, bool state
)
911 reg
= PIPECONF(pipe
);
912 val
= I915_READ(reg
);
913 cur_state
= !!(val
& PIPECONF_ENABLE
);
914 WARN(cur_state
!= state
,
915 "pipe %c assertion failure (expected %s, current %s)\n",
916 pipe_name(pipe
), state_string(state
), state_string(cur_state
));
918 #define assert_pipe_enabled(d, p) assert_pipe(d, p, true)
919 #define assert_pipe_disabled(d, p) assert_pipe(d, p, false)
921 static void assert_plane_enabled(struct drm_i915_private
*dev_priv
,
927 reg
= DSPCNTR(plane
);
928 val
= I915_READ(reg
);
929 WARN(!(val
& DISPLAY_PLANE_ENABLE
),
930 "plane %c assertion failure, should be active but is disabled\n",
934 static void assert_planes_disabled(struct drm_i915_private
*dev_priv
,
941 /* Planes are fixed to pipes on ILK+ */
942 if (HAS_PCH_SPLIT(dev_priv
->dev
))
945 /* Need to check both planes against the pipe */
946 for (i
= 0; i
< 2; i
++) {
948 val
= I915_READ(reg
);
949 cur_pipe
= (val
& DISPPLANE_SEL_PIPE_MASK
) >>
950 DISPPLANE_SEL_PIPE_SHIFT
;
951 WARN((val
& DISPLAY_PLANE_ENABLE
) && pipe
== cur_pipe
,
952 "plane %c assertion failure, should be off on pipe %c but is still active\n",
953 plane_name(i
), pipe_name(pipe
));
957 static void assert_pch_refclk_enabled(struct drm_i915_private
*dev_priv
)
962 val
= I915_READ(PCH_DREF_CONTROL
);
963 enabled
= !!(val
& (DREF_SSC_SOURCE_MASK
| DREF_NONSPREAD_SOURCE_MASK
|
964 DREF_SUPERSPREAD_SOURCE_MASK
));
965 WARN(!enabled
, "PCH refclk assertion failure, should be active but is disabled\n");
968 static void assert_transcoder_disabled(struct drm_i915_private
*dev_priv
,
975 reg
= TRANSCONF(pipe
);
976 val
= I915_READ(reg
);
977 enabled
= !!(val
& TRANS_ENABLE
);
979 "transcoder assertion failed, should be off on pipe %c but is still active\n",
983 static bool dp_pipe_enabled(struct drm_i915_private
*dev_priv
,
984 enum pipe pipe
, u32 port_sel
, u32 val
)
986 if ((val
& DP_PORT_EN
) == 0)
989 if (HAS_PCH_CPT(dev_priv
->dev
)) {
990 u32 trans_dp_ctl_reg
= TRANS_DP_CTL(pipe
);
991 u32 trans_dp_ctl
= I915_READ(trans_dp_ctl_reg
);
992 if ((trans_dp_ctl
& TRANS_DP_PORT_SEL_MASK
) != port_sel
)
995 if ((val
& DP_PIPE_MASK
) != (pipe
<< 30))
1001 static bool hdmi_pipe_enabled(struct drm_i915_private
*dev_priv
,
1002 enum pipe pipe
, u32 val
)
1004 if ((val
& PORT_ENABLE
) == 0)
1007 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1008 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1011 if ((val
& TRANSCODER_MASK
) != TRANSCODER(pipe
))
1017 static bool lvds_pipe_enabled(struct drm_i915_private
*dev_priv
,
1018 enum pipe pipe
, u32 val
)
1020 if ((val
& LVDS_PORT_EN
) == 0)
1023 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1024 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1027 if ((val
& LVDS_PIPE_MASK
) != LVDS_PIPE(pipe
))
1033 static bool adpa_pipe_enabled(struct drm_i915_private
*dev_priv
,
1034 enum pipe pipe
, u32 val
)
1036 if ((val
& ADPA_DAC_ENABLE
) == 0)
1038 if (HAS_PCH_CPT(dev_priv
->dev
)) {
1039 if ((val
& PORT_TRANS_SEL_MASK
) != PORT_TRANS_SEL_CPT(pipe
))
1042 if ((val
& ADPA_PIPE_SELECT_MASK
) != ADPA_PIPE_SELECT(pipe
))
1048 static void assert_pch_dp_disabled(struct drm_i915_private
*dev_priv
,
1049 enum pipe pipe
, int reg
, u32 port_sel
)
1051 u32 val
= I915_READ(reg
);
1052 WARN(dp_pipe_enabled(dev_priv
, pipe
, port_sel
, val
),
1053 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1054 reg
, pipe_name(pipe
));
1057 static void assert_pch_hdmi_disabled(struct drm_i915_private
*dev_priv
,
1058 enum pipe pipe
, int reg
)
1060 u32 val
= I915_READ(reg
);
1061 WARN(hdmi_pipe_enabled(dev_priv
, val
, pipe
),
1062 "PCH DP (0x%08x) enabled on transcoder %c, should be disabled\n",
1063 reg
, pipe_name(pipe
));
1066 static void assert_pch_ports_disabled(struct drm_i915_private
*dev_priv
,
1072 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_B
, TRANS_DP_PORT_SEL_B
);
1073 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_C
, TRANS_DP_PORT_SEL_C
);
1074 assert_pch_dp_disabled(dev_priv
, pipe
, PCH_DP_D
, TRANS_DP_PORT_SEL_D
);
1077 val
= I915_READ(reg
);
1078 WARN(adpa_pipe_enabled(dev_priv
, val
, pipe
),
1079 "PCH VGA enabled on transcoder %c, should be disabled\n",
1083 val
= I915_READ(reg
);
1084 WARN(lvds_pipe_enabled(dev_priv
, val
, pipe
),
1085 "PCH LVDS enabled on transcoder %c, should be disabled\n",
1088 assert_pch_hdmi_disabled(dev_priv
, pipe
, HDMIB
);
1089 assert_pch_hdmi_disabled(dev_priv
, pipe
, HDMIC
);
1090 assert_pch_hdmi_disabled(dev_priv
, pipe
, HDMID
);
1094 * intel_enable_pll - enable a PLL
1095 * @dev_priv: i915 private structure
1096 * @pipe: pipe PLL to enable
1098 * Enable @pipe's PLL so we can start pumping pixels from a plane. Check to
1099 * make sure the PLL reg is writable first though, since the panel write
1100 * protect mechanism may be enabled.
1102 * Note! This is for pre-ILK only.
1104 static void intel_enable_pll(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1109 /* No really, not for ILK+ */
1110 BUG_ON(dev_priv
->info
->gen
>= 5);
1112 /* PLL is protected by panel, make sure we can write it */
1113 if (IS_MOBILE(dev_priv
->dev
) && !IS_I830(dev_priv
->dev
))
1114 assert_panel_unlocked(dev_priv
, pipe
);
1117 val
= I915_READ(reg
);
1118 val
|= DPLL_VCO_ENABLE
;
1120 /* We do this three times for luck */
1121 I915_WRITE(reg
, val
);
1123 udelay(150); /* wait for warmup */
1124 I915_WRITE(reg
, val
);
1126 udelay(150); /* wait for warmup */
1127 I915_WRITE(reg
, val
);
1129 udelay(150); /* wait for warmup */
1133 * intel_disable_pll - disable a PLL
1134 * @dev_priv: i915 private structure
1135 * @pipe: pipe PLL to disable
1137 * Disable the PLL for @pipe, making sure the pipe is off first.
1139 * Note! This is for pre-ILK only.
1141 static void intel_disable_pll(struct drm_i915_private
*dev_priv
, enum pipe pipe
)
1146 /* Don't disable pipe A or pipe A PLLs if needed */
1147 if (pipe
== PIPE_A
&& (dev_priv
->quirks
& QUIRK_PIPEA_FORCE
))
1150 /* Make sure the pipe isn't still relying on us */
1151 assert_pipe_disabled(dev_priv
, pipe
);
1154 val
= I915_READ(reg
);
1155 val
&= ~DPLL_VCO_ENABLE
;
1156 I915_WRITE(reg
, val
);
1161 * intel_enable_pch_pll - enable PCH PLL
1162 * @dev_priv: i915 private structure
1163 * @pipe: pipe PLL to enable
1165 * The PCH PLL needs to be enabled before the PCH transcoder, since it
1166 * drives the transcoder clock.
1168 static void intel_enable_pch_pll(struct drm_i915_private
*dev_priv
,
1174 /* PCH only available on ILK+ */
1175 BUG_ON(dev_priv
->info
->gen
< 5);
1177 /* PCH refclock must be enabled first */
1178 assert_pch_refclk_enabled(dev_priv
);
1180 reg
= PCH_DPLL(pipe
);
1181 val
= I915_READ(reg
);
1182 val
|= DPLL_VCO_ENABLE
;
1183 I915_WRITE(reg
, val
);
1188 static void intel_disable_pch_pll(struct drm_i915_private
*dev_priv
,
1194 /* PCH only available on ILK+ */
1195 BUG_ON(dev_priv
->info
->gen
< 5);
1197 /* Make sure transcoder isn't still depending on us */
1198 assert_transcoder_disabled(dev_priv
, pipe
);
1200 reg
= PCH_DPLL(pipe
);
1201 val
= I915_READ(reg
);
1202 val
&= ~DPLL_VCO_ENABLE
;
1203 I915_WRITE(reg
, val
);
1208 static void intel_enable_transcoder(struct drm_i915_private
*dev_priv
,
1214 /* PCH only available on ILK+ */
1215 BUG_ON(dev_priv
->info
->gen
< 5);
1217 /* Make sure PCH DPLL is enabled */
1218 assert_pch_pll_enabled(dev_priv
, pipe
);
1220 /* FDI must be feeding us bits for PCH ports */
1221 assert_fdi_tx_enabled(dev_priv
, pipe
);
1222 assert_fdi_rx_enabled(dev_priv
, pipe
);
1224 reg
= TRANSCONF(pipe
);
1225 val
= I915_READ(reg
);
1227 if (HAS_PCH_IBX(dev_priv
->dev
)) {
1229 * make the BPC in transcoder be consistent with
1230 * that in pipeconf reg.
1232 val
&= ~PIPE_BPC_MASK
;
1233 val
|= I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
;
1235 I915_WRITE(reg
, val
| TRANS_ENABLE
);
1236 if (wait_for(I915_READ(reg
) & TRANS_STATE_ENABLE
, 100))
1237 DRM_ERROR("failed to enable transcoder %d\n", pipe
);
1240 static void intel_disable_transcoder(struct drm_i915_private
*dev_priv
,
1246 /* FDI relies on the transcoder */
1247 assert_fdi_tx_disabled(dev_priv
, pipe
);
1248 assert_fdi_rx_disabled(dev_priv
, pipe
);
1250 /* Ports must be off as well */
1251 assert_pch_ports_disabled(dev_priv
, pipe
);
1253 reg
= TRANSCONF(pipe
);
1254 val
= I915_READ(reg
);
1255 val
&= ~TRANS_ENABLE
;
1256 I915_WRITE(reg
, val
);
1257 /* wait for PCH transcoder off, transcoder state */
1258 if (wait_for((I915_READ(reg
) & TRANS_STATE_ENABLE
) == 0, 50))
1259 DRM_ERROR("failed to disable transcoder\n");
1263 * intel_enable_pipe - enable a pipe, asserting requirements
1264 * @dev_priv: i915 private structure
1265 * @pipe: pipe to enable
1266 * @pch_port: on ILK+, is this pipe driving a PCH port or not
1268 * Enable @pipe, making sure that various hardware specific requirements
1269 * are met, if applicable, e.g. PLL enabled, LVDS pairs enabled, etc.
1271 * @pipe should be %PIPE_A or %PIPE_B.
1273 * Will wait until the pipe is actually running (i.e. first vblank) before
1276 static void intel_enable_pipe(struct drm_i915_private
*dev_priv
, enum pipe pipe
,
1283 * A pipe without a PLL won't actually be able to drive bits from
1284 * a plane. On ILK+ the pipe PLLs are integrated, so we don't
1287 if (!HAS_PCH_SPLIT(dev_priv
->dev
))
1288 assert_pll_enabled(dev_priv
, pipe
);
1291 /* if driving the PCH, we need FDI enabled */
1292 assert_fdi_rx_pll_enabled(dev_priv
, pipe
);
1293 assert_fdi_tx_pll_enabled(dev_priv
, pipe
);
1295 /* FIXME: assert CPU port conditions for SNB+ */
1298 reg
= PIPECONF(pipe
);
1299 val
= I915_READ(reg
);
1300 if (val
& PIPECONF_ENABLE
)
1303 I915_WRITE(reg
, val
| PIPECONF_ENABLE
);
1304 intel_wait_for_vblank(dev_priv
->dev
, pipe
);
1308 * intel_disable_pipe - disable a pipe, asserting requirements
1309 * @dev_priv: i915 private structure
1310 * @pipe: pipe to disable
1312 * Disable @pipe, making sure that various hardware specific requirements
1313 * are met, if applicable, e.g. plane disabled, panel fitter off, etc.
1315 * @pipe should be %PIPE_A or %PIPE_B.
1317 * Will wait until the pipe has shut down before returning.
1319 static void intel_disable_pipe(struct drm_i915_private
*dev_priv
,
1326 * Make sure planes won't keep trying to pump pixels to us,
1327 * or we might hang the display.
1329 assert_planes_disabled(dev_priv
, pipe
);
1331 /* Don't disable pipe A or pipe A PLLs if needed */
1332 if (pipe
== PIPE_A
&& (dev_priv
->quirks
& QUIRK_PIPEA_FORCE
))
1335 reg
= PIPECONF(pipe
);
1336 val
= I915_READ(reg
);
1337 if ((val
& PIPECONF_ENABLE
) == 0)
1340 I915_WRITE(reg
, val
& ~PIPECONF_ENABLE
);
1341 intel_wait_for_pipe_off(dev_priv
->dev
, pipe
);
1345 * Plane regs are double buffered, going from enabled->disabled needs a
1346 * trigger in order to latch. The display address reg provides this.
1348 static void intel_flush_display_plane(struct drm_i915_private
*dev_priv
,
1351 I915_WRITE(DSPADDR(plane
), I915_READ(DSPADDR(plane
)));
1352 I915_WRITE(DSPSURF(plane
), I915_READ(DSPSURF(plane
)));
1356 * intel_enable_plane - enable a display plane on a given pipe
1357 * @dev_priv: i915 private structure
1358 * @plane: plane to enable
1359 * @pipe: pipe being fed
1361 * Enable @plane on @pipe, making sure that @pipe is running first.
1363 static void intel_enable_plane(struct drm_i915_private
*dev_priv
,
1364 enum plane plane
, enum pipe pipe
)
1369 /* If the pipe isn't enabled, we can't pump pixels and may hang */
1370 assert_pipe_enabled(dev_priv
, pipe
);
1372 reg
= DSPCNTR(plane
);
1373 val
= I915_READ(reg
);
1374 if (val
& DISPLAY_PLANE_ENABLE
)
1377 I915_WRITE(reg
, val
| DISPLAY_PLANE_ENABLE
);
1378 intel_flush_display_plane(dev_priv
, plane
);
1379 intel_wait_for_vblank(dev_priv
->dev
, pipe
);
1383 * intel_disable_plane - disable a display plane
1384 * @dev_priv: i915 private structure
1385 * @plane: plane to disable
1386 * @pipe: pipe consuming the data
1388 * Disable @plane; should be an independent operation.
1390 static void intel_disable_plane(struct drm_i915_private
*dev_priv
,
1391 enum plane plane
, enum pipe pipe
)
1396 reg
= DSPCNTR(plane
);
1397 val
= I915_READ(reg
);
1398 if ((val
& DISPLAY_PLANE_ENABLE
) == 0)
1401 I915_WRITE(reg
, val
& ~DISPLAY_PLANE_ENABLE
);
1402 intel_flush_display_plane(dev_priv
, plane
);
1403 intel_wait_for_vblank(dev_priv
->dev
, pipe
);
1406 static void disable_pch_dp(struct drm_i915_private
*dev_priv
,
1407 enum pipe pipe
, int reg
, u32 port_sel
)
1409 u32 val
= I915_READ(reg
);
1410 if (dp_pipe_enabled(dev_priv
, pipe
, port_sel
, val
)) {
1411 DRM_DEBUG_KMS("Disabling pch dp %x on pipe %d\n", reg
, pipe
);
1412 I915_WRITE(reg
, val
& ~DP_PORT_EN
);
1416 static void disable_pch_hdmi(struct drm_i915_private
*dev_priv
,
1417 enum pipe pipe
, int reg
)
1419 u32 val
= I915_READ(reg
);
1420 if (hdmi_pipe_enabled(dev_priv
, val
, pipe
)) {
1421 DRM_DEBUG_KMS("Disabling pch HDMI %x on pipe %d\n",
1423 I915_WRITE(reg
, val
& ~PORT_ENABLE
);
1427 /* Disable any ports connected to this transcoder */
1428 static void intel_disable_pch_ports(struct drm_i915_private
*dev_priv
,
1433 val
= I915_READ(PCH_PP_CONTROL
);
1434 I915_WRITE(PCH_PP_CONTROL
, val
| PANEL_UNLOCK_REGS
);
1436 disable_pch_dp(dev_priv
, pipe
, PCH_DP_B
, TRANS_DP_PORT_SEL_B
);
1437 disable_pch_dp(dev_priv
, pipe
, PCH_DP_C
, TRANS_DP_PORT_SEL_C
);
1438 disable_pch_dp(dev_priv
, pipe
, PCH_DP_D
, TRANS_DP_PORT_SEL_D
);
1441 val
= I915_READ(reg
);
1442 if (adpa_pipe_enabled(dev_priv
, val
, pipe
))
1443 I915_WRITE(reg
, val
& ~ADPA_DAC_ENABLE
);
1446 val
= I915_READ(reg
);
1447 if (lvds_pipe_enabled(dev_priv
, val
, pipe
)) {
1448 DRM_DEBUG_KMS("disable lvds on pipe %d val 0x%08x\n", pipe
, val
);
1449 I915_WRITE(reg
, val
& ~LVDS_PORT_EN
);
1454 disable_pch_hdmi(dev_priv
, pipe
, HDMIB
);
1455 disable_pch_hdmi(dev_priv
, pipe
, HDMIC
);
1456 disable_pch_hdmi(dev_priv
, pipe
, HDMID
);
1459 static void i8xx_disable_fbc(struct drm_device
*dev
)
1461 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1464 /* Disable compression */
1465 fbc_ctl
= I915_READ(FBC_CONTROL
);
1466 if ((fbc_ctl
& FBC_CTL_EN
) == 0)
1469 fbc_ctl
&= ~FBC_CTL_EN
;
1470 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1472 /* Wait for compressing bit to clear */
1473 if (wait_for((I915_READ(FBC_STATUS
) & FBC_STAT_COMPRESSING
) == 0, 10)) {
1474 DRM_DEBUG_KMS("FBC idle timed out\n");
1478 DRM_DEBUG_KMS("disabled FBC\n");
1481 static void i8xx_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1483 struct drm_device
*dev
= crtc
->dev
;
1484 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1485 struct drm_framebuffer
*fb
= crtc
->fb
;
1486 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1487 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
1488 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1491 u32 fbc_ctl
, fbc_ctl2
;
1493 cfb_pitch
= dev_priv
->cfb_size
/ FBC_LL_SIZE
;
1494 if (fb
->pitch
< cfb_pitch
)
1495 cfb_pitch
= fb
->pitch
;
1497 /* FBC_CTL wants 64B units */
1498 cfb_pitch
= (cfb_pitch
/ 64) - 1;
1499 plane
= intel_crtc
->plane
== 0 ? FBC_CTL_PLANEA
: FBC_CTL_PLANEB
;
1501 /* Clear old tags */
1502 for (i
= 0; i
< (FBC_LL_SIZE
/ 32) + 1; i
++)
1503 I915_WRITE(FBC_TAG
+ (i
* 4), 0);
1506 fbc_ctl2
= FBC_CTL_FENCE_DBL
| FBC_CTL_IDLE_IMM
| FBC_CTL_CPU_FENCE
;
1508 I915_WRITE(FBC_CONTROL2
, fbc_ctl2
);
1509 I915_WRITE(FBC_FENCE_OFF
, crtc
->y
);
1512 fbc_ctl
= FBC_CTL_EN
| FBC_CTL_PERIODIC
;
1514 fbc_ctl
|= FBC_CTL_C3_IDLE
; /* 945 needs special SR handling */
1515 fbc_ctl
|= (cfb_pitch
& 0xff) << FBC_CTL_STRIDE_SHIFT
;
1516 fbc_ctl
|= (interval
& 0x2fff) << FBC_CTL_INTERVAL_SHIFT
;
1517 fbc_ctl
|= obj
->fence_reg
;
1518 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1520 DRM_DEBUG_KMS("enabled FBC, pitch %d, yoff %d, plane %d, ",
1521 cfb_pitch
, crtc
->y
, intel_crtc
->plane
);
1524 static bool i8xx_fbc_enabled(struct drm_device
*dev
)
1526 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1528 return I915_READ(FBC_CONTROL
) & FBC_CTL_EN
;
1531 static void g4x_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1533 struct drm_device
*dev
= crtc
->dev
;
1534 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1535 struct drm_framebuffer
*fb
= crtc
->fb
;
1536 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1537 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
1538 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1539 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
1540 unsigned long stall_watermark
= 200;
1543 dpfc_ctl
= plane
| DPFC_SR_EN
| DPFC_CTL_LIMIT_1X
;
1544 dpfc_ctl
|= DPFC_CTL_FENCE_EN
| obj
->fence_reg
;
1545 I915_WRITE(DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1547 I915_WRITE(DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1548 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1549 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1550 I915_WRITE(DPFC_FENCE_YOFF
, crtc
->y
);
1553 I915_WRITE(DPFC_CONTROL
, I915_READ(DPFC_CONTROL
) | DPFC_CTL_EN
);
1555 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1558 static void g4x_disable_fbc(struct drm_device
*dev
)
1560 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1563 /* Disable compression */
1564 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1565 if (dpfc_ctl
& DPFC_CTL_EN
) {
1566 dpfc_ctl
&= ~DPFC_CTL_EN
;
1567 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1569 DRM_DEBUG_KMS("disabled FBC\n");
1573 static bool g4x_fbc_enabled(struct drm_device
*dev
)
1575 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1577 return I915_READ(DPFC_CONTROL
) & DPFC_CTL_EN
;
1580 static void sandybridge_blit_fbc_update(struct drm_device
*dev
)
1582 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1585 /* Make sure blitter notifies FBC of writes */
1586 gen6_gt_force_wake_get(dev_priv
);
1587 blt_ecoskpd
= I915_READ(GEN6_BLITTER_ECOSKPD
);
1588 blt_ecoskpd
|= GEN6_BLITTER_FBC_NOTIFY
<<
1589 GEN6_BLITTER_LOCK_SHIFT
;
1590 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
1591 blt_ecoskpd
|= GEN6_BLITTER_FBC_NOTIFY
;
1592 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
1593 blt_ecoskpd
&= ~(GEN6_BLITTER_FBC_NOTIFY
<<
1594 GEN6_BLITTER_LOCK_SHIFT
);
1595 I915_WRITE(GEN6_BLITTER_ECOSKPD
, blt_ecoskpd
);
1596 POSTING_READ(GEN6_BLITTER_ECOSKPD
);
1597 gen6_gt_force_wake_put(dev_priv
);
1600 static void ironlake_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1602 struct drm_device
*dev
= crtc
->dev
;
1603 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1604 struct drm_framebuffer
*fb
= crtc
->fb
;
1605 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1606 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
1607 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1608 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
1609 unsigned long stall_watermark
= 200;
1612 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
1613 dpfc_ctl
&= DPFC_RESERVED
;
1614 dpfc_ctl
|= (plane
| DPFC_CTL_LIMIT_1X
);
1615 /* Set persistent mode for front-buffer rendering, ala X. */
1616 dpfc_ctl
|= DPFC_CTL_PERSISTENT_MODE
;
1617 dpfc_ctl
|= (DPFC_CTL_FENCE_EN
| obj
->fence_reg
);
1618 I915_WRITE(ILK_DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1620 I915_WRITE(ILK_DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1621 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1622 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1623 I915_WRITE(ILK_DPFC_FENCE_YOFF
, crtc
->y
);
1624 I915_WRITE(ILK_FBC_RT_BASE
, obj
->gtt_offset
| ILK_FBC_RT_VALID
);
1626 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
| DPFC_CTL_EN
);
1629 I915_WRITE(SNB_DPFC_CTL_SA
,
1630 SNB_CPU_FENCE_ENABLE
| obj
->fence_reg
);
1631 I915_WRITE(DPFC_CPU_FENCE_OFFSET
, crtc
->y
);
1632 sandybridge_blit_fbc_update(dev
);
1635 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1638 static void ironlake_disable_fbc(struct drm_device
*dev
)
1640 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1643 /* Disable compression */
1644 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
1645 if (dpfc_ctl
& DPFC_CTL_EN
) {
1646 dpfc_ctl
&= ~DPFC_CTL_EN
;
1647 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
);
1649 DRM_DEBUG_KMS("disabled FBC\n");
1653 static bool ironlake_fbc_enabled(struct drm_device
*dev
)
1655 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1657 return I915_READ(ILK_DPFC_CONTROL
) & DPFC_CTL_EN
;
1660 bool intel_fbc_enabled(struct drm_device
*dev
)
1662 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1664 if (!dev_priv
->display
.fbc_enabled
)
1667 return dev_priv
->display
.fbc_enabled(dev
);
1670 static void intel_fbc_work_fn(struct work_struct
*__work
)
1672 struct intel_fbc_work
*work
=
1673 container_of(to_delayed_work(__work
),
1674 struct intel_fbc_work
, work
);
1675 struct drm_device
*dev
= work
->crtc
->dev
;
1676 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1678 mutex_lock(&dev
->struct_mutex
);
1679 if (work
== dev_priv
->fbc_work
) {
1680 /* Double check that we haven't switched fb without cancelling
1683 if (work
->crtc
->fb
== work
->fb
) {
1684 dev_priv
->display
.enable_fbc(work
->crtc
,
1687 dev_priv
->cfb_plane
= to_intel_crtc(work
->crtc
)->plane
;
1688 dev_priv
->cfb_fb
= work
->crtc
->fb
->base
.id
;
1689 dev_priv
->cfb_y
= work
->crtc
->y
;
1692 dev_priv
->fbc_work
= NULL
;
1694 mutex_unlock(&dev
->struct_mutex
);
1699 static void intel_cancel_fbc_work(struct drm_i915_private
*dev_priv
)
1701 if (dev_priv
->fbc_work
== NULL
)
1704 DRM_DEBUG_KMS("cancelling pending FBC enable\n");
1706 /* Synchronisation is provided by struct_mutex and checking of
1707 * dev_priv->fbc_work, so we can perform the cancellation
1708 * entirely asynchronously.
1710 if (cancel_delayed_work(&dev_priv
->fbc_work
->work
))
1711 /* tasklet was killed before being run, clean up */
1712 kfree(dev_priv
->fbc_work
);
1714 /* Mark the work as no longer wanted so that if it does
1715 * wake-up (because the work was already running and waiting
1716 * for our mutex), it will discover that is no longer
1719 dev_priv
->fbc_work
= NULL
;
1722 static void intel_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1724 struct intel_fbc_work
*work
;
1725 struct drm_device
*dev
= crtc
->dev
;
1726 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1728 if (!dev_priv
->display
.enable_fbc
)
1731 intel_cancel_fbc_work(dev_priv
);
1733 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
1735 dev_priv
->display
.enable_fbc(crtc
, interval
);
1740 work
->fb
= crtc
->fb
;
1741 work
->interval
= interval
;
1742 INIT_DELAYED_WORK(&work
->work
, intel_fbc_work_fn
);
1744 dev_priv
->fbc_work
= work
;
1746 DRM_DEBUG_KMS("scheduling delayed FBC enable\n");
1748 /* Delay the actual enabling to let pageflipping cease and the
1749 * display to settle before starting the compression. Note that
1750 * this delay also serves a second purpose: it allows for a
1751 * vblank to pass after disabling the FBC before we attempt
1752 * to modify the control registers.
1754 * A more complicated solution would involve tracking vblanks
1755 * following the termination of the page-flipping sequence
1756 * and indeed performing the enable as a co-routine and not
1757 * waiting synchronously upon the vblank.
1759 schedule_delayed_work(&work
->work
, msecs_to_jiffies(50));
1762 void intel_disable_fbc(struct drm_device
*dev
)
1764 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1766 intel_cancel_fbc_work(dev_priv
);
1768 if (!dev_priv
->display
.disable_fbc
)
1771 dev_priv
->display
.disable_fbc(dev
);
1772 dev_priv
->cfb_plane
= -1;
1776 * intel_update_fbc - enable/disable FBC as needed
1777 * @dev: the drm_device
1779 * Set up the framebuffer compression hardware at mode set time. We
1780 * enable it if possible:
1781 * - plane A only (on pre-965)
1782 * - no pixel mulitply/line duplication
1783 * - no alpha buffer discard
1785 * - framebuffer <= 2048 in width, 1536 in height
1787 * We can't assume that any compression will take place (worst case),
1788 * so the compressed buffer has to be the same size as the uncompressed
1789 * one. It also must reside (along with the line length buffer) in
1792 * We need to enable/disable FBC on a global basis.
1794 static void intel_update_fbc(struct drm_device
*dev
)
1796 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1797 struct drm_crtc
*crtc
= NULL
, *tmp_crtc
;
1798 struct intel_crtc
*intel_crtc
;
1799 struct drm_framebuffer
*fb
;
1800 struct intel_framebuffer
*intel_fb
;
1801 struct drm_i915_gem_object
*obj
;
1804 DRM_DEBUG_KMS("\n");
1806 if (!i915_powersave
)
1809 if (!I915_HAS_FBC(dev
))
1813 * If FBC is already on, we just have to verify that we can
1814 * keep it that way...
1815 * Need to disable if:
1816 * - more than one pipe is active
1817 * - changing FBC params (stride, fence, mode)
1818 * - new fb is too large to fit in compressed buffer
1819 * - going to an unsupported config (interlace, pixel multiply, etc.)
1821 list_for_each_entry(tmp_crtc
, &dev
->mode_config
.crtc_list
, head
) {
1822 if (tmp_crtc
->enabled
&& tmp_crtc
->fb
) {
1824 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1825 dev_priv
->no_fbc_reason
= FBC_MULTIPLE_PIPES
;
1832 if (!crtc
|| crtc
->fb
== NULL
) {
1833 DRM_DEBUG_KMS("no output, disabling\n");
1834 dev_priv
->no_fbc_reason
= FBC_NO_OUTPUT
;
1838 intel_crtc
= to_intel_crtc(crtc
);
1840 intel_fb
= to_intel_framebuffer(fb
);
1841 obj
= intel_fb
->obj
;
1843 enable_fbc
= i915_enable_fbc
;
1844 if (enable_fbc
< 0) {
1845 DRM_DEBUG_KMS("fbc set to per-chip default\n");
1847 if (INTEL_INFO(dev
)->gen
<= 5)
1851 DRM_DEBUG_KMS("fbc disabled per module param\n");
1852 dev_priv
->no_fbc_reason
= FBC_MODULE_PARAM
;
1855 if (intel_fb
->obj
->base
.size
> dev_priv
->cfb_size
) {
1856 DRM_DEBUG_KMS("framebuffer too large, disabling "
1858 dev_priv
->no_fbc_reason
= FBC_STOLEN_TOO_SMALL
;
1861 if ((crtc
->mode
.flags
& DRM_MODE_FLAG_INTERLACE
) ||
1862 (crtc
->mode
.flags
& DRM_MODE_FLAG_DBLSCAN
)) {
1863 DRM_DEBUG_KMS("mode incompatible with compression, "
1865 dev_priv
->no_fbc_reason
= FBC_UNSUPPORTED_MODE
;
1868 if ((crtc
->mode
.hdisplay
> 2048) ||
1869 (crtc
->mode
.vdisplay
> 1536)) {
1870 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1871 dev_priv
->no_fbc_reason
= FBC_MODE_TOO_LARGE
;
1874 if ((IS_I915GM(dev
) || IS_I945GM(dev
)) && intel_crtc
->plane
!= 0) {
1875 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1876 dev_priv
->no_fbc_reason
= FBC_BAD_PLANE
;
1880 /* The use of a CPU fence is mandatory in order to detect writes
1881 * by the CPU to the scanout and trigger updates to the FBC.
1883 if (obj
->tiling_mode
!= I915_TILING_X
||
1884 obj
->fence_reg
== I915_FENCE_REG_NONE
) {
1885 DRM_DEBUG_KMS("framebuffer not tiled or fenced, disabling compression\n");
1886 dev_priv
->no_fbc_reason
= FBC_NOT_TILED
;
1890 /* If the kernel debugger is active, always disable compression */
1891 if (in_dbg_master())
1894 /* If the scanout has not changed, don't modify the FBC settings.
1895 * Note that we make the fundamental assumption that the fb->obj
1896 * cannot be unpinned (and have its GTT offset and fence revoked)
1897 * without first being decoupled from the scanout and FBC disabled.
1899 if (dev_priv
->cfb_plane
== intel_crtc
->plane
&&
1900 dev_priv
->cfb_fb
== fb
->base
.id
&&
1901 dev_priv
->cfb_y
== crtc
->y
)
1904 if (intel_fbc_enabled(dev
)) {
1905 /* We update FBC along two paths, after changing fb/crtc
1906 * configuration (modeswitching) and after page-flipping
1907 * finishes. For the latter, we know that not only did
1908 * we disable the FBC at the start of the page-flip
1909 * sequence, but also more than one vblank has passed.
1911 * For the former case of modeswitching, it is possible
1912 * to switch between two FBC valid configurations
1913 * instantaneously so we do need to disable the FBC
1914 * before we can modify its control registers. We also
1915 * have to wait for the next vblank for that to take
1916 * effect. However, since we delay enabling FBC we can
1917 * assume that a vblank has passed since disabling and
1918 * that we can safely alter the registers in the deferred
1921 * In the scenario that we go from a valid to invalid
1922 * and then back to valid FBC configuration we have
1923 * no strict enforcement that a vblank occurred since
1924 * disabling the FBC. However, along all current pipe
1925 * disabling paths we do need to wait for a vblank at
1926 * some point. And we wait before enabling FBC anyway.
1928 DRM_DEBUG_KMS("disabling active FBC for update\n");
1929 intel_disable_fbc(dev
);
1932 intel_enable_fbc(crtc
, 500);
1936 /* Multiple disables should be harmless */
1937 if (intel_fbc_enabled(dev
)) {
1938 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1939 intel_disable_fbc(dev
);
1944 intel_pin_and_fence_fb_obj(struct drm_device
*dev
,
1945 struct drm_i915_gem_object
*obj
,
1946 struct intel_ring_buffer
*pipelined
)
1948 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1952 switch (obj
->tiling_mode
) {
1953 case I915_TILING_NONE
:
1954 if (IS_BROADWATER(dev
) || IS_CRESTLINE(dev
))
1955 alignment
= 128 * 1024;
1956 else if (INTEL_INFO(dev
)->gen
>= 4)
1957 alignment
= 4 * 1024;
1959 alignment
= 64 * 1024;
1962 /* pin() will align the object as required by fence */
1966 /* FIXME: Is this true? */
1967 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1973 dev_priv
->mm
.interruptible
= false;
1974 ret
= i915_gem_object_pin_to_display_plane(obj
, alignment
, pipelined
);
1976 goto err_interruptible
;
1978 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1979 * fence, whereas 965+ only requires a fence if using
1980 * framebuffer compression. For simplicity, we always install
1981 * a fence as the cost is not that onerous.
1983 if (obj
->tiling_mode
!= I915_TILING_NONE
) {
1984 ret
= i915_gem_object_get_fence(obj
, pipelined
);
1989 dev_priv
->mm
.interruptible
= true;
1993 i915_gem_object_unpin(obj
);
1995 dev_priv
->mm
.interruptible
= true;
1999 static int i9xx_update_plane(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
2002 struct drm_device
*dev
= crtc
->dev
;
2003 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2004 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2005 struct intel_framebuffer
*intel_fb
;
2006 struct drm_i915_gem_object
*obj
;
2007 int plane
= intel_crtc
->plane
;
2008 unsigned long Start
, Offset
;
2017 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
2021 intel_fb
= to_intel_framebuffer(fb
);
2022 obj
= intel_fb
->obj
;
2024 reg
= DSPCNTR(plane
);
2025 dspcntr
= I915_READ(reg
);
2026 /* Mask out pixel format bits in case we change it */
2027 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
2028 switch (fb
->bits_per_pixel
) {
2030 dspcntr
|= DISPPLANE_8BPP
;
2033 if (fb
->depth
== 15)
2034 dspcntr
|= DISPPLANE_15_16BPP
;
2036 dspcntr
|= DISPPLANE_16BPP
;
2040 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
2043 DRM_ERROR("Unknown color depth %d\n", fb
->bits_per_pixel
);
2046 if (INTEL_INFO(dev
)->gen
>= 4) {
2047 if (obj
->tiling_mode
!= I915_TILING_NONE
)
2048 dspcntr
|= DISPPLANE_TILED
;
2050 dspcntr
&= ~DISPPLANE_TILED
;
2053 I915_WRITE(reg
, dspcntr
);
2055 Start
= obj
->gtt_offset
;
2056 Offset
= y
* fb
->pitch
+ x
* (fb
->bits_per_pixel
/ 8);
2058 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2059 Start
, Offset
, x
, y
, fb
->pitch
);
2060 I915_WRITE(DSPSTRIDE(plane
), fb
->pitch
);
2061 if (INTEL_INFO(dev
)->gen
>= 4) {
2062 I915_WRITE(DSPSURF(plane
), Start
);
2063 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
2064 I915_WRITE(DSPADDR(plane
), Offset
);
2066 I915_WRITE(DSPADDR(plane
), Start
+ Offset
);
2072 static int ironlake_update_plane(struct drm_crtc
*crtc
,
2073 struct drm_framebuffer
*fb
, int x
, int y
)
2075 struct drm_device
*dev
= crtc
->dev
;
2076 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2077 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2078 struct intel_framebuffer
*intel_fb
;
2079 struct drm_i915_gem_object
*obj
;
2080 int plane
= intel_crtc
->plane
;
2081 unsigned long Start
, Offset
;
2090 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
2094 intel_fb
= to_intel_framebuffer(fb
);
2095 obj
= intel_fb
->obj
;
2097 reg
= DSPCNTR(plane
);
2098 dspcntr
= I915_READ(reg
);
2099 /* Mask out pixel format bits in case we change it */
2100 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
2101 switch (fb
->bits_per_pixel
) {
2103 dspcntr
|= DISPPLANE_8BPP
;
2106 if (fb
->depth
!= 16)
2109 dspcntr
|= DISPPLANE_16BPP
;
2113 if (fb
->depth
== 24)
2114 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
2115 else if (fb
->depth
== 30)
2116 dspcntr
|= DISPPLANE_32BPP_30BIT_NO_ALPHA
;
2121 DRM_ERROR("Unknown color depth %d\n", fb
->bits_per_pixel
);
2125 if (obj
->tiling_mode
!= I915_TILING_NONE
)
2126 dspcntr
|= DISPPLANE_TILED
;
2128 dspcntr
&= ~DISPPLANE_TILED
;
2131 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
2133 I915_WRITE(reg
, dspcntr
);
2135 Start
= obj
->gtt_offset
;
2136 Offset
= y
* fb
->pitch
+ x
* (fb
->bits_per_pixel
/ 8);
2138 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
2139 Start
, Offset
, x
, y
, fb
->pitch
);
2140 I915_WRITE(DSPSTRIDE(plane
), fb
->pitch
);
2141 I915_WRITE(DSPSURF(plane
), Start
);
2142 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
2143 I915_WRITE(DSPADDR(plane
), Offset
);
2149 /* Assume fb object is pinned & idle & fenced and just update base pointers */
2151 intel_pipe_set_base_atomic(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
2152 int x
, int y
, enum mode_set_atomic state
)
2154 struct drm_device
*dev
= crtc
->dev
;
2155 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2158 ret
= dev_priv
->display
.update_plane(crtc
, fb
, x
, y
);
2162 intel_update_fbc(dev
);
2163 intel_increase_pllclock(crtc
);
2169 intel_pipe_set_base(struct drm_crtc
*crtc
, int x
, int y
,
2170 struct drm_framebuffer
*old_fb
)
2172 struct drm_device
*dev
= crtc
->dev
;
2173 struct drm_i915_master_private
*master_priv
;
2174 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2179 DRM_ERROR("No FB bound\n");
2183 switch (intel_crtc
->plane
) {
2188 DRM_ERROR("no plane for crtc\n");
2192 mutex_lock(&dev
->struct_mutex
);
2193 ret
= intel_pin_and_fence_fb_obj(dev
,
2194 to_intel_framebuffer(crtc
->fb
)->obj
,
2197 mutex_unlock(&dev
->struct_mutex
);
2198 DRM_ERROR("pin & fence failed\n");
2203 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2204 struct drm_i915_gem_object
*obj
= to_intel_framebuffer(old_fb
)->obj
;
2206 wait_event(dev_priv
->pending_flip_queue
,
2207 atomic_read(&dev_priv
->mm
.wedged
) ||
2208 atomic_read(&obj
->pending_flip
) == 0);
2210 /* Big Hammer, we also need to ensure that any pending
2211 * MI_WAIT_FOR_EVENT inside a user batch buffer on the
2212 * current scanout is retired before unpinning the old
2215 * This should only fail upon a hung GPU, in which case we
2216 * can safely continue.
2218 ret
= i915_gem_object_finish_gpu(obj
);
2222 ret
= intel_pipe_set_base_atomic(crtc
, crtc
->fb
, x
, y
,
2223 LEAVE_ATOMIC_MODE_SET
);
2225 i915_gem_object_unpin(to_intel_framebuffer(crtc
->fb
)->obj
);
2226 mutex_unlock(&dev
->struct_mutex
);
2227 DRM_ERROR("failed to update base address\n");
2232 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
2233 i915_gem_object_unpin(to_intel_framebuffer(old_fb
)->obj
);
2236 mutex_unlock(&dev
->struct_mutex
);
2238 if (!dev
->primary
->master
)
2241 master_priv
= dev
->primary
->master
->driver_priv
;
2242 if (!master_priv
->sarea_priv
)
2245 if (intel_crtc
->pipe
) {
2246 master_priv
->sarea_priv
->pipeB_x
= x
;
2247 master_priv
->sarea_priv
->pipeB_y
= y
;
2249 master_priv
->sarea_priv
->pipeA_x
= x
;
2250 master_priv
->sarea_priv
->pipeA_y
= y
;
2256 static void ironlake_set_pll_edp(struct drm_crtc
*crtc
, int clock
)
2258 struct drm_device
*dev
= crtc
->dev
;
2259 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2262 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock
);
2263 dpa_ctl
= I915_READ(DP_A
);
2264 dpa_ctl
&= ~DP_PLL_FREQ_MASK
;
2266 if (clock
< 200000) {
2268 dpa_ctl
|= DP_PLL_FREQ_160MHZ
;
2269 /* workaround for 160Mhz:
2270 1) program 0x4600c bits 15:0 = 0x8124
2271 2) program 0x46010 bit 0 = 1
2272 3) program 0x46034 bit 24 = 1
2273 4) program 0x64000 bit 14 = 1
2275 temp
= I915_READ(0x4600c);
2277 I915_WRITE(0x4600c, temp
| 0x8124);
2279 temp
= I915_READ(0x46010);
2280 I915_WRITE(0x46010, temp
| 1);
2282 temp
= I915_READ(0x46034);
2283 I915_WRITE(0x46034, temp
| (1 << 24));
2285 dpa_ctl
|= DP_PLL_FREQ_270MHZ
;
2287 I915_WRITE(DP_A
, dpa_ctl
);
2293 static void intel_fdi_normal_train(struct drm_crtc
*crtc
)
2295 struct drm_device
*dev
= crtc
->dev
;
2296 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2297 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2298 int pipe
= intel_crtc
->pipe
;
2301 /* enable normal train */
2302 reg
= FDI_TX_CTL(pipe
);
2303 temp
= I915_READ(reg
);
2304 if (IS_IVYBRIDGE(dev
)) {
2305 temp
&= ~FDI_LINK_TRAIN_NONE_IVB
;
2306 temp
|= FDI_LINK_TRAIN_NONE_IVB
| FDI_TX_ENHANCE_FRAME_ENABLE
;
2308 temp
&= ~FDI_LINK_TRAIN_NONE
;
2309 temp
|= FDI_LINK_TRAIN_NONE
| FDI_TX_ENHANCE_FRAME_ENABLE
;
2311 I915_WRITE(reg
, temp
);
2313 reg
= FDI_RX_CTL(pipe
);
2314 temp
= I915_READ(reg
);
2315 if (HAS_PCH_CPT(dev
)) {
2316 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2317 temp
|= FDI_LINK_TRAIN_NORMAL_CPT
;
2319 temp
&= ~FDI_LINK_TRAIN_NONE
;
2320 temp
|= FDI_LINK_TRAIN_NONE
;
2322 I915_WRITE(reg
, temp
| FDI_RX_ENHANCE_FRAME_ENABLE
);
2324 /* wait one idle pattern time */
2328 /* IVB wants error correction enabled */
2329 if (IS_IVYBRIDGE(dev
))
2330 I915_WRITE(reg
, I915_READ(reg
) | FDI_FS_ERRC_ENABLE
|
2331 FDI_FE_ERRC_ENABLE
);
2334 static void cpt_phase_pointer_enable(struct drm_device
*dev
, int pipe
)
2336 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2337 u32 flags
= I915_READ(SOUTH_CHICKEN1
);
2339 flags
|= FDI_PHASE_SYNC_OVR(pipe
);
2340 I915_WRITE(SOUTH_CHICKEN1
, flags
); /* once to unlock... */
2341 flags
|= FDI_PHASE_SYNC_EN(pipe
);
2342 I915_WRITE(SOUTH_CHICKEN1
, flags
); /* then again to enable */
2343 POSTING_READ(SOUTH_CHICKEN1
);
2346 /* The FDI link training functions for ILK/Ibexpeak. */
2347 static void ironlake_fdi_link_train(struct drm_crtc
*crtc
)
2349 struct drm_device
*dev
= crtc
->dev
;
2350 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2351 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2352 int pipe
= intel_crtc
->pipe
;
2353 int plane
= intel_crtc
->plane
;
2354 u32 reg
, temp
, tries
;
2356 /* FDI needs bits from pipe & plane first */
2357 assert_pipe_enabled(dev_priv
, pipe
);
2358 assert_plane_enabled(dev_priv
, plane
);
2360 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2362 reg
= FDI_RX_IMR(pipe
);
2363 temp
= I915_READ(reg
);
2364 temp
&= ~FDI_RX_SYMBOL_LOCK
;
2365 temp
&= ~FDI_RX_BIT_LOCK
;
2366 I915_WRITE(reg
, temp
);
2370 /* enable CPU FDI TX and PCH FDI RX */
2371 reg
= FDI_TX_CTL(pipe
);
2372 temp
= I915_READ(reg
);
2374 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2375 temp
&= ~FDI_LINK_TRAIN_NONE
;
2376 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2377 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
2379 reg
= FDI_RX_CTL(pipe
);
2380 temp
= I915_READ(reg
);
2381 temp
&= ~FDI_LINK_TRAIN_NONE
;
2382 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2383 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
2388 /* Ironlake workaround, enable clock pointer after FDI enable*/
2389 if (HAS_PCH_IBX(dev
)) {
2390 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
);
2391 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
|
2392 FDI_RX_PHASE_SYNC_POINTER_EN
);
2395 reg
= FDI_RX_IIR(pipe
);
2396 for (tries
= 0; tries
< 5; tries
++) {
2397 temp
= I915_READ(reg
);
2398 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2400 if ((temp
& FDI_RX_BIT_LOCK
)) {
2401 DRM_DEBUG_KMS("FDI train 1 done.\n");
2402 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
2407 DRM_ERROR("FDI train 1 fail!\n");
2410 reg
= FDI_TX_CTL(pipe
);
2411 temp
= I915_READ(reg
);
2412 temp
&= ~FDI_LINK_TRAIN_NONE
;
2413 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2414 I915_WRITE(reg
, temp
);
2416 reg
= FDI_RX_CTL(pipe
);
2417 temp
= I915_READ(reg
);
2418 temp
&= ~FDI_LINK_TRAIN_NONE
;
2419 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2420 I915_WRITE(reg
, temp
);
2425 reg
= FDI_RX_IIR(pipe
);
2426 for (tries
= 0; tries
< 5; tries
++) {
2427 temp
= I915_READ(reg
);
2428 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2430 if (temp
& FDI_RX_SYMBOL_LOCK
) {
2431 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
2432 DRM_DEBUG_KMS("FDI train 2 done.\n");
2437 DRM_ERROR("FDI train 2 fail!\n");
2439 DRM_DEBUG_KMS("FDI train done\n");
2443 static const int snb_b_fdi_train_param
[] = {
2444 FDI_LINK_TRAIN_400MV_0DB_SNB_B
,
2445 FDI_LINK_TRAIN_400MV_6DB_SNB_B
,
2446 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B
,
2447 FDI_LINK_TRAIN_800MV_0DB_SNB_B
,
2450 /* The FDI link training functions for SNB/Cougarpoint. */
2451 static void gen6_fdi_link_train(struct drm_crtc
*crtc
)
2453 struct drm_device
*dev
= crtc
->dev
;
2454 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2455 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2456 int pipe
= intel_crtc
->pipe
;
2459 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2461 reg
= FDI_RX_IMR(pipe
);
2462 temp
= I915_READ(reg
);
2463 temp
&= ~FDI_RX_SYMBOL_LOCK
;
2464 temp
&= ~FDI_RX_BIT_LOCK
;
2465 I915_WRITE(reg
, temp
);
2470 /* enable CPU FDI TX and PCH FDI RX */
2471 reg
= FDI_TX_CTL(pipe
);
2472 temp
= I915_READ(reg
);
2474 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2475 temp
&= ~FDI_LINK_TRAIN_NONE
;
2476 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2477 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2479 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2480 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
2482 reg
= FDI_RX_CTL(pipe
);
2483 temp
= I915_READ(reg
);
2484 if (HAS_PCH_CPT(dev
)) {
2485 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2486 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2488 temp
&= ~FDI_LINK_TRAIN_NONE
;
2489 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2491 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
2496 if (HAS_PCH_CPT(dev
))
2497 cpt_phase_pointer_enable(dev
, pipe
);
2499 for (i
= 0; i
< 4; i
++ ) {
2500 reg
= FDI_TX_CTL(pipe
);
2501 temp
= I915_READ(reg
);
2502 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2503 temp
|= snb_b_fdi_train_param
[i
];
2504 I915_WRITE(reg
, temp
);
2509 reg
= FDI_RX_IIR(pipe
);
2510 temp
= I915_READ(reg
);
2511 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2513 if (temp
& FDI_RX_BIT_LOCK
) {
2514 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
2515 DRM_DEBUG_KMS("FDI train 1 done.\n");
2520 DRM_ERROR("FDI train 1 fail!\n");
2523 reg
= FDI_TX_CTL(pipe
);
2524 temp
= I915_READ(reg
);
2525 temp
&= ~FDI_LINK_TRAIN_NONE
;
2526 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2528 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2530 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2532 I915_WRITE(reg
, temp
);
2534 reg
= FDI_RX_CTL(pipe
);
2535 temp
= I915_READ(reg
);
2536 if (HAS_PCH_CPT(dev
)) {
2537 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2538 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
2540 temp
&= ~FDI_LINK_TRAIN_NONE
;
2541 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
2543 I915_WRITE(reg
, temp
);
2548 for (i
= 0; i
< 4; i
++ ) {
2549 reg
= FDI_TX_CTL(pipe
);
2550 temp
= I915_READ(reg
);
2551 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2552 temp
|= snb_b_fdi_train_param
[i
];
2553 I915_WRITE(reg
, temp
);
2558 reg
= FDI_RX_IIR(pipe
);
2559 temp
= I915_READ(reg
);
2560 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2562 if (temp
& FDI_RX_SYMBOL_LOCK
) {
2563 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
2564 DRM_DEBUG_KMS("FDI train 2 done.\n");
2569 DRM_ERROR("FDI train 2 fail!\n");
2571 DRM_DEBUG_KMS("FDI train done.\n");
2574 /* Manual link training for Ivy Bridge A0 parts */
2575 static void ivb_manual_fdi_link_train(struct drm_crtc
*crtc
)
2577 struct drm_device
*dev
= crtc
->dev
;
2578 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2579 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2580 int pipe
= intel_crtc
->pipe
;
2583 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
2585 reg
= FDI_RX_IMR(pipe
);
2586 temp
= I915_READ(reg
);
2587 temp
&= ~FDI_RX_SYMBOL_LOCK
;
2588 temp
&= ~FDI_RX_BIT_LOCK
;
2589 I915_WRITE(reg
, temp
);
2594 /* enable CPU FDI TX and PCH FDI RX */
2595 reg
= FDI_TX_CTL(pipe
);
2596 temp
= I915_READ(reg
);
2598 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2599 temp
&= ~(FDI_LINK_TRAIN_AUTO
| FDI_LINK_TRAIN_NONE_IVB
);
2600 temp
|= FDI_LINK_TRAIN_PATTERN_1_IVB
;
2601 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2602 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2603 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
2605 reg
= FDI_RX_CTL(pipe
);
2606 temp
= I915_READ(reg
);
2607 temp
&= ~FDI_LINK_TRAIN_AUTO
;
2608 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2609 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2610 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
2615 if (HAS_PCH_CPT(dev
))
2616 cpt_phase_pointer_enable(dev
, pipe
);
2618 for (i
= 0; i
< 4; i
++ ) {
2619 reg
= FDI_TX_CTL(pipe
);
2620 temp
= I915_READ(reg
);
2621 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2622 temp
|= snb_b_fdi_train_param
[i
];
2623 I915_WRITE(reg
, temp
);
2628 reg
= FDI_RX_IIR(pipe
);
2629 temp
= I915_READ(reg
);
2630 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2632 if (temp
& FDI_RX_BIT_LOCK
||
2633 (I915_READ(reg
) & FDI_RX_BIT_LOCK
)) {
2634 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
2635 DRM_DEBUG_KMS("FDI train 1 done.\n");
2640 DRM_ERROR("FDI train 1 fail!\n");
2643 reg
= FDI_TX_CTL(pipe
);
2644 temp
= I915_READ(reg
);
2645 temp
&= ~FDI_LINK_TRAIN_NONE_IVB
;
2646 temp
|= FDI_LINK_TRAIN_PATTERN_2_IVB
;
2647 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2648 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
2649 I915_WRITE(reg
, temp
);
2651 reg
= FDI_RX_CTL(pipe
);
2652 temp
= I915_READ(reg
);
2653 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2654 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
2655 I915_WRITE(reg
, temp
);
2660 for (i
= 0; i
< 4; i
++ ) {
2661 reg
= FDI_TX_CTL(pipe
);
2662 temp
= I915_READ(reg
);
2663 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
2664 temp
|= snb_b_fdi_train_param
[i
];
2665 I915_WRITE(reg
, temp
);
2670 reg
= FDI_RX_IIR(pipe
);
2671 temp
= I915_READ(reg
);
2672 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
2674 if (temp
& FDI_RX_SYMBOL_LOCK
) {
2675 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
2676 DRM_DEBUG_KMS("FDI train 2 done.\n");
2681 DRM_ERROR("FDI train 2 fail!\n");
2683 DRM_DEBUG_KMS("FDI train done.\n");
2686 static void ironlake_fdi_pll_enable(struct drm_crtc
*crtc
)
2688 struct drm_device
*dev
= crtc
->dev
;
2689 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2690 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2691 int pipe
= intel_crtc
->pipe
;
2694 /* Write the TU size bits so error detection works */
2695 I915_WRITE(FDI_RX_TUSIZE1(pipe
),
2696 I915_READ(PIPE_DATA_M1(pipe
)) & TU_SIZE_MASK
);
2698 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
2699 reg
= FDI_RX_CTL(pipe
);
2700 temp
= I915_READ(reg
);
2701 temp
&= ~((0x7 << 19) | (0x7 << 16));
2702 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
2703 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2704 I915_WRITE(reg
, temp
| FDI_RX_PLL_ENABLE
);
2709 /* Switch from Rawclk to PCDclk */
2710 temp
= I915_READ(reg
);
2711 I915_WRITE(reg
, temp
| FDI_PCDCLK
);
2716 /* Enable CPU FDI TX PLL, always on for Ironlake */
2717 reg
= FDI_TX_CTL(pipe
);
2718 temp
= I915_READ(reg
);
2719 if ((temp
& FDI_TX_PLL_ENABLE
) == 0) {
2720 I915_WRITE(reg
, temp
| FDI_TX_PLL_ENABLE
);
2727 static void cpt_phase_pointer_disable(struct drm_device
*dev
, int pipe
)
2729 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2730 u32 flags
= I915_READ(SOUTH_CHICKEN1
);
2732 flags
&= ~(FDI_PHASE_SYNC_EN(pipe
));
2733 I915_WRITE(SOUTH_CHICKEN1
, flags
); /* once to disable... */
2734 flags
&= ~(FDI_PHASE_SYNC_OVR(pipe
));
2735 I915_WRITE(SOUTH_CHICKEN1
, flags
); /* then again to lock */
2736 POSTING_READ(SOUTH_CHICKEN1
);
2738 static void ironlake_fdi_disable(struct drm_crtc
*crtc
)
2740 struct drm_device
*dev
= crtc
->dev
;
2741 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2742 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2743 int pipe
= intel_crtc
->pipe
;
2746 /* disable CPU FDI tx and PCH FDI rx */
2747 reg
= FDI_TX_CTL(pipe
);
2748 temp
= I915_READ(reg
);
2749 I915_WRITE(reg
, temp
& ~FDI_TX_ENABLE
);
2752 reg
= FDI_RX_CTL(pipe
);
2753 temp
= I915_READ(reg
);
2754 temp
&= ~(0x7 << 16);
2755 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2756 I915_WRITE(reg
, temp
& ~FDI_RX_ENABLE
);
2761 /* Ironlake workaround, disable clock pointer after downing FDI */
2762 if (HAS_PCH_IBX(dev
)) {
2763 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_OVR
);
2764 I915_WRITE(FDI_RX_CHICKEN(pipe
),
2765 I915_READ(FDI_RX_CHICKEN(pipe
) &
2766 ~FDI_RX_PHASE_SYNC_POINTER_EN
));
2767 } else if (HAS_PCH_CPT(dev
)) {
2768 cpt_phase_pointer_disable(dev
, pipe
);
2771 /* still set train pattern 1 */
2772 reg
= FDI_TX_CTL(pipe
);
2773 temp
= I915_READ(reg
);
2774 temp
&= ~FDI_LINK_TRAIN_NONE
;
2775 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2776 I915_WRITE(reg
, temp
);
2778 reg
= FDI_RX_CTL(pipe
);
2779 temp
= I915_READ(reg
);
2780 if (HAS_PCH_CPT(dev
)) {
2781 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2782 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2784 temp
&= ~FDI_LINK_TRAIN_NONE
;
2785 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2787 /* BPC in FDI rx is consistent with that in PIPECONF */
2788 temp
&= ~(0x07 << 16);
2789 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2790 I915_WRITE(reg
, temp
);
2797 * When we disable a pipe, we need to clear any pending scanline wait events
2798 * to avoid hanging the ring, which we assume we are waiting on.
2800 static void intel_clear_scanline_wait(struct drm_device
*dev
)
2802 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2803 struct intel_ring_buffer
*ring
;
2807 /* Can't break the hang on i8xx */
2810 ring
= LP_RING(dev_priv
);
2811 tmp
= I915_READ_CTL(ring
);
2812 if (tmp
& RING_WAIT
)
2813 I915_WRITE_CTL(ring
, tmp
);
2816 static void intel_crtc_wait_for_pending_flips(struct drm_crtc
*crtc
)
2818 struct drm_i915_gem_object
*obj
;
2819 struct drm_i915_private
*dev_priv
;
2821 if (crtc
->fb
== NULL
)
2824 obj
= to_intel_framebuffer(crtc
->fb
)->obj
;
2825 dev_priv
= crtc
->dev
->dev_private
;
2826 wait_event(dev_priv
->pending_flip_queue
,
2827 atomic_read(&obj
->pending_flip
) == 0);
2830 static bool intel_crtc_driving_pch(struct drm_crtc
*crtc
)
2832 struct drm_device
*dev
= crtc
->dev
;
2833 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
2834 struct intel_encoder
*encoder
;
2837 * If there's a non-PCH eDP on this crtc, it must be DP_A, and that
2838 * must be driven by its own crtc; no sharing is possible.
2840 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
2841 if (encoder
->base
.crtc
!= crtc
)
2844 switch (encoder
->type
) {
2845 case INTEL_OUTPUT_EDP
:
2846 if (!intel_encoder_is_pch_edp(&encoder
->base
))
2856 * Enable PCH resources required for PCH ports:
2858 * - FDI training & RX/TX
2859 * - update transcoder timings
2860 * - DP transcoding bits
2863 static void ironlake_pch_enable(struct drm_crtc
*crtc
)
2865 struct drm_device
*dev
= crtc
->dev
;
2866 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2867 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2868 int pipe
= intel_crtc
->pipe
;
2871 /* For PCH output, training FDI link */
2872 dev_priv
->display
.fdi_link_train(crtc
);
2874 intel_enable_pch_pll(dev_priv
, pipe
);
2876 if (HAS_PCH_CPT(dev
)) {
2877 /* Be sure PCH DPLL SEL is set */
2878 temp
= I915_READ(PCH_DPLL_SEL
);
2879 if (pipe
== 0 && (temp
& TRANSA_DPLL_ENABLE
) == 0)
2880 temp
|= (TRANSA_DPLL_ENABLE
| TRANSA_DPLLA_SEL
);
2881 else if (pipe
== 1 && (temp
& TRANSB_DPLL_ENABLE
) == 0)
2882 temp
|= (TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
);
2883 I915_WRITE(PCH_DPLL_SEL
, temp
);
2886 /* set transcoder timing, panel must allow it */
2887 assert_panel_unlocked(dev_priv
, pipe
);
2888 I915_WRITE(TRANS_HTOTAL(pipe
), I915_READ(HTOTAL(pipe
)));
2889 I915_WRITE(TRANS_HBLANK(pipe
), I915_READ(HBLANK(pipe
)));
2890 I915_WRITE(TRANS_HSYNC(pipe
), I915_READ(HSYNC(pipe
)));
2892 I915_WRITE(TRANS_VTOTAL(pipe
), I915_READ(VTOTAL(pipe
)));
2893 I915_WRITE(TRANS_VBLANK(pipe
), I915_READ(VBLANK(pipe
)));
2894 I915_WRITE(TRANS_VSYNC(pipe
), I915_READ(VSYNC(pipe
)));
2896 intel_fdi_normal_train(crtc
);
2898 /* For PCH DP, enable TRANS_DP_CTL */
2899 if (HAS_PCH_CPT(dev
) &&
2900 intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
2901 u32 bpc
= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) >> 5;
2902 reg
= TRANS_DP_CTL(pipe
);
2903 temp
= I915_READ(reg
);
2904 temp
&= ~(TRANS_DP_PORT_SEL_MASK
|
2905 TRANS_DP_SYNC_MASK
|
2907 temp
|= (TRANS_DP_OUTPUT_ENABLE
|
2908 TRANS_DP_ENH_FRAMING
);
2909 temp
|= bpc
<< 9; /* same format but at 11:9 */
2911 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PHSYNC
)
2912 temp
|= TRANS_DP_HSYNC_ACTIVE_HIGH
;
2913 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PVSYNC
)
2914 temp
|= TRANS_DP_VSYNC_ACTIVE_HIGH
;
2916 switch (intel_trans_dp_port_sel(crtc
)) {
2918 temp
|= TRANS_DP_PORT_SEL_B
;
2921 temp
|= TRANS_DP_PORT_SEL_C
;
2924 temp
|= TRANS_DP_PORT_SEL_D
;
2927 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2928 temp
|= TRANS_DP_PORT_SEL_B
;
2932 I915_WRITE(reg
, temp
);
2935 intel_enable_transcoder(dev_priv
, pipe
);
2938 static void ironlake_crtc_enable(struct drm_crtc
*crtc
)
2940 struct drm_device
*dev
= crtc
->dev
;
2941 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2942 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2943 int pipe
= intel_crtc
->pipe
;
2944 int plane
= intel_crtc
->plane
;
2948 if (intel_crtc
->active
)
2951 intel_crtc
->active
= true;
2952 intel_update_watermarks(dev
);
2954 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
2955 temp
= I915_READ(PCH_LVDS
);
2956 if ((temp
& LVDS_PORT_EN
) == 0)
2957 I915_WRITE(PCH_LVDS
, temp
| LVDS_PORT_EN
);
2960 is_pch_port
= intel_crtc_driving_pch(crtc
);
2963 ironlake_fdi_pll_enable(crtc
);
2965 ironlake_fdi_disable(crtc
);
2967 /* Enable panel fitting for LVDS */
2968 if (dev_priv
->pch_pf_size
&&
2969 (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) || HAS_eDP
)) {
2970 /* Force use of hard-coded filter coefficients
2971 * as some pre-programmed values are broken,
2974 I915_WRITE(PF_CTL(pipe
), PF_ENABLE
| PF_FILTER_MED_3x3
);
2975 I915_WRITE(PF_WIN_POS(pipe
), dev_priv
->pch_pf_pos
);
2976 I915_WRITE(PF_WIN_SZ(pipe
), dev_priv
->pch_pf_size
);
2980 * On ILK+ LUT must be loaded before the pipe is running but with
2983 intel_crtc_load_lut(crtc
);
2985 intel_enable_pipe(dev_priv
, pipe
, is_pch_port
);
2986 intel_enable_plane(dev_priv
, plane
, pipe
);
2989 ironlake_pch_enable(crtc
);
2991 mutex_lock(&dev
->struct_mutex
);
2992 intel_update_fbc(dev
);
2993 mutex_unlock(&dev
->struct_mutex
);
2995 intel_crtc_update_cursor(crtc
, true);
2998 static void ironlake_crtc_disable(struct drm_crtc
*crtc
)
3000 struct drm_device
*dev
= crtc
->dev
;
3001 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3002 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3003 int pipe
= intel_crtc
->pipe
;
3004 int plane
= intel_crtc
->plane
;
3007 if (!intel_crtc
->active
)
3010 intel_crtc_wait_for_pending_flips(crtc
);
3011 drm_vblank_off(dev
, pipe
);
3012 intel_crtc_update_cursor(crtc
, false);
3014 intel_disable_plane(dev_priv
, plane
, pipe
);
3016 if (dev_priv
->cfb_plane
== plane
)
3017 intel_disable_fbc(dev
);
3019 intel_disable_pipe(dev_priv
, pipe
);
3022 I915_WRITE(PF_CTL(pipe
), 0);
3023 I915_WRITE(PF_WIN_SZ(pipe
), 0);
3025 ironlake_fdi_disable(crtc
);
3027 /* This is a horrible layering violation; we should be doing this in
3028 * the connector/encoder ->prepare instead, but we don't always have
3029 * enough information there about the config to know whether it will
3030 * actually be necessary or just cause undesired flicker.
3032 intel_disable_pch_ports(dev_priv
, pipe
);
3034 intel_disable_transcoder(dev_priv
, pipe
);
3036 if (HAS_PCH_CPT(dev
)) {
3037 /* disable TRANS_DP_CTL */
3038 reg
= TRANS_DP_CTL(pipe
);
3039 temp
= I915_READ(reg
);
3040 temp
&= ~(TRANS_DP_OUTPUT_ENABLE
| TRANS_DP_PORT_SEL_MASK
);
3041 temp
|= TRANS_DP_PORT_SEL_NONE
;
3042 I915_WRITE(reg
, temp
);
3044 /* disable DPLL_SEL */
3045 temp
= I915_READ(PCH_DPLL_SEL
);
3048 temp
&= ~(TRANSA_DPLL_ENABLE
| TRANSA_DPLLA_SEL
);
3051 temp
&= ~(TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
);
3054 /* FIXME: manage transcoder PLLs? */
3055 temp
&= ~(TRANSC_DPLL_ENABLE
| TRANSC_DPLLB_SEL
);
3060 I915_WRITE(PCH_DPLL_SEL
, temp
);
3063 /* disable PCH DPLL */
3064 intel_disable_pch_pll(dev_priv
, pipe
);
3066 /* Switch from PCDclk to Rawclk */
3067 reg
= FDI_RX_CTL(pipe
);
3068 temp
= I915_READ(reg
);
3069 I915_WRITE(reg
, temp
& ~FDI_PCDCLK
);
3071 /* Disable CPU FDI TX PLL */
3072 reg
= FDI_TX_CTL(pipe
);
3073 temp
= I915_READ(reg
);
3074 I915_WRITE(reg
, temp
& ~FDI_TX_PLL_ENABLE
);
3079 reg
= FDI_RX_CTL(pipe
);
3080 temp
= I915_READ(reg
);
3081 I915_WRITE(reg
, temp
& ~FDI_RX_PLL_ENABLE
);
3083 /* Wait for the clocks to turn off. */
3087 intel_crtc
->active
= false;
3088 intel_update_watermarks(dev
);
3090 mutex_lock(&dev
->struct_mutex
);
3091 intel_update_fbc(dev
);
3092 intel_clear_scanline_wait(dev
);
3093 mutex_unlock(&dev
->struct_mutex
);
3096 static void ironlake_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
3098 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3099 int pipe
= intel_crtc
->pipe
;
3100 int plane
= intel_crtc
->plane
;
3102 /* XXX: When our outputs are all unaware of DPMS modes other than off
3103 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3106 case DRM_MODE_DPMS_ON
:
3107 case DRM_MODE_DPMS_STANDBY
:
3108 case DRM_MODE_DPMS_SUSPEND
:
3109 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe
, plane
);
3110 ironlake_crtc_enable(crtc
);
3113 case DRM_MODE_DPMS_OFF
:
3114 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe
, plane
);
3115 ironlake_crtc_disable(crtc
);
3120 static void intel_crtc_dpms_overlay(struct intel_crtc
*intel_crtc
, bool enable
)
3122 if (!enable
&& intel_crtc
->overlay
) {
3123 struct drm_device
*dev
= intel_crtc
->base
.dev
;
3124 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3126 mutex_lock(&dev
->struct_mutex
);
3127 dev_priv
->mm
.interruptible
= false;
3128 (void) intel_overlay_switch_off(intel_crtc
->overlay
);
3129 dev_priv
->mm
.interruptible
= true;
3130 mutex_unlock(&dev
->struct_mutex
);
3133 /* Let userspace switch the overlay on again. In most cases userspace
3134 * has to recompute where to put it anyway.
3138 static void i9xx_crtc_enable(struct drm_crtc
*crtc
)
3140 struct drm_device
*dev
= crtc
->dev
;
3141 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3142 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3143 int pipe
= intel_crtc
->pipe
;
3144 int plane
= intel_crtc
->plane
;
3146 if (intel_crtc
->active
)
3149 intel_crtc
->active
= true;
3150 intel_update_watermarks(dev
);
3152 intel_enable_pll(dev_priv
, pipe
);
3153 intel_enable_pipe(dev_priv
, pipe
, false);
3154 intel_enable_plane(dev_priv
, plane
, pipe
);
3156 intel_crtc_load_lut(crtc
);
3157 intel_update_fbc(dev
);
3159 /* Give the overlay scaler a chance to enable if it's on this pipe */
3160 intel_crtc_dpms_overlay(intel_crtc
, true);
3161 intel_crtc_update_cursor(crtc
, true);
3164 static void i9xx_crtc_disable(struct drm_crtc
*crtc
)
3166 struct drm_device
*dev
= crtc
->dev
;
3167 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3168 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3169 int pipe
= intel_crtc
->pipe
;
3170 int plane
= intel_crtc
->plane
;
3172 if (!intel_crtc
->active
)
3175 /* Give the overlay scaler a chance to disable if it's on this pipe */
3176 intel_crtc_wait_for_pending_flips(crtc
);
3177 drm_vblank_off(dev
, pipe
);
3178 intel_crtc_dpms_overlay(intel_crtc
, false);
3179 intel_crtc_update_cursor(crtc
, false);
3181 if (dev_priv
->cfb_plane
== plane
)
3182 intel_disable_fbc(dev
);
3184 intel_disable_plane(dev_priv
, plane
, pipe
);
3185 intel_disable_pipe(dev_priv
, pipe
);
3186 intel_disable_pll(dev_priv
, pipe
);
3188 intel_crtc
->active
= false;
3189 intel_update_fbc(dev
);
3190 intel_update_watermarks(dev
);
3191 intel_clear_scanline_wait(dev
);
3194 static void i9xx_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
3196 /* XXX: When our outputs are all unaware of DPMS modes other than off
3197 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
3200 case DRM_MODE_DPMS_ON
:
3201 case DRM_MODE_DPMS_STANDBY
:
3202 case DRM_MODE_DPMS_SUSPEND
:
3203 i9xx_crtc_enable(crtc
);
3205 case DRM_MODE_DPMS_OFF
:
3206 i9xx_crtc_disable(crtc
);
3212 * Sets the power management mode of the pipe and plane.
3214 static void intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
3216 struct drm_device
*dev
= crtc
->dev
;
3217 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3218 struct drm_i915_master_private
*master_priv
;
3219 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3220 int pipe
= intel_crtc
->pipe
;
3223 if (intel_crtc
->dpms_mode
== mode
)
3226 intel_crtc
->dpms_mode
= mode
;
3228 dev_priv
->display
.dpms(crtc
, mode
);
3230 if (!dev
->primary
->master
)
3233 master_priv
= dev
->primary
->master
->driver_priv
;
3234 if (!master_priv
->sarea_priv
)
3237 enabled
= crtc
->enabled
&& mode
!= DRM_MODE_DPMS_OFF
;
3241 master_priv
->sarea_priv
->pipeA_w
= enabled
? crtc
->mode
.hdisplay
: 0;
3242 master_priv
->sarea_priv
->pipeA_h
= enabled
? crtc
->mode
.vdisplay
: 0;
3245 master_priv
->sarea_priv
->pipeB_w
= enabled
? crtc
->mode
.hdisplay
: 0;
3246 master_priv
->sarea_priv
->pipeB_h
= enabled
? crtc
->mode
.vdisplay
: 0;
3249 DRM_ERROR("Can't update pipe %c in SAREA\n", pipe_name(pipe
));
3254 static void intel_crtc_disable(struct drm_crtc
*crtc
)
3256 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
3257 struct drm_device
*dev
= crtc
->dev
;
3259 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
3262 mutex_lock(&dev
->struct_mutex
);
3263 i915_gem_object_unpin(to_intel_framebuffer(crtc
->fb
)->obj
);
3264 mutex_unlock(&dev
->struct_mutex
);
3268 /* Prepare for a mode set.
3270 * Note we could be a lot smarter here. We need to figure out which outputs
3271 * will be enabled, which disabled (in short, how the config will changes)
3272 * and perform the minimum necessary steps to accomplish that, e.g. updating
3273 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
3274 * panel fitting is in the proper state, etc.
3276 static void i9xx_crtc_prepare(struct drm_crtc
*crtc
)
3278 i9xx_crtc_disable(crtc
);
3281 static void i9xx_crtc_commit(struct drm_crtc
*crtc
)
3283 i9xx_crtc_enable(crtc
);
3286 static void ironlake_crtc_prepare(struct drm_crtc
*crtc
)
3288 ironlake_crtc_disable(crtc
);
3291 static void ironlake_crtc_commit(struct drm_crtc
*crtc
)
3293 ironlake_crtc_enable(crtc
);
3296 void intel_encoder_prepare (struct drm_encoder
*encoder
)
3298 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3299 /* lvds has its own version of prepare see intel_lvds_prepare */
3300 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
3303 void intel_encoder_commit (struct drm_encoder
*encoder
)
3305 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
3306 /* lvds has its own version of commit see intel_lvds_commit */
3307 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
3310 void intel_encoder_destroy(struct drm_encoder
*encoder
)
3312 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
3314 drm_encoder_cleanup(encoder
);
3315 kfree(intel_encoder
);
3318 static bool intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
3319 struct drm_display_mode
*mode
,
3320 struct drm_display_mode
*adjusted_mode
)
3322 struct drm_device
*dev
= crtc
->dev
;
3324 if (HAS_PCH_SPLIT(dev
)) {
3325 /* FDI link clock is fixed at 2.7G */
3326 if (mode
->clock
* 3 > IRONLAKE_FDI_FREQ
* 4)
3330 /* XXX some encoders set the crtcinfo, others don't.
3331 * Obviously we need some form of conflict resolution here...
3333 if (adjusted_mode
->crtc_htotal
== 0)
3334 drm_mode_set_crtcinfo(adjusted_mode
, 0);
3339 static int i945_get_display_clock_speed(struct drm_device
*dev
)
3344 static int i915_get_display_clock_speed(struct drm_device
*dev
)
3349 static int i9xx_misc_get_display_clock_speed(struct drm_device
*dev
)
3354 static int i915gm_get_display_clock_speed(struct drm_device
*dev
)
3358 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
3360 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
3363 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
3364 case GC_DISPLAY_CLOCK_333_MHZ
:
3367 case GC_DISPLAY_CLOCK_190_200_MHZ
:
3373 static int i865_get_display_clock_speed(struct drm_device
*dev
)
3378 static int i855_get_display_clock_speed(struct drm_device
*dev
)
3381 /* Assume that the hardware is in the high speed state. This
3382 * should be the default.
3384 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
3385 case GC_CLOCK_133_200
:
3386 case GC_CLOCK_100_200
:
3388 case GC_CLOCK_166_250
:
3390 case GC_CLOCK_100_133
:
3394 /* Shouldn't happen */
3398 static int i830_get_display_clock_speed(struct drm_device
*dev
)
3412 fdi_reduce_ratio(u32
*num
, u32
*den
)
3414 while (*num
> 0xffffff || *den
> 0xffffff) {
3421 ironlake_compute_m_n(int bits_per_pixel
, int nlanes
, int pixel_clock
,
3422 int link_clock
, struct fdi_m_n
*m_n
)
3424 m_n
->tu
= 64; /* default size */
3426 /* BUG_ON(pixel_clock > INT_MAX / 36); */
3427 m_n
->gmch_m
= bits_per_pixel
* pixel_clock
;
3428 m_n
->gmch_n
= link_clock
* nlanes
* 8;
3429 fdi_reduce_ratio(&m_n
->gmch_m
, &m_n
->gmch_n
);
3431 m_n
->link_m
= pixel_clock
;
3432 m_n
->link_n
= link_clock
;
3433 fdi_reduce_ratio(&m_n
->link_m
, &m_n
->link_n
);
3437 struct intel_watermark_params
{
3438 unsigned long fifo_size
;
3439 unsigned long max_wm
;
3440 unsigned long default_wm
;
3441 unsigned long guard_size
;
3442 unsigned long cacheline_size
;
3445 /* Pineview has different values for various configs */
3446 static const struct intel_watermark_params pineview_display_wm
= {
3447 PINEVIEW_DISPLAY_FIFO
,
3451 PINEVIEW_FIFO_LINE_SIZE
3453 static const struct intel_watermark_params pineview_display_hplloff_wm
= {
3454 PINEVIEW_DISPLAY_FIFO
,
3456 PINEVIEW_DFT_HPLLOFF_WM
,
3458 PINEVIEW_FIFO_LINE_SIZE
3460 static const struct intel_watermark_params pineview_cursor_wm
= {
3461 PINEVIEW_CURSOR_FIFO
,
3462 PINEVIEW_CURSOR_MAX_WM
,
3463 PINEVIEW_CURSOR_DFT_WM
,
3464 PINEVIEW_CURSOR_GUARD_WM
,
3465 PINEVIEW_FIFO_LINE_SIZE
,
3467 static const struct intel_watermark_params pineview_cursor_hplloff_wm
= {
3468 PINEVIEW_CURSOR_FIFO
,
3469 PINEVIEW_CURSOR_MAX_WM
,
3470 PINEVIEW_CURSOR_DFT_WM
,
3471 PINEVIEW_CURSOR_GUARD_WM
,
3472 PINEVIEW_FIFO_LINE_SIZE
3474 static const struct intel_watermark_params g4x_wm_info
= {
3481 static const struct intel_watermark_params g4x_cursor_wm_info
= {
3488 static const struct intel_watermark_params i965_cursor_wm_info
= {
3493 I915_FIFO_LINE_SIZE
,
3495 static const struct intel_watermark_params i945_wm_info
= {
3502 static const struct intel_watermark_params i915_wm_info
= {
3509 static const struct intel_watermark_params i855_wm_info
= {
3516 static const struct intel_watermark_params i830_wm_info
= {
3524 static const struct intel_watermark_params ironlake_display_wm_info
= {
3531 static const struct intel_watermark_params ironlake_cursor_wm_info
= {
3538 static const struct intel_watermark_params ironlake_display_srwm_info
= {
3539 ILK_DISPLAY_SR_FIFO
,
3540 ILK_DISPLAY_MAX_SRWM
,
3541 ILK_DISPLAY_DFT_SRWM
,
3545 static const struct intel_watermark_params ironlake_cursor_srwm_info
= {
3547 ILK_CURSOR_MAX_SRWM
,
3548 ILK_CURSOR_DFT_SRWM
,
3553 static const struct intel_watermark_params sandybridge_display_wm_info
= {
3560 static const struct intel_watermark_params sandybridge_cursor_wm_info
= {
3567 static const struct intel_watermark_params sandybridge_display_srwm_info
= {
3568 SNB_DISPLAY_SR_FIFO
,
3569 SNB_DISPLAY_MAX_SRWM
,
3570 SNB_DISPLAY_DFT_SRWM
,
3574 static const struct intel_watermark_params sandybridge_cursor_srwm_info
= {
3576 SNB_CURSOR_MAX_SRWM
,
3577 SNB_CURSOR_DFT_SRWM
,
3584 * intel_calculate_wm - calculate watermark level
3585 * @clock_in_khz: pixel clock
3586 * @wm: chip FIFO params
3587 * @pixel_size: display pixel size
3588 * @latency_ns: memory latency for the platform
3590 * Calculate the watermark level (the level at which the display plane will
3591 * start fetching from memory again). Each chip has a different display
3592 * FIFO size and allocation, so the caller needs to figure that out and pass
3593 * in the correct intel_watermark_params structure.
3595 * As the pixel clock runs, the FIFO will be drained at a rate that depends
3596 * on the pixel size. When it reaches the watermark level, it'll start
3597 * fetching FIFO line sized based chunks from memory until the FIFO fills
3598 * past the watermark point. If the FIFO drains completely, a FIFO underrun
3599 * will occur, and a display engine hang could result.
3601 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
3602 const struct intel_watermark_params
*wm
,
3605 unsigned long latency_ns
)
3607 long entries_required
, wm_size
;
3610 * Note: we need to make sure we don't overflow for various clock &
3612 * clocks go from a few thousand to several hundred thousand.
3613 * latency is usually a few thousand
3615 entries_required
= ((clock_in_khz
/ 1000) * pixel_size
* latency_ns
) /
3617 entries_required
= DIV_ROUND_UP(entries_required
, wm
->cacheline_size
);
3619 DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required
);
3621 wm_size
= fifo_size
- (entries_required
+ wm
->guard_size
);
3623 DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size
);
3625 /* Don't promote wm_size to unsigned... */
3626 if (wm_size
> (long)wm
->max_wm
)
3627 wm_size
= wm
->max_wm
;
3629 wm_size
= wm
->default_wm
;
3633 struct cxsr_latency
{
3636 unsigned long fsb_freq
;
3637 unsigned long mem_freq
;
3638 unsigned long display_sr
;
3639 unsigned long display_hpll_disable
;
3640 unsigned long cursor_sr
;
3641 unsigned long cursor_hpll_disable
;
3644 static const struct cxsr_latency cxsr_latency_table
[] = {
3645 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
3646 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
3647 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
3648 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
3649 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
3651 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
3652 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
3653 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
3654 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
3655 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
3657 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
3658 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
3659 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
3660 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
3661 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
3663 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
3664 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
3665 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
3666 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
3667 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
3669 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
3670 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
3671 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
3672 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
3673 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
3675 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
3676 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
3677 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
3678 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
3679 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
3682 static const struct cxsr_latency
*intel_get_cxsr_latency(int is_desktop
,
3687 const struct cxsr_latency
*latency
;
3690 if (fsb
== 0 || mem
== 0)
3693 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
3694 latency
= &cxsr_latency_table
[i
];
3695 if (is_desktop
== latency
->is_desktop
&&
3696 is_ddr3
== latency
->is_ddr3
&&
3697 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
3701 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3706 static void pineview_disable_cxsr(struct drm_device
*dev
)
3708 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3710 /* deactivate cxsr */
3711 I915_WRITE(DSPFW3
, I915_READ(DSPFW3
) & ~PINEVIEW_SELF_REFRESH_EN
);
3715 * Latency for FIFO fetches is dependent on several factors:
3716 * - memory configuration (speed, channels)
3718 * - current MCH state
3719 * It can be fairly high in some situations, so here we assume a fairly
3720 * pessimal value. It's a tradeoff between extra memory fetches (if we
3721 * set this value too high, the FIFO will fetch frequently to stay full)
3722 * and power consumption (set it too low to save power and we might see
3723 * FIFO underruns and display "flicker").
3725 * A value of 5us seems to be a good balance; safe for very low end
3726 * platforms but not overly aggressive on lower latency configs.
3728 static const int latency_ns
= 5000;
3730 static int i9xx_get_fifo_size(struct drm_device
*dev
, int plane
)
3732 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3733 uint32_t dsparb
= I915_READ(DSPARB
);
3736 size
= dsparb
& 0x7f;
3738 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) - size
;
3740 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3741 plane
? "B" : "A", size
);
3746 static int i85x_get_fifo_size(struct drm_device
*dev
, int plane
)
3748 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3749 uint32_t dsparb
= I915_READ(DSPARB
);
3752 size
= dsparb
& 0x1ff;
3754 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) - size
;
3755 size
>>= 1; /* Convert to cachelines */
3757 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3758 plane
? "B" : "A", size
);
3763 static int i845_get_fifo_size(struct drm_device
*dev
, int plane
)
3765 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3766 uint32_t dsparb
= I915_READ(DSPARB
);
3769 size
= dsparb
& 0x7f;
3770 size
>>= 2; /* Convert to cachelines */
3772 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3779 static int i830_get_fifo_size(struct drm_device
*dev
, int plane
)
3781 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3782 uint32_t dsparb
= I915_READ(DSPARB
);
3785 size
= dsparb
& 0x7f;
3786 size
>>= 1; /* Convert to cachelines */
3788 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3789 plane
? "B" : "A", size
);
3794 static struct drm_crtc
*single_enabled_crtc(struct drm_device
*dev
)
3796 struct drm_crtc
*crtc
, *enabled
= NULL
;
3798 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
3799 if (crtc
->enabled
&& crtc
->fb
) {
3809 static void pineview_update_wm(struct drm_device
*dev
)
3811 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3812 struct drm_crtc
*crtc
;
3813 const struct cxsr_latency
*latency
;
3817 latency
= intel_get_cxsr_latency(IS_PINEVIEW_G(dev
), dev_priv
->is_ddr3
,
3818 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
3820 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3821 pineview_disable_cxsr(dev
);
3825 crtc
= single_enabled_crtc(dev
);
3827 int clock
= crtc
->mode
.clock
;
3828 int pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3831 wm
= intel_calculate_wm(clock
, &pineview_display_wm
,
3832 pineview_display_wm
.fifo_size
,
3833 pixel_size
, latency
->display_sr
);
3834 reg
= I915_READ(DSPFW1
);
3835 reg
&= ~DSPFW_SR_MASK
;
3836 reg
|= wm
<< DSPFW_SR_SHIFT
;
3837 I915_WRITE(DSPFW1
, reg
);
3838 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg
);
3841 wm
= intel_calculate_wm(clock
, &pineview_cursor_wm
,
3842 pineview_display_wm
.fifo_size
,
3843 pixel_size
, latency
->cursor_sr
);
3844 reg
= I915_READ(DSPFW3
);
3845 reg
&= ~DSPFW_CURSOR_SR_MASK
;
3846 reg
|= (wm
& 0x3f) << DSPFW_CURSOR_SR_SHIFT
;
3847 I915_WRITE(DSPFW3
, reg
);
3849 /* Display HPLL off SR */
3850 wm
= intel_calculate_wm(clock
, &pineview_display_hplloff_wm
,
3851 pineview_display_hplloff_wm
.fifo_size
,
3852 pixel_size
, latency
->display_hpll_disable
);
3853 reg
= I915_READ(DSPFW3
);
3854 reg
&= ~DSPFW_HPLL_SR_MASK
;
3855 reg
|= wm
& DSPFW_HPLL_SR_MASK
;
3856 I915_WRITE(DSPFW3
, reg
);
3858 /* cursor HPLL off SR */
3859 wm
= intel_calculate_wm(clock
, &pineview_cursor_hplloff_wm
,
3860 pineview_display_hplloff_wm
.fifo_size
,
3861 pixel_size
, latency
->cursor_hpll_disable
);
3862 reg
= I915_READ(DSPFW3
);
3863 reg
&= ~DSPFW_HPLL_CURSOR_MASK
;
3864 reg
|= (wm
& 0x3f) << DSPFW_HPLL_CURSOR_SHIFT
;
3865 I915_WRITE(DSPFW3
, reg
);
3866 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg
);
3870 I915_READ(DSPFW3
) | PINEVIEW_SELF_REFRESH_EN
);
3871 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3873 pineview_disable_cxsr(dev
);
3874 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3878 static bool g4x_compute_wm0(struct drm_device
*dev
,
3880 const struct intel_watermark_params
*display
,
3881 int display_latency_ns
,
3882 const struct intel_watermark_params
*cursor
,
3883 int cursor_latency_ns
,
3887 struct drm_crtc
*crtc
;
3888 int htotal
, hdisplay
, clock
, pixel_size
;
3889 int line_time_us
, line_count
;
3890 int entries
, tlb_miss
;
3892 crtc
= intel_get_crtc_for_plane(dev
, plane
);
3893 if (crtc
->fb
== NULL
|| !crtc
->enabled
) {
3894 *cursor_wm
= cursor
->guard_size
;
3895 *plane_wm
= display
->guard_size
;
3899 htotal
= crtc
->mode
.htotal
;
3900 hdisplay
= crtc
->mode
.hdisplay
;
3901 clock
= crtc
->mode
.clock
;
3902 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3904 /* Use the small buffer method to calculate plane watermark */
3905 entries
= ((clock
* pixel_size
/ 1000) * display_latency_ns
) / 1000;
3906 tlb_miss
= display
->fifo_size
*display
->cacheline_size
- hdisplay
* 8;
3908 entries
+= tlb_miss
;
3909 entries
= DIV_ROUND_UP(entries
, display
->cacheline_size
);
3910 *plane_wm
= entries
+ display
->guard_size
;
3911 if (*plane_wm
> (int)display
->max_wm
)
3912 *plane_wm
= display
->max_wm
;
3914 /* Use the large buffer method to calculate cursor watermark */
3915 line_time_us
= ((htotal
* 1000) / clock
);
3916 line_count
= (cursor_latency_ns
/ line_time_us
+ 1000) / 1000;
3917 entries
= line_count
* 64 * pixel_size
;
3918 tlb_miss
= cursor
->fifo_size
*cursor
->cacheline_size
- hdisplay
* 8;
3920 entries
+= tlb_miss
;
3921 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
3922 *cursor_wm
= entries
+ cursor
->guard_size
;
3923 if (*cursor_wm
> (int)cursor
->max_wm
)
3924 *cursor_wm
= (int)cursor
->max_wm
;
3930 * Check the wm result.
3932 * If any calculated watermark values is larger than the maximum value that
3933 * can be programmed into the associated watermark register, that watermark
3936 static bool g4x_check_srwm(struct drm_device
*dev
,
3937 int display_wm
, int cursor_wm
,
3938 const struct intel_watermark_params
*display
,
3939 const struct intel_watermark_params
*cursor
)
3941 DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
3942 display_wm
, cursor_wm
);
3944 if (display_wm
> display
->max_wm
) {
3945 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
3946 display_wm
, display
->max_wm
);
3950 if (cursor_wm
> cursor
->max_wm
) {
3951 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
3952 cursor_wm
, cursor
->max_wm
);
3956 if (!(display_wm
|| cursor_wm
)) {
3957 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
3964 static bool g4x_compute_srwm(struct drm_device
*dev
,
3967 const struct intel_watermark_params
*display
,
3968 const struct intel_watermark_params
*cursor
,
3969 int *display_wm
, int *cursor_wm
)
3971 struct drm_crtc
*crtc
;
3972 int hdisplay
, htotal
, pixel_size
, clock
;
3973 unsigned long line_time_us
;
3974 int line_count
, line_size
;
3979 *display_wm
= *cursor_wm
= 0;
3983 crtc
= intel_get_crtc_for_plane(dev
, plane
);
3984 hdisplay
= crtc
->mode
.hdisplay
;
3985 htotal
= crtc
->mode
.htotal
;
3986 clock
= crtc
->mode
.clock
;
3987 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3989 line_time_us
= (htotal
* 1000) / clock
;
3990 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
3991 line_size
= hdisplay
* pixel_size
;
3993 /* Use the minimum of the small and large buffer method for primary */
3994 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
3995 large
= line_count
* line_size
;
3997 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
3998 *display_wm
= entries
+ display
->guard_size
;
4000 /* calculate the self-refresh watermark for display cursor */
4001 entries
= line_count
* pixel_size
* 64;
4002 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
4003 *cursor_wm
= entries
+ cursor
->guard_size
;
4005 return g4x_check_srwm(dev
,
4006 *display_wm
, *cursor_wm
,
4010 #define single_plane_enabled(mask) is_power_of_2(mask)
4012 static void g4x_update_wm(struct drm_device
*dev
)
4014 static const int sr_latency_ns
= 12000;
4015 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4016 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
;
4017 int plane_sr
, cursor_sr
;
4018 unsigned int enabled
= 0;
4020 if (g4x_compute_wm0(dev
, 0,
4021 &g4x_wm_info
, latency_ns
,
4022 &g4x_cursor_wm_info
, latency_ns
,
4023 &planea_wm
, &cursora_wm
))
4026 if (g4x_compute_wm0(dev
, 1,
4027 &g4x_wm_info
, latency_ns
,
4028 &g4x_cursor_wm_info
, latency_ns
,
4029 &planeb_wm
, &cursorb_wm
))
4032 plane_sr
= cursor_sr
= 0;
4033 if (single_plane_enabled(enabled
) &&
4034 g4x_compute_srwm(dev
, ffs(enabled
) - 1,
4037 &g4x_cursor_wm_info
,
4038 &plane_sr
, &cursor_sr
))
4039 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
4041 I915_WRITE(FW_BLC_SELF
,
4042 I915_READ(FW_BLC_SELF
) & ~FW_BLC_SELF_EN
);
4044 DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
4045 planea_wm
, cursora_wm
,
4046 planeb_wm
, cursorb_wm
,
4047 plane_sr
, cursor_sr
);
4050 (plane_sr
<< DSPFW_SR_SHIFT
) |
4051 (cursorb_wm
<< DSPFW_CURSORB_SHIFT
) |
4052 (planeb_wm
<< DSPFW_PLANEB_SHIFT
) |
4055 (I915_READ(DSPFW2
) & DSPFW_CURSORA_MASK
) |
4056 (cursora_wm
<< DSPFW_CURSORA_SHIFT
));
4057 /* HPLL off in SR has some issues on G4x... disable it */
4059 (I915_READ(DSPFW3
) & ~DSPFW_HPLL_SR_EN
) |
4060 (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
4063 static void i965_update_wm(struct drm_device
*dev
)
4065 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4066 struct drm_crtc
*crtc
;
4070 /* Calc sr entries for one plane configs */
4071 crtc
= single_enabled_crtc(dev
);
4073 /* self-refresh has much higher latency */
4074 static const int sr_latency_ns
= 12000;
4075 int clock
= crtc
->mode
.clock
;
4076 int htotal
= crtc
->mode
.htotal
;
4077 int hdisplay
= crtc
->mode
.hdisplay
;
4078 int pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
4079 unsigned long line_time_us
;
4082 line_time_us
= ((htotal
* 1000) / clock
);
4084 /* Use ns/us then divide to preserve precision */
4085 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
4086 pixel_size
* hdisplay
;
4087 entries
= DIV_ROUND_UP(entries
, I915_FIFO_LINE_SIZE
);
4088 srwm
= I965_FIFO_SIZE
- entries
;
4092 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
4095 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
4097 entries
= DIV_ROUND_UP(entries
,
4098 i965_cursor_wm_info
.cacheline_size
);
4099 cursor_sr
= i965_cursor_wm_info
.fifo_size
-
4100 (entries
+ i965_cursor_wm_info
.guard_size
);
4102 if (cursor_sr
> i965_cursor_wm_info
.max_wm
)
4103 cursor_sr
= i965_cursor_wm_info
.max_wm
;
4105 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
4106 "cursor %d\n", srwm
, cursor_sr
);
4108 if (IS_CRESTLINE(dev
))
4109 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
4111 /* Turn off self refresh if both pipes are enabled */
4112 if (IS_CRESTLINE(dev
))
4113 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
4117 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
4120 /* 965 has limitations... */
4121 I915_WRITE(DSPFW1
, (srwm
<< DSPFW_SR_SHIFT
) |
4122 (8 << 16) | (8 << 8) | (8 << 0));
4123 I915_WRITE(DSPFW2
, (8 << 8) | (8 << 0));
4124 /* update cursor SR watermark */
4125 I915_WRITE(DSPFW3
, (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
4128 static void i9xx_update_wm(struct drm_device
*dev
)
4130 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4131 const struct intel_watermark_params
*wm_info
;
4136 int planea_wm
, planeb_wm
;
4137 struct drm_crtc
*crtc
, *enabled
= NULL
;
4140 wm_info
= &i945_wm_info
;
4141 else if (!IS_GEN2(dev
))
4142 wm_info
= &i915_wm_info
;
4144 wm_info
= &i855_wm_info
;
4146 fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
4147 crtc
= intel_get_crtc_for_plane(dev
, 0);
4148 if (crtc
->enabled
&& crtc
->fb
) {
4149 planea_wm
= intel_calculate_wm(crtc
->mode
.clock
,
4151 crtc
->fb
->bits_per_pixel
/ 8,
4155 planea_wm
= fifo_size
- wm_info
->guard_size
;
4157 fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 1);
4158 crtc
= intel_get_crtc_for_plane(dev
, 1);
4159 if (crtc
->enabled
&& crtc
->fb
) {
4160 planeb_wm
= intel_calculate_wm(crtc
->mode
.clock
,
4162 crtc
->fb
->bits_per_pixel
/ 8,
4164 if (enabled
== NULL
)
4169 planeb_wm
= fifo_size
- wm_info
->guard_size
;
4171 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
4174 * Overlay gets an aggressive default since video jitter is bad.
4178 /* Play safe and disable self-refresh before adjusting watermarks. */
4179 if (IS_I945G(dev
) || IS_I945GM(dev
))
4180 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN_MASK
| 0);
4181 else if (IS_I915GM(dev
))
4182 I915_WRITE(INSTPM
, I915_READ(INSTPM
) & ~INSTPM_SELF_EN
);
4184 /* Calc sr entries for one plane configs */
4185 if (HAS_FW_BLC(dev
) && enabled
) {
4186 /* self-refresh has much higher latency */
4187 static const int sr_latency_ns
= 6000;
4188 int clock
= enabled
->mode
.clock
;
4189 int htotal
= enabled
->mode
.htotal
;
4190 int hdisplay
= enabled
->mode
.hdisplay
;
4191 int pixel_size
= enabled
->fb
->bits_per_pixel
/ 8;
4192 unsigned long line_time_us
;
4195 line_time_us
= (htotal
* 1000) / clock
;
4197 /* Use ns/us then divide to preserve precision */
4198 entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
4199 pixel_size
* hdisplay
;
4200 entries
= DIV_ROUND_UP(entries
, wm_info
->cacheline_size
);
4201 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries
);
4202 srwm
= wm_info
->fifo_size
- entries
;
4206 if (IS_I945G(dev
) || IS_I945GM(dev
))
4207 I915_WRITE(FW_BLC_SELF
,
4208 FW_BLC_SELF_FIFO_MASK
| (srwm
& 0xff));
4209 else if (IS_I915GM(dev
))
4210 I915_WRITE(FW_BLC_SELF
, srwm
& 0x3f);
4213 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
4214 planea_wm
, planeb_wm
, cwm
, srwm
);
4216 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
4217 fwater_hi
= (cwm
& 0x1f);
4219 /* Set request length to 8 cachelines per fetch */
4220 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
4221 fwater_hi
= fwater_hi
| (1 << 8);
4223 I915_WRITE(FW_BLC
, fwater_lo
);
4224 I915_WRITE(FW_BLC2
, fwater_hi
);
4226 if (HAS_FW_BLC(dev
)) {
4228 if (IS_I945G(dev
) || IS_I945GM(dev
))
4229 I915_WRITE(FW_BLC_SELF
,
4230 FW_BLC_SELF_EN_MASK
| FW_BLC_SELF_EN
);
4231 else if (IS_I915GM(dev
))
4232 I915_WRITE(INSTPM
, I915_READ(INSTPM
) | INSTPM_SELF_EN
);
4233 DRM_DEBUG_KMS("memory self refresh enabled\n");
4235 DRM_DEBUG_KMS("memory self refresh disabled\n");
4239 static void i830_update_wm(struct drm_device
*dev
)
4241 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4242 struct drm_crtc
*crtc
;
4246 crtc
= single_enabled_crtc(dev
);
4250 planea_wm
= intel_calculate_wm(crtc
->mode
.clock
, &i830_wm_info
,
4251 dev_priv
->display
.get_fifo_size(dev
, 0),
4252 crtc
->fb
->bits_per_pixel
/ 8,
4254 fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
4255 fwater_lo
|= (3<<8) | planea_wm
;
4257 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm
);
4259 I915_WRITE(FW_BLC
, fwater_lo
);
4262 #define ILK_LP0_PLANE_LATENCY 700
4263 #define ILK_LP0_CURSOR_LATENCY 1300
4266 * Check the wm result.
4268 * If any calculated watermark values is larger than the maximum value that
4269 * can be programmed into the associated watermark register, that watermark
4272 static bool ironlake_check_srwm(struct drm_device
*dev
, int level
,
4273 int fbc_wm
, int display_wm
, int cursor_wm
,
4274 const struct intel_watermark_params
*display
,
4275 const struct intel_watermark_params
*cursor
)
4277 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4279 DRM_DEBUG_KMS("watermark %d: display plane %d, fbc lines %d,"
4280 " cursor %d\n", level
, display_wm
, fbc_wm
, cursor_wm
);
4282 if (fbc_wm
> SNB_FBC_MAX_SRWM
) {
4283 DRM_DEBUG_KMS("fbc watermark(%d) is too large(%d), disabling wm%d+\n",
4284 fbc_wm
, SNB_FBC_MAX_SRWM
, level
);
4286 /* fbc has it's own way to disable FBC WM */
4287 I915_WRITE(DISP_ARB_CTL
,
4288 I915_READ(DISP_ARB_CTL
) | DISP_FBC_WM_DIS
);
4292 if (display_wm
> display
->max_wm
) {
4293 DRM_DEBUG_KMS("display watermark(%d) is too large(%d), disabling wm%d+\n",
4294 display_wm
, SNB_DISPLAY_MAX_SRWM
, level
);
4298 if (cursor_wm
> cursor
->max_wm
) {
4299 DRM_DEBUG_KMS("cursor watermark(%d) is too large(%d), disabling wm%d+\n",
4300 cursor_wm
, SNB_CURSOR_MAX_SRWM
, level
);
4304 if (!(fbc_wm
|| display_wm
|| cursor_wm
)) {
4305 DRM_DEBUG_KMS("latency %d is 0, disabling wm%d+\n", level
, level
);
4313 * Compute watermark values of WM[1-3],
4315 static bool ironlake_compute_srwm(struct drm_device
*dev
, int level
, int plane
,
4317 const struct intel_watermark_params
*display
,
4318 const struct intel_watermark_params
*cursor
,
4319 int *fbc_wm
, int *display_wm
, int *cursor_wm
)
4321 struct drm_crtc
*crtc
;
4322 unsigned long line_time_us
;
4323 int hdisplay
, htotal
, pixel_size
, clock
;
4324 int line_count
, line_size
;
4329 *fbc_wm
= *display_wm
= *cursor_wm
= 0;
4333 crtc
= intel_get_crtc_for_plane(dev
, plane
);
4334 hdisplay
= crtc
->mode
.hdisplay
;
4335 htotal
= crtc
->mode
.htotal
;
4336 clock
= crtc
->mode
.clock
;
4337 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
4339 line_time_us
= (htotal
* 1000) / clock
;
4340 line_count
= (latency_ns
/ line_time_us
+ 1000) / 1000;
4341 line_size
= hdisplay
* pixel_size
;
4343 /* Use the minimum of the small and large buffer method for primary */
4344 small
= ((clock
* pixel_size
/ 1000) * latency_ns
) / 1000;
4345 large
= line_count
* line_size
;
4347 entries
= DIV_ROUND_UP(min(small
, large
), display
->cacheline_size
);
4348 *display_wm
= entries
+ display
->guard_size
;
4352 * FBC WM = ((Final Primary WM * 64) / number of bytes per line) + 2
4354 *fbc_wm
= DIV_ROUND_UP(*display_wm
* 64, line_size
) + 2;
4356 /* calculate the self-refresh watermark for display cursor */
4357 entries
= line_count
* pixel_size
* 64;
4358 entries
= DIV_ROUND_UP(entries
, cursor
->cacheline_size
);
4359 *cursor_wm
= entries
+ cursor
->guard_size
;
4361 return ironlake_check_srwm(dev
, level
,
4362 *fbc_wm
, *display_wm
, *cursor_wm
,
4366 static void ironlake_update_wm(struct drm_device
*dev
)
4368 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4369 int fbc_wm
, plane_wm
, cursor_wm
;
4370 unsigned int enabled
;
4373 if (g4x_compute_wm0(dev
, 0,
4374 &ironlake_display_wm_info
,
4375 ILK_LP0_PLANE_LATENCY
,
4376 &ironlake_cursor_wm_info
,
4377 ILK_LP0_CURSOR_LATENCY
,
4378 &plane_wm
, &cursor_wm
)) {
4379 I915_WRITE(WM0_PIPEA_ILK
,
4380 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4381 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4382 " plane %d, " "cursor: %d\n",
4383 plane_wm
, cursor_wm
);
4387 if (g4x_compute_wm0(dev
, 1,
4388 &ironlake_display_wm_info
,
4389 ILK_LP0_PLANE_LATENCY
,
4390 &ironlake_cursor_wm_info
,
4391 ILK_LP0_CURSOR_LATENCY
,
4392 &plane_wm
, &cursor_wm
)) {
4393 I915_WRITE(WM0_PIPEB_ILK
,
4394 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4395 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4396 " plane %d, cursor: %d\n",
4397 plane_wm
, cursor_wm
);
4402 * Calculate and update the self-refresh watermark only when one
4403 * display plane is used.
4405 I915_WRITE(WM3_LP_ILK
, 0);
4406 I915_WRITE(WM2_LP_ILK
, 0);
4407 I915_WRITE(WM1_LP_ILK
, 0);
4409 if (!single_plane_enabled(enabled
))
4411 enabled
= ffs(enabled
) - 1;
4414 if (!ironlake_compute_srwm(dev
, 1, enabled
,
4415 ILK_READ_WM1_LATENCY() * 500,
4416 &ironlake_display_srwm_info
,
4417 &ironlake_cursor_srwm_info
,
4418 &fbc_wm
, &plane_wm
, &cursor_wm
))
4421 I915_WRITE(WM1_LP_ILK
,
4423 (ILK_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4424 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4425 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4429 if (!ironlake_compute_srwm(dev
, 2, enabled
,
4430 ILK_READ_WM2_LATENCY() * 500,
4431 &ironlake_display_srwm_info
,
4432 &ironlake_cursor_srwm_info
,
4433 &fbc_wm
, &plane_wm
, &cursor_wm
))
4436 I915_WRITE(WM2_LP_ILK
,
4438 (ILK_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4439 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4440 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4444 * WM3 is unsupported on ILK, probably because we don't have latency
4445 * data for that power state
4449 static void sandybridge_update_wm(struct drm_device
*dev
)
4451 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4452 int latency
= SNB_READ_WM0_LATENCY() * 100; /* In unit 0.1us */
4453 int fbc_wm
, plane_wm
, cursor_wm
;
4454 unsigned int enabled
;
4457 if (g4x_compute_wm0(dev
, 0,
4458 &sandybridge_display_wm_info
, latency
,
4459 &sandybridge_cursor_wm_info
, latency
,
4460 &plane_wm
, &cursor_wm
)) {
4461 I915_WRITE(WM0_PIPEA_ILK
,
4462 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4463 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
4464 " plane %d, " "cursor: %d\n",
4465 plane_wm
, cursor_wm
);
4469 if (g4x_compute_wm0(dev
, 1,
4470 &sandybridge_display_wm_info
, latency
,
4471 &sandybridge_cursor_wm_info
, latency
,
4472 &plane_wm
, &cursor_wm
)) {
4473 I915_WRITE(WM0_PIPEB_ILK
,
4474 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
4475 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
4476 " plane %d, cursor: %d\n",
4477 plane_wm
, cursor_wm
);
4482 * Calculate and update the self-refresh watermark only when one
4483 * display plane is used.
4485 * SNB support 3 levels of watermark.
4487 * WM1/WM2/WM2 watermarks have to be enabled in the ascending order,
4488 * and disabled in the descending order
4491 I915_WRITE(WM3_LP_ILK
, 0);
4492 I915_WRITE(WM2_LP_ILK
, 0);
4493 I915_WRITE(WM1_LP_ILK
, 0);
4495 if (!single_plane_enabled(enabled
))
4497 enabled
= ffs(enabled
) - 1;
4500 if (!ironlake_compute_srwm(dev
, 1, enabled
,
4501 SNB_READ_WM1_LATENCY() * 500,
4502 &sandybridge_display_srwm_info
,
4503 &sandybridge_cursor_srwm_info
,
4504 &fbc_wm
, &plane_wm
, &cursor_wm
))
4507 I915_WRITE(WM1_LP_ILK
,
4509 (SNB_READ_WM1_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4510 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4511 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4515 if (!ironlake_compute_srwm(dev
, 2, enabled
,
4516 SNB_READ_WM2_LATENCY() * 500,
4517 &sandybridge_display_srwm_info
,
4518 &sandybridge_cursor_srwm_info
,
4519 &fbc_wm
, &plane_wm
, &cursor_wm
))
4522 I915_WRITE(WM2_LP_ILK
,
4524 (SNB_READ_WM2_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4525 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4526 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4530 if (!ironlake_compute_srwm(dev
, 3, enabled
,
4531 SNB_READ_WM3_LATENCY() * 500,
4532 &sandybridge_display_srwm_info
,
4533 &sandybridge_cursor_srwm_info
,
4534 &fbc_wm
, &plane_wm
, &cursor_wm
))
4537 I915_WRITE(WM3_LP_ILK
,
4539 (SNB_READ_WM3_LATENCY() << WM1_LP_LATENCY_SHIFT
) |
4540 (fbc_wm
<< WM1_LP_FBC_SHIFT
) |
4541 (plane_wm
<< WM1_LP_SR_SHIFT
) |
4546 * intel_update_watermarks - update FIFO watermark values based on current modes
4548 * Calculate watermark values for the various WM regs based on current mode
4549 * and plane configuration.
4551 * There are several cases to deal with here:
4552 * - normal (i.e. non-self-refresh)
4553 * - self-refresh (SR) mode
4554 * - lines are large relative to FIFO size (buffer can hold up to 2)
4555 * - lines are small relative to FIFO size (buffer can hold more than 2
4556 * lines), so need to account for TLB latency
4558 * The normal calculation is:
4559 * watermark = dotclock * bytes per pixel * latency
4560 * where latency is platform & configuration dependent (we assume pessimal
4563 * The SR calculation is:
4564 * watermark = (trunc(latency/line time)+1) * surface width *
4567 * line time = htotal / dotclock
4568 * surface width = hdisplay for normal plane and 64 for cursor
4569 * and latency is assumed to be high, as above.
4571 * The final value programmed to the register should always be rounded up,
4572 * and include an extra 2 entries to account for clock crossings.
4574 * We don't use the sprite, so we can ignore that. And on Crestline we have
4575 * to set the non-SR watermarks to 8.
4577 static void intel_update_watermarks(struct drm_device
*dev
)
4579 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4581 if (dev_priv
->display
.update_wm
)
4582 dev_priv
->display
.update_wm(dev
);
4585 static inline bool intel_panel_use_ssc(struct drm_i915_private
*dev_priv
)
4587 return dev_priv
->lvds_use_ssc
&& i915_panel_use_ssc
4588 && !(dev_priv
->quirks
& QUIRK_LVDS_SSC_DISABLE
);
4592 * intel_choose_pipe_bpp_dither - figure out what color depth the pipe should send
4593 * @crtc: CRTC structure
4595 * A pipe may be connected to one or more outputs. Based on the depth of the
4596 * attached framebuffer, choose a good color depth to use on the pipe.
4598 * If possible, match the pipe depth to the fb depth. In some cases, this
4599 * isn't ideal, because the connected output supports a lesser or restricted
4600 * set of depths. Resolve that here:
4601 * LVDS typically supports only 6bpc, so clamp down in that case
4602 * HDMI supports only 8bpc or 12bpc, so clamp to 8bpc with dither for 10bpc
4603 * Displays may support a restricted set as well, check EDID and clamp as
4607 * Dithering requirement (i.e. false if display bpc and pipe bpc match,
4608 * true if they don't match).
4610 static bool intel_choose_pipe_bpp_dither(struct drm_crtc
*crtc
,
4611 unsigned int *pipe_bpp
)
4613 struct drm_device
*dev
= crtc
->dev
;
4614 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4615 struct drm_encoder
*encoder
;
4616 struct drm_connector
*connector
;
4617 unsigned int display_bpc
= UINT_MAX
, bpc
;
4619 /* Walk the encoders & connectors on this crtc, get min bpc */
4620 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, head
) {
4621 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
4623 if (encoder
->crtc
!= crtc
)
4626 if (intel_encoder
->type
== INTEL_OUTPUT_LVDS
) {
4627 unsigned int lvds_bpc
;
4629 if ((I915_READ(PCH_LVDS
) & LVDS_A3_POWER_MASK
) ==
4635 if (lvds_bpc
< display_bpc
) {
4636 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to LVDS (%d)\n", display_bpc
, lvds_bpc
);
4637 display_bpc
= lvds_bpc
;
4642 if (intel_encoder
->type
== INTEL_OUTPUT_EDP
) {
4643 /* Use VBT settings if we have an eDP panel */
4644 unsigned int edp_bpc
= dev_priv
->edp
.bpp
/ 3;
4646 if (edp_bpc
< display_bpc
) {
4647 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to eDP (%d)\n", display_bpc
, edp_bpc
);
4648 display_bpc
= edp_bpc
;
4653 /* Not one of the known troublemakers, check the EDID */
4654 list_for_each_entry(connector
, &dev
->mode_config
.connector_list
,
4656 if (connector
->encoder
!= encoder
)
4659 /* Don't use an invalid EDID bpc value */
4660 if (connector
->display_info
.bpc
&&
4661 connector
->display_info
.bpc
< display_bpc
) {
4662 DRM_DEBUG_DRIVER("clamping display bpc (was %d) to EDID reported max of %d\n", display_bpc
, connector
->display_info
.bpc
);
4663 display_bpc
= connector
->display_info
.bpc
;
4668 * HDMI is either 12 or 8, so if the display lets 10bpc sneak
4669 * through, clamp it down. (Note: >12bpc will be caught below.)
4671 if (intel_encoder
->type
== INTEL_OUTPUT_HDMI
) {
4672 if (display_bpc
> 8 && display_bpc
< 12) {
4673 DRM_DEBUG_DRIVER("forcing bpc to 12 for HDMI\n");
4676 DRM_DEBUG_DRIVER("forcing bpc to 8 for HDMI\n");
4683 * We could just drive the pipe at the highest bpc all the time and
4684 * enable dithering as needed, but that costs bandwidth. So choose
4685 * the minimum value that expresses the full color range of the fb but
4686 * also stays within the max display bpc discovered above.
4689 switch (crtc
->fb
->depth
) {
4691 bpc
= 8; /* since we go through a colormap */
4695 bpc
= 6; /* min is 18bpp */
4707 DRM_DEBUG("unsupported depth, assuming 24 bits\n");
4708 bpc
= min((unsigned int)8, display_bpc
);
4712 display_bpc
= min(display_bpc
, bpc
);
4714 DRM_DEBUG_DRIVER("setting pipe bpc to %d (max display bpc %d)\n",
4717 *pipe_bpp
= display_bpc
* 3;
4719 return display_bpc
!= bpc
;
4722 static int i9xx_crtc_mode_set(struct drm_crtc
*crtc
,
4723 struct drm_display_mode
*mode
,
4724 struct drm_display_mode
*adjusted_mode
,
4726 struct drm_framebuffer
*old_fb
)
4728 struct drm_device
*dev
= crtc
->dev
;
4729 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4730 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4731 int pipe
= intel_crtc
->pipe
;
4732 int plane
= intel_crtc
->plane
;
4733 int refclk
, num_connectors
= 0;
4734 intel_clock_t clock
, reduced_clock
;
4735 u32 dpll
, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
4736 bool ok
, has_reduced_clock
= false, is_sdvo
= false, is_dvo
= false;
4737 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
4738 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
4739 struct intel_encoder
*encoder
;
4740 const intel_limit_t
*limit
;
4745 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
4746 if (encoder
->base
.crtc
!= crtc
)
4749 switch (encoder
->type
) {
4750 case INTEL_OUTPUT_LVDS
:
4753 case INTEL_OUTPUT_SDVO
:
4754 case INTEL_OUTPUT_HDMI
:
4756 if (encoder
->needs_tv_clock
)
4759 case INTEL_OUTPUT_DVO
:
4762 case INTEL_OUTPUT_TVOUT
:
4765 case INTEL_OUTPUT_ANALOG
:
4768 case INTEL_OUTPUT_DISPLAYPORT
:
4776 if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2) {
4777 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
4778 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
4780 } else if (!IS_GEN2(dev
)) {
4787 * Returns a set of divisors for the desired target clock with the given
4788 * refclk, or FALSE. The returned values represent the clock equation:
4789 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
4791 limit
= intel_limit(crtc
, refclk
);
4792 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
4794 DRM_ERROR("Couldn't find PLL settings for mode!\n");
4798 /* Ensure that the cursor is valid for the new mode before changing... */
4799 intel_crtc_update_cursor(crtc
, true);
4801 if (is_lvds
&& dev_priv
->lvds_downclock_avail
) {
4802 has_reduced_clock
= limit
->find_pll(limit
, crtc
,
4803 dev_priv
->lvds_downclock
,
4806 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
4808 * If the different P is found, it means that we can't
4809 * switch the display clock by using the FP0/FP1.
4810 * In such case we will disable the LVDS downclock
4813 DRM_DEBUG_KMS("Different P is found for "
4814 "LVDS clock/downclock\n");
4815 has_reduced_clock
= 0;
4818 /* SDVO TV has fixed PLL values depend on its clock range,
4819 this mirrors vbios setting. */
4820 if (is_sdvo
&& is_tv
) {
4821 if (adjusted_mode
->clock
>= 100000
4822 && adjusted_mode
->clock
< 140500) {
4828 } else if (adjusted_mode
->clock
>= 140500
4829 && adjusted_mode
->clock
<= 200000) {
4838 if (IS_PINEVIEW(dev
)) {
4839 fp
= (1 << clock
.n
) << 16 | clock
.m1
<< 8 | clock
.m2
;
4840 if (has_reduced_clock
)
4841 fp2
= (1 << reduced_clock
.n
) << 16 |
4842 reduced_clock
.m1
<< 8 | reduced_clock
.m2
;
4844 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
4845 if (has_reduced_clock
)
4846 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
4850 dpll
= DPLL_VGA_MODE_DIS
;
4852 if (!IS_GEN2(dev
)) {
4854 dpll
|= DPLLB_MODE_LVDS
;
4856 dpll
|= DPLLB_MODE_DAC_SERIAL
;
4858 int pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
4859 if (pixel_multiplier
> 1) {
4860 if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_G33(dev
))
4861 dpll
|= (pixel_multiplier
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
4863 dpll
|= DPLL_DVO_HIGH_SPEED
;
4866 dpll
|= DPLL_DVO_HIGH_SPEED
;
4868 /* compute bitmask from p1 value */
4869 if (IS_PINEVIEW(dev
))
4870 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
;
4872 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
4873 if (IS_G4X(dev
) && has_reduced_clock
)
4874 dpll
|= (1 << (reduced_clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
4878 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
4881 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
4884 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
4887 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
4890 if (INTEL_INFO(dev
)->gen
>= 4)
4891 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
4894 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
4897 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
4899 dpll
|= (clock
.p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
4901 dpll
|= PLL_P2_DIVIDE_BY_4
;
4905 if (is_sdvo
&& is_tv
)
4906 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
4908 /* XXX: just matching BIOS for now */
4909 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
4911 else if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2)
4912 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
4914 dpll
|= PLL_REF_INPUT_DREFCLK
;
4916 /* setup pipeconf */
4917 pipeconf
= I915_READ(PIPECONF(pipe
));
4919 /* Set up the display plane register */
4920 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
4922 /* Ironlake's plane is forced to pipe, bit 24 is to
4923 enable color space conversion */
4925 dspcntr
&= ~DISPPLANE_SEL_PIPE_MASK
;
4927 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
4929 if (pipe
== 0 && INTEL_INFO(dev
)->gen
< 4) {
4930 /* Enable pixel doubling when the dot clock is > 90% of the (display)
4933 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
4937 dev_priv
->display
.get_display_clock_speed(dev
) * 9 / 10)
4938 pipeconf
|= PIPECONF_DOUBLE_WIDE
;
4940 pipeconf
&= ~PIPECONF_DOUBLE_WIDE
;
4943 dpll
|= DPLL_VCO_ENABLE
;
4945 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
4946 drm_mode_debug_printmodeline(mode
);
4948 I915_WRITE(FP0(pipe
), fp
);
4949 I915_WRITE(DPLL(pipe
), dpll
& ~DPLL_VCO_ENABLE
);
4951 POSTING_READ(DPLL(pipe
));
4954 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
4955 * This is an exception to the general rule that mode_set doesn't turn
4959 temp
= I915_READ(LVDS
);
4960 temp
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
;
4962 temp
|= LVDS_PIPEB_SELECT
;
4964 temp
&= ~LVDS_PIPEB_SELECT
;
4966 /* set the corresponsding LVDS_BORDER bit */
4967 temp
|= dev_priv
->lvds_border_bits
;
4968 /* Set the B0-B3 data pairs corresponding to whether we're going to
4969 * set the DPLLs for dual-channel mode or not.
4972 temp
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
4974 temp
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
4976 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
4977 * appropriately here, but we need to look more thoroughly into how
4978 * panels behave in the two modes.
4980 /* set the dithering flag on LVDS as needed */
4981 if (INTEL_INFO(dev
)->gen
>= 4) {
4982 if (dev_priv
->lvds_dither
)
4983 temp
|= LVDS_ENABLE_DITHER
;
4985 temp
&= ~LVDS_ENABLE_DITHER
;
4987 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
4988 lvds_sync
|= LVDS_HSYNC_POLARITY
;
4989 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
4990 lvds_sync
|= LVDS_VSYNC_POLARITY
;
4991 if ((temp
& (LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
))
4993 char flags
[2] = "-+";
4994 DRM_INFO("Changing LVDS panel from "
4995 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
4996 flags
[!(temp
& LVDS_HSYNC_POLARITY
)],
4997 flags
[!(temp
& LVDS_VSYNC_POLARITY
)],
4998 flags
[!(lvds_sync
& LVDS_HSYNC_POLARITY
)],
4999 flags
[!(lvds_sync
& LVDS_VSYNC_POLARITY
)]);
5000 temp
&= ~(LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
);
5003 I915_WRITE(LVDS
, temp
);
5007 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
5010 I915_WRITE(DPLL(pipe
), dpll
);
5012 /* Wait for the clocks to stabilize. */
5013 POSTING_READ(DPLL(pipe
));
5016 if (INTEL_INFO(dev
)->gen
>= 4) {
5019 temp
= intel_mode_get_pixel_multiplier(adjusted_mode
);
5021 temp
= (temp
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
;
5025 I915_WRITE(DPLL_MD(pipe
), temp
);
5027 /* The pixel multiplier can only be updated once the
5028 * DPLL is enabled and the clocks are stable.
5030 * So write it again.
5032 I915_WRITE(DPLL(pipe
), dpll
);
5035 intel_crtc
->lowfreq_avail
= false;
5036 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
5037 I915_WRITE(FP1(pipe
), fp2
);
5038 intel_crtc
->lowfreq_avail
= true;
5039 if (HAS_PIPE_CXSR(dev
)) {
5040 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5041 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
5044 I915_WRITE(FP1(pipe
), fp
);
5045 if (HAS_PIPE_CXSR(dev
)) {
5046 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5047 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
5051 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
5052 pipeconf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
5053 /* the chip adds 2 halflines automatically */
5054 adjusted_mode
->crtc_vdisplay
-= 1;
5055 adjusted_mode
->crtc_vtotal
-= 1;
5056 adjusted_mode
->crtc_vblank_start
-= 1;
5057 adjusted_mode
->crtc_vblank_end
-= 1;
5058 adjusted_mode
->crtc_vsync_end
-= 1;
5059 adjusted_mode
->crtc_vsync_start
-= 1;
5061 pipeconf
&= ~PIPECONF_INTERLACE_W_FIELD_INDICATION
; /* progressive */
5063 I915_WRITE(HTOTAL(pipe
),
5064 (adjusted_mode
->crtc_hdisplay
- 1) |
5065 ((adjusted_mode
->crtc_htotal
- 1) << 16));
5066 I915_WRITE(HBLANK(pipe
),
5067 (adjusted_mode
->crtc_hblank_start
- 1) |
5068 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
5069 I915_WRITE(HSYNC(pipe
),
5070 (adjusted_mode
->crtc_hsync_start
- 1) |
5071 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
5073 I915_WRITE(VTOTAL(pipe
),
5074 (adjusted_mode
->crtc_vdisplay
- 1) |
5075 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
5076 I915_WRITE(VBLANK(pipe
),
5077 (adjusted_mode
->crtc_vblank_start
- 1) |
5078 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
5079 I915_WRITE(VSYNC(pipe
),
5080 (adjusted_mode
->crtc_vsync_start
- 1) |
5081 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
5083 /* pipesrc and dspsize control the size that is scaled from,
5084 * which should always be the user's requested size.
5086 I915_WRITE(DSPSIZE(plane
),
5087 ((mode
->vdisplay
- 1) << 16) |
5088 (mode
->hdisplay
- 1));
5089 I915_WRITE(DSPPOS(plane
), 0);
5090 I915_WRITE(PIPESRC(pipe
),
5091 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
5093 I915_WRITE(PIPECONF(pipe
), pipeconf
);
5094 POSTING_READ(PIPECONF(pipe
));
5095 intel_enable_pipe(dev_priv
, pipe
, false);
5097 intel_wait_for_vblank(dev
, pipe
);
5099 I915_WRITE(DSPCNTR(plane
), dspcntr
);
5100 POSTING_READ(DSPCNTR(plane
));
5101 intel_enable_plane(dev_priv
, plane
, pipe
);
5103 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
5105 intel_update_watermarks(dev
);
5110 static void ironlake_update_pch_refclk(struct drm_device
*dev
)
5112 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5113 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
5114 struct drm_crtc
*crtc
;
5115 struct intel_encoder
*encoder
;
5116 struct intel_encoder
*has_edp_encoder
= NULL
;
5118 bool has_lvds
= false;
5120 /* We need to take the global config into account */
5121 list_for_each_entry(crtc
, &mode_config
->crtc_list
, head
) {
5125 list_for_each_entry(encoder
, &mode_config
->encoder_list
,
5127 if (encoder
->base
.crtc
!= crtc
)
5130 switch (encoder
->type
) {
5131 case INTEL_OUTPUT_LVDS
:
5133 case INTEL_OUTPUT_EDP
:
5134 has_edp_encoder
= encoder
;
5140 /* Ironlake: try to setup display ref clock before DPLL
5141 * enabling. This is only under driver's control after
5142 * PCH B stepping, previous chipset stepping should be
5143 * ignoring this setting.
5145 temp
= I915_READ(PCH_DREF_CONTROL
);
5146 /* Always enable nonspread source */
5147 temp
&= ~DREF_NONSPREAD_SOURCE_MASK
;
5148 temp
|= DREF_NONSPREAD_SOURCE_ENABLE
;
5149 temp
&= ~DREF_SSC_SOURCE_MASK
;
5150 temp
|= DREF_SSC_SOURCE_ENABLE
;
5151 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5153 POSTING_READ(PCH_DREF_CONTROL
);
5156 if (has_edp_encoder
) {
5157 if (intel_panel_use_ssc(dev_priv
)) {
5158 temp
|= DREF_SSC1_ENABLE
;
5159 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5161 POSTING_READ(PCH_DREF_CONTROL
);
5164 temp
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
5166 /* Enable CPU source on CPU attached eDP */
5167 if (!intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5168 if (intel_panel_use_ssc(dev_priv
))
5169 temp
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
5171 temp
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
5173 /* Enable SSC on PCH eDP if needed */
5174 if (intel_panel_use_ssc(dev_priv
)) {
5175 DRM_ERROR("enabling SSC on PCH\n");
5176 temp
|= DREF_SUPERSPREAD_SOURCE_ENABLE
;
5179 I915_WRITE(PCH_DREF_CONTROL
, temp
);
5180 POSTING_READ(PCH_DREF_CONTROL
);
5185 static int ironlake_crtc_mode_set(struct drm_crtc
*crtc
,
5186 struct drm_display_mode
*mode
,
5187 struct drm_display_mode
*adjusted_mode
,
5189 struct drm_framebuffer
*old_fb
)
5191 struct drm_device
*dev
= crtc
->dev
;
5192 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5193 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5194 int pipe
= intel_crtc
->pipe
;
5195 int plane
= intel_crtc
->plane
;
5196 int refclk
, num_connectors
= 0;
5197 intel_clock_t clock
, reduced_clock
;
5198 u32 dpll
, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
5199 bool ok
, has_reduced_clock
= false, is_sdvo
= false;
5200 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
5201 struct intel_encoder
*has_edp_encoder
= NULL
;
5202 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
5203 struct intel_encoder
*encoder
;
5204 const intel_limit_t
*limit
;
5206 struct fdi_m_n m_n
= {0};
5209 int target_clock
, pixel_multiplier
, lane
, link_bw
, factor
;
5210 unsigned int pipe_bpp
;
5213 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
5214 if (encoder
->base
.crtc
!= crtc
)
5217 switch (encoder
->type
) {
5218 case INTEL_OUTPUT_LVDS
:
5221 case INTEL_OUTPUT_SDVO
:
5222 case INTEL_OUTPUT_HDMI
:
5224 if (encoder
->needs_tv_clock
)
5227 case INTEL_OUTPUT_TVOUT
:
5230 case INTEL_OUTPUT_ANALOG
:
5233 case INTEL_OUTPUT_DISPLAYPORT
:
5236 case INTEL_OUTPUT_EDP
:
5237 has_edp_encoder
= encoder
;
5244 if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2) {
5245 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
5246 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
5250 if (!has_edp_encoder
||
5251 intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
5252 refclk
= 120000; /* 120Mhz refclk */
5256 * Returns a set of divisors for the desired target clock with the given
5257 * refclk, or FALSE. The returned values represent the clock equation:
5258 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
5260 limit
= intel_limit(crtc
, refclk
);
5261 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
5263 DRM_ERROR("Couldn't find PLL settings for mode!\n");
5267 /* Ensure that the cursor is valid for the new mode before changing... */
5268 intel_crtc_update_cursor(crtc
, true);
5270 if (is_lvds
&& dev_priv
->lvds_downclock_avail
) {
5271 has_reduced_clock
= limit
->find_pll(limit
, crtc
,
5272 dev_priv
->lvds_downclock
,
5275 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
5277 * If the different P is found, it means that we can't
5278 * switch the display clock by using the FP0/FP1.
5279 * In such case we will disable the LVDS downclock
5282 DRM_DEBUG_KMS("Different P is found for "
5283 "LVDS clock/downclock\n");
5284 has_reduced_clock
= 0;
5287 /* SDVO TV has fixed PLL values depend on its clock range,
5288 this mirrors vbios setting. */
5289 if (is_sdvo
&& is_tv
) {
5290 if (adjusted_mode
->clock
>= 100000
5291 && adjusted_mode
->clock
< 140500) {
5297 } else if (adjusted_mode
->clock
>= 140500
5298 && adjusted_mode
->clock
<= 200000) {
5308 pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
5310 /* CPU eDP doesn't require FDI link, so just set DP M/N
5311 according to current link config */
5312 if (has_edp_encoder
&&
5313 !intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5314 target_clock
= mode
->clock
;
5315 intel_edp_link_config(has_edp_encoder
,
5318 /* [e]DP over FDI requires target mode clock
5319 instead of link clock */
5320 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
5321 target_clock
= mode
->clock
;
5323 target_clock
= adjusted_mode
->clock
;
5325 /* FDI is a binary signal running at ~2.7GHz, encoding
5326 * each output octet as 10 bits. The actual frequency
5327 * is stored as a divider into a 100MHz clock, and the
5328 * mode pixel clock is stored in units of 1KHz.
5329 * Hence the bw of each lane in terms of the mode signal
5332 link_bw
= intel_fdi_link_freq(dev
) * MHz(100)/KHz(1)/10;
5335 /* determine panel color depth */
5336 temp
= I915_READ(PIPECONF(pipe
));
5337 temp
&= ~PIPE_BPC_MASK
;
5338 dither
= intel_choose_pipe_bpp_dither(crtc
, &pipe_bpp
);
5353 WARN(1, "intel_choose_pipe_bpp returned invalid value %d\n",
5360 intel_crtc
->bpp
= pipe_bpp
;
5361 I915_WRITE(PIPECONF(pipe
), temp
);
5365 * Account for spread spectrum to avoid
5366 * oversubscribing the link. Max center spread
5367 * is 2.5%; use 5% for safety's sake.
5369 u32 bps
= target_clock
* intel_crtc
->bpp
* 21 / 20;
5370 lane
= bps
/ (link_bw
* 8) + 1;
5373 intel_crtc
->fdi_lanes
= lane
;
5375 if (pixel_multiplier
> 1)
5376 link_bw
*= pixel_multiplier
;
5377 ironlake_compute_m_n(intel_crtc
->bpp
, lane
, target_clock
, link_bw
,
5380 ironlake_update_pch_refclk(dev
);
5382 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
5383 if (has_reduced_clock
)
5384 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
5387 /* Enable autotuning of the PLL clock (if permissible) */
5390 if ((intel_panel_use_ssc(dev_priv
) &&
5391 dev_priv
->lvds_ssc_freq
== 100) ||
5392 (I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) == LVDS_CLKB_POWER_UP
)
5394 } else if (is_sdvo
&& is_tv
)
5397 if (clock
.m
< factor
* clock
.n
)
5403 dpll
|= DPLLB_MODE_LVDS
;
5405 dpll
|= DPLLB_MODE_DAC_SERIAL
;
5407 int pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
5408 if (pixel_multiplier
> 1) {
5409 dpll
|= (pixel_multiplier
- 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
;
5411 dpll
|= DPLL_DVO_HIGH_SPEED
;
5413 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
5414 dpll
|= DPLL_DVO_HIGH_SPEED
;
5416 /* compute bitmask from p1 value */
5417 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
5419 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
5423 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
5426 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
5429 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
5432 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
5436 if (is_sdvo
&& is_tv
)
5437 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
5439 /* XXX: just matching BIOS for now */
5440 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
5442 else if (is_lvds
&& intel_panel_use_ssc(dev_priv
) && num_connectors
< 2)
5443 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
5445 dpll
|= PLL_REF_INPUT_DREFCLK
;
5447 /* setup pipeconf */
5448 pipeconf
= I915_READ(PIPECONF(pipe
));
5450 /* Set up the display plane register */
5451 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
5453 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
5454 drm_mode_debug_printmodeline(mode
);
5456 /* PCH eDP needs FDI, but CPU eDP does not */
5457 if (!has_edp_encoder
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5458 I915_WRITE(PCH_FP0(pipe
), fp
);
5459 I915_WRITE(PCH_DPLL(pipe
), dpll
& ~DPLL_VCO_ENABLE
);
5461 POSTING_READ(PCH_DPLL(pipe
));
5465 /* enable transcoder DPLL */
5466 if (HAS_PCH_CPT(dev
)) {
5467 temp
= I915_READ(PCH_DPLL_SEL
);
5470 temp
|= TRANSA_DPLL_ENABLE
| TRANSA_DPLLA_SEL
;
5473 temp
|= TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
;
5476 /* FIXME: manage transcoder PLLs? */
5477 temp
|= TRANSC_DPLL_ENABLE
| TRANSC_DPLLB_SEL
;
5482 I915_WRITE(PCH_DPLL_SEL
, temp
);
5484 POSTING_READ(PCH_DPLL_SEL
);
5488 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
5489 * This is an exception to the general rule that mode_set doesn't turn
5493 temp
= I915_READ(PCH_LVDS
);
5494 temp
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
;
5496 if (HAS_PCH_CPT(dev
))
5497 temp
|= PORT_TRANS_B_SEL_CPT
;
5499 temp
|= LVDS_PIPEB_SELECT
;
5501 if (HAS_PCH_CPT(dev
))
5502 temp
&= ~PORT_TRANS_SEL_MASK
;
5504 temp
&= ~LVDS_PIPEB_SELECT
;
5506 /* set the corresponsding LVDS_BORDER bit */
5507 temp
|= dev_priv
->lvds_border_bits
;
5508 /* Set the B0-B3 data pairs corresponding to whether we're going to
5509 * set the DPLLs for dual-channel mode or not.
5512 temp
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
5514 temp
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
5516 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
5517 * appropriately here, but we need to look more thoroughly into how
5518 * panels behave in the two modes.
5520 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
5521 lvds_sync
|= LVDS_HSYNC_POLARITY
;
5522 if (adjusted_mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
5523 lvds_sync
|= LVDS_VSYNC_POLARITY
;
5524 if ((temp
& (LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
))
5526 char flags
[2] = "-+";
5527 DRM_INFO("Changing LVDS panel from "
5528 "(%chsync, %cvsync) to (%chsync, %cvsync)\n",
5529 flags
[!(temp
& LVDS_HSYNC_POLARITY
)],
5530 flags
[!(temp
& LVDS_VSYNC_POLARITY
)],
5531 flags
[!(lvds_sync
& LVDS_HSYNC_POLARITY
)],
5532 flags
[!(lvds_sync
& LVDS_VSYNC_POLARITY
)]);
5533 temp
&= ~(LVDS_HSYNC_POLARITY
| LVDS_VSYNC_POLARITY
);
5536 I915_WRITE(PCH_LVDS
, temp
);
5539 pipeconf
&= ~PIPECONF_DITHER_EN
;
5540 pipeconf
&= ~PIPECONF_DITHER_TYPE_MASK
;
5541 if ((is_lvds
&& dev_priv
->lvds_dither
) || dither
) {
5542 pipeconf
|= PIPECONF_DITHER_EN
;
5543 pipeconf
|= PIPECONF_DITHER_TYPE_ST1
;
5545 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5546 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
5548 /* For non-DP output, clear any trans DP clock recovery setting.*/
5549 I915_WRITE(TRANSDATA_M1(pipe
), 0);
5550 I915_WRITE(TRANSDATA_N1(pipe
), 0);
5551 I915_WRITE(TRANSDPLINK_M1(pipe
), 0);
5552 I915_WRITE(TRANSDPLINK_N1(pipe
), 0);
5555 if (!has_edp_encoder
||
5556 intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5557 I915_WRITE(PCH_DPLL(pipe
), dpll
);
5559 /* Wait for the clocks to stabilize. */
5560 POSTING_READ(PCH_DPLL(pipe
));
5563 /* The pixel multiplier can only be updated once the
5564 * DPLL is enabled and the clocks are stable.
5566 * So write it again.
5568 I915_WRITE(PCH_DPLL(pipe
), dpll
);
5571 intel_crtc
->lowfreq_avail
= false;
5572 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
5573 I915_WRITE(PCH_FP1(pipe
), fp2
);
5574 intel_crtc
->lowfreq_avail
= true;
5575 if (HAS_PIPE_CXSR(dev
)) {
5576 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
5577 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
5580 I915_WRITE(PCH_FP1(pipe
), fp
);
5581 if (HAS_PIPE_CXSR(dev
)) {
5582 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
5583 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
5587 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
5588 pipeconf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
5589 /* the chip adds 2 halflines automatically */
5590 adjusted_mode
->crtc_vdisplay
-= 1;
5591 adjusted_mode
->crtc_vtotal
-= 1;
5592 adjusted_mode
->crtc_vblank_start
-= 1;
5593 adjusted_mode
->crtc_vblank_end
-= 1;
5594 adjusted_mode
->crtc_vsync_end
-= 1;
5595 adjusted_mode
->crtc_vsync_start
-= 1;
5597 pipeconf
&= ~PIPECONF_INTERLACE_W_FIELD_INDICATION
; /* progressive */
5599 I915_WRITE(HTOTAL(pipe
),
5600 (adjusted_mode
->crtc_hdisplay
- 1) |
5601 ((adjusted_mode
->crtc_htotal
- 1) << 16));
5602 I915_WRITE(HBLANK(pipe
),
5603 (adjusted_mode
->crtc_hblank_start
- 1) |
5604 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
5605 I915_WRITE(HSYNC(pipe
),
5606 (adjusted_mode
->crtc_hsync_start
- 1) |
5607 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
5609 I915_WRITE(VTOTAL(pipe
),
5610 (adjusted_mode
->crtc_vdisplay
- 1) |
5611 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
5612 I915_WRITE(VBLANK(pipe
),
5613 (adjusted_mode
->crtc_vblank_start
- 1) |
5614 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
5615 I915_WRITE(VSYNC(pipe
),
5616 (adjusted_mode
->crtc_vsync_start
- 1) |
5617 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
5619 /* pipesrc controls the size that is scaled from, which should
5620 * always be the user's requested size.
5622 I915_WRITE(PIPESRC(pipe
),
5623 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
5625 I915_WRITE(PIPE_DATA_M1(pipe
), TU_SIZE(m_n
.tu
) | m_n
.gmch_m
);
5626 I915_WRITE(PIPE_DATA_N1(pipe
), m_n
.gmch_n
);
5627 I915_WRITE(PIPE_LINK_M1(pipe
), m_n
.link_m
);
5628 I915_WRITE(PIPE_LINK_N1(pipe
), m_n
.link_n
);
5630 if (has_edp_encoder
&&
5631 !intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
5632 ironlake_set_pll_edp(crtc
, adjusted_mode
->clock
);
5635 I915_WRITE(PIPECONF(pipe
), pipeconf
);
5636 POSTING_READ(PIPECONF(pipe
));
5638 intel_wait_for_vblank(dev
, pipe
);
5641 /* enable address swizzle for tiling buffer */
5642 temp
= I915_READ(DISP_ARB_CTL
);
5643 I915_WRITE(DISP_ARB_CTL
, temp
| DISP_TILE_SURFACE_SWIZZLING
);
5646 I915_WRITE(DSPCNTR(plane
), dspcntr
);
5647 POSTING_READ(DSPCNTR(plane
));
5649 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
5651 intel_update_watermarks(dev
);
5656 static int intel_crtc_mode_set(struct drm_crtc
*crtc
,
5657 struct drm_display_mode
*mode
,
5658 struct drm_display_mode
*adjusted_mode
,
5660 struct drm_framebuffer
*old_fb
)
5662 struct drm_device
*dev
= crtc
->dev
;
5663 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5664 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5665 int pipe
= intel_crtc
->pipe
;
5668 drm_vblank_pre_modeset(dev
, pipe
);
5670 ret
= dev_priv
->display
.crtc_mode_set(crtc
, mode
, adjusted_mode
,
5673 drm_vblank_post_modeset(dev
, pipe
);
5675 intel_crtc
->dpms_mode
= DRM_MODE_DPMS_ON
;
5680 /** Loads the palette/gamma unit for the CRTC with the prepared values */
5681 void intel_crtc_load_lut(struct drm_crtc
*crtc
)
5683 struct drm_device
*dev
= crtc
->dev
;
5684 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5685 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5686 int palreg
= PALETTE(intel_crtc
->pipe
);
5689 /* The clocks have to be on to load the palette. */
5693 /* use legacy palette for Ironlake */
5694 if (HAS_PCH_SPLIT(dev
))
5695 palreg
= LGC_PALETTE(intel_crtc
->pipe
);
5697 for (i
= 0; i
< 256; i
++) {
5698 I915_WRITE(palreg
+ 4 * i
,
5699 (intel_crtc
->lut_r
[i
] << 16) |
5700 (intel_crtc
->lut_g
[i
] << 8) |
5701 intel_crtc
->lut_b
[i
]);
5705 static void i845_update_cursor(struct drm_crtc
*crtc
, u32 base
)
5707 struct drm_device
*dev
= crtc
->dev
;
5708 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5709 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5710 bool visible
= base
!= 0;
5713 if (intel_crtc
->cursor_visible
== visible
)
5716 cntl
= I915_READ(_CURACNTR
);
5718 /* On these chipsets we can only modify the base whilst
5719 * the cursor is disabled.
5721 I915_WRITE(_CURABASE
, base
);
5723 cntl
&= ~(CURSOR_FORMAT_MASK
);
5724 /* XXX width must be 64, stride 256 => 0x00 << 28 */
5725 cntl
|= CURSOR_ENABLE
|
5726 CURSOR_GAMMA_ENABLE
|
5729 cntl
&= ~(CURSOR_ENABLE
| CURSOR_GAMMA_ENABLE
);
5730 I915_WRITE(_CURACNTR
, cntl
);
5732 intel_crtc
->cursor_visible
= visible
;
5735 static void i9xx_update_cursor(struct drm_crtc
*crtc
, u32 base
)
5737 struct drm_device
*dev
= crtc
->dev
;
5738 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5739 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5740 int pipe
= intel_crtc
->pipe
;
5741 bool visible
= base
!= 0;
5743 if (intel_crtc
->cursor_visible
!= visible
) {
5744 uint32_t cntl
= I915_READ(CURCNTR(pipe
));
5746 cntl
&= ~(CURSOR_MODE
| MCURSOR_PIPE_SELECT
);
5747 cntl
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
5748 cntl
|= pipe
<< 28; /* Connect to correct pipe */
5750 cntl
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
5751 cntl
|= CURSOR_MODE_DISABLE
;
5753 I915_WRITE(CURCNTR(pipe
), cntl
);
5755 intel_crtc
->cursor_visible
= visible
;
5757 /* and commit changes on next vblank */
5758 I915_WRITE(CURBASE(pipe
), base
);
5761 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
5762 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
,
5765 struct drm_device
*dev
= crtc
->dev
;
5766 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5767 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5768 int pipe
= intel_crtc
->pipe
;
5769 int x
= intel_crtc
->cursor_x
;
5770 int y
= intel_crtc
->cursor_y
;
5776 if (on
&& crtc
->enabled
&& crtc
->fb
) {
5777 base
= intel_crtc
->cursor_addr
;
5778 if (x
> (int) crtc
->fb
->width
)
5781 if (y
> (int) crtc
->fb
->height
)
5787 if (x
+ intel_crtc
->cursor_width
< 0)
5790 pos
|= CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
;
5793 pos
|= x
<< CURSOR_X_SHIFT
;
5796 if (y
+ intel_crtc
->cursor_height
< 0)
5799 pos
|= CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
;
5802 pos
|= y
<< CURSOR_Y_SHIFT
;
5804 visible
= base
!= 0;
5805 if (!visible
&& !intel_crtc
->cursor_visible
)
5808 I915_WRITE(CURPOS(pipe
), pos
);
5809 if (IS_845G(dev
) || IS_I865G(dev
))
5810 i845_update_cursor(crtc
, base
);
5812 i9xx_update_cursor(crtc
, base
);
5815 intel_mark_busy(dev
, to_intel_framebuffer(crtc
->fb
)->obj
);
5818 static int intel_crtc_cursor_set(struct drm_crtc
*crtc
,
5819 struct drm_file
*file
,
5821 uint32_t width
, uint32_t height
)
5823 struct drm_device
*dev
= crtc
->dev
;
5824 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5825 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5826 struct drm_i915_gem_object
*obj
;
5830 DRM_DEBUG_KMS("\n");
5832 /* if we want to turn off the cursor ignore width and height */
5834 DRM_DEBUG_KMS("cursor off\n");
5837 mutex_lock(&dev
->struct_mutex
);
5841 /* Currently we only support 64x64 cursors */
5842 if (width
!= 64 || height
!= 64) {
5843 DRM_ERROR("we currently only support 64x64 cursors\n");
5847 obj
= to_intel_bo(drm_gem_object_lookup(dev
, file
, handle
));
5848 if (&obj
->base
== NULL
)
5851 if (obj
->base
.size
< width
* height
* 4) {
5852 DRM_ERROR("buffer is to small\n");
5857 /* we only need to pin inside GTT if cursor is non-phy */
5858 mutex_lock(&dev
->struct_mutex
);
5859 if (!dev_priv
->info
->cursor_needs_physical
) {
5860 if (obj
->tiling_mode
) {
5861 DRM_ERROR("cursor cannot be tiled\n");
5866 ret
= i915_gem_object_pin_to_display_plane(obj
, 0, NULL
);
5868 DRM_ERROR("failed to move cursor bo into the GTT\n");
5872 ret
= i915_gem_object_put_fence(obj
);
5874 DRM_ERROR("failed to release fence for cursor");
5878 addr
= obj
->gtt_offset
;
5880 int align
= IS_I830(dev
) ? 16 * 1024 : 256;
5881 ret
= i915_gem_attach_phys_object(dev
, obj
,
5882 (intel_crtc
->pipe
== 0) ? I915_GEM_PHYS_CURSOR_0
: I915_GEM_PHYS_CURSOR_1
,
5885 DRM_ERROR("failed to attach phys object\n");
5888 addr
= obj
->phys_obj
->handle
->busaddr
;
5892 I915_WRITE(CURSIZE
, (height
<< 12) | width
);
5895 if (intel_crtc
->cursor_bo
) {
5896 if (dev_priv
->info
->cursor_needs_physical
) {
5897 if (intel_crtc
->cursor_bo
!= obj
)
5898 i915_gem_detach_phys_object(dev
, intel_crtc
->cursor_bo
);
5900 i915_gem_object_unpin(intel_crtc
->cursor_bo
);
5901 drm_gem_object_unreference(&intel_crtc
->cursor_bo
->base
);
5904 mutex_unlock(&dev
->struct_mutex
);
5906 intel_crtc
->cursor_addr
= addr
;
5907 intel_crtc
->cursor_bo
= obj
;
5908 intel_crtc
->cursor_width
= width
;
5909 intel_crtc
->cursor_height
= height
;
5911 intel_crtc_update_cursor(crtc
, true);
5915 i915_gem_object_unpin(obj
);
5917 mutex_unlock(&dev
->struct_mutex
);
5919 drm_gem_object_unreference_unlocked(&obj
->base
);
5923 static int intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
5925 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5927 intel_crtc
->cursor_x
= x
;
5928 intel_crtc
->cursor_y
= y
;
5930 intel_crtc_update_cursor(crtc
, true);
5935 /** Sets the color ramps on behalf of RandR */
5936 void intel_crtc_fb_gamma_set(struct drm_crtc
*crtc
, u16 red
, u16 green
,
5937 u16 blue
, int regno
)
5939 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5941 intel_crtc
->lut_r
[regno
] = red
>> 8;
5942 intel_crtc
->lut_g
[regno
] = green
>> 8;
5943 intel_crtc
->lut_b
[regno
] = blue
>> 8;
5946 void intel_crtc_fb_gamma_get(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
5947 u16
*blue
, int regno
)
5949 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5951 *red
= intel_crtc
->lut_r
[regno
] << 8;
5952 *green
= intel_crtc
->lut_g
[regno
] << 8;
5953 *blue
= intel_crtc
->lut_b
[regno
] << 8;
5956 static void intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
5957 u16
*blue
, uint32_t start
, uint32_t size
)
5959 int end
= (start
+ size
> 256) ? 256 : start
+ size
, i
;
5960 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5962 for (i
= start
; i
< end
; i
++) {
5963 intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
5964 intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
5965 intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
5968 intel_crtc_load_lut(crtc
);
5972 * Get a pipe with a simple mode set on it for doing load-based monitor
5975 * It will be up to the load-detect code to adjust the pipe as appropriate for
5976 * its requirements. The pipe will be connected to no other encoders.
5978 * Currently this code will only succeed if there is a pipe with no encoders
5979 * configured for it. In the future, it could choose to temporarily disable
5980 * some outputs to free up a pipe for its use.
5982 * \return crtc, or NULL if no pipes are available.
5985 /* VESA 640x480x72Hz mode to set on the pipe */
5986 static struct drm_display_mode load_detect_mode
= {
5987 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
5988 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
5991 static struct drm_framebuffer
*
5992 intel_framebuffer_create(struct drm_device
*dev
,
5993 struct drm_mode_fb_cmd
*mode_cmd
,
5994 struct drm_i915_gem_object
*obj
)
5996 struct intel_framebuffer
*intel_fb
;
5999 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
6001 drm_gem_object_unreference_unlocked(&obj
->base
);
6002 return ERR_PTR(-ENOMEM
);
6005 ret
= intel_framebuffer_init(dev
, intel_fb
, mode_cmd
, obj
);
6007 drm_gem_object_unreference_unlocked(&obj
->base
);
6009 return ERR_PTR(ret
);
6012 return &intel_fb
->base
;
6016 intel_framebuffer_pitch_for_width(int width
, int bpp
)
6018 u32 pitch
= DIV_ROUND_UP(width
* bpp
, 8);
6019 return ALIGN(pitch
, 64);
6023 intel_framebuffer_size_for_mode(struct drm_display_mode
*mode
, int bpp
)
6025 u32 pitch
= intel_framebuffer_pitch_for_width(mode
->hdisplay
, bpp
);
6026 return ALIGN(pitch
* mode
->vdisplay
, PAGE_SIZE
);
6029 static struct drm_framebuffer
*
6030 intel_framebuffer_create_for_mode(struct drm_device
*dev
,
6031 struct drm_display_mode
*mode
,
6034 struct drm_i915_gem_object
*obj
;
6035 struct drm_mode_fb_cmd mode_cmd
;
6037 obj
= i915_gem_alloc_object(dev
,
6038 intel_framebuffer_size_for_mode(mode
, bpp
));
6040 return ERR_PTR(-ENOMEM
);
6042 mode_cmd
.width
= mode
->hdisplay
;
6043 mode_cmd
.height
= mode
->vdisplay
;
6044 mode_cmd
.depth
= depth
;
6046 mode_cmd
.pitch
= intel_framebuffer_pitch_for_width(mode_cmd
.width
, bpp
);
6048 return intel_framebuffer_create(dev
, &mode_cmd
, obj
);
6051 static struct drm_framebuffer
*
6052 mode_fits_in_fbdev(struct drm_device
*dev
,
6053 struct drm_display_mode
*mode
)
6055 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6056 struct drm_i915_gem_object
*obj
;
6057 struct drm_framebuffer
*fb
;
6059 if (dev_priv
->fbdev
== NULL
)
6062 obj
= dev_priv
->fbdev
->ifb
.obj
;
6066 fb
= &dev_priv
->fbdev
->ifb
.base
;
6067 if (fb
->pitch
< intel_framebuffer_pitch_for_width(mode
->hdisplay
,
6068 fb
->bits_per_pixel
))
6071 if (obj
->base
.size
< mode
->vdisplay
* fb
->pitch
)
6077 bool intel_get_load_detect_pipe(struct intel_encoder
*intel_encoder
,
6078 struct drm_connector
*connector
,
6079 struct drm_display_mode
*mode
,
6080 struct intel_load_detect_pipe
*old
)
6082 struct intel_crtc
*intel_crtc
;
6083 struct drm_crtc
*possible_crtc
;
6084 struct drm_encoder
*encoder
= &intel_encoder
->base
;
6085 struct drm_crtc
*crtc
= NULL
;
6086 struct drm_device
*dev
= encoder
->dev
;
6087 struct drm_framebuffer
*old_fb
;
6090 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6091 connector
->base
.id
, drm_get_connector_name(connector
),
6092 encoder
->base
.id
, drm_get_encoder_name(encoder
));
6095 * Algorithm gets a little messy:
6097 * - if the connector already has an assigned crtc, use it (but make
6098 * sure it's on first)
6100 * - try to find the first unused crtc that can drive this connector,
6101 * and use that if we find one
6104 /* See if we already have a CRTC for this connector */
6105 if (encoder
->crtc
) {
6106 crtc
= encoder
->crtc
;
6108 intel_crtc
= to_intel_crtc(crtc
);
6109 old
->dpms_mode
= intel_crtc
->dpms_mode
;
6110 old
->load_detect_temp
= false;
6112 /* Make sure the crtc and connector are running */
6113 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
6114 struct drm_encoder_helper_funcs
*encoder_funcs
;
6115 struct drm_crtc_helper_funcs
*crtc_funcs
;
6117 crtc_funcs
= crtc
->helper_private
;
6118 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
6120 encoder_funcs
= encoder
->helper_private
;
6121 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
6127 /* Find an unused one (if possible) */
6128 list_for_each_entry(possible_crtc
, &dev
->mode_config
.crtc_list
, head
) {
6130 if (!(encoder
->possible_crtcs
& (1 << i
)))
6132 if (!possible_crtc
->enabled
) {
6133 crtc
= possible_crtc
;
6139 * If we didn't find an unused CRTC, don't use any.
6142 DRM_DEBUG_KMS("no pipe available for load-detect\n");
6146 encoder
->crtc
= crtc
;
6147 connector
->encoder
= encoder
;
6149 intel_crtc
= to_intel_crtc(crtc
);
6150 old
->dpms_mode
= intel_crtc
->dpms_mode
;
6151 old
->load_detect_temp
= true;
6152 old
->release_fb
= NULL
;
6155 mode
= &load_detect_mode
;
6159 /* We need a framebuffer large enough to accommodate all accesses
6160 * that the plane may generate whilst we perform load detection.
6161 * We can not rely on the fbcon either being present (we get called
6162 * during its initialisation to detect all boot displays, or it may
6163 * not even exist) or that it is large enough to satisfy the
6166 crtc
->fb
= mode_fits_in_fbdev(dev
, mode
);
6167 if (crtc
->fb
== NULL
) {
6168 DRM_DEBUG_KMS("creating tmp fb for load-detection\n");
6169 crtc
->fb
= intel_framebuffer_create_for_mode(dev
, mode
, 24, 32);
6170 old
->release_fb
= crtc
->fb
;
6172 DRM_DEBUG_KMS("reusing fbdev for load-detection framebuffer\n");
6173 if (IS_ERR(crtc
->fb
)) {
6174 DRM_DEBUG_KMS("failed to allocate framebuffer for load-detection\n");
6179 if (!drm_crtc_helper_set_mode(crtc
, mode
, 0, 0, old_fb
)) {
6180 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
6181 if (old
->release_fb
)
6182 old
->release_fb
->funcs
->destroy(old
->release_fb
);
6187 /* let the connector get through one full cycle before testing */
6188 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
6193 void intel_release_load_detect_pipe(struct intel_encoder
*intel_encoder
,
6194 struct drm_connector
*connector
,
6195 struct intel_load_detect_pipe
*old
)
6197 struct drm_encoder
*encoder
= &intel_encoder
->base
;
6198 struct drm_device
*dev
= encoder
->dev
;
6199 struct drm_crtc
*crtc
= encoder
->crtc
;
6200 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
6201 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
6203 DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
6204 connector
->base
.id
, drm_get_connector_name(connector
),
6205 encoder
->base
.id
, drm_get_encoder_name(encoder
));
6207 if (old
->load_detect_temp
) {
6208 connector
->encoder
= NULL
;
6209 drm_helper_disable_unused_functions(dev
);
6211 if (old
->release_fb
)
6212 old
->release_fb
->funcs
->destroy(old
->release_fb
);
6217 /* Switch crtc and encoder back off if necessary */
6218 if (old
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
6219 encoder_funcs
->dpms(encoder
, old
->dpms_mode
);
6220 crtc_funcs
->dpms(crtc
, old
->dpms_mode
);
6224 /* Returns the clock of the currently programmed mode of the given pipe. */
6225 static int intel_crtc_clock_get(struct drm_device
*dev
, struct drm_crtc
*crtc
)
6227 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6228 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6229 int pipe
= intel_crtc
->pipe
;
6230 u32 dpll
= I915_READ(DPLL(pipe
));
6232 intel_clock_t clock
;
6234 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
6235 fp
= I915_READ(FP0(pipe
));
6237 fp
= I915_READ(FP1(pipe
));
6239 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
6240 if (IS_PINEVIEW(dev
)) {
6241 clock
.n
= ffs((fp
& FP_N_PINEVIEW_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
6242 clock
.m2
= (fp
& FP_M2_PINEVIEW_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
6244 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
6245 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
6248 if (!IS_GEN2(dev
)) {
6249 if (IS_PINEVIEW(dev
))
6250 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW
) >>
6251 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
);
6253 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
6254 DPLL_FPA01_P1_POST_DIV_SHIFT
);
6256 switch (dpll
& DPLL_MODE_MASK
) {
6257 case DPLLB_MODE_DAC_SERIAL
:
6258 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
6261 case DPLLB_MODE_LVDS
:
6262 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
6266 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
6267 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
6271 /* XXX: Handle the 100Mhz refclk */
6272 intel_clock(dev
, 96000, &clock
);
6274 bool is_lvds
= (pipe
== 1) && (I915_READ(LVDS
) & LVDS_PORT_EN
);
6277 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
6278 DPLL_FPA01_P1_POST_DIV_SHIFT
);
6281 if ((dpll
& PLL_REF_INPUT_MASK
) ==
6282 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
6283 /* XXX: might not be 66MHz */
6284 intel_clock(dev
, 66000, &clock
);
6286 intel_clock(dev
, 48000, &clock
);
6288 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
6291 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
6292 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
6294 if (dpll
& PLL_P2_DIVIDE_BY_4
)
6299 intel_clock(dev
, 48000, &clock
);
6303 /* XXX: It would be nice to validate the clocks, but we can't reuse
6304 * i830PllIsValid() because it relies on the xf86_config connector
6305 * configuration being accurate, which it isn't necessarily.
6311 /** Returns the currently programmed mode of the given pipe. */
6312 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
6313 struct drm_crtc
*crtc
)
6315 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6316 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6317 int pipe
= intel_crtc
->pipe
;
6318 struct drm_display_mode
*mode
;
6319 int htot
= I915_READ(HTOTAL(pipe
));
6320 int hsync
= I915_READ(HSYNC(pipe
));
6321 int vtot
= I915_READ(VTOTAL(pipe
));
6322 int vsync
= I915_READ(VSYNC(pipe
));
6324 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
6328 mode
->clock
= intel_crtc_clock_get(dev
, crtc
);
6329 mode
->hdisplay
= (htot
& 0xffff) + 1;
6330 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
6331 mode
->hsync_start
= (hsync
& 0xffff) + 1;
6332 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
6333 mode
->vdisplay
= (vtot
& 0xffff) + 1;
6334 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
6335 mode
->vsync_start
= (vsync
& 0xffff) + 1;
6336 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
6338 drm_mode_set_name(mode
);
6339 drm_mode_set_crtcinfo(mode
, 0);
6344 #define GPU_IDLE_TIMEOUT 500 /* ms */
6346 /* When this timer fires, we've been idle for awhile */
6347 static void intel_gpu_idle_timer(unsigned long arg
)
6349 struct drm_device
*dev
= (struct drm_device
*)arg
;
6350 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6352 if (!list_empty(&dev_priv
->mm
.active_list
)) {
6353 /* Still processing requests, so just re-arm the timer. */
6354 mod_timer(&dev_priv
->idle_timer
, jiffies
+
6355 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
6359 dev_priv
->busy
= false;
6360 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
6363 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
6365 static void intel_crtc_idle_timer(unsigned long arg
)
6367 struct intel_crtc
*intel_crtc
= (struct intel_crtc
*)arg
;
6368 struct drm_crtc
*crtc
= &intel_crtc
->base
;
6369 drm_i915_private_t
*dev_priv
= crtc
->dev
->dev_private
;
6370 struct intel_framebuffer
*intel_fb
;
6372 intel_fb
= to_intel_framebuffer(crtc
->fb
);
6373 if (intel_fb
&& intel_fb
->obj
->active
) {
6374 /* The framebuffer is still being accessed by the GPU. */
6375 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
6376 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
6380 intel_crtc
->busy
= false;
6381 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
6384 static void intel_increase_pllclock(struct drm_crtc
*crtc
)
6386 struct drm_device
*dev
= crtc
->dev
;
6387 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6388 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6389 int pipe
= intel_crtc
->pipe
;
6390 int dpll_reg
= DPLL(pipe
);
6393 if (HAS_PCH_SPLIT(dev
))
6396 if (!dev_priv
->lvds_downclock_avail
)
6399 dpll
= I915_READ(dpll_reg
);
6400 if (!HAS_PIPE_CXSR(dev
) && (dpll
& DISPLAY_RATE_SELECT_FPA1
)) {
6401 DRM_DEBUG_DRIVER("upclocking LVDS\n");
6403 /* Unlock panel regs */
6404 I915_WRITE(PP_CONTROL
,
6405 I915_READ(PP_CONTROL
) | PANEL_UNLOCK_REGS
);
6407 dpll
&= ~DISPLAY_RATE_SELECT_FPA1
;
6408 I915_WRITE(dpll_reg
, dpll
);
6409 intel_wait_for_vblank(dev
, pipe
);
6411 dpll
= I915_READ(dpll_reg
);
6412 if (dpll
& DISPLAY_RATE_SELECT_FPA1
)
6413 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
6415 /* ...and lock them again */
6416 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
6419 /* Schedule downclock */
6420 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
6421 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
6424 static void intel_decrease_pllclock(struct drm_crtc
*crtc
)
6426 struct drm_device
*dev
= crtc
->dev
;
6427 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6428 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6429 int pipe
= intel_crtc
->pipe
;
6430 int dpll_reg
= DPLL(pipe
);
6431 int dpll
= I915_READ(dpll_reg
);
6433 if (HAS_PCH_SPLIT(dev
))
6436 if (!dev_priv
->lvds_downclock_avail
)
6440 * Since this is called by a timer, we should never get here in
6443 if (!HAS_PIPE_CXSR(dev
) && intel_crtc
->lowfreq_avail
) {
6444 DRM_DEBUG_DRIVER("downclocking LVDS\n");
6446 /* Unlock panel regs */
6447 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) |
6450 dpll
|= DISPLAY_RATE_SELECT_FPA1
;
6451 I915_WRITE(dpll_reg
, dpll
);
6452 intel_wait_for_vblank(dev
, pipe
);
6453 dpll
= I915_READ(dpll_reg
);
6454 if (!(dpll
& DISPLAY_RATE_SELECT_FPA1
))
6455 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
6457 /* ...and lock them again */
6458 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
6464 * intel_idle_update - adjust clocks for idleness
6465 * @work: work struct
6467 * Either the GPU or display (or both) went idle. Check the busy status
6468 * here and adjust the CRTC and GPU clocks as necessary.
6470 static void intel_idle_update(struct work_struct
*work
)
6472 drm_i915_private_t
*dev_priv
= container_of(work
, drm_i915_private_t
,
6474 struct drm_device
*dev
= dev_priv
->dev
;
6475 struct drm_crtc
*crtc
;
6476 struct intel_crtc
*intel_crtc
;
6478 if (!i915_powersave
)
6481 mutex_lock(&dev
->struct_mutex
);
6483 i915_update_gfx_val(dev_priv
);
6485 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
6486 /* Skip inactive CRTCs */
6490 intel_crtc
= to_intel_crtc(crtc
);
6491 if (!intel_crtc
->busy
)
6492 intel_decrease_pllclock(crtc
);
6496 mutex_unlock(&dev
->struct_mutex
);
6500 * intel_mark_busy - mark the GPU and possibly the display busy
6502 * @obj: object we're operating on
6504 * Callers can use this function to indicate that the GPU is busy processing
6505 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
6506 * buffer), we'll also mark the display as busy, so we know to increase its
6509 void intel_mark_busy(struct drm_device
*dev
, struct drm_i915_gem_object
*obj
)
6511 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6512 struct drm_crtc
*crtc
= NULL
;
6513 struct intel_framebuffer
*intel_fb
;
6514 struct intel_crtc
*intel_crtc
;
6516 if (!drm_core_check_feature(dev
, DRIVER_MODESET
))
6519 if (!dev_priv
->busy
)
6520 dev_priv
->busy
= true;
6522 mod_timer(&dev_priv
->idle_timer
, jiffies
+
6523 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
6525 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
6529 intel_crtc
= to_intel_crtc(crtc
);
6530 intel_fb
= to_intel_framebuffer(crtc
->fb
);
6531 if (intel_fb
->obj
== obj
) {
6532 if (!intel_crtc
->busy
) {
6533 /* Non-busy -> busy, upclock */
6534 intel_increase_pllclock(crtc
);
6535 intel_crtc
->busy
= true;
6537 /* Busy -> busy, put off timer */
6538 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
6539 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
6545 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
6547 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6548 struct drm_device
*dev
= crtc
->dev
;
6549 struct intel_unpin_work
*work
;
6550 unsigned long flags
;
6552 spin_lock_irqsave(&dev
->event_lock
, flags
);
6553 work
= intel_crtc
->unpin_work
;
6554 intel_crtc
->unpin_work
= NULL
;
6555 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6558 cancel_work_sync(&work
->work
);
6562 drm_crtc_cleanup(crtc
);
6567 static void intel_unpin_work_fn(struct work_struct
*__work
)
6569 struct intel_unpin_work
*work
=
6570 container_of(__work
, struct intel_unpin_work
, work
);
6572 mutex_lock(&work
->dev
->struct_mutex
);
6573 i915_gem_object_unpin(work
->old_fb_obj
);
6574 drm_gem_object_unreference(&work
->pending_flip_obj
->base
);
6575 drm_gem_object_unreference(&work
->old_fb_obj
->base
);
6577 intel_update_fbc(work
->dev
);
6578 mutex_unlock(&work
->dev
->struct_mutex
);
6582 static void do_intel_finish_page_flip(struct drm_device
*dev
,
6583 struct drm_crtc
*crtc
)
6585 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6586 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6587 struct intel_unpin_work
*work
;
6588 struct drm_i915_gem_object
*obj
;
6589 struct drm_pending_vblank_event
*e
;
6590 struct timeval tnow
, tvbl
;
6591 unsigned long flags
;
6593 /* Ignore early vblank irqs */
6594 if (intel_crtc
== NULL
)
6597 do_gettimeofday(&tnow
);
6599 spin_lock_irqsave(&dev
->event_lock
, flags
);
6600 work
= intel_crtc
->unpin_work
;
6601 if (work
== NULL
|| !work
->pending
) {
6602 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6606 intel_crtc
->unpin_work
= NULL
;
6610 e
->event
.sequence
= drm_vblank_count_and_time(dev
, intel_crtc
->pipe
, &tvbl
);
6612 /* Called before vblank count and timestamps have
6613 * been updated for the vblank interval of flip
6614 * completion? Need to increment vblank count and
6615 * add one videorefresh duration to returned timestamp
6616 * to account for this. We assume this happened if we
6617 * get called over 0.9 frame durations after the last
6618 * timestamped vblank.
6620 * This calculation can not be used with vrefresh rates
6621 * below 5Hz (10Hz to be on the safe side) without
6622 * promoting to 64 integers.
6624 if (10 * (timeval_to_ns(&tnow
) - timeval_to_ns(&tvbl
)) >
6625 9 * crtc
->framedur_ns
) {
6626 e
->event
.sequence
++;
6627 tvbl
= ns_to_timeval(timeval_to_ns(&tvbl
) +
6631 e
->event
.tv_sec
= tvbl
.tv_sec
;
6632 e
->event
.tv_usec
= tvbl
.tv_usec
;
6634 list_add_tail(&e
->base
.link
,
6635 &e
->base
.file_priv
->event_list
);
6636 wake_up_interruptible(&e
->base
.file_priv
->event_wait
);
6639 drm_vblank_put(dev
, intel_crtc
->pipe
);
6641 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6643 obj
= work
->old_fb_obj
;
6645 atomic_clear_mask(1 << intel_crtc
->plane
,
6646 &obj
->pending_flip
.counter
);
6647 if (atomic_read(&obj
->pending_flip
) == 0)
6648 wake_up(&dev_priv
->pending_flip_queue
);
6650 schedule_work(&work
->work
);
6652 trace_i915_flip_complete(intel_crtc
->plane
, work
->pending_flip_obj
);
6655 void intel_finish_page_flip(struct drm_device
*dev
, int pipe
)
6657 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6658 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
6660 do_intel_finish_page_flip(dev
, crtc
);
6663 void intel_finish_page_flip_plane(struct drm_device
*dev
, int plane
)
6665 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6666 struct drm_crtc
*crtc
= dev_priv
->plane_to_crtc_mapping
[plane
];
6668 do_intel_finish_page_flip(dev
, crtc
);
6671 void intel_prepare_page_flip(struct drm_device
*dev
, int plane
)
6673 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
6674 struct intel_crtc
*intel_crtc
=
6675 to_intel_crtc(dev_priv
->plane_to_crtc_mapping
[plane
]);
6676 unsigned long flags
;
6678 spin_lock_irqsave(&dev
->event_lock
, flags
);
6679 if (intel_crtc
->unpin_work
) {
6680 if ((++intel_crtc
->unpin_work
->pending
) > 1)
6681 DRM_ERROR("Prepared flip multiple times\n");
6683 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
6685 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6688 static int intel_gen2_queue_flip(struct drm_device
*dev
,
6689 struct drm_crtc
*crtc
,
6690 struct drm_framebuffer
*fb
,
6691 struct drm_i915_gem_object
*obj
)
6693 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6694 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6695 unsigned long offset
;
6699 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
6703 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6704 offset
= crtc
->y
* fb
->pitch
+ crtc
->x
* fb
->bits_per_pixel
/8;
6706 ret
= BEGIN_LP_RING(6);
6710 /* Can't queue multiple flips, so wait for the previous
6711 * one to finish before executing the next.
6713 if (intel_crtc
->plane
)
6714 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
6716 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
6717 OUT_RING(MI_WAIT_FOR_EVENT
| flip_mask
);
6719 OUT_RING(MI_DISPLAY_FLIP
|
6720 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
6721 OUT_RING(fb
->pitch
);
6722 OUT_RING(obj
->gtt_offset
+ offset
);
6729 static int intel_gen3_queue_flip(struct drm_device
*dev
,
6730 struct drm_crtc
*crtc
,
6731 struct drm_framebuffer
*fb
,
6732 struct drm_i915_gem_object
*obj
)
6734 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6735 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6736 unsigned long offset
;
6740 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
6744 /* Offset into the new buffer for cases of shared fbs between CRTCs */
6745 offset
= crtc
->y
* fb
->pitch
+ crtc
->x
* fb
->bits_per_pixel
/8;
6747 ret
= BEGIN_LP_RING(6);
6751 if (intel_crtc
->plane
)
6752 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
6754 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
6755 OUT_RING(MI_WAIT_FOR_EVENT
| flip_mask
);
6757 OUT_RING(MI_DISPLAY_FLIP_I915
|
6758 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
6759 OUT_RING(fb
->pitch
);
6760 OUT_RING(obj
->gtt_offset
+ offset
);
6768 static int intel_gen4_queue_flip(struct drm_device
*dev
,
6769 struct drm_crtc
*crtc
,
6770 struct drm_framebuffer
*fb
,
6771 struct drm_i915_gem_object
*obj
)
6773 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6774 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6775 uint32_t pf
, pipesrc
;
6778 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
6782 ret
= BEGIN_LP_RING(4);
6786 /* i965+ uses the linear or tiled offsets from the
6787 * Display Registers (which do not change across a page-flip)
6788 * so we need only reprogram the base address.
6790 OUT_RING(MI_DISPLAY_FLIP
|
6791 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
6792 OUT_RING(fb
->pitch
);
6793 OUT_RING(obj
->gtt_offset
| obj
->tiling_mode
);
6795 /* XXX Enabling the panel-fitter across page-flip is so far
6796 * untested on non-native modes, so ignore it for now.
6797 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
6800 pipesrc
= I915_READ(PIPESRC(intel_crtc
->pipe
)) & 0x0fff0fff;
6801 OUT_RING(pf
| pipesrc
);
6807 static int intel_gen6_queue_flip(struct drm_device
*dev
,
6808 struct drm_crtc
*crtc
,
6809 struct drm_framebuffer
*fb
,
6810 struct drm_i915_gem_object
*obj
)
6812 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6813 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6814 uint32_t pf
, pipesrc
;
6817 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, LP_RING(dev_priv
));
6821 ret
= BEGIN_LP_RING(4);
6825 OUT_RING(MI_DISPLAY_FLIP
|
6826 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
6827 OUT_RING(fb
->pitch
| obj
->tiling_mode
);
6828 OUT_RING(obj
->gtt_offset
);
6830 pf
= I915_READ(PF_CTL(intel_crtc
->pipe
)) & PF_ENABLE
;
6831 pipesrc
= I915_READ(PIPESRC(intel_crtc
->pipe
)) & 0x0fff0fff;
6832 OUT_RING(pf
| pipesrc
);
6839 * On gen7 we currently use the blit ring because (in early silicon at least)
6840 * the render ring doesn't give us interrpts for page flip completion, which
6841 * means clients will hang after the first flip is queued. Fortunately the
6842 * blit ring generates interrupts properly, so use it instead.
6844 static int intel_gen7_queue_flip(struct drm_device
*dev
,
6845 struct drm_crtc
*crtc
,
6846 struct drm_framebuffer
*fb
,
6847 struct drm_i915_gem_object
*obj
)
6849 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6850 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6851 struct intel_ring_buffer
*ring
= &dev_priv
->ring
[BCS
];
6854 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, ring
);
6858 ret
= intel_ring_begin(ring
, 4);
6862 intel_ring_emit(ring
, MI_DISPLAY_FLIP_I915
| (intel_crtc
->plane
<< 19));
6863 intel_ring_emit(ring
, (fb
->pitch
| obj
->tiling_mode
));
6864 intel_ring_emit(ring
, (obj
->gtt_offset
));
6865 intel_ring_emit(ring
, (MI_NOOP
));
6866 intel_ring_advance(ring
);
6871 static int intel_default_queue_flip(struct drm_device
*dev
,
6872 struct drm_crtc
*crtc
,
6873 struct drm_framebuffer
*fb
,
6874 struct drm_i915_gem_object
*obj
)
6879 static int intel_crtc_page_flip(struct drm_crtc
*crtc
,
6880 struct drm_framebuffer
*fb
,
6881 struct drm_pending_vblank_event
*event
)
6883 struct drm_device
*dev
= crtc
->dev
;
6884 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6885 struct intel_framebuffer
*intel_fb
;
6886 struct drm_i915_gem_object
*obj
;
6887 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
6888 struct intel_unpin_work
*work
;
6889 unsigned long flags
;
6892 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
6896 work
->event
= event
;
6897 work
->dev
= crtc
->dev
;
6898 intel_fb
= to_intel_framebuffer(crtc
->fb
);
6899 work
->old_fb_obj
= intel_fb
->obj
;
6900 INIT_WORK(&work
->work
, intel_unpin_work_fn
);
6902 /* We borrow the event spin lock for protecting unpin_work */
6903 spin_lock_irqsave(&dev
->event_lock
, flags
);
6904 if (intel_crtc
->unpin_work
) {
6905 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6908 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
6911 intel_crtc
->unpin_work
= work
;
6912 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6914 intel_fb
= to_intel_framebuffer(fb
);
6915 obj
= intel_fb
->obj
;
6917 mutex_lock(&dev
->struct_mutex
);
6919 /* Reference the objects for the scheduled work. */
6920 drm_gem_object_reference(&work
->old_fb_obj
->base
);
6921 drm_gem_object_reference(&obj
->base
);
6925 ret
= drm_vblank_get(dev
, intel_crtc
->pipe
);
6929 work
->pending_flip_obj
= obj
;
6931 work
->enable_stall_check
= true;
6933 /* Block clients from rendering to the new back buffer until
6934 * the flip occurs and the object is no longer visible.
6936 atomic_add(1 << intel_crtc
->plane
, &work
->old_fb_obj
->pending_flip
);
6938 ret
= dev_priv
->display
.queue_flip(dev
, crtc
, fb
, obj
);
6940 goto cleanup_pending
;
6942 intel_disable_fbc(dev
);
6943 mutex_unlock(&dev
->struct_mutex
);
6945 trace_i915_flip_request(intel_crtc
->plane
, obj
);
6950 atomic_sub(1 << intel_crtc
->plane
, &work
->old_fb_obj
->pending_flip
);
6952 drm_gem_object_unreference(&work
->old_fb_obj
->base
);
6953 drm_gem_object_unreference(&obj
->base
);
6954 mutex_unlock(&dev
->struct_mutex
);
6956 spin_lock_irqsave(&dev
->event_lock
, flags
);
6957 intel_crtc
->unpin_work
= NULL
;
6958 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
6965 static void intel_sanitize_modesetting(struct drm_device
*dev
,
6966 int pipe
, int plane
)
6968 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6971 if (HAS_PCH_SPLIT(dev
))
6974 /* Who knows what state these registers were left in by the BIOS or
6977 * If we leave the registers in a conflicting state (e.g. with the
6978 * display plane reading from the other pipe than the one we intend
6979 * to use) then when we attempt to teardown the active mode, we will
6980 * not disable the pipes and planes in the correct order -- leaving
6981 * a plane reading from a disabled pipe and possibly leading to
6982 * undefined behaviour.
6985 reg
= DSPCNTR(plane
);
6986 val
= I915_READ(reg
);
6988 if ((val
& DISPLAY_PLANE_ENABLE
) == 0)
6990 if (!!(val
& DISPPLANE_SEL_PIPE_MASK
) == pipe
)
6993 /* This display plane is active and attached to the other CPU pipe. */
6996 /* Disable the plane and wait for it to stop reading from the pipe. */
6997 intel_disable_plane(dev_priv
, plane
, pipe
);
6998 intel_disable_pipe(dev_priv
, pipe
);
7001 static void intel_crtc_reset(struct drm_crtc
*crtc
)
7003 struct drm_device
*dev
= crtc
->dev
;
7004 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
7006 /* Reset flags back to the 'unknown' status so that they
7007 * will be correctly set on the initial modeset.
7009 intel_crtc
->dpms_mode
= -1;
7011 /* We need to fix up any BIOS configuration that conflicts with
7014 intel_sanitize_modesetting(dev
, intel_crtc
->pipe
, intel_crtc
->plane
);
7017 static struct drm_crtc_helper_funcs intel_helper_funcs
= {
7018 .dpms
= intel_crtc_dpms
,
7019 .mode_fixup
= intel_crtc_mode_fixup
,
7020 .mode_set
= intel_crtc_mode_set
,
7021 .mode_set_base
= intel_pipe_set_base
,
7022 .mode_set_base_atomic
= intel_pipe_set_base_atomic
,
7023 .load_lut
= intel_crtc_load_lut
,
7024 .disable
= intel_crtc_disable
,
7027 static const struct drm_crtc_funcs intel_crtc_funcs
= {
7028 .reset
= intel_crtc_reset
,
7029 .cursor_set
= intel_crtc_cursor_set
,
7030 .cursor_move
= intel_crtc_cursor_move
,
7031 .gamma_set
= intel_crtc_gamma_set
,
7032 .set_config
= drm_crtc_helper_set_config
,
7033 .destroy
= intel_crtc_destroy
,
7034 .page_flip
= intel_crtc_page_flip
,
7037 static void intel_crtc_init(struct drm_device
*dev
, int pipe
)
7039 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
7040 struct intel_crtc
*intel_crtc
;
7043 intel_crtc
= kzalloc(sizeof(struct intel_crtc
) + (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)), GFP_KERNEL
);
7044 if (intel_crtc
== NULL
)
7047 drm_crtc_init(dev
, &intel_crtc
->base
, &intel_crtc_funcs
);
7049 drm_mode_crtc_set_gamma_size(&intel_crtc
->base
, 256);
7050 for (i
= 0; i
< 256; i
++) {
7051 intel_crtc
->lut_r
[i
] = i
;
7052 intel_crtc
->lut_g
[i
] = i
;
7053 intel_crtc
->lut_b
[i
] = i
;
7056 /* Swap pipes & planes for FBC on pre-965 */
7057 intel_crtc
->pipe
= pipe
;
7058 intel_crtc
->plane
= pipe
;
7059 if (IS_MOBILE(dev
) && IS_GEN3(dev
)) {
7060 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
7061 intel_crtc
->plane
= !pipe
;
7064 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
7065 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] != NULL
);
7066 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] = &intel_crtc
->base
;
7067 dev_priv
->pipe_to_crtc_mapping
[intel_crtc
->pipe
] = &intel_crtc
->base
;
7069 intel_crtc_reset(&intel_crtc
->base
);
7070 intel_crtc
->active
= true; /* force the pipe off on setup_init_config */
7071 intel_crtc
->bpp
= 24; /* default for pre-Ironlake */
7073 if (HAS_PCH_SPLIT(dev
)) {
7074 intel_helper_funcs
.prepare
= ironlake_crtc_prepare
;
7075 intel_helper_funcs
.commit
= ironlake_crtc_commit
;
7077 intel_helper_funcs
.prepare
= i9xx_crtc_prepare
;
7078 intel_helper_funcs
.commit
= i9xx_crtc_commit
;
7081 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
7083 intel_crtc
->busy
= false;
7085 setup_timer(&intel_crtc
->idle_timer
, intel_crtc_idle_timer
,
7086 (unsigned long)intel_crtc
);
7089 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
7090 struct drm_file
*file
)
7092 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
7093 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
7094 struct drm_mode_object
*drmmode_obj
;
7095 struct intel_crtc
*crtc
;
7098 DRM_ERROR("called with no initialization\n");
7102 drmmode_obj
= drm_mode_object_find(dev
, pipe_from_crtc_id
->crtc_id
,
7103 DRM_MODE_OBJECT_CRTC
);
7106 DRM_ERROR("no such CRTC id\n");
7110 crtc
= to_intel_crtc(obj_to_crtc(drmmode_obj
));
7111 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
7116 static int intel_encoder_clones(struct drm_device
*dev
, int type_mask
)
7118 struct intel_encoder
*encoder
;
7122 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, base
.head
) {
7123 if (type_mask
& encoder
->clone_mask
)
7124 index_mask
|= (1 << entry
);
7131 static bool has_edp_a(struct drm_device
*dev
)
7133 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7135 if (!IS_MOBILE(dev
))
7138 if ((I915_READ(DP_A
) & DP_DETECTED
) == 0)
7142 (I915_READ(ILK_DISPLAY_CHICKEN_FUSES
) & ILK_eDP_A_DISABLE
))
7148 static void intel_setup_outputs(struct drm_device
*dev
)
7150 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7151 struct intel_encoder
*encoder
;
7152 bool dpd_is_edp
= false;
7153 bool has_lvds
= false;
7155 if (IS_MOBILE(dev
) && !IS_I830(dev
))
7156 has_lvds
= intel_lvds_init(dev
);
7157 if (!has_lvds
&& !HAS_PCH_SPLIT(dev
)) {
7158 /* disable the panel fitter on everything but LVDS */
7159 I915_WRITE(PFIT_CONTROL
, 0);
7162 if (HAS_PCH_SPLIT(dev
)) {
7163 dpd_is_edp
= intel_dpd_is_edp(dev
);
7166 intel_dp_init(dev
, DP_A
);
7168 if (dpd_is_edp
&& (I915_READ(PCH_DP_D
) & DP_DETECTED
))
7169 intel_dp_init(dev
, PCH_DP_D
);
7172 intel_crt_init(dev
);
7174 if (HAS_PCH_SPLIT(dev
)) {
7177 if (I915_READ(HDMIB
) & PORT_DETECTED
) {
7178 /* PCH SDVOB multiplex with HDMIB */
7179 found
= intel_sdvo_init(dev
, PCH_SDVOB
);
7181 intel_hdmi_init(dev
, HDMIB
);
7182 if (!found
&& (I915_READ(PCH_DP_B
) & DP_DETECTED
))
7183 intel_dp_init(dev
, PCH_DP_B
);
7186 if (I915_READ(HDMIC
) & PORT_DETECTED
)
7187 intel_hdmi_init(dev
, HDMIC
);
7189 if (I915_READ(HDMID
) & PORT_DETECTED
)
7190 intel_hdmi_init(dev
, HDMID
);
7192 if (I915_READ(PCH_DP_C
) & DP_DETECTED
)
7193 intel_dp_init(dev
, PCH_DP_C
);
7195 if (!dpd_is_edp
&& (I915_READ(PCH_DP_D
) & DP_DETECTED
))
7196 intel_dp_init(dev
, PCH_DP_D
);
7198 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev
)) {
7201 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
7202 DRM_DEBUG_KMS("probing SDVOB\n");
7203 found
= intel_sdvo_init(dev
, SDVOB
);
7204 if (!found
&& SUPPORTS_INTEGRATED_HDMI(dev
)) {
7205 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
7206 intel_hdmi_init(dev
, SDVOB
);
7209 if (!found
&& SUPPORTS_INTEGRATED_DP(dev
)) {
7210 DRM_DEBUG_KMS("probing DP_B\n");
7211 intel_dp_init(dev
, DP_B
);
7215 /* Before G4X SDVOC doesn't have its own detect register */
7217 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
7218 DRM_DEBUG_KMS("probing SDVOC\n");
7219 found
= intel_sdvo_init(dev
, SDVOC
);
7222 if (!found
&& (I915_READ(SDVOC
) & SDVO_DETECTED
)) {
7224 if (SUPPORTS_INTEGRATED_HDMI(dev
)) {
7225 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
7226 intel_hdmi_init(dev
, SDVOC
);
7228 if (SUPPORTS_INTEGRATED_DP(dev
)) {
7229 DRM_DEBUG_KMS("probing DP_C\n");
7230 intel_dp_init(dev
, DP_C
);
7234 if (SUPPORTS_INTEGRATED_DP(dev
) &&
7235 (I915_READ(DP_D
) & DP_DETECTED
)) {
7236 DRM_DEBUG_KMS("probing DP_D\n");
7237 intel_dp_init(dev
, DP_D
);
7239 } else if (IS_GEN2(dev
))
7240 intel_dvo_init(dev
);
7242 if (SUPPORTS_TV(dev
))
7245 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, base
.head
) {
7246 encoder
->base
.possible_crtcs
= encoder
->crtc_mask
;
7247 encoder
->base
.possible_clones
=
7248 intel_encoder_clones(dev
, encoder
->clone_mask
);
7251 /* disable all the possible outputs/crtcs before entering KMS mode */
7252 drm_helper_disable_unused_functions(dev
);
7255 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
7257 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
7259 drm_framebuffer_cleanup(fb
);
7260 drm_gem_object_unreference_unlocked(&intel_fb
->obj
->base
);
7265 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
7266 struct drm_file
*file
,
7267 unsigned int *handle
)
7269 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
7270 struct drm_i915_gem_object
*obj
= intel_fb
->obj
;
7272 return drm_gem_handle_create(file
, &obj
->base
, handle
);
7275 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
7276 .destroy
= intel_user_framebuffer_destroy
,
7277 .create_handle
= intel_user_framebuffer_create_handle
,
7280 int intel_framebuffer_init(struct drm_device
*dev
,
7281 struct intel_framebuffer
*intel_fb
,
7282 struct drm_mode_fb_cmd
*mode_cmd
,
7283 struct drm_i915_gem_object
*obj
)
7287 if (obj
->tiling_mode
== I915_TILING_Y
)
7290 if (mode_cmd
->pitch
& 63)
7293 switch (mode_cmd
->bpp
) {
7296 /* Only pre-ILK can handle 5:5:5 */
7297 if (mode_cmd
->depth
== 15 && !HAS_PCH_SPLIT(dev
))
7308 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
7310 DRM_ERROR("framebuffer init failed %d\n", ret
);
7314 drm_helper_mode_fill_fb_struct(&intel_fb
->base
, mode_cmd
);
7315 intel_fb
->obj
= obj
;
7319 static struct drm_framebuffer
*
7320 intel_user_framebuffer_create(struct drm_device
*dev
,
7321 struct drm_file
*filp
,
7322 struct drm_mode_fb_cmd
*mode_cmd
)
7324 struct drm_i915_gem_object
*obj
;
7326 obj
= to_intel_bo(drm_gem_object_lookup(dev
, filp
, mode_cmd
->handle
));
7327 if (&obj
->base
== NULL
)
7328 return ERR_PTR(-ENOENT
);
7330 return intel_framebuffer_create(dev
, mode_cmd
, obj
);
7333 static const struct drm_mode_config_funcs intel_mode_funcs
= {
7334 .fb_create
= intel_user_framebuffer_create
,
7335 .output_poll_changed
= intel_fb_output_poll_changed
,
7338 static struct drm_i915_gem_object
*
7339 intel_alloc_context_page(struct drm_device
*dev
)
7341 struct drm_i915_gem_object
*ctx
;
7344 WARN_ON(!mutex_is_locked(&dev
->struct_mutex
));
7346 ctx
= i915_gem_alloc_object(dev
, 4096);
7348 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
7352 ret
= i915_gem_object_pin(ctx
, 4096, true);
7354 DRM_ERROR("failed to pin power context: %d\n", ret
);
7358 ret
= i915_gem_object_set_to_gtt_domain(ctx
, 1);
7360 DRM_ERROR("failed to set-domain on power context: %d\n", ret
);
7367 i915_gem_object_unpin(ctx
);
7369 drm_gem_object_unreference(&ctx
->base
);
7370 mutex_unlock(&dev
->struct_mutex
);
7374 bool ironlake_set_drps(struct drm_device
*dev
, u8 val
)
7376 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7379 rgvswctl
= I915_READ16(MEMSWCTL
);
7380 if (rgvswctl
& MEMCTL_CMD_STS
) {
7381 DRM_DEBUG("gpu busy, RCS change rejected\n");
7382 return false; /* still busy with another command */
7385 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
7386 (val
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
7387 I915_WRITE16(MEMSWCTL
, rgvswctl
);
7388 POSTING_READ16(MEMSWCTL
);
7390 rgvswctl
|= MEMCTL_CMD_STS
;
7391 I915_WRITE16(MEMSWCTL
, rgvswctl
);
7396 void ironlake_enable_drps(struct drm_device
*dev
)
7398 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7399 u32 rgvmodectl
= I915_READ(MEMMODECTL
);
7400 u8 fmax
, fmin
, fstart
, vstart
;
7402 /* Enable temp reporting */
7403 I915_WRITE16(PMMISC
, I915_READ(PMMISC
) | MCPPCE_EN
);
7404 I915_WRITE16(TSC1
, I915_READ(TSC1
) | TSE
);
7406 /* 100ms RC evaluation intervals */
7407 I915_WRITE(RCUPEI
, 100000);
7408 I915_WRITE(RCDNEI
, 100000);
7410 /* Set max/min thresholds to 90ms and 80ms respectively */
7411 I915_WRITE(RCBMAXAVG
, 90000);
7412 I915_WRITE(RCBMINAVG
, 80000);
7414 I915_WRITE(MEMIHYST
, 1);
7416 /* Set up min, max, and cur for interrupt handling */
7417 fmax
= (rgvmodectl
& MEMMODE_FMAX_MASK
) >> MEMMODE_FMAX_SHIFT
;
7418 fmin
= (rgvmodectl
& MEMMODE_FMIN_MASK
);
7419 fstart
= (rgvmodectl
& MEMMODE_FSTART_MASK
) >>
7420 MEMMODE_FSTART_SHIFT
;
7422 vstart
= (I915_READ(PXVFREQ_BASE
+ (fstart
* 4)) & PXVFREQ_PX_MASK
) >>
7425 dev_priv
->fmax
= fmax
; /* IPS callback will increase this */
7426 dev_priv
->fstart
= fstart
;
7428 dev_priv
->max_delay
= fstart
;
7429 dev_priv
->min_delay
= fmin
;
7430 dev_priv
->cur_delay
= fstart
;
7432 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
7433 fmax
, fmin
, fstart
);
7435 I915_WRITE(MEMINTREN
, MEMINT_CX_SUPR_EN
| MEMINT_EVAL_CHG_EN
);
7438 * Interrupts will be enabled in ironlake_irq_postinstall
7441 I915_WRITE(VIDSTART
, vstart
);
7442 POSTING_READ(VIDSTART
);
7444 rgvmodectl
|= MEMMODE_SWMODE_EN
;
7445 I915_WRITE(MEMMODECTL
, rgvmodectl
);
7447 if (wait_for((I915_READ(MEMSWCTL
) & MEMCTL_CMD_STS
) == 0, 10))
7448 DRM_ERROR("stuck trying to change perf mode\n");
7451 ironlake_set_drps(dev
, fstart
);
7453 dev_priv
->last_count1
= I915_READ(0x112e4) + I915_READ(0x112e8) +
7455 dev_priv
->last_time1
= jiffies_to_msecs(jiffies
);
7456 dev_priv
->last_count2
= I915_READ(0x112f4);
7457 getrawmonotonic(&dev_priv
->last_time2
);
7460 void ironlake_disable_drps(struct drm_device
*dev
)
7462 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7463 u16 rgvswctl
= I915_READ16(MEMSWCTL
);
7465 /* Ack interrupts, disable EFC interrupt */
7466 I915_WRITE(MEMINTREN
, I915_READ(MEMINTREN
) & ~MEMINT_EVAL_CHG_EN
);
7467 I915_WRITE(MEMINTRSTS
, MEMINT_EVAL_CHG
);
7468 I915_WRITE(DEIER
, I915_READ(DEIER
) & ~DE_PCU_EVENT
);
7469 I915_WRITE(DEIIR
, DE_PCU_EVENT
);
7470 I915_WRITE(DEIMR
, I915_READ(DEIMR
) | DE_PCU_EVENT
);
7472 /* Go back to the starting frequency */
7473 ironlake_set_drps(dev
, dev_priv
->fstart
);
7475 rgvswctl
|= MEMCTL_CMD_STS
;
7476 I915_WRITE(MEMSWCTL
, rgvswctl
);
7481 void gen6_set_rps(struct drm_device
*dev
, u8 val
)
7483 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7486 swreq
= (val
& 0x3ff) << 25;
7487 I915_WRITE(GEN6_RPNSWREQ
, swreq
);
7490 void gen6_disable_rps(struct drm_device
*dev
)
7492 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7494 I915_WRITE(GEN6_RPNSWREQ
, 1 << 31);
7495 I915_WRITE(GEN6_PMINTRMSK
, 0xffffffff);
7496 I915_WRITE(GEN6_PMIER
, 0);
7498 spin_lock_irq(&dev_priv
->rps_lock
);
7499 dev_priv
->pm_iir
= 0;
7500 spin_unlock_irq(&dev_priv
->rps_lock
);
7502 I915_WRITE(GEN6_PMIIR
, I915_READ(GEN6_PMIIR
));
7505 static unsigned long intel_pxfreq(u32 vidfreq
)
7508 int div
= (vidfreq
& 0x3f0000) >> 16;
7509 int post
= (vidfreq
& 0x3000) >> 12;
7510 int pre
= (vidfreq
& 0x7);
7515 freq
= ((div
* 133333) / ((1<<post
) * pre
));
7520 void intel_init_emon(struct drm_device
*dev
)
7522 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7527 /* Disable to program */
7531 /* Program energy weights for various events */
7532 I915_WRITE(SDEW
, 0x15040d00);
7533 I915_WRITE(CSIEW0
, 0x007f0000);
7534 I915_WRITE(CSIEW1
, 0x1e220004);
7535 I915_WRITE(CSIEW2
, 0x04000004);
7537 for (i
= 0; i
< 5; i
++)
7538 I915_WRITE(PEW
+ (i
* 4), 0);
7539 for (i
= 0; i
< 3; i
++)
7540 I915_WRITE(DEW
+ (i
* 4), 0);
7542 /* Program P-state weights to account for frequency power adjustment */
7543 for (i
= 0; i
< 16; i
++) {
7544 u32 pxvidfreq
= I915_READ(PXVFREQ_BASE
+ (i
* 4));
7545 unsigned long freq
= intel_pxfreq(pxvidfreq
);
7546 unsigned long vid
= (pxvidfreq
& PXVFREQ_PX_MASK
) >>
7551 val
*= (freq
/ 1000);
7553 val
/= (127*127*900);
7555 DRM_ERROR("bad pxval: %ld\n", val
);
7558 /* Render standby states get 0 weight */
7562 for (i
= 0; i
< 4; i
++) {
7563 u32 val
= (pxw
[i
*4] << 24) | (pxw
[(i
*4)+1] << 16) |
7564 (pxw
[(i
*4)+2] << 8) | (pxw
[(i
*4)+3]);
7565 I915_WRITE(PXW
+ (i
* 4), val
);
7568 /* Adjust magic regs to magic values (more experimental results) */
7569 I915_WRITE(OGW0
, 0);
7570 I915_WRITE(OGW1
, 0);
7571 I915_WRITE(EG0
, 0x00007f00);
7572 I915_WRITE(EG1
, 0x0000000e);
7573 I915_WRITE(EG2
, 0x000e0000);
7574 I915_WRITE(EG3
, 0x68000300);
7575 I915_WRITE(EG4
, 0x42000000);
7576 I915_WRITE(EG5
, 0x00140031);
7580 for (i
= 0; i
< 8; i
++)
7581 I915_WRITE(PXWL
+ (i
* 4), 0);
7583 /* Enable PMON + select events */
7584 I915_WRITE(ECR
, 0x80000019);
7586 lcfuse
= I915_READ(LCFUSE02
);
7588 dev_priv
->corr
= (lcfuse
& LCFUSE_HIV_MASK
);
7591 void gen6_enable_rps(struct drm_i915_private
*dev_priv
)
7593 u32 rp_state_cap
= I915_READ(GEN6_RP_STATE_CAP
);
7594 u32 gt_perf_status
= I915_READ(GEN6_GT_PERF_STATUS
);
7595 u32 pcu_mbox
, rc6_mask
= 0;
7596 int cur_freq
, min_freq
, max_freq
;
7599 /* Here begins a magic sequence of register writes to enable
7600 * auto-downclocking.
7602 * Perhaps there might be some value in exposing these to
7605 I915_WRITE(GEN6_RC_STATE
, 0);
7606 mutex_lock(&dev_priv
->dev
->struct_mutex
);
7607 gen6_gt_force_wake_get(dev_priv
);
7609 /* disable the counters and set deterministic thresholds */
7610 I915_WRITE(GEN6_RC_CONTROL
, 0);
7612 I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT
, 1000 << 16);
7613 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT
, 40 << 16 | 30);
7614 I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT
, 30);
7615 I915_WRITE(GEN6_RC_EVALUATION_INTERVAL
, 125000);
7616 I915_WRITE(GEN6_RC_IDLE_HYSTERSIS
, 25);
7618 for (i
= 0; i
< I915_NUM_RINGS
; i
++)
7619 I915_WRITE(RING_MAX_IDLE(dev_priv
->ring
[i
].mmio_base
), 10);
7621 I915_WRITE(GEN6_RC_SLEEP
, 0);
7622 I915_WRITE(GEN6_RC1e_THRESHOLD
, 1000);
7623 I915_WRITE(GEN6_RC6_THRESHOLD
, 50000);
7624 I915_WRITE(GEN6_RC6p_THRESHOLD
, 100000);
7625 I915_WRITE(GEN6_RC6pp_THRESHOLD
, 64000); /* unused */
7627 if (i915_enable_rc6
)
7628 rc6_mask
= GEN6_RC_CTL_RC6p_ENABLE
|
7629 GEN6_RC_CTL_RC6_ENABLE
;
7631 I915_WRITE(GEN6_RC_CONTROL
,
7633 GEN6_RC_CTL_EI_MODE(1) |
7634 GEN6_RC_CTL_HW_ENABLE
);
7636 I915_WRITE(GEN6_RPNSWREQ
,
7637 GEN6_FREQUENCY(10) |
7639 GEN6_AGGRESSIVE_TURBO
);
7640 I915_WRITE(GEN6_RC_VIDEO_FREQ
,
7641 GEN6_FREQUENCY(12));
7643 I915_WRITE(GEN6_RP_DOWN_TIMEOUT
, 1000000);
7644 I915_WRITE(GEN6_RP_INTERRUPT_LIMITS
,
7647 I915_WRITE(GEN6_RP_UP_THRESHOLD
, 10000);
7648 I915_WRITE(GEN6_RP_DOWN_THRESHOLD
, 1000000);
7649 I915_WRITE(GEN6_RP_UP_EI
, 100000);
7650 I915_WRITE(GEN6_RP_DOWN_EI
, 5000000);
7651 I915_WRITE(GEN6_RP_IDLE_HYSTERSIS
, 10);
7652 I915_WRITE(GEN6_RP_CONTROL
,
7653 GEN6_RP_MEDIA_TURBO
|
7654 GEN6_RP_USE_NORMAL_FREQ
|
7655 GEN6_RP_MEDIA_IS_GFX
|
7657 GEN6_RP_UP_BUSY_AVG
|
7658 GEN6_RP_DOWN_IDLE_CONT
);
7660 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7662 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7664 I915_WRITE(GEN6_PCODE_DATA
, 0);
7665 I915_WRITE(GEN6_PCODE_MAILBOX
,
7667 GEN6_PCODE_WRITE_MIN_FREQ_TABLE
);
7668 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7670 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7672 min_freq
= (rp_state_cap
& 0xff0000) >> 16;
7673 max_freq
= rp_state_cap
& 0xff;
7674 cur_freq
= (gt_perf_status
& 0xff00) >> 8;
7676 /* Check for overclock support */
7677 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7679 DRM_ERROR("timeout waiting for pcode mailbox to become idle\n");
7680 I915_WRITE(GEN6_PCODE_MAILBOX
, GEN6_READ_OC_PARAMS
);
7681 pcu_mbox
= I915_READ(GEN6_PCODE_DATA
);
7682 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) & GEN6_PCODE_READY
) == 0,
7684 DRM_ERROR("timeout waiting for pcode mailbox to finish\n");
7685 if (pcu_mbox
& (1<<31)) { /* OC supported */
7686 max_freq
= pcu_mbox
& 0xff;
7687 DRM_DEBUG_DRIVER("overclocking supported, adjusting frequency max to %dMHz\n", pcu_mbox
* 50);
7690 /* In units of 100MHz */
7691 dev_priv
->max_delay
= max_freq
;
7692 dev_priv
->min_delay
= min_freq
;
7693 dev_priv
->cur_delay
= cur_freq
;
7695 /* requires MSI enabled */
7696 I915_WRITE(GEN6_PMIER
,
7697 GEN6_PM_MBOX_EVENT
|
7698 GEN6_PM_THERMAL_EVENT
|
7699 GEN6_PM_RP_DOWN_TIMEOUT
|
7700 GEN6_PM_RP_UP_THRESHOLD
|
7701 GEN6_PM_RP_DOWN_THRESHOLD
|
7702 GEN6_PM_RP_UP_EI_EXPIRED
|
7703 GEN6_PM_RP_DOWN_EI_EXPIRED
);
7704 spin_lock_irq(&dev_priv
->rps_lock
);
7705 WARN_ON(dev_priv
->pm_iir
!= 0);
7706 I915_WRITE(GEN6_PMIMR
, 0);
7707 spin_unlock_irq(&dev_priv
->rps_lock
);
7708 /* enable all PM interrupts */
7709 I915_WRITE(GEN6_PMINTRMSK
, 0);
7711 gen6_gt_force_wake_put(dev_priv
);
7712 mutex_unlock(&dev_priv
->dev
->struct_mutex
);
7715 void gen6_update_ring_freq(struct drm_i915_private
*dev_priv
)
7718 int gpu_freq
, ia_freq
, max_ia_freq
;
7719 int scaling_factor
= 180;
7721 max_ia_freq
= cpufreq_quick_get_max(0);
7723 * Default to measured freq if none found, PCU will ensure we don't go
7727 max_ia_freq
= tsc_khz
;
7729 /* Convert from kHz to MHz */
7730 max_ia_freq
/= 1000;
7732 mutex_lock(&dev_priv
->dev
->struct_mutex
);
7735 * For each potential GPU frequency, load a ring frequency we'd like
7736 * to use for memory access. We do this by specifying the IA frequency
7737 * the PCU should use as a reference to determine the ring frequency.
7739 for (gpu_freq
= dev_priv
->max_delay
; gpu_freq
>= dev_priv
->min_delay
;
7741 int diff
= dev_priv
->max_delay
- gpu_freq
;
7744 * For GPU frequencies less than 750MHz, just use the lowest
7747 if (gpu_freq
< min_freq
)
7750 ia_freq
= max_ia_freq
- ((diff
* scaling_factor
) / 2);
7751 ia_freq
= DIV_ROUND_CLOSEST(ia_freq
, 100);
7753 I915_WRITE(GEN6_PCODE_DATA
,
7754 (ia_freq
<< GEN6_PCODE_FREQ_IA_RATIO_SHIFT
) |
7756 I915_WRITE(GEN6_PCODE_MAILBOX
, GEN6_PCODE_READY
|
7757 GEN6_PCODE_WRITE_MIN_FREQ_TABLE
);
7758 if (wait_for((I915_READ(GEN6_PCODE_MAILBOX
) &
7759 GEN6_PCODE_READY
) == 0, 10)) {
7760 DRM_ERROR("pcode write of freq table timed out\n");
7765 mutex_unlock(&dev_priv
->dev
->struct_mutex
);
7768 static void ironlake_init_clock_gating(struct drm_device
*dev
)
7770 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7771 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
7773 /* Required for FBC */
7774 dspclk_gate
|= DPFCUNIT_CLOCK_GATE_DISABLE
|
7775 DPFCRUNIT_CLOCK_GATE_DISABLE
|
7776 DPFDUNIT_CLOCK_GATE_DISABLE
;
7777 /* Required for CxSR */
7778 dspclk_gate
|= DPARBUNIT_CLOCK_GATE_DISABLE
;
7780 I915_WRITE(PCH_3DCGDIS0
,
7781 MARIUNIT_CLOCK_GATE_DISABLE
|
7782 SVSMUNIT_CLOCK_GATE_DISABLE
);
7783 I915_WRITE(PCH_3DCGDIS1
,
7784 VFMUNIT_CLOCK_GATE_DISABLE
);
7786 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
7789 * According to the spec the following bits should be set in
7790 * order to enable memory self-refresh
7791 * The bit 22/21 of 0x42004
7792 * The bit 5 of 0x42020
7793 * The bit 15 of 0x45000
7795 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7796 (I915_READ(ILK_DISPLAY_CHICKEN2
) |
7797 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
));
7798 I915_WRITE(ILK_DSPCLK_GATE
,
7799 (I915_READ(ILK_DSPCLK_GATE
) |
7800 ILK_DPARB_CLK_GATE
));
7801 I915_WRITE(DISP_ARB_CTL
,
7802 (I915_READ(DISP_ARB_CTL
) |
7804 I915_WRITE(WM3_LP_ILK
, 0);
7805 I915_WRITE(WM2_LP_ILK
, 0);
7806 I915_WRITE(WM1_LP_ILK
, 0);
7809 * Based on the document from hardware guys the following bits
7810 * should be set unconditionally in order to enable FBC.
7811 * The bit 22 of 0x42000
7812 * The bit 22 of 0x42004
7813 * The bit 7,8,9 of 0x42020.
7815 if (IS_IRONLAKE_M(dev
)) {
7816 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
7817 I915_READ(ILK_DISPLAY_CHICKEN1
) |
7819 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7820 I915_READ(ILK_DISPLAY_CHICKEN2
) |
7822 I915_WRITE(ILK_DSPCLK_GATE
,
7823 I915_READ(ILK_DSPCLK_GATE
) |
7829 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7830 I915_READ(ILK_DISPLAY_CHICKEN2
) |
7831 ILK_ELPIN_409_SELECT
);
7832 I915_WRITE(_3D_CHICKEN2
,
7833 _3D_CHICKEN2_WM_READ_PIPELINED
<< 16 |
7834 _3D_CHICKEN2_WM_READ_PIPELINED
);
7837 static void gen6_init_clock_gating(struct drm_device
*dev
)
7839 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7841 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
7843 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
7845 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7846 I915_READ(ILK_DISPLAY_CHICKEN2
) |
7847 ILK_ELPIN_409_SELECT
);
7849 I915_WRITE(WM3_LP_ILK
, 0);
7850 I915_WRITE(WM2_LP_ILK
, 0);
7851 I915_WRITE(WM1_LP_ILK
, 0);
7854 * According to the spec the following bits should be
7855 * set in order to enable memory self-refresh and fbc:
7856 * The bit21 and bit22 of 0x42000
7857 * The bit21 and bit22 of 0x42004
7858 * The bit5 and bit7 of 0x42020
7859 * The bit14 of 0x70180
7860 * The bit14 of 0x71180
7862 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
7863 I915_READ(ILK_DISPLAY_CHICKEN1
) |
7864 ILK_FBCQ_DIS
| ILK_PABSTRETCH_DIS
);
7865 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
7866 I915_READ(ILK_DISPLAY_CHICKEN2
) |
7867 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
);
7868 I915_WRITE(ILK_DSPCLK_GATE
,
7869 I915_READ(ILK_DSPCLK_GATE
) |
7870 ILK_DPARB_CLK_GATE
|
7873 for_each_pipe(pipe
) {
7874 I915_WRITE(DSPCNTR(pipe
),
7875 I915_READ(DSPCNTR(pipe
)) |
7876 DISPPLANE_TRICKLE_FEED_DISABLE
);
7877 intel_flush_display_plane(dev_priv
, pipe
);
7881 static void ivybridge_init_clock_gating(struct drm_device
*dev
)
7883 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7885 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
7887 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
7889 I915_WRITE(WM3_LP_ILK
, 0);
7890 I915_WRITE(WM2_LP_ILK
, 0);
7891 I915_WRITE(WM1_LP_ILK
, 0);
7893 I915_WRITE(ILK_DSPCLK_GATE
, IVB_VRHUNIT_CLK_GATE
);
7895 for_each_pipe(pipe
) {
7896 I915_WRITE(DSPCNTR(pipe
),
7897 I915_READ(DSPCNTR(pipe
)) |
7898 DISPPLANE_TRICKLE_FEED_DISABLE
);
7899 intel_flush_display_plane(dev_priv
, pipe
);
7903 static void g4x_init_clock_gating(struct drm_device
*dev
)
7905 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7906 uint32_t dspclk_gate
;
7908 I915_WRITE(RENCLK_GATE_D1
, 0);
7909 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
7910 GS_UNIT_CLOCK_GATE_DISABLE
|
7911 CL_UNIT_CLOCK_GATE_DISABLE
);
7912 I915_WRITE(RAMCLK_GATE_D
, 0);
7913 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
7914 OVRUNIT_CLOCK_GATE_DISABLE
|
7915 OVCUNIT_CLOCK_GATE_DISABLE
;
7917 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
7918 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
7921 static void crestline_init_clock_gating(struct drm_device
*dev
)
7923 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7925 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
7926 I915_WRITE(RENCLK_GATE_D2
, 0);
7927 I915_WRITE(DSPCLK_GATE_D
, 0);
7928 I915_WRITE(RAMCLK_GATE_D
, 0);
7929 I915_WRITE16(DEUC
, 0);
7932 static void broadwater_init_clock_gating(struct drm_device
*dev
)
7934 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7936 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
7937 I965_RCC_CLOCK_GATE_DISABLE
|
7938 I965_RCPB_CLOCK_GATE_DISABLE
|
7939 I965_ISC_CLOCK_GATE_DISABLE
|
7940 I965_FBC_CLOCK_GATE_DISABLE
);
7941 I915_WRITE(RENCLK_GATE_D2
, 0);
7944 static void gen3_init_clock_gating(struct drm_device
*dev
)
7946 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7947 u32 dstate
= I915_READ(D_STATE
);
7949 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
7950 DSTATE_DOT_CLOCK_GATING
;
7951 I915_WRITE(D_STATE
, dstate
);
7954 static void i85x_init_clock_gating(struct drm_device
*dev
)
7956 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7958 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
7961 static void i830_init_clock_gating(struct drm_device
*dev
)
7963 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7965 I915_WRITE(DSPCLK_GATE_D
, OVRUNIT_CLOCK_GATE_DISABLE
);
7968 static void ibx_init_clock_gating(struct drm_device
*dev
)
7970 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7973 * On Ibex Peak and Cougar Point, we need to disable clock
7974 * gating for the panel power sequencer or it will fail to
7975 * start up when no ports are active.
7977 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
7980 static void cpt_init_clock_gating(struct drm_device
*dev
)
7982 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
7986 * On Ibex Peak and Cougar Point, we need to disable clock
7987 * gating for the panel power sequencer or it will fail to
7988 * start up when no ports are active.
7990 I915_WRITE(SOUTH_DSPCLK_GATE_D
, PCH_DPLSUNIT_CLOCK_GATE_DISABLE
);
7991 I915_WRITE(SOUTH_CHICKEN2
, I915_READ(SOUTH_CHICKEN2
) |
7992 DPLS_EDP_PPS_FIX_DIS
);
7993 /* Without this, mode sets may fail silently on FDI */
7995 I915_WRITE(TRANS_CHICKEN2(pipe
), TRANS_AUTOTRAIN_GEN_STALL_DIS
);
7998 static void ironlake_teardown_rc6(struct drm_device
*dev
)
8000 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8002 if (dev_priv
->renderctx
) {
8003 i915_gem_object_unpin(dev_priv
->renderctx
);
8004 drm_gem_object_unreference(&dev_priv
->renderctx
->base
);
8005 dev_priv
->renderctx
= NULL
;
8008 if (dev_priv
->pwrctx
) {
8009 i915_gem_object_unpin(dev_priv
->pwrctx
);
8010 drm_gem_object_unreference(&dev_priv
->pwrctx
->base
);
8011 dev_priv
->pwrctx
= NULL
;
8015 static void ironlake_disable_rc6(struct drm_device
*dev
)
8017 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8019 if (I915_READ(PWRCTXA
)) {
8020 /* Wake the GPU, prevent RC6, then restore RSTDBYCTL */
8021 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) | RCX_SW_EXIT
);
8022 wait_for(((I915_READ(RSTDBYCTL
) & RSX_STATUS_MASK
) == RSX_STATUS_ON
),
8025 I915_WRITE(PWRCTXA
, 0);
8026 POSTING_READ(PWRCTXA
);
8028 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) & ~RCX_SW_EXIT
);
8029 POSTING_READ(RSTDBYCTL
);
8032 ironlake_teardown_rc6(dev
);
8035 static int ironlake_setup_rc6(struct drm_device
*dev
)
8037 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8039 if (dev_priv
->renderctx
== NULL
)
8040 dev_priv
->renderctx
= intel_alloc_context_page(dev
);
8041 if (!dev_priv
->renderctx
)
8044 if (dev_priv
->pwrctx
== NULL
)
8045 dev_priv
->pwrctx
= intel_alloc_context_page(dev
);
8046 if (!dev_priv
->pwrctx
) {
8047 ironlake_teardown_rc6(dev
);
8054 void ironlake_enable_rc6(struct drm_device
*dev
)
8056 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8059 /* rc6 disabled by default due to repeated reports of hanging during
8062 if (!i915_enable_rc6
)
8065 mutex_lock(&dev
->struct_mutex
);
8066 ret
= ironlake_setup_rc6(dev
);
8068 mutex_unlock(&dev
->struct_mutex
);
8073 * GPU can automatically power down the render unit if given a page
8076 ret
= BEGIN_LP_RING(6);
8078 ironlake_teardown_rc6(dev
);
8079 mutex_unlock(&dev
->struct_mutex
);
8083 OUT_RING(MI_SUSPEND_FLUSH
| MI_SUSPEND_FLUSH_EN
);
8084 OUT_RING(MI_SET_CONTEXT
);
8085 OUT_RING(dev_priv
->renderctx
->gtt_offset
|
8087 MI_SAVE_EXT_STATE_EN
|
8088 MI_RESTORE_EXT_STATE_EN
|
8089 MI_RESTORE_INHIBIT
);
8090 OUT_RING(MI_SUSPEND_FLUSH
);
8096 * Wait for the command parser to advance past MI_SET_CONTEXT. The HW
8097 * does an implicit flush, combined with MI_FLUSH above, it should be
8098 * safe to assume that renderctx is valid
8100 ret
= intel_wait_ring_idle(LP_RING(dev_priv
));
8102 DRM_ERROR("failed to enable ironlake power power savings\n");
8103 ironlake_teardown_rc6(dev
);
8104 mutex_unlock(&dev
->struct_mutex
);
8108 I915_WRITE(PWRCTXA
, dev_priv
->pwrctx
->gtt_offset
| PWRCTX_EN
);
8109 I915_WRITE(RSTDBYCTL
, I915_READ(RSTDBYCTL
) & ~RCX_SW_EXIT
);
8110 mutex_unlock(&dev
->struct_mutex
);
8113 void intel_init_clock_gating(struct drm_device
*dev
)
8115 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8117 dev_priv
->display
.init_clock_gating(dev
);
8119 if (dev_priv
->display
.init_pch_clock_gating
)
8120 dev_priv
->display
.init_pch_clock_gating(dev
);
8123 /* Set up chip specific display functions */
8124 static void intel_init_display(struct drm_device
*dev
)
8126 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8128 /* We always want a DPMS function */
8129 if (HAS_PCH_SPLIT(dev
)) {
8130 dev_priv
->display
.dpms
= ironlake_crtc_dpms
;
8131 dev_priv
->display
.crtc_mode_set
= ironlake_crtc_mode_set
;
8132 dev_priv
->display
.update_plane
= ironlake_update_plane
;
8134 dev_priv
->display
.dpms
= i9xx_crtc_dpms
;
8135 dev_priv
->display
.crtc_mode_set
= i9xx_crtc_mode_set
;
8136 dev_priv
->display
.update_plane
= i9xx_update_plane
;
8139 if (I915_HAS_FBC(dev
)) {
8140 if (HAS_PCH_SPLIT(dev
)) {
8141 dev_priv
->display
.fbc_enabled
= ironlake_fbc_enabled
;
8142 dev_priv
->display
.enable_fbc
= ironlake_enable_fbc
;
8143 dev_priv
->display
.disable_fbc
= ironlake_disable_fbc
;
8144 } else if (IS_GM45(dev
)) {
8145 dev_priv
->display
.fbc_enabled
= g4x_fbc_enabled
;
8146 dev_priv
->display
.enable_fbc
= g4x_enable_fbc
;
8147 dev_priv
->display
.disable_fbc
= g4x_disable_fbc
;
8148 } else if (IS_CRESTLINE(dev
)) {
8149 dev_priv
->display
.fbc_enabled
= i8xx_fbc_enabled
;
8150 dev_priv
->display
.enable_fbc
= i8xx_enable_fbc
;
8151 dev_priv
->display
.disable_fbc
= i8xx_disable_fbc
;
8153 /* 855GM needs testing */
8156 /* Returns the core display clock speed */
8157 if (IS_I945G(dev
) || (IS_G33(dev
) && ! IS_PINEVIEW_M(dev
)))
8158 dev_priv
->display
.get_display_clock_speed
=
8159 i945_get_display_clock_speed
;
8160 else if (IS_I915G(dev
))
8161 dev_priv
->display
.get_display_clock_speed
=
8162 i915_get_display_clock_speed
;
8163 else if (IS_I945GM(dev
) || IS_845G(dev
) || IS_PINEVIEW_M(dev
))
8164 dev_priv
->display
.get_display_clock_speed
=
8165 i9xx_misc_get_display_clock_speed
;
8166 else if (IS_I915GM(dev
))
8167 dev_priv
->display
.get_display_clock_speed
=
8168 i915gm_get_display_clock_speed
;
8169 else if (IS_I865G(dev
))
8170 dev_priv
->display
.get_display_clock_speed
=
8171 i865_get_display_clock_speed
;
8172 else if (IS_I85X(dev
))
8173 dev_priv
->display
.get_display_clock_speed
=
8174 i855_get_display_clock_speed
;
8176 dev_priv
->display
.get_display_clock_speed
=
8177 i830_get_display_clock_speed
;
8179 /* For FIFO watermark updates */
8180 if (HAS_PCH_SPLIT(dev
)) {
8181 if (HAS_PCH_IBX(dev
))
8182 dev_priv
->display
.init_pch_clock_gating
= ibx_init_clock_gating
;
8183 else if (HAS_PCH_CPT(dev
))
8184 dev_priv
->display
.init_pch_clock_gating
= cpt_init_clock_gating
;
8187 if (I915_READ(MLTR_ILK
) & ILK_SRLT_MASK
)
8188 dev_priv
->display
.update_wm
= ironlake_update_wm
;
8190 DRM_DEBUG_KMS("Failed to get proper latency. "
8192 dev_priv
->display
.update_wm
= NULL
;
8194 dev_priv
->display
.fdi_link_train
= ironlake_fdi_link_train
;
8195 dev_priv
->display
.init_clock_gating
= ironlake_init_clock_gating
;
8196 } else if (IS_GEN6(dev
)) {
8197 if (SNB_READ_WM0_LATENCY()) {
8198 dev_priv
->display
.update_wm
= sandybridge_update_wm
;
8200 DRM_DEBUG_KMS("Failed to read display plane latency. "
8202 dev_priv
->display
.update_wm
= NULL
;
8204 dev_priv
->display
.fdi_link_train
= gen6_fdi_link_train
;
8205 dev_priv
->display
.init_clock_gating
= gen6_init_clock_gating
;
8206 } else if (IS_IVYBRIDGE(dev
)) {
8207 /* FIXME: detect B0+ stepping and use auto training */
8208 dev_priv
->display
.fdi_link_train
= ivb_manual_fdi_link_train
;
8209 if (SNB_READ_WM0_LATENCY()) {
8210 dev_priv
->display
.update_wm
= sandybridge_update_wm
;
8212 DRM_DEBUG_KMS("Failed to read display plane latency. "
8214 dev_priv
->display
.update_wm
= NULL
;
8216 dev_priv
->display
.init_clock_gating
= ivybridge_init_clock_gating
;
8219 dev_priv
->display
.update_wm
= NULL
;
8220 } else if (IS_PINEVIEW(dev
)) {
8221 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev
),
8224 dev_priv
->mem_freq
)) {
8225 DRM_INFO("failed to find known CxSR latency "
8226 "(found ddr%s fsb freq %d, mem freq %d), "
8228 (dev_priv
->is_ddr3
== 1) ? "3": "2",
8229 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
8230 /* Disable CxSR and never update its watermark again */
8231 pineview_disable_cxsr(dev
);
8232 dev_priv
->display
.update_wm
= NULL
;
8234 dev_priv
->display
.update_wm
= pineview_update_wm
;
8235 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
8236 } else if (IS_G4X(dev
)) {
8237 dev_priv
->display
.update_wm
= g4x_update_wm
;
8238 dev_priv
->display
.init_clock_gating
= g4x_init_clock_gating
;
8239 } else if (IS_GEN4(dev
)) {
8240 dev_priv
->display
.update_wm
= i965_update_wm
;
8241 if (IS_CRESTLINE(dev
))
8242 dev_priv
->display
.init_clock_gating
= crestline_init_clock_gating
;
8243 else if (IS_BROADWATER(dev
))
8244 dev_priv
->display
.init_clock_gating
= broadwater_init_clock_gating
;
8245 } else if (IS_GEN3(dev
)) {
8246 dev_priv
->display
.update_wm
= i9xx_update_wm
;
8247 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
8248 dev_priv
->display
.init_clock_gating
= gen3_init_clock_gating
;
8249 } else if (IS_I865G(dev
)) {
8250 dev_priv
->display
.update_wm
= i830_update_wm
;
8251 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
8252 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
8253 } else if (IS_I85X(dev
)) {
8254 dev_priv
->display
.update_wm
= i9xx_update_wm
;
8255 dev_priv
->display
.get_fifo_size
= i85x_get_fifo_size
;
8256 dev_priv
->display
.init_clock_gating
= i85x_init_clock_gating
;
8258 dev_priv
->display
.update_wm
= i830_update_wm
;
8259 dev_priv
->display
.init_clock_gating
= i830_init_clock_gating
;
8261 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
8263 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
8266 /* Default just returns -ENODEV to indicate unsupported */
8267 dev_priv
->display
.queue_flip
= intel_default_queue_flip
;
8269 switch (INTEL_INFO(dev
)->gen
) {
8271 dev_priv
->display
.queue_flip
= intel_gen2_queue_flip
;
8275 dev_priv
->display
.queue_flip
= intel_gen3_queue_flip
;
8280 dev_priv
->display
.queue_flip
= intel_gen4_queue_flip
;
8284 dev_priv
->display
.queue_flip
= intel_gen6_queue_flip
;
8287 dev_priv
->display
.queue_flip
= intel_gen7_queue_flip
;
8293 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
8294 * resume, or other times. This quirk makes sure that's the case for
8297 static void quirk_pipea_force (struct drm_device
*dev
)
8299 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8301 dev_priv
->quirks
|= QUIRK_PIPEA_FORCE
;
8302 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
8306 * Some machines (Lenovo U160) do not work with SSC on LVDS for some reason
8308 static void quirk_ssc_force_disable(struct drm_device
*dev
)
8310 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8311 dev_priv
->quirks
|= QUIRK_LVDS_SSC_DISABLE
;
8314 struct intel_quirk
{
8316 int subsystem_vendor
;
8317 int subsystem_device
;
8318 void (*hook
)(struct drm_device
*dev
);
8321 struct intel_quirk intel_quirks
[] = {
8322 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
8323 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force
},
8324 /* HP Mini needs pipe A force quirk (LP: #322104) */
8325 { 0x27ae,0x103c, 0x361a, quirk_pipea_force
},
8327 /* Thinkpad R31 needs pipe A force quirk */
8328 { 0x3577, 0x1014, 0x0505, quirk_pipea_force
},
8329 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
8330 { 0x2592, 0x1179, 0x0001, quirk_pipea_force
},
8332 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
8333 { 0x3577, 0x1014, 0x0513, quirk_pipea_force
},
8334 /* ThinkPad X40 needs pipe A force quirk */
8336 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
8337 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force
},
8339 /* 855 & before need to leave pipe A & dpll A up */
8340 { 0x3582, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
8341 { 0x2562, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
8343 /* Lenovo U160 cannot use SSC on LVDS */
8344 { 0x0046, 0x17aa, 0x3920, quirk_ssc_force_disable
},
8346 /* Sony Vaio Y cannot use SSC on LVDS */
8347 { 0x0046, 0x104d, 0x9076, quirk_ssc_force_disable
},
8350 static void intel_init_quirks(struct drm_device
*dev
)
8352 struct pci_dev
*d
= dev
->pdev
;
8355 for (i
= 0; i
< ARRAY_SIZE(intel_quirks
); i
++) {
8356 struct intel_quirk
*q
= &intel_quirks
[i
];
8358 if (d
->device
== q
->device
&&
8359 (d
->subsystem_vendor
== q
->subsystem_vendor
||
8360 q
->subsystem_vendor
== PCI_ANY_ID
) &&
8361 (d
->subsystem_device
== q
->subsystem_device
||
8362 q
->subsystem_device
== PCI_ANY_ID
))
8367 /* Disable the VGA plane that we never use */
8368 static void i915_disable_vga(struct drm_device
*dev
)
8370 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8374 if (HAS_PCH_SPLIT(dev
))
8375 vga_reg
= CPU_VGACNTRL
;
8379 vga_get_uninterruptible(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
8380 outb(1, VGA_SR_INDEX
);
8381 sr1
= inb(VGA_SR_DATA
);
8382 outb(sr1
| 1<<5, VGA_SR_DATA
);
8383 vga_put(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
8386 I915_WRITE(vga_reg
, VGA_DISP_DISABLE
);
8387 POSTING_READ(vga_reg
);
8390 void intel_modeset_init(struct drm_device
*dev
)
8392 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8395 drm_mode_config_init(dev
);
8397 dev
->mode_config
.min_width
= 0;
8398 dev
->mode_config
.min_height
= 0;
8400 dev
->mode_config
.funcs
= (void *)&intel_mode_funcs
;
8402 intel_init_quirks(dev
);
8404 intel_init_display(dev
);
8407 dev
->mode_config
.max_width
= 2048;
8408 dev
->mode_config
.max_height
= 2048;
8409 } else if (IS_GEN3(dev
)) {
8410 dev
->mode_config
.max_width
= 4096;
8411 dev
->mode_config
.max_height
= 4096;
8413 dev
->mode_config
.max_width
= 8192;
8414 dev
->mode_config
.max_height
= 8192;
8416 dev
->mode_config
.fb_base
= dev
->agp
->base
;
8418 DRM_DEBUG_KMS("%d display pipe%s available.\n",
8419 dev_priv
->num_pipe
, dev_priv
->num_pipe
> 1 ? "s" : "");
8421 for (i
= 0; i
< dev_priv
->num_pipe
; i
++) {
8422 intel_crtc_init(dev
, i
);
8425 /* Just disable it once at startup */
8426 i915_disable_vga(dev
);
8427 intel_setup_outputs(dev
);
8429 intel_init_clock_gating(dev
);
8431 if (IS_IRONLAKE_M(dev
)) {
8432 ironlake_enable_drps(dev
);
8433 intel_init_emon(dev
);
8436 if (IS_GEN6(dev
) || IS_GEN7(dev
)) {
8437 gen6_enable_rps(dev_priv
);
8438 gen6_update_ring_freq(dev_priv
);
8441 INIT_WORK(&dev_priv
->idle_work
, intel_idle_update
);
8442 setup_timer(&dev_priv
->idle_timer
, intel_gpu_idle_timer
,
8443 (unsigned long)dev
);
8446 void intel_modeset_gem_init(struct drm_device
*dev
)
8448 if (IS_IRONLAKE_M(dev
))
8449 ironlake_enable_rc6(dev
);
8451 intel_setup_overlay(dev
);
8454 void intel_modeset_cleanup(struct drm_device
*dev
)
8456 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8457 struct drm_crtc
*crtc
;
8458 struct intel_crtc
*intel_crtc
;
8460 drm_kms_helper_poll_fini(dev
);
8461 mutex_lock(&dev
->struct_mutex
);
8463 intel_unregister_dsm_handler();
8466 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
8467 /* Skip inactive CRTCs */
8471 intel_crtc
= to_intel_crtc(crtc
);
8472 intel_increase_pllclock(crtc
);
8475 intel_disable_fbc(dev
);
8477 if (IS_IRONLAKE_M(dev
))
8478 ironlake_disable_drps(dev
);
8479 if (IS_GEN6(dev
) || IS_GEN7(dev
))
8480 gen6_disable_rps(dev
);
8482 if (IS_IRONLAKE_M(dev
))
8483 ironlake_disable_rc6(dev
);
8485 mutex_unlock(&dev
->struct_mutex
);
8487 /* Disable the irq before mode object teardown, for the irq might
8488 * enqueue unpin/hotplug work. */
8489 drm_irq_uninstall(dev
);
8490 cancel_work_sync(&dev_priv
->hotplug_work
);
8492 /* flush any delayed tasks or pending work */
8493 flush_scheduled_work();
8495 /* Shut off idle work before the crtcs get freed. */
8496 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
8497 intel_crtc
= to_intel_crtc(crtc
);
8498 del_timer_sync(&intel_crtc
->idle_timer
);
8500 del_timer_sync(&dev_priv
->idle_timer
);
8501 cancel_work_sync(&dev_priv
->idle_work
);
8503 drm_mode_config_cleanup(dev
);
8507 * Return which encoder is currently attached for connector.
8509 struct drm_encoder
*intel_best_encoder(struct drm_connector
*connector
)
8511 return &intel_attached_encoder(connector
)->base
;
8514 void intel_connector_attach_encoder(struct intel_connector
*connector
,
8515 struct intel_encoder
*encoder
)
8517 connector
->encoder
= encoder
;
8518 drm_mode_connector_attach_encoder(&connector
->base
,
8523 * set vga decode state - true == enable VGA decode
8525 int intel_modeset_vga_set_state(struct drm_device
*dev
, bool state
)
8527 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
8530 pci_read_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, &gmch_ctrl
);
8532 gmch_ctrl
&= ~INTEL_GMCH_VGA_DISABLE
;
8534 gmch_ctrl
|= INTEL_GMCH_VGA_DISABLE
;
8535 pci_write_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, gmch_ctrl
);
8539 #ifdef CONFIG_DEBUG_FS
8540 #include <linux/seq_file.h>
8542 struct intel_display_error_state
{
8543 struct intel_cursor_error_state
{
8550 struct intel_pipe_error_state
{
8562 struct intel_plane_error_state
{
8573 struct intel_display_error_state
*
8574 intel_display_capture_error_state(struct drm_device
*dev
)
8576 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
8577 struct intel_display_error_state
*error
;
8580 error
= kmalloc(sizeof(*error
), GFP_ATOMIC
);
8584 for (i
= 0; i
< 2; i
++) {
8585 error
->cursor
[i
].control
= I915_READ(CURCNTR(i
));
8586 error
->cursor
[i
].position
= I915_READ(CURPOS(i
));
8587 error
->cursor
[i
].base
= I915_READ(CURBASE(i
));
8589 error
->plane
[i
].control
= I915_READ(DSPCNTR(i
));
8590 error
->plane
[i
].stride
= I915_READ(DSPSTRIDE(i
));
8591 error
->plane
[i
].size
= I915_READ(DSPSIZE(i
));
8592 error
->plane
[i
].pos
= I915_READ(DSPPOS(i
));
8593 error
->plane
[i
].addr
= I915_READ(DSPADDR(i
));
8594 if (INTEL_INFO(dev
)->gen
>= 4) {
8595 error
->plane
[i
].surface
= I915_READ(DSPSURF(i
));
8596 error
->plane
[i
].tile_offset
= I915_READ(DSPTILEOFF(i
));
8599 error
->pipe
[i
].conf
= I915_READ(PIPECONF(i
));
8600 error
->pipe
[i
].source
= I915_READ(PIPESRC(i
));
8601 error
->pipe
[i
].htotal
= I915_READ(HTOTAL(i
));
8602 error
->pipe
[i
].hblank
= I915_READ(HBLANK(i
));
8603 error
->pipe
[i
].hsync
= I915_READ(HSYNC(i
));
8604 error
->pipe
[i
].vtotal
= I915_READ(VTOTAL(i
));
8605 error
->pipe
[i
].vblank
= I915_READ(VBLANK(i
));
8606 error
->pipe
[i
].vsync
= I915_READ(VSYNC(i
));
8613 intel_display_print_error_state(struct seq_file
*m
,
8614 struct drm_device
*dev
,
8615 struct intel_display_error_state
*error
)
8619 for (i
= 0; i
< 2; i
++) {
8620 seq_printf(m
, "Pipe [%d]:\n", i
);
8621 seq_printf(m
, " CONF: %08x\n", error
->pipe
[i
].conf
);
8622 seq_printf(m
, " SRC: %08x\n", error
->pipe
[i
].source
);
8623 seq_printf(m
, " HTOTAL: %08x\n", error
->pipe
[i
].htotal
);
8624 seq_printf(m
, " HBLANK: %08x\n", error
->pipe
[i
].hblank
);
8625 seq_printf(m
, " HSYNC: %08x\n", error
->pipe
[i
].hsync
);
8626 seq_printf(m
, " VTOTAL: %08x\n", error
->pipe
[i
].vtotal
);
8627 seq_printf(m
, " VBLANK: %08x\n", error
->pipe
[i
].vblank
);
8628 seq_printf(m
, " VSYNC: %08x\n", error
->pipe
[i
].vsync
);
8630 seq_printf(m
, "Plane [%d]:\n", i
);
8631 seq_printf(m
, " CNTR: %08x\n", error
->plane
[i
].control
);
8632 seq_printf(m
, " STRIDE: %08x\n", error
->plane
[i
].stride
);
8633 seq_printf(m
, " SIZE: %08x\n", error
->plane
[i
].size
);
8634 seq_printf(m
, " POS: %08x\n", error
->plane
[i
].pos
);
8635 seq_printf(m
, " ADDR: %08x\n", error
->plane
[i
].addr
);
8636 if (INTEL_INFO(dev
)->gen
>= 4) {
8637 seq_printf(m
, " SURF: %08x\n", error
->plane
[i
].surface
);
8638 seq_printf(m
, " TILEOFF: %08x\n", error
->plane
[i
].tile_offset
);
8641 seq_printf(m
, "Cursor [%d]:\n", i
);
8642 seq_printf(m
, " CNTR: %08x\n", error
->cursor
[i
].control
);
8643 seq_printf(m
, " POS: %08x\n", error
->cursor
[i
].position
);
8644 seq_printf(m
, " BASE: %08x\n", error
->cursor
[i
].base
);