2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include <linux/ratelimit.h>
64 #define NR_STRIPES 256
65 #define STRIPE_SIZE PAGE_SIZE
66 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
67 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
68 #define IO_THRESHOLD 1
69 #define BYPASS_THRESHOLD 1
70 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
71 #define HASH_MASK (NR_HASH - 1)
73 static inline struct hlist_head
*stripe_hash(struct r5conf
*conf
, sector_t sect
)
75 int hash
= (sect
>> STRIPE_SHIFT
) & HASH_MASK
;
76 return &conf
->stripe_hashtbl
[hash
];
79 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
80 * order without overlap. There may be several bio's per stripe+device, and
81 * a bio could span several devices.
82 * When walking this list for a particular stripe+device, we must never proceed
83 * beyond a bio that extends past this device, as the next bio might no longer
85 * This function is used to determine the 'next' bio in the list, given the sector
86 * of the current stripe+device
88 static inline struct bio
*r5_next_bio(struct bio
*bio
, sector_t sector
)
90 int sectors
= bio
->bi_size
>> 9;
91 if (bio
->bi_sector
+ sectors
< sector
+ STRIPE_SECTORS
)
98 * We maintain a biased count of active stripes in the bottom 16 bits of
99 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
101 static inline int raid5_bi_phys_segments(struct bio
*bio
)
103 return bio
->bi_phys_segments
& 0xffff;
106 static inline int raid5_bi_hw_segments(struct bio
*bio
)
108 return (bio
->bi_phys_segments
>> 16) & 0xffff;
111 static inline int raid5_dec_bi_phys_segments(struct bio
*bio
)
113 --bio
->bi_phys_segments
;
114 return raid5_bi_phys_segments(bio
);
117 static inline int raid5_dec_bi_hw_segments(struct bio
*bio
)
119 unsigned short val
= raid5_bi_hw_segments(bio
);
122 bio
->bi_phys_segments
= (val
<< 16) | raid5_bi_phys_segments(bio
);
126 static inline void raid5_set_bi_hw_segments(struct bio
*bio
, unsigned int cnt
)
128 bio
->bi_phys_segments
= raid5_bi_phys_segments(bio
) | (cnt
<< 16);
131 /* Find first data disk in a raid6 stripe */
132 static inline int raid6_d0(struct stripe_head
*sh
)
135 /* ddf always start from first device */
137 /* md starts just after Q block */
138 if (sh
->qd_idx
== sh
->disks
- 1)
141 return sh
->qd_idx
+ 1;
143 static inline int raid6_next_disk(int disk
, int raid_disks
)
146 return (disk
< raid_disks
) ? disk
: 0;
149 /* When walking through the disks in a raid5, starting at raid6_d0,
150 * We need to map each disk to a 'slot', where the data disks are slot
151 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
152 * is raid_disks-1. This help does that mapping.
154 static int raid6_idx_to_slot(int idx
, struct stripe_head
*sh
,
155 int *count
, int syndrome_disks
)
161 if (idx
== sh
->pd_idx
)
162 return syndrome_disks
;
163 if (idx
== sh
->qd_idx
)
164 return syndrome_disks
+ 1;
170 static void return_io(struct bio
*return_bi
)
172 struct bio
*bi
= return_bi
;
175 return_bi
= bi
->bi_next
;
183 static void print_raid5_conf (struct r5conf
*conf
);
185 static int stripe_operations_active(struct stripe_head
*sh
)
187 return sh
->check_state
|| sh
->reconstruct_state
||
188 test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
) ||
189 test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
192 static void __release_stripe(struct r5conf
*conf
, struct stripe_head
*sh
)
194 if (atomic_dec_and_test(&sh
->count
)) {
195 BUG_ON(!list_empty(&sh
->lru
));
196 BUG_ON(atomic_read(&conf
->active_stripes
)==0);
197 if (test_bit(STRIPE_HANDLE
, &sh
->state
)) {
198 if (test_bit(STRIPE_DELAYED
, &sh
->state
))
199 list_add_tail(&sh
->lru
, &conf
->delayed_list
);
200 else if (test_bit(STRIPE_BIT_DELAY
, &sh
->state
) &&
201 sh
->bm_seq
- conf
->seq_write
> 0)
202 list_add_tail(&sh
->lru
, &conf
->bitmap_list
);
204 clear_bit(STRIPE_BIT_DELAY
, &sh
->state
);
205 list_add_tail(&sh
->lru
, &conf
->handle_list
);
207 md_wakeup_thread(conf
->mddev
->thread
);
209 BUG_ON(stripe_operations_active(sh
));
210 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
211 atomic_dec(&conf
->preread_active_stripes
);
212 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
)
213 md_wakeup_thread(conf
->mddev
->thread
);
215 atomic_dec(&conf
->active_stripes
);
216 if (!test_bit(STRIPE_EXPANDING
, &sh
->state
)) {
217 list_add_tail(&sh
->lru
, &conf
->inactive_list
);
218 wake_up(&conf
->wait_for_stripe
);
219 if (conf
->retry_read_aligned
)
220 md_wakeup_thread(conf
->mddev
->thread
);
226 static void release_stripe(struct stripe_head
*sh
)
228 struct r5conf
*conf
= sh
->raid_conf
;
231 spin_lock_irqsave(&conf
->device_lock
, flags
);
232 __release_stripe(conf
, sh
);
233 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
236 static inline void remove_hash(struct stripe_head
*sh
)
238 pr_debug("remove_hash(), stripe %llu\n",
239 (unsigned long long)sh
->sector
);
241 hlist_del_init(&sh
->hash
);
244 static inline void insert_hash(struct r5conf
*conf
, struct stripe_head
*sh
)
246 struct hlist_head
*hp
= stripe_hash(conf
, sh
->sector
);
248 pr_debug("insert_hash(), stripe %llu\n",
249 (unsigned long long)sh
->sector
);
251 hlist_add_head(&sh
->hash
, hp
);
255 /* find an idle stripe, make sure it is unhashed, and return it. */
256 static struct stripe_head
*get_free_stripe(struct r5conf
*conf
)
258 struct stripe_head
*sh
= NULL
;
259 struct list_head
*first
;
261 if (list_empty(&conf
->inactive_list
))
263 first
= conf
->inactive_list
.next
;
264 sh
= list_entry(first
, struct stripe_head
, lru
);
265 list_del_init(first
);
267 atomic_inc(&conf
->active_stripes
);
272 static void shrink_buffers(struct stripe_head
*sh
)
276 int num
= sh
->raid_conf
->pool_size
;
278 for (i
= 0; i
< num
; i
++) {
282 sh
->dev
[i
].page
= NULL
;
287 static int grow_buffers(struct stripe_head
*sh
)
290 int num
= sh
->raid_conf
->pool_size
;
292 for (i
= 0; i
< num
; i
++) {
295 if (!(page
= alloc_page(GFP_KERNEL
))) {
298 sh
->dev
[i
].page
= page
;
303 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
);
304 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
305 struct stripe_head
*sh
);
307 static void init_stripe(struct stripe_head
*sh
, sector_t sector
, int previous
)
309 struct r5conf
*conf
= sh
->raid_conf
;
312 BUG_ON(atomic_read(&sh
->count
) != 0);
313 BUG_ON(test_bit(STRIPE_HANDLE
, &sh
->state
));
314 BUG_ON(stripe_operations_active(sh
));
316 pr_debug("init_stripe called, stripe %llu\n",
317 (unsigned long long)sh
->sector
);
321 sh
->generation
= conf
->generation
- previous
;
322 sh
->disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
324 stripe_set_idx(sector
, conf
, previous
, sh
);
328 for (i
= sh
->disks
; i
--; ) {
329 struct r5dev
*dev
= &sh
->dev
[i
];
331 if (dev
->toread
|| dev
->read
|| dev
->towrite
|| dev
->written
||
332 test_bit(R5_LOCKED
, &dev
->flags
)) {
333 printk(KERN_ERR
"sector=%llx i=%d %p %p %p %p %d\n",
334 (unsigned long long)sh
->sector
, i
, dev
->toread
,
335 dev
->read
, dev
->towrite
, dev
->written
,
336 test_bit(R5_LOCKED
, &dev
->flags
));
340 raid5_build_block(sh
, i
, previous
);
342 insert_hash(conf
, sh
);
345 static struct stripe_head
*__find_stripe(struct r5conf
*conf
, sector_t sector
,
348 struct stripe_head
*sh
;
349 struct hlist_node
*hn
;
351 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector
);
352 hlist_for_each_entry(sh
, hn
, stripe_hash(conf
, sector
), hash
)
353 if (sh
->sector
== sector
&& sh
->generation
== generation
)
355 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector
);
360 * Need to check if array has failed when deciding whether to:
362 * - remove non-faulty devices
365 * This determination is simple when no reshape is happening.
366 * However if there is a reshape, we need to carefully check
367 * both the before and after sections.
368 * This is because some failed devices may only affect one
369 * of the two sections, and some non-in_sync devices may
370 * be insync in the section most affected by failed devices.
372 static int has_failed(struct r5conf
*conf
)
376 if (conf
->mddev
->reshape_position
== MaxSector
)
377 return conf
->mddev
->degraded
> conf
->max_degraded
;
381 for (i
= 0; i
< conf
->previous_raid_disks
; i
++) {
382 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
383 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
385 else if (test_bit(In_sync
, &rdev
->flags
))
388 /* not in-sync or faulty.
389 * If the reshape increases the number of devices,
390 * this is being recovered by the reshape, so
391 * this 'previous' section is not in_sync.
392 * If the number of devices is being reduced however,
393 * the device can only be part of the array if
394 * we are reverting a reshape, so this section will
397 if (conf
->raid_disks
>= conf
->previous_raid_disks
)
401 if (degraded
> conf
->max_degraded
)
405 for (i
= 0; i
< conf
->raid_disks
; i
++) {
406 struct md_rdev
*rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
407 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
409 else if (test_bit(In_sync
, &rdev
->flags
))
412 /* not in-sync or faulty.
413 * If reshape increases the number of devices, this
414 * section has already been recovered, else it
415 * almost certainly hasn't.
417 if (conf
->raid_disks
<= conf
->previous_raid_disks
)
421 if (degraded
> conf
->max_degraded
)
426 static struct stripe_head
*
427 get_active_stripe(struct r5conf
*conf
, sector_t sector
,
428 int previous
, int noblock
, int noquiesce
)
430 struct stripe_head
*sh
;
432 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector
);
434 spin_lock_irq(&conf
->device_lock
);
437 wait_event_lock_irq(conf
->wait_for_stripe
,
438 conf
->quiesce
== 0 || noquiesce
,
439 conf
->device_lock
, /* nothing */);
440 sh
= __find_stripe(conf
, sector
, conf
->generation
- previous
);
442 if (!conf
->inactive_blocked
)
443 sh
= get_free_stripe(conf
);
444 if (noblock
&& sh
== NULL
)
447 conf
->inactive_blocked
= 1;
448 wait_event_lock_irq(conf
->wait_for_stripe
,
449 !list_empty(&conf
->inactive_list
) &&
450 (atomic_read(&conf
->active_stripes
)
451 < (conf
->max_nr_stripes
*3/4)
452 || !conf
->inactive_blocked
),
455 conf
->inactive_blocked
= 0;
457 init_stripe(sh
, sector
, previous
);
459 if (atomic_read(&sh
->count
)) {
460 BUG_ON(!list_empty(&sh
->lru
)
461 && !test_bit(STRIPE_EXPANDING
, &sh
->state
));
463 if (!test_bit(STRIPE_HANDLE
, &sh
->state
))
464 atomic_inc(&conf
->active_stripes
);
465 if (list_empty(&sh
->lru
) &&
466 !test_bit(STRIPE_EXPANDING
, &sh
->state
))
468 list_del_init(&sh
->lru
);
471 } while (sh
== NULL
);
474 atomic_inc(&sh
->count
);
476 spin_unlock_irq(&conf
->device_lock
);
481 raid5_end_read_request(struct bio
*bi
, int error
);
483 raid5_end_write_request(struct bio
*bi
, int error
);
485 static void ops_run_io(struct stripe_head
*sh
, struct stripe_head_state
*s
)
487 struct r5conf
*conf
= sh
->raid_conf
;
488 int i
, disks
= sh
->disks
;
492 for (i
= disks
; i
--; ) {
495 struct md_rdev
*rdev
;
496 if (test_and_clear_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
)) {
497 if (test_and_clear_bit(R5_WantFUA
, &sh
->dev
[i
].flags
))
501 } else if (test_and_clear_bit(R5_Wantread
, &sh
->dev
[i
].flags
))
506 bi
= &sh
->dev
[i
].req
;
510 bi
->bi_end_io
= raid5_end_write_request
;
512 bi
->bi_end_io
= raid5_end_read_request
;
515 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
516 if (rdev
&& test_bit(Faulty
, &rdev
->flags
))
519 atomic_inc(&rdev
->nr_pending
);
522 /* We have already checked bad blocks for reads. Now
523 * need to check for writes.
525 while ((rw
& WRITE
) && rdev
&&
526 test_bit(WriteErrorSeen
, &rdev
->flags
)) {
529 int bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
530 &first_bad
, &bad_sectors
);
535 set_bit(BlockedBadBlocks
, &rdev
->flags
);
536 if (!conf
->mddev
->external
&&
537 conf
->mddev
->flags
) {
538 /* It is very unlikely, but we might
539 * still need to write out the
540 * bad block log - better give it
542 md_check_recovery(conf
->mddev
);
544 md_wait_for_blocked_rdev(rdev
, conf
->mddev
);
546 /* Acknowledged bad block - skip the write */
547 rdev_dec_pending(rdev
, conf
->mddev
);
553 if (s
->syncing
|| s
->expanding
|| s
->expanded
)
554 md_sync_acct(rdev
->bdev
, STRIPE_SECTORS
);
556 set_bit(STRIPE_IO_STARTED
, &sh
->state
);
558 bi
->bi_bdev
= rdev
->bdev
;
559 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
560 __func__
, (unsigned long long)sh
->sector
,
562 atomic_inc(&sh
->count
);
563 bi
->bi_sector
= sh
->sector
+ rdev
->data_offset
;
564 bi
->bi_flags
= 1 << BIO_UPTODATE
;
568 bi
->bi_io_vec
= &sh
->dev
[i
].vec
;
569 bi
->bi_io_vec
[0].bv_len
= STRIPE_SIZE
;
570 bi
->bi_io_vec
[0].bv_offset
= 0;
571 bi
->bi_size
= STRIPE_SIZE
;
573 generic_make_request(bi
);
576 set_bit(STRIPE_DEGRADED
, &sh
->state
);
577 pr_debug("skip op %ld on disc %d for sector %llu\n",
578 bi
->bi_rw
, i
, (unsigned long long)sh
->sector
);
579 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
580 set_bit(STRIPE_HANDLE
, &sh
->state
);
585 static struct dma_async_tx_descriptor
*
586 async_copy_data(int frombio
, struct bio
*bio
, struct page
*page
,
587 sector_t sector
, struct dma_async_tx_descriptor
*tx
)
590 struct page
*bio_page
;
593 struct async_submit_ctl submit
;
594 enum async_tx_flags flags
= 0;
596 if (bio
->bi_sector
>= sector
)
597 page_offset
= (signed)(bio
->bi_sector
- sector
) * 512;
599 page_offset
= (signed)(sector
- bio
->bi_sector
) * -512;
602 flags
|= ASYNC_TX_FENCE
;
603 init_async_submit(&submit
, flags
, tx
, NULL
, NULL
, NULL
);
605 bio_for_each_segment(bvl
, bio
, i
) {
606 int len
= bvl
->bv_len
;
610 if (page_offset
< 0) {
611 b_offset
= -page_offset
;
612 page_offset
+= b_offset
;
616 if (len
> 0 && page_offset
+ len
> STRIPE_SIZE
)
617 clen
= STRIPE_SIZE
- page_offset
;
622 b_offset
+= bvl
->bv_offset
;
623 bio_page
= bvl
->bv_page
;
625 tx
= async_memcpy(page
, bio_page
, page_offset
,
626 b_offset
, clen
, &submit
);
628 tx
= async_memcpy(bio_page
, page
, b_offset
,
629 page_offset
, clen
, &submit
);
631 /* chain the operations */
632 submit
.depend_tx
= tx
;
634 if (clen
< len
) /* hit end of page */
642 static void ops_complete_biofill(void *stripe_head_ref
)
644 struct stripe_head
*sh
= stripe_head_ref
;
645 struct bio
*return_bi
= NULL
;
646 struct r5conf
*conf
= sh
->raid_conf
;
649 pr_debug("%s: stripe %llu\n", __func__
,
650 (unsigned long long)sh
->sector
);
652 /* clear completed biofills */
653 spin_lock_irq(&conf
->device_lock
);
654 for (i
= sh
->disks
; i
--; ) {
655 struct r5dev
*dev
= &sh
->dev
[i
];
657 /* acknowledge completion of a biofill operation */
658 /* and check if we need to reply to a read request,
659 * new R5_Wantfill requests are held off until
660 * !STRIPE_BIOFILL_RUN
662 if (test_and_clear_bit(R5_Wantfill
, &dev
->flags
)) {
663 struct bio
*rbi
, *rbi2
;
668 while (rbi
&& rbi
->bi_sector
<
669 dev
->sector
+ STRIPE_SECTORS
) {
670 rbi2
= r5_next_bio(rbi
, dev
->sector
);
671 if (!raid5_dec_bi_phys_segments(rbi
)) {
672 rbi
->bi_next
= return_bi
;
679 spin_unlock_irq(&conf
->device_lock
);
680 clear_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
682 return_io(return_bi
);
684 set_bit(STRIPE_HANDLE
, &sh
->state
);
688 static void ops_run_biofill(struct stripe_head
*sh
)
690 struct dma_async_tx_descriptor
*tx
= NULL
;
691 struct r5conf
*conf
= sh
->raid_conf
;
692 struct async_submit_ctl submit
;
695 pr_debug("%s: stripe %llu\n", __func__
,
696 (unsigned long long)sh
->sector
);
698 for (i
= sh
->disks
; i
--; ) {
699 struct r5dev
*dev
= &sh
->dev
[i
];
700 if (test_bit(R5_Wantfill
, &dev
->flags
)) {
702 spin_lock_irq(&conf
->device_lock
);
703 dev
->read
= rbi
= dev
->toread
;
705 spin_unlock_irq(&conf
->device_lock
);
706 while (rbi
&& rbi
->bi_sector
<
707 dev
->sector
+ STRIPE_SECTORS
) {
708 tx
= async_copy_data(0, rbi
, dev
->page
,
710 rbi
= r5_next_bio(rbi
, dev
->sector
);
715 atomic_inc(&sh
->count
);
716 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_biofill
, sh
, NULL
);
717 async_trigger_callback(&submit
);
720 static void mark_target_uptodate(struct stripe_head
*sh
, int target
)
727 tgt
= &sh
->dev
[target
];
728 set_bit(R5_UPTODATE
, &tgt
->flags
);
729 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
730 clear_bit(R5_Wantcompute
, &tgt
->flags
);
733 static void ops_complete_compute(void *stripe_head_ref
)
735 struct stripe_head
*sh
= stripe_head_ref
;
737 pr_debug("%s: stripe %llu\n", __func__
,
738 (unsigned long long)sh
->sector
);
740 /* mark the computed target(s) as uptodate */
741 mark_target_uptodate(sh
, sh
->ops
.target
);
742 mark_target_uptodate(sh
, sh
->ops
.target2
);
744 clear_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
745 if (sh
->check_state
== check_state_compute_run
)
746 sh
->check_state
= check_state_compute_result
;
747 set_bit(STRIPE_HANDLE
, &sh
->state
);
751 /* return a pointer to the address conversion region of the scribble buffer */
752 static addr_conv_t
*to_addr_conv(struct stripe_head
*sh
,
753 struct raid5_percpu
*percpu
)
755 return percpu
->scribble
+ sizeof(struct page
*) * (sh
->disks
+ 2);
758 static struct dma_async_tx_descriptor
*
759 ops_run_compute5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
761 int disks
= sh
->disks
;
762 struct page
**xor_srcs
= percpu
->scribble
;
763 int target
= sh
->ops
.target
;
764 struct r5dev
*tgt
= &sh
->dev
[target
];
765 struct page
*xor_dest
= tgt
->page
;
767 struct dma_async_tx_descriptor
*tx
;
768 struct async_submit_ctl submit
;
771 pr_debug("%s: stripe %llu block: %d\n",
772 __func__
, (unsigned long long)sh
->sector
, target
);
773 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
775 for (i
= disks
; i
--; )
777 xor_srcs
[count
++] = sh
->dev
[i
].page
;
779 atomic_inc(&sh
->count
);
781 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
, NULL
,
782 ops_complete_compute
, sh
, to_addr_conv(sh
, percpu
));
783 if (unlikely(count
== 1))
784 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
786 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
791 /* set_syndrome_sources - populate source buffers for gen_syndrome
792 * @srcs - (struct page *) array of size sh->disks
793 * @sh - stripe_head to parse
795 * Populates srcs in proper layout order for the stripe and returns the
796 * 'count' of sources to be used in a call to async_gen_syndrome. The P
797 * destination buffer is recorded in srcs[count] and the Q destination
798 * is recorded in srcs[count+1]].
800 static int set_syndrome_sources(struct page
**srcs
, struct stripe_head
*sh
)
802 int disks
= sh
->disks
;
803 int syndrome_disks
= sh
->ddf_layout
? disks
: (disks
- 2);
804 int d0_idx
= raid6_d0(sh
);
808 for (i
= 0; i
< disks
; i
++)
814 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
816 srcs
[slot
] = sh
->dev
[i
].page
;
817 i
= raid6_next_disk(i
, disks
);
818 } while (i
!= d0_idx
);
820 return syndrome_disks
;
823 static struct dma_async_tx_descriptor
*
824 ops_run_compute6_1(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
826 int disks
= sh
->disks
;
827 struct page
**blocks
= percpu
->scribble
;
829 int qd_idx
= sh
->qd_idx
;
830 struct dma_async_tx_descriptor
*tx
;
831 struct async_submit_ctl submit
;
837 if (sh
->ops
.target
< 0)
838 target
= sh
->ops
.target2
;
839 else if (sh
->ops
.target2
< 0)
840 target
= sh
->ops
.target
;
842 /* we should only have one valid target */
845 pr_debug("%s: stripe %llu block: %d\n",
846 __func__
, (unsigned long long)sh
->sector
, target
);
848 tgt
= &sh
->dev
[target
];
849 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
852 atomic_inc(&sh
->count
);
854 if (target
== qd_idx
) {
855 count
= set_syndrome_sources(blocks
, sh
);
856 blocks
[count
] = NULL
; /* regenerating p is not necessary */
857 BUG_ON(blocks
[count
+1] != dest
); /* q should already be set */
858 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
859 ops_complete_compute
, sh
,
860 to_addr_conv(sh
, percpu
));
861 tx
= async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
863 /* Compute any data- or p-drive using XOR */
865 for (i
= disks
; i
-- ; ) {
866 if (i
== target
|| i
== qd_idx
)
868 blocks
[count
++] = sh
->dev
[i
].page
;
871 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
872 NULL
, ops_complete_compute
, sh
,
873 to_addr_conv(sh
, percpu
));
874 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
, &submit
);
880 static struct dma_async_tx_descriptor
*
881 ops_run_compute6_2(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
883 int i
, count
, disks
= sh
->disks
;
884 int syndrome_disks
= sh
->ddf_layout
? disks
: disks
-2;
885 int d0_idx
= raid6_d0(sh
);
886 int faila
= -1, failb
= -1;
887 int target
= sh
->ops
.target
;
888 int target2
= sh
->ops
.target2
;
889 struct r5dev
*tgt
= &sh
->dev
[target
];
890 struct r5dev
*tgt2
= &sh
->dev
[target2
];
891 struct dma_async_tx_descriptor
*tx
;
892 struct page
**blocks
= percpu
->scribble
;
893 struct async_submit_ctl submit
;
895 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
896 __func__
, (unsigned long long)sh
->sector
, target
, target2
);
897 BUG_ON(target
< 0 || target2
< 0);
898 BUG_ON(!test_bit(R5_Wantcompute
, &tgt
->flags
));
899 BUG_ON(!test_bit(R5_Wantcompute
, &tgt2
->flags
));
901 /* we need to open-code set_syndrome_sources to handle the
902 * slot number conversion for 'faila' and 'failb'
904 for (i
= 0; i
< disks
; i
++)
909 int slot
= raid6_idx_to_slot(i
, sh
, &count
, syndrome_disks
);
911 blocks
[slot
] = sh
->dev
[i
].page
;
917 i
= raid6_next_disk(i
, disks
);
918 } while (i
!= d0_idx
);
920 BUG_ON(faila
== failb
);
923 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
924 __func__
, (unsigned long long)sh
->sector
, faila
, failb
);
926 atomic_inc(&sh
->count
);
928 if (failb
== syndrome_disks
+1) {
929 /* Q disk is one of the missing disks */
930 if (faila
== syndrome_disks
) {
931 /* Missing P+Q, just recompute */
932 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
933 ops_complete_compute
, sh
,
934 to_addr_conv(sh
, percpu
));
935 return async_gen_syndrome(blocks
, 0, syndrome_disks
+2,
936 STRIPE_SIZE
, &submit
);
940 int qd_idx
= sh
->qd_idx
;
942 /* Missing D+Q: recompute D from P, then recompute Q */
943 if (target
== qd_idx
)
944 data_target
= target2
;
946 data_target
= target
;
949 for (i
= disks
; i
-- ; ) {
950 if (i
== data_target
|| i
== qd_idx
)
952 blocks
[count
++] = sh
->dev
[i
].page
;
954 dest
= sh
->dev
[data_target
].page
;
955 init_async_submit(&submit
,
956 ASYNC_TX_FENCE
|ASYNC_TX_XOR_ZERO_DST
,
958 to_addr_conv(sh
, percpu
));
959 tx
= async_xor(dest
, blocks
, 0, count
, STRIPE_SIZE
,
962 count
= set_syndrome_sources(blocks
, sh
);
963 init_async_submit(&submit
, ASYNC_TX_FENCE
, tx
,
964 ops_complete_compute
, sh
,
965 to_addr_conv(sh
, percpu
));
966 return async_gen_syndrome(blocks
, 0, count
+2,
967 STRIPE_SIZE
, &submit
);
970 init_async_submit(&submit
, ASYNC_TX_FENCE
, NULL
,
971 ops_complete_compute
, sh
,
972 to_addr_conv(sh
, percpu
));
973 if (failb
== syndrome_disks
) {
974 /* We're missing D+P. */
975 return async_raid6_datap_recov(syndrome_disks
+2,
979 /* We're missing D+D. */
980 return async_raid6_2data_recov(syndrome_disks
+2,
981 STRIPE_SIZE
, faila
, failb
,
988 static void ops_complete_prexor(void *stripe_head_ref
)
990 struct stripe_head
*sh
= stripe_head_ref
;
992 pr_debug("%s: stripe %llu\n", __func__
,
993 (unsigned long long)sh
->sector
);
996 static struct dma_async_tx_descriptor
*
997 ops_run_prexor(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
998 struct dma_async_tx_descriptor
*tx
)
1000 int disks
= sh
->disks
;
1001 struct page
**xor_srcs
= percpu
->scribble
;
1002 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1003 struct async_submit_ctl submit
;
1005 /* existing parity data subtracted */
1006 struct page
*xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1008 pr_debug("%s: stripe %llu\n", __func__
,
1009 (unsigned long long)sh
->sector
);
1011 for (i
= disks
; i
--; ) {
1012 struct r5dev
*dev
= &sh
->dev
[i
];
1013 /* Only process blocks that are known to be uptodate */
1014 if (test_bit(R5_Wantdrain
, &dev
->flags
))
1015 xor_srcs
[count
++] = dev
->page
;
1018 init_async_submit(&submit
, ASYNC_TX_FENCE
|ASYNC_TX_XOR_DROP_DST
, tx
,
1019 ops_complete_prexor
, sh
, to_addr_conv(sh
, percpu
));
1020 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1025 static struct dma_async_tx_descriptor
*
1026 ops_run_biodrain(struct stripe_head
*sh
, struct dma_async_tx_descriptor
*tx
)
1028 int disks
= sh
->disks
;
1031 pr_debug("%s: stripe %llu\n", __func__
,
1032 (unsigned long long)sh
->sector
);
1034 for (i
= disks
; i
--; ) {
1035 struct r5dev
*dev
= &sh
->dev
[i
];
1038 if (test_and_clear_bit(R5_Wantdrain
, &dev
->flags
)) {
1041 spin_lock_irq(&sh
->raid_conf
->device_lock
);
1042 chosen
= dev
->towrite
;
1043 dev
->towrite
= NULL
;
1044 BUG_ON(dev
->written
);
1045 wbi
= dev
->written
= chosen
;
1046 spin_unlock_irq(&sh
->raid_conf
->device_lock
);
1048 while (wbi
&& wbi
->bi_sector
<
1049 dev
->sector
+ STRIPE_SECTORS
) {
1050 if (wbi
->bi_rw
& REQ_FUA
)
1051 set_bit(R5_WantFUA
, &dev
->flags
);
1052 tx
= async_copy_data(1, wbi
, dev
->page
,
1054 wbi
= r5_next_bio(wbi
, dev
->sector
);
1062 static void ops_complete_reconstruct(void *stripe_head_ref
)
1064 struct stripe_head
*sh
= stripe_head_ref
;
1065 int disks
= sh
->disks
;
1066 int pd_idx
= sh
->pd_idx
;
1067 int qd_idx
= sh
->qd_idx
;
1071 pr_debug("%s: stripe %llu\n", __func__
,
1072 (unsigned long long)sh
->sector
);
1074 for (i
= disks
; i
--; )
1075 fua
|= test_bit(R5_WantFUA
, &sh
->dev
[i
].flags
);
1077 for (i
= disks
; i
--; ) {
1078 struct r5dev
*dev
= &sh
->dev
[i
];
1080 if (dev
->written
|| i
== pd_idx
|| i
== qd_idx
) {
1081 set_bit(R5_UPTODATE
, &dev
->flags
);
1083 set_bit(R5_WantFUA
, &dev
->flags
);
1087 if (sh
->reconstruct_state
== reconstruct_state_drain_run
)
1088 sh
->reconstruct_state
= reconstruct_state_drain_result
;
1089 else if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
)
1090 sh
->reconstruct_state
= reconstruct_state_prexor_drain_result
;
1092 BUG_ON(sh
->reconstruct_state
!= reconstruct_state_run
);
1093 sh
->reconstruct_state
= reconstruct_state_result
;
1096 set_bit(STRIPE_HANDLE
, &sh
->state
);
1101 ops_run_reconstruct5(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1102 struct dma_async_tx_descriptor
*tx
)
1104 int disks
= sh
->disks
;
1105 struct page
**xor_srcs
= percpu
->scribble
;
1106 struct async_submit_ctl submit
;
1107 int count
= 0, pd_idx
= sh
->pd_idx
, i
;
1108 struct page
*xor_dest
;
1110 unsigned long flags
;
1112 pr_debug("%s: stripe %llu\n", __func__
,
1113 (unsigned long long)sh
->sector
);
1115 /* check if prexor is active which means only process blocks
1116 * that are part of a read-modify-write (written)
1118 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_run
) {
1120 xor_dest
= xor_srcs
[count
++] = sh
->dev
[pd_idx
].page
;
1121 for (i
= disks
; i
--; ) {
1122 struct r5dev
*dev
= &sh
->dev
[i
];
1124 xor_srcs
[count
++] = dev
->page
;
1127 xor_dest
= sh
->dev
[pd_idx
].page
;
1128 for (i
= disks
; i
--; ) {
1129 struct r5dev
*dev
= &sh
->dev
[i
];
1131 xor_srcs
[count
++] = dev
->page
;
1135 /* 1/ if we prexor'd then the dest is reused as a source
1136 * 2/ if we did not prexor then we are redoing the parity
1137 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1138 * for the synchronous xor case
1140 flags
= ASYNC_TX_ACK
|
1141 (prexor
? ASYNC_TX_XOR_DROP_DST
: ASYNC_TX_XOR_ZERO_DST
);
1143 atomic_inc(&sh
->count
);
1145 init_async_submit(&submit
, flags
, tx
, ops_complete_reconstruct
, sh
,
1146 to_addr_conv(sh
, percpu
));
1147 if (unlikely(count
== 1))
1148 tx
= async_memcpy(xor_dest
, xor_srcs
[0], 0, 0, STRIPE_SIZE
, &submit
);
1150 tx
= async_xor(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
, &submit
);
1154 ops_run_reconstruct6(struct stripe_head
*sh
, struct raid5_percpu
*percpu
,
1155 struct dma_async_tx_descriptor
*tx
)
1157 struct async_submit_ctl submit
;
1158 struct page
**blocks
= percpu
->scribble
;
1161 pr_debug("%s: stripe %llu\n", __func__
, (unsigned long long)sh
->sector
);
1163 count
= set_syndrome_sources(blocks
, sh
);
1165 atomic_inc(&sh
->count
);
1167 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_reconstruct
,
1168 sh
, to_addr_conv(sh
, percpu
));
1169 async_gen_syndrome(blocks
, 0, count
+2, STRIPE_SIZE
, &submit
);
1172 static void ops_complete_check(void *stripe_head_ref
)
1174 struct stripe_head
*sh
= stripe_head_ref
;
1176 pr_debug("%s: stripe %llu\n", __func__
,
1177 (unsigned long long)sh
->sector
);
1179 sh
->check_state
= check_state_check_result
;
1180 set_bit(STRIPE_HANDLE
, &sh
->state
);
1184 static void ops_run_check_p(struct stripe_head
*sh
, struct raid5_percpu
*percpu
)
1186 int disks
= sh
->disks
;
1187 int pd_idx
= sh
->pd_idx
;
1188 int qd_idx
= sh
->qd_idx
;
1189 struct page
*xor_dest
;
1190 struct page
**xor_srcs
= percpu
->scribble
;
1191 struct dma_async_tx_descriptor
*tx
;
1192 struct async_submit_ctl submit
;
1196 pr_debug("%s: stripe %llu\n", __func__
,
1197 (unsigned long long)sh
->sector
);
1200 xor_dest
= sh
->dev
[pd_idx
].page
;
1201 xor_srcs
[count
++] = xor_dest
;
1202 for (i
= disks
; i
--; ) {
1203 if (i
== pd_idx
|| i
== qd_idx
)
1205 xor_srcs
[count
++] = sh
->dev
[i
].page
;
1208 init_async_submit(&submit
, 0, NULL
, NULL
, NULL
,
1209 to_addr_conv(sh
, percpu
));
1210 tx
= async_xor_val(xor_dest
, xor_srcs
, 0, count
, STRIPE_SIZE
,
1211 &sh
->ops
.zero_sum_result
, &submit
);
1213 atomic_inc(&sh
->count
);
1214 init_async_submit(&submit
, ASYNC_TX_ACK
, tx
, ops_complete_check
, sh
, NULL
);
1215 tx
= async_trigger_callback(&submit
);
1218 static void ops_run_check_pq(struct stripe_head
*sh
, struct raid5_percpu
*percpu
, int checkp
)
1220 struct page
**srcs
= percpu
->scribble
;
1221 struct async_submit_ctl submit
;
1224 pr_debug("%s: stripe %llu checkp: %d\n", __func__
,
1225 (unsigned long long)sh
->sector
, checkp
);
1227 count
= set_syndrome_sources(srcs
, sh
);
1231 atomic_inc(&sh
->count
);
1232 init_async_submit(&submit
, ASYNC_TX_ACK
, NULL
, ops_complete_check
,
1233 sh
, to_addr_conv(sh
, percpu
));
1234 async_syndrome_val(srcs
, 0, count
+2, STRIPE_SIZE
,
1235 &sh
->ops
.zero_sum_result
, percpu
->spare_page
, &submit
);
1238 static void __raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1240 int overlap_clear
= 0, i
, disks
= sh
->disks
;
1241 struct dma_async_tx_descriptor
*tx
= NULL
;
1242 struct r5conf
*conf
= sh
->raid_conf
;
1243 int level
= conf
->level
;
1244 struct raid5_percpu
*percpu
;
1248 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1249 if (test_bit(STRIPE_OP_BIOFILL
, &ops_request
)) {
1250 ops_run_biofill(sh
);
1254 if (test_bit(STRIPE_OP_COMPUTE_BLK
, &ops_request
)) {
1256 tx
= ops_run_compute5(sh
, percpu
);
1258 if (sh
->ops
.target2
< 0 || sh
->ops
.target
< 0)
1259 tx
= ops_run_compute6_1(sh
, percpu
);
1261 tx
= ops_run_compute6_2(sh
, percpu
);
1263 /* terminate the chain if reconstruct is not set to be run */
1264 if (tx
&& !test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
))
1268 if (test_bit(STRIPE_OP_PREXOR
, &ops_request
))
1269 tx
= ops_run_prexor(sh
, percpu
, tx
);
1271 if (test_bit(STRIPE_OP_BIODRAIN
, &ops_request
)) {
1272 tx
= ops_run_biodrain(sh
, tx
);
1276 if (test_bit(STRIPE_OP_RECONSTRUCT
, &ops_request
)) {
1278 ops_run_reconstruct5(sh
, percpu
, tx
);
1280 ops_run_reconstruct6(sh
, percpu
, tx
);
1283 if (test_bit(STRIPE_OP_CHECK
, &ops_request
)) {
1284 if (sh
->check_state
== check_state_run
)
1285 ops_run_check_p(sh
, percpu
);
1286 else if (sh
->check_state
== check_state_run_q
)
1287 ops_run_check_pq(sh
, percpu
, 0);
1288 else if (sh
->check_state
== check_state_run_pq
)
1289 ops_run_check_pq(sh
, percpu
, 1);
1295 for (i
= disks
; i
--; ) {
1296 struct r5dev
*dev
= &sh
->dev
[i
];
1297 if (test_and_clear_bit(R5_Overlap
, &dev
->flags
))
1298 wake_up(&sh
->raid_conf
->wait_for_overlap
);
1303 #ifdef CONFIG_MULTICORE_RAID456
1304 static void async_run_ops(void *param
, async_cookie_t cookie
)
1306 struct stripe_head
*sh
= param
;
1307 unsigned long ops_request
= sh
->ops
.request
;
1309 clear_bit_unlock(STRIPE_OPS_REQ_PENDING
, &sh
->state
);
1310 wake_up(&sh
->ops
.wait_for_ops
);
1312 __raid_run_ops(sh
, ops_request
);
1316 static void raid_run_ops(struct stripe_head
*sh
, unsigned long ops_request
)
1318 /* since handle_stripe can be called outside of raid5d context
1319 * we need to ensure sh->ops.request is de-staged before another
1322 wait_event(sh
->ops
.wait_for_ops
,
1323 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING
, &sh
->state
));
1324 sh
->ops
.request
= ops_request
;
1326 atomic_inc(&sh
->count
);
1327 async_schedule(async_run_ops
, sh
);
1330 #define raid_run_ops __raid_run_ops
1333 static int grow_one_stripe(struct r5conf
*conf
)
1335 struct stripe_head
*sh
;
1336 sh
= kmem_cache_zalloc(conf
->slab_cache
, GFP_KERNEL
);
1340 sh
->raid_conf
= conf
;
1341 #ifdef CONFIG_MULTICORE_RAID456
1342 init_waitqueue_head(&sh
->ops
.wait_for_ops
);
1345 if (grow_buffers(sh
)) {
1347 kmem_cache_free(conf
->slab_cache
, sh
);
1350 /* we just created an active stripe so... */
1351 atomic_set(&sh
->count
, 1);
1352 atomic_inc(&conf
->active_stripes
);
1353 INIT_LIST_HEAD(&sh
->lru
);
1358 static int grow_stripes(struct r5conf
*conf
, int num
)
1360 struct kmem_cache
*sc
;
1361 int devs
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
1363 if (conf
->mddev
->gendisk
)
1364 sprintf(conf
->cache_name
[0],
1365 "raid%d-%s", conf
->level
, mdname(conf
->mddev
));
1367 sprintf(conf
->cache_name
[0],
1368 "raid%d-%p", conf
->level
, conf
->mddev
);
1369 sprintf(conf
->cache_name
[1], "%s-alt", conf
->cache_name
[0]);
1371 conf
->active_name
= 0;
1372 sc
= kmem_cache_create(conf
->cache_name
[conf
->active_name
],
1373 sizeof(struct stripe_head
)+(devs
-1)*sizeof(struct r5dev
),
1377 conf
->slab_cache
= sc
;
1378 conf
->pool_size
= devs
;
1380 if (!grow_one_stripe(conf
))
1386 * scribble_len - return the required size of the scribble region
1387 * @num - total number of disks in the array
1389 * The size must be enough to contain:
1390 * 1/ a struct page pointer for each device in the array +2
1391 * 2/ room to convert each entry in (1) to its corresponding dma
1392 * (dma_map_page()) or page (page_address()) address.
1394 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1395 * calculate over all devices (not just the data blocks), using zeros in place
1396 * of the P and Q blocks.
1398 static size_t scribble_len(int num
)
1402 len
= sizeof(struct page
*) * (num
+2) + sizeof(addr_conv_t
) * (num
+2);
1407 static int resize_stripes(struct r5conf
*conf
, int newsize
)
1409 /* Make all the stripes able to hold 'newsize' devices.
1410 * New slots in each stripe get 'page' set to a new page.
1412 * This happens in stages:
1413 * 1/ create a new kmem_cache and allocate the required number of
1415 * 2/ gather all the old stripe_heads and tranfer the pages across
1416 * to the new stripe_heads. This will have the side effect of
1417 * freezing the array as once all stripe_heads have been collected,
1418 * no IO will be possible. Old stripe heads are freed once their
1419 * pages have been transferred over, and the old kmem_cache is
1420 * freed when all stripes are done.
1421 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1422 * we simple return a failre status - no need to clean anything up.
1423 * 4/ allocate new pages for the new slots in the new stripe_heads.
1424 * If this fails, we don't bother trying the shrink the
1425 * stripe_heads down again, we just leave them as they are.
1426 * As each stripe_head is processed the new one is released into
1429 * Once step2 is started, we cannot afford to wait for a write,
1430 * so we use GFP_NOIO allocations.
1432 struct stripe_head
*osh
, *nsh
;
1433 LIST_HEAD(newstripes
);
1434 struct disk_info
*ndisks
;
1437 struct kmem_cache
*sc
;
1440 if (newsize
<= conf
->pool_size
)
1441 return 0; /* never bother to shrink */
1443 err
= md_allow_write(conf
->mddev
);
1448 sc
= kmem_cache_create(conf
->cache_name
[1-conf
->active_name
],
1449 sizeof(struct stripe_head
)+(newsize
-1)*sizeof(struct r5dev
),
1454 for (i
= conf
->max_nr_stripes
; i
; i
--) {
1455 nsh
= kmem_cache_zalloc(sc
, GFP_KERNEL
);
1459 nsh
->raid_conf
= conf
;
1460 #ifdef CONFIG_MULTICORE_RAID456
1461 init_waitqueue_head(&nsh
->ops
.wait_for_ops
);
1464 list_add(&nsh
->lru
, &newstripes
);
1467 /* didn't get enough, give up */
1468 while (!list_empty(&newstripes
)) {
1469 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1470 list_del(&nsh
->lru
);
1471 kmem_cache_free(sc
, nsh
);
1473 kmem_cache_destroy(sc
);
1476 /* Step 2 - Must use GFP_NOIO now.
1477 * OK, we have enough stripes, start collecting inactive
1478 * stripes and copying them over
1480 list_for_each_entry(nsh
, &newstripes
, lru
) {
1481 spin_lock_irq(&conf
->device_lock
);
1482 wait_event_lock_irq(conf
->wait_for_stripe
,
1483 !list_empty(&conf
->inactive_list
),
1486 osh
= get_free_stripe(conf
);
1487 spin_unlock_irq(&conf
->device_lock
);
1488 atomic_set(&nsh
->count
, 1);
1489 for(i
=0; i
<conf
->pool_size
; i
++)
1490 nsh
->dev
[i
].page
= osh
->dev
[i
].page
;
1491 for( ; i
<newsize
; i
++)
1492 nsh
->dev
[i
].page
= NULL
;
1493 kmem_cache_free(conf
->slab_cache
, osh
);
1495 kmem_cache_destroy(conf
->slab_cache
);
1498 * At this point, we are holding all the stripes so the array
1499 * is completely stalled, so now is a good time to resize
1500 * conf->disks and the scribble region
1502 ndisks
= kzalloc(newsize
* sizeof(struct disk_info
), GFP_NOIO
);
1504 for (i
=0; i
<conf
->raid_disks
; i
++)
1505 ndisks
[i
] = conf
->disks
[i
];
1507 conf
->disks
= ndisks
;
1512 conf
->scribble_len
= scribble_len(newsize
);
1513 for_each_present_cpu(cpu
) {
1514 struct raid5_percpu
*percpu
;
1517 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
1518 scribble
= kmalloc(conf
->scribble_len
, GFP_NOIO
);
1521 kfree(percpu
->scribble
);
1522 percpu
->scribble
= scribble
;
1530 /* Step 4, return new stripes to service */
1531 while(!list_empty(&newstripes
)) {
1532 nsh
= list_entry(newstripes
.next
, struct stripe_head
, lru
);
1533 list_del_init(&nsh
->lru
);
1535 for (i
=conf
->raid_disks
; i
< newsize
; i
++)
1536 if (nsh
->dev
[i
].page
== NULL
) {
1537 struct page
*p
= alloc_page(GFP_NOIO
);
1538 nsh
->dev
[i
].page
= p
;
1542 release_stripe(nsh
);
1544 /* critical section pass, GFP_NOIO no longer needed */
1546 conf
->slab_cache
= sc
;
1547 conf
->active_name
= 1-conf
->active_name
;
1548 conf
->pool_size
= newsize
;
1552 static int drop_one_stripe(struct r5conf
*conf
)
1554 struct stripe_head
*sh
;
1556 spin_lock_irq(&conf
->device_lock
);
1557 sh
= get_free_stripe(conf
);
1558 spin_unlock_irq(&conf
->device_lock
);
1561 BUG_ON(atomic_read(&sh
->count
));
1563 kmem_cache_free(conf
->slab_cache
, sh
);
1564 atomic_dec(&conf
->active_stripes
);
1568 static void shrink_stripes(struct r5conf
*conf
)
1570 while (drop_one_stripe(conf
))
1573 if (conf
->slab_cache
)
1574 kmem_cache_destroy(conf
->slab_cache
);
1575 conf
->slab_cache
= NULL
;
1578 static void raid5_end_read_request(struct bio
* bi
, int error
)
1580 struct stripe_head
*sh
= bi
->bi_private
;
1581 struct r5conf
*conf
= sh
->raid_conf
;
1582 int disks
= sh
->disks
, i
;
1583 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1584 char b
[BDEVNAME_SIZE
];
1585 struct md_rdev
*rdev
;
1588 for (i
=0 ; i
<disks
; i
++)
1589 if (bi
== &sh
->dev
[i
].req
)
1592 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1593 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1601 set_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1602 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
1603 rdev
= conf
->disks
[i
].rdev
;
1606 "md/raid:%s: read error corrected"
1607 " (%lu sectors at %llu on %s)\n",
1608 mdname(conf
->mddev
), STRIPE_SECTORS
,
1609 (unsigned long long)(sh
->sector
1610 + rdev
->data_offset
),
1611 bdevname(rdev
->bdev
, b
));
1612 atomic_add(STRIPE_SECTORS
, &rdev
->corrected_errors
);
1613 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1614 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1616 if (atomic_read(&conf
->disks
[i
].rdev
->read_errors
))
1617 atomic_set(&conf
->disks
[i
].rdev
->read_errors
, 0);
1619 const char *bdn
= bdevname(conf
->disks
[i
].rdev
->bdev
, b
);
1621 rdev
= conf
->disks
[i
].rdev
;
1623 clear_bit(R5_UPTODATE
, &sh
->dev
[i
].flags
);
1624 atomic_inc(&rdev
->read_errors
);
1625 if (conf
->mddev
->degraded
>= conf
->max_degraded
)
1628 "md/raid:%s: read error not correctable "
1629 "(sector %llu on %s).\n",
1630 mdname(conf
->mddev
),
1631 (unsigned long long)(sh
->sector
1632 + rdev
->data_offset
),
1634 else if (test_bit(R5_ReWrite
, &sh
->dev
[i
].flags
))
1638 "md/raid:%s: read error NOT corrected!! "
1639 "(sector %llu on %s).\n",
1640 mdname(conf
->mddev
),
1641 (unsigned long long)(sh
->sector
1642 + rdev
->data_offset
),
1644 else if (atomic_read(&rdev
->read_errors
)
1645 > conf
->max_nr_stripes
)
1647 "md/raid:%s: Too many read errors, failing device %s.\n",
1648 mdname(conf
->mddev
), bdn
);
1652 set_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1654 clear_bit(R5_ReadError
, &sh
->dev
[i
].flags
);
1655 clear_bit(R5_ReWrite
, &sh
->dev
[i
].flags
);
1656 md_error(conf
->mddev
, rdev
);
1659 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1660 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1661 set_bit(STRIPE_HANDLE
, &sh
->state
);
1665 static void raid5_end_write_request(struct bio
*bi
, int error
)
1667 struct stripe_head
*sh
= bi
->bi_private
;
1668 struct r5conf
*conf
= sh
->raid_conf
;
1669 int disks
= sh
->disks
, i
;
1670 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
1674 for (i
=0 ; i
<disks
; i
++)
1675 if (bi
== &sh
->dev
[i
].req
)
1678 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1679 (unsigned long long)sh
->sector
, i
, atomic_read(&sh
->count
),
1687 set_bit(WriteErrorSeen
, &conf
->disks
[i
].rdev
->flags
);
1688 set_bit(R5_WriteError
, &sh
->dev
[i
].flags
);
1689 } else if (is_badblock(conf
->disks
[i
].rdev
, sh
->sector
, STRIPE_SECTORS
,
1690 &first_bad
, &bad_sectors
))
1691 set_bit(R5_MadeGood
, &sh
->dev
[i
].flags
);
1693 rdev_dec_pending(conf
->disks
[i
].rdev
, conf
->mddev
);
1695 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
1696 set_bit(STRIPE_HANDLE
, &sh
->state
);
1701 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
);
1703 static void raid5_build_block(struct stripe_head
*sh
, int i
, int previous
)
1705 struct r5dev
*dev
= &sh
->dev
[i
];
1707 bio_init(&dev
->req
);
1708 dev
->req
.bi_io_vec
= &dev
->vec
;
1710 dev
->req
.bi_max_vecs
++;
1711 dev
->vec
.bv_page
= dev
->page
;
1712 dev
->vec
.bv_len
= STRIPE_SIZE
;
1713 dev
->vec
.bv_offset
= 0;
1715 dev
->req
.bi_sector
= sh
->sector
;
1716 dev
->req
.bi_private
= sh
;
1719 dev
->sector
= compute_blocknr(sh
, i
, previous
);
1722 static void error(struct mddev
*mddev
, struct md_rdev
*rdev
)
1724 char b
[BDEVNAME_SIZE
];
1725 struct r5conf
*conf
= mddev
->private;
1726 pr_debug("raid456: error called\n");
1728 if (test_and_clear_bit(In_sync
, &rdev
->flags
)) {
1729 unsigned long flags
;
1730 spin_lock_irqsave(&conf
->device_lock
, flags
);
1732 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
1734 * if recovery was running, make sure it aborts.
1736 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
1738 set_bit(Blocked
, &rdev
->flags
);
1739 set_bit(Faulty
, &rdev
->flags
);
1740 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
1742 "md/raid:%s: Disk failure on %s, disabling device.\n"
1743 "md/raid:%s: Operation continuing on %d devices.\n",
1745 bdevname(rdev
->bdev
, b
),
1747 conf
->raid_disks
- mddev
->degraded
);
1751 * Input: a 'big' sector number,
1752 * Output: index of the data and parity disk, and the sector # in them.
1754 static sector_t
raid5_compute_sector(struct r5conf
*conf
, sector_t r_sector
,
1755 int previous
, int *dd_idx
,
1756 struct stripe_head
*sh
)
1758 sector_t stripe
, stripe2
;
1759 sector_t chunk_number
;
1760 unsigned int chunk_offset
;
1763 sector_t new_sector
;
1764 int algorithm
= previous
? conf
->prev_algo
1766 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1767 : conf
->chunk_sectors
;
1768 int raid_disks
= previous
? conf
->previous_raid_disks
1770 int data_disks
= raid_disks
- conf
->max_degraded
;
1772 /* First compute the information on this sector */
1775 * Compute the chunk number and the sector offset inside the chunk
1777 chunk_offset
= sector_div(r_sector
, sectors_per_chunk
);
1778 chunk_number
= r_sector
;
1781 * Compute the stripe number
1783 stripe
= chunk_number
;
1784 *dd_idx
= sector_div(stripe
, data_disks
);
1787 * Select the parity disk based on the user selected algorithm.
1789 pd_idx
= qd_idx
= -1;
1790 switch(conf
->level
) {
1792 pd_idx
= data_disks
;
1795 switch (algorithm
) {
1796 case ALGORITHM_LEFT_ASYMMETRIC
:
1797 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1798 if (*dd_idx
>= pd_idx
)
1801 case ALGORITHM_RIGHT_ASYMMETRIC
:
1802 pd_idx
= sector_div(stripe2
, raid_disks
);
1803 if (*dd_idx
>= pd_idx
)
1806 case ALGORITHM_LEFT_SYMMETRIC
:
1807 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
);
1808 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1810 case ALGORITHM_RIGHT_SYMMETRIC
:
1811 pd_idx
= sector_div(stripe2
, raid_disks
);
1812 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1814 case ALGORITHM_PARITY_0
:
1818 case ALGORITHM_PARITY_N
:
1819 pd_idx
= data_disks
;
1827 switch (algorithm
) {
1828 case ALGORITHM_LEFT_ASYMMETRIC
:
1829 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1830 qd_idx
= pd_idx
+ 1;
1831 if (pd_idx
== raid_disks
-1) {
1832 (*dd_idx
)++; /* Q D D D P */
1834 } else if (*dd_idx
>= pd_idx
)
1835 (*dd_idx
) += 2; /* D D P Q D */
1837 case ALGORITHM_RIGHT_ASYMMETRIC
:
1838 pd_idx
= sector_div(stripe2
, raid_disks
);
1839 qd_idx
= pd_idx
+ 1;
1840 if (pd_idx
== raid_disks
-1) {
1841 (*dd_idx
)++; /* Q D D D P */
1843 } else if (*dd_idx
>= pd_idx
)
1844 (*dd_idx
) += 2; /* D D P Q D */
1846 case ALGORITHM_LEFT_SYMMETRIC
:
1847 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1848 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1849 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1851 case ALGORITHM_RIGHT_SYMMETRIC
:
1852 pd_idx
= sector_div(stripe2
, raid_disks
);
1853 qd_idx
= (pd_idx
+ 1) % raid_disks
;
1854 *dd_idx
= (pd_idx
+ 2 + *dd_idx
) % raid_disks
;
1857 case ALGORITHM_PARITY_0
:
1862 case ALGORITHM_PARITY_N
:
1863 pd_idx
= data_disks
;
1864 qd_idx
= data_disks
+ 1;
1867 case ALGORITHM_ROTATING_ZERO_RESTART
:
1868 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1869 * of blocks for computing Q is different.
1871 pd_idx
= sector_div(stripe2
, raid_disks
);
1872 qd_idx
= pd_idx
+ 1;
1873 if (pd_idx
== raid_disks
-1) {
1874 (*dd_idx
)++; /* Q D D D P */
1876 } else if (*dd_idx
>= pd_idx
)
1877 (*dd_idx
) += 2; /* D D P Q D */
1881 case ALGORITHM_ROTATING_N_RESTART
:
1882 /* Same a left_asymmetric, by first stripe is
1883 * D D D P Q rather than
1887 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1888 qd_idx
= pd_idx
+ 1;
1889 if (pd_idx
== raid_disks
-1) {
1890 (*dd_idx
)++; /* Q D D D P */
1892 } else if (*dd_idx
>= pd_idx
)
1893 (*dd_idx
) += 2; /* D D P Q D */
1897 case ALGORITHM_ROTATING_N_CONTINUE
:
1898 /* Same as left_symmetric but Q is before P */
1899 pd_idx
= raid_disks
- 1 - sector_div(stripe2
, raid_disks
);
1900 qd_idx
= (pd_idx
+ raid_disks
- 1) % raid_disks
;
1901 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % raid_disks
;
1905 case ALGORITHM_LEFT_ASYMMETRIC_6
:
1906 /* RAID5 left_asymmetric, with Q on last device */
1907 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1908 if (*dd_idx
>= pd_idx
)
1910 qd_idx
= raid_disks
- 1;
1913 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
1914 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1915 if (*dd_idx
>= pd_idx
)
1917 qd_idx
= raid_disks
- 1;
1920 case ALGORITHM_LEFT_SYMMETRIC_6
:
1921 pd_idx
= data_disks
- sector_div(stripe2
, raid_disks
-1);
1922 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1923 qd_idx
= raid_disks
- 1;
1926 case ALGORITHM_RIGHT_SYMMETRIC_6
:
1927 pd_idx
= sector_div(stripe2
, raid_disks
-1);
1928 *dd_idx
= (pd_idx
+ 1 + *dd_idx
) % (raid_disks
-1);
1929 qd_idx
= raid_disks
- 1;
1932 case ALGORITHM_PARITY_0_6
:
1935 qd_idx
= raid_disks
- 1;
1945 sh
->pd_idx
= pd_idx
;
1946 sh
->qd_idx
= qd_idx
;
1947 sh
->ddf_layout
= ddf_layout
;
1950 * Finally, compute the new sector number
1952 new_sector
= (sector_t
)stripe
* sectors_per_chunk
+ chunk_offset
;
1957 static sector_t
compute_blocknr(struct stripe_head
*sh
, int i
, int previous
)
1959 struct r5conf
*conf
= sh
->raid_conf
;
1960 int raid_disks
= sh
->disks
;
1961 int data_disks
= raid_disks
- conf
->max_degraded
;
1962 sector_t new_sector
= sh
->sector
, check
;
1963 int sectors_per_chunk
= previous
? conf
->prev_chunk_sectors
1964 : conf
->chunk_sectors
;
1965 int algorithm
= previous
? conf
->prev_algo
1969 sector_t chunk_number
;
1970 int dummy1
, dd_idx
= i
;
1972 struct stripe_head sh2
;
1975 chunk_offset
= sector_div(new_sector
, sectors_per_chunk
);
1976 stripe
= new_sector
;
1978 if (i
== sh
->pd_idx
)
1980 switch(conf
->level
) {
1983 switch (algorithm
) {
1984 case ALGORITHM_LEFT_ASYMMETRIC
:
1985 case ALGORITHM_RIGHT_ASYMMETRIC
:
1989 case ALGORITHM_LEFT_SYMMETRIC
:
1990 case ALGORITHM_RIGHT_SYMMETRIC
:
1993 i
-= (sh
->pd_idx
+ 1);
1995 case ALGORITHM_PARITY_0
:
1998 case ALGORITHM_PARITY_N
:
2005 if (i
== sh
->qd_idx
)
2006 return 0; /* It is the Q disk */
2007 switch (algorithm
) {
2008 case ALGORITHM_LEFT_ASYMMETRIC
:
2009 case ALGORITHM_RIGHT_ASYMMETRIC
:
2010 case ALGORITHM_ROTATING_ZERO_RESTART
:
2011 case ALGORITHM_ROTATING_N_RESTART
:
2012 if (sh
->pd_idx
== raid_disks
-1)
2013 i
--; /* Q D D D P */
2014 else if (i
> sh
->pd_idx
)
2015 i
-= 2; /* D D P Q D */
2017 case ALGORITHM_LEFT_SYMMETRIC
:
2018 case ALGORITHM_RIGHT_SYMMETRIC
:
2019 if (sh
->pd_idx
== raid_disks
-1)
2020 i
--; /* Q D D D P */
2025 i
-= (sh
->pd_idx
+ 2);
2028 case ALGORITHM_PARITY_0
:
2031 case ALGORITHM_PARITY_N
:
2033 case ALGORITHM_ROTATING_N_CONTINUE
:
2034 /* Like left_symmetric, but P is before Q */
2035 if (sh
->pd_idx
== 0)
2036 i
--; /* P D D D Q */
2041 i
-= (sh
->pd_idx
+ 1);
2044 case ALGORITHM_LEFT_ASYMMETRIC_6
:
2045 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
2049 case ALGORITHM_LEFT_SYMMETRIC_6
:
2050 case ALGORITHM_RIGHT_SYMMETRIC_6
:
2052 i
+= data_disks
+ 1;
2053 i
-= (sh
->pd_idx
+ 1);
2055 case ALGORITHM_PARITY_0_6
:
2064 chunk_number
= stripe
* data_disks
+ i
;
2065 r_sector
= chunk_number
* sectors_per_chunk
+ chunk_offset
;
2067 check
= raid5_compute_sector(conf
, r_sector
,
2068 previous
, &dummy1
, &sh2
);
2069 if (check
!= sh
->sector
|| dummy1
!= dd_idx
|| sh2
.pd_idx
!= sh
->pd_idx
2070 || sh2
.qd_idx
!= sh
->qd_idx
) {
2071 printk(KERN_ERR
"md/raid:%s: compute_blocknr: map not correct\n",
2072 mdname(conf
->mddev
));
2080 schedule_reconstruction(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2081 int rcw
, int expand
)
2083 int i
, pd_idx
= sh
->pd_idx
, disks
= sh
->disks
;
2084 struct r5conf
*conf
= sh
->raid_conf
;
2085 int level
= conf
->level
;
2088 /* if we are not expanding this is a proper write request, and
2089 * there will be bios with new data to be drained into the
2093 sh
->reconstruct_state
= reconstruct_state_drain_run
;
2094 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2096 sh
->reconstruct_state
= reconstruct_state_run
;
2098 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2100 for (i
= disks
; i
--; ) {
2101 struct r5dev
*dev
= &sh
->dev
[i
];
2104 set_bit(R5_LOCKED
, &dev
->flags
);
2105 set_bit(R5_Wantdrain
, &dev
->flags
);
2107 clear_bit(R5_UPTODATE
, &dev
->flags
);
2111 if (s
->locked
+ conf
->max_degraded
== disks
)
2112 if (!test_and_set_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2113 atomic_inc(&conf
->pending_full_writes
);
2116 BUG_ON(!(test_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
) ||
2117 test_bit(R5_Wantcompute
, &sh
->dev
[pd_idx
].flags
)));
2119 sh
->reconstruct_state
= reconstruct_state_prexor_drain_run
;
2120 set_bit(STRIPE_OP_PREXOR
, &s
->ops_request
);
2121 set_bit(STRIPE_OP_BIODRAIN
, &s
->ops_request
);
2122 set_bit(STRIPE_OP_RECONSTRUCT
, &s
->ops_request
);
2124 for (i
= disks
; i
--; ) {
2125 struct r5dev
*dev
= &sh
->dev
[i
];
2130 (test_bit(R5_UPTODATE
, &dev
->flags
) ||
2131 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2132 set_bit(R5_Wantdrain
, &dev
->flags
);
2133 set_bit(R5_LOCKED
, &dev
->flags
);
2134 clear_bit(R5_UPTODATE
, &dev
->flags
);
2140 /* keep the parity disk(s) locked while asynchronous operations
2143 set_bit(R5_LOCKED
, &sh
->dev
[pd_idx
].flags
);
2144 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2148 int qd_idx
= sh
->qd_idx
;
2149 struct r5dev
*dev
= &sh
->dev
[qd_idx
];
2151 set_bit(R5_LOCKED
, &dev
->flags
);
2152 clear_bit(R5_UPTODATE
, &dev
->flags
);
2156 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2157 __func__
, (unsigned long long)sh
->sector
,
2158 s
->locked
, s
->ops_request
);
2162 * Each stripe/dev can have one or more bion attached.
2163 * toread/towrite point to the first in a chain.
2164 * The bi_next chain must be in order.
2166 static int add_stripe_bio(struct stripe_head
*sh
, struct bio
*bi
, int dd_idx
, int forwrite
)
2169 struct r5conf
*conf
= sh
->raid_conf
;
2172 pr_debug("adding bi b#%llu to stripe s#%llu\n",
2173 (unsigned long long)bi
->bi_sector
,
2174 (unsigned long long)sh
->sector
);
2177 spin_lock_irq(&conf
->device_lock
);
2179 bip
= &sh
->dev
[dd_idx
].towrite
;
2180 if (*bip
== NULL
&& sh
->dev
[dd_idx
].written
== NULL
)
2183 bip
= &sh
->dev
[dd_idx
].toread
;
2184 while (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
) {
2185 if ((*bip
)->bi_sector
+ ((*bip
)->bi_size
>> 9) > bi
->bi_sector
)
2187 bip
= & (*bip
)->bi_next
;
2189 if (*bip
&& (*bip
)->bi_sector
< bi
->bi_sector
+ ((bi
->bi_size
)>>9))
2192 BUG_ON(*bip
&& bi
->bi_next
&& (*bip
) != bi
->bi_next
);
2196 bi
->bi_phys_segments
++;
2199 /* check if page is covered */
2200 sector_t sector
= sh
->dev
[dd_idx
].sector
;
2201 for (bi
=sh
->dev
[dd_idx
].towrite
;
2202 sector
< sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
&&
2203 bi
&& bi
->bi_sector
<= sector
;
2204 bi
= r5_next_bio(bi
, sh
->dev
[dd_idx
].sector
)) {
2205 if (bi
->bi_sector
+ (bi
->bi_size
>>9) >= sector
)
2206 sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
2208 if (sector
>= sh
->dev
[dd_idx
].sector
+ STRIPE_SECTORS
)
2209 set_bit(R5_OVERWRITE
, &sh
->dev
[dd_idx
].flags
);
2211 spin_unlock_irq(&conf
->device_lock
);
2213 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2214 (unsigned long long)(*bip
)->bi_sector
,
2215 (unsigned long long)sh
->sector
, dd_idx
);
2217 if (conf
->mddev
->bitmap
&& firstwrite
) {
2218 bitmap_startwrite(conf
->mddev
->bitmap
, sh
->sector
,
2220 sh
->bm_seq
= conf
->seq_flush
+1;
2221 set_bit(STRIPE_BIT_DELAY
, &sh
->state
);
2226 set_bit(R5_Overlap
, &sh
->dev
[dd_idx
].flags
);
2227 spin_unlock_irq(&conf
->device_lock
);
2231 static void end_reshape(struct r5conf
*conf
);
2233 static void stripe_set_idx(sector_t stripe
, struct r5conf
*conf
, int previous
,
2234 struct stripe_head
*sh
)
2236 int sectors_per_chunk
=
2237 previous
? conf
->prev_chunk_sectors
: conf
->chunk_sectors
;
2239 int chunk_offset
= sector_div(stripe
, sectors_per_chunk
);
2240 int disks
= previous
? conf
->previous_raid_disks
: conf
->raid_disks
;
2242 raid5_compute_sector(conf
,
2243 stripe
* (disks
- conf
->max_degraded
)
2244 *sectors_per_chunk
+ chunk_offset
,
2250 handle_failed_stripe(struct r5conf
*conf
, struct stripe_head
*sh
,
2251 struct stripe_head_state
*s
, int disks
,
2252 struct bio
**return_bi
)
2255 for (i
= disks
; i
--; ) {
2259 if (test_bit(R5_ReadError
, &sh
->dev
[i
].flags
)) {
2260 struct md_rdev
*rdev
;
2262 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
2263 if (rdev
&& test_bit(In_sync
, &rdev
->flags
))
2264 atomic_inc(&rdev
->nr_pending
);
2269 if (!rdev_set_badblocks(
2273 md_error(conf
->mddev
, rdev
);
2274 rdev_dec_pending(rdev
, conf
->mddev
);
2277 spin_lock_irq(&conf
->device_lock
);
2278 /* fail all writes first */
2279 bi
= sh
->dev
[i
].towrite
;
2280 sh
->dev
[i
].towrite
= NULL
;
2286 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2287 wake_up(&conf
->wait_for_overlap
);
2289 while (bi
&& bi
->bi_sector
<
2290 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2291 struct bio
*nextbi
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2292 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2293 if (!raid5_dec_bi_phys_segments(bi
)) {
2294 md_write_end(conf
->mddev
);
2295 bi
->bi_next
= *return_bi
;
2300 /* and fail all 'written' */
2301 bi
= sh
->dev
[i
].written
;
2302 sh
->dev
[i
].written
= NULL
;
2303 if (bi
) bitmap_end
= 1;
2304 while (bi
&& bi
->bi_sector
<
2305 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2306 struct bio
*bi2
= r5_next_bio(bi
, sh
->dev
[i
].sector
);
2307 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2308 if (!raid5_dec_bi_phys_segments(bi
)) {
2309 md_write_end(conf
->mddev
);
2310 bi
->bi_next
= *return_bi
;
2316 /* fail any reads if this device is non-operational and
2317 * the data has not reached the cache yet.
2319 if (!test_bit(R5_Wantfill
, &sh
->dev
[i
].flags
) &&
2320 (!test_bit(R5_Insync
, &sh
->dev
[i
].flags
) ||
2321 test_bit(R5_ReadError
, &sh
->dev
[i
].flags
))) {
2322 bi
= sh
->dev
[i
].toread
;
2323 sh
->dev
[i
].toread
= NULL
;
2324 if (test_and_clear_bit(R5_Overlap
, &sh
->dev
[i
].flags
))
2325 wake_up(&conf
->wait_for_overlap
);
2326 if (bi
) s
->to_read
--;
2327 while (bi
&& bi
->bi_sector
<
2328 sh
->dev
[i
].sector
+ STRIPE_SECTORS
) {
2329 struct bio
*nextbi
=
2330 r5_next_bio(bi
, sh
->dev
[i
].sector
);
2331 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
2332 if (!raid5_dec_bi_phys_segments(bi
)) {
2333 bi
->bi_next
= *return_bi
;
2339 spin_unlock_irq(&conf
->device_lock
);
2341 bitmap_endwrite(conf
->mddev
->bitmap
, sh
->sector
,
2342 STRIPE_SECTORS
, 0, 0);
2343 /* If we were in the middle of a write the parity block might
2344 * still be locked - so just clear all R5_LOCKED flags
2346 clear_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
2349 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2350 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2351 md_wakeup_thread(conf
->mddev
->thread
);
2355 handle_failed_sync(struct r5conf
*conf
, struct stripe_head
*sh
,
2356 struct stripe_head_state
*s
)
2361 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 0);
2362 clear_bit(STRIPE_SYNCING
, &sh
->state
);
2364 /* There is nothing more to do for sync/check/repair.
2365 * For recover we need to record a bad block on all
2366 * non-sync devices, or abort the recovery
2368 if (!test_bit(MD_RECOVERY_RECOVER
, &conf
->mddev
->recovery
))
2370 /* During recovery devices cannot be removed, so locking and
2371 * refcounting of rdevs is not needed
2373 for (i
= 0; i
< conf
->raid_disks
; i
++) {
2374 struct md_rdev
*rdev
= conf
->disks
[i
].rdev
;
2376 || test_bit(Faulty
, &rdev
->flags
)
2377 || test_bit(In_sync
, &rdev
->flags
))
2379 if (!rdev_set_badblocks(rdev
, sh
->sector
,
2384 conf
->recovery_disabled
= conf
->mddev
->recovery_disabled
;
2385 set_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
);
2389 /* fetch_block - checks the given member device to see if its data needs
2390 * to be read or computed to satisfy a request.
2392 * Returns 1 when no more member devices need to be checked, otherwise returns
2393 * 0 to tell the loop in handle_stripe_fill to continue
2395 static int fetch_block(struct stripe_head
*sh
, struct stripe_head_state
*s
,
2396 int disk_idx
, int disks
)
2398 struct r5dev
*dev
= &sh
->dev
[disk_idx
];
2399 struct r5dev
*fdev
[2] = { &sh
->dev
[s
->failed_num
[0]],
2400 &sh
->dev
[s
->failed_num
[1]] };
2402 /* is the data in this block needed, and can we get it? */
2403 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2404 !test_bit(R5_UPTODATE
, &dev
->flags
) &&
2406 (dev
->towrite
&& !test_bit(R5_OVERWRITE
, &dev
->flags
)) ||
2407 s
->syncing
|| s
->expanding
||
2408 (s
->failed
>= 1 && fdev
[0]->toread
) ||
2409 (s
->failed
>= 2 && fdev
[1]->toread
) ||
2410 (sh
->raid_conf
->level
<= 5 && s
->failed
&& fdev
[0]->towrite
&&
2411 !test_bit(R5_OVERWRITE
, &fdev
[0]->flags
)) ||
2412 (sh
->raid_conf
->level
== 6 && s
->failed
&& s
->to_write
))) {
2413 /* we would like to get this block, possibly by computing it,
2414 * otherwise read it if the backing disk is insync
2416 BUG_ON(test_bit(R5_Wantcompute
, &dev
->flags
));
2417 BUG_ON(test_bit(R5_Wantread
, &dev
->flags
));
2418 if ((s
->uptodate
== disks
- 1) &&
2419 (s
->failed
&& (disk_idx
== s
->failed_num
[0] ||
2420 disk_idx
== s
->failed_num
[1]))) {
2421 /* have disk failed, and we're requested to fetch it;
2424 pr_debug("Computing stripe %llu block %d\n",
2425 (unsigned long long)sh
->sector
, disk_idx
);
2426 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2427 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2428 set_bit(R5_Wantcompute
, &dev
->flags
);
2429 sh
->ops
.target
= disk_idx
;
2430 sh
->ops
.target2
= -1; /* no 2nd target */
2432 /* Careful: from this point on 'uptodate' is in the eye
2433 * of raid_run_ops which services 'compute' operations
2434 * before writes. R5_Wantcompute flags a block that will
2435 * be R5_UPTODATE by the time it is needed for a
2436 * subsequent operation.
2440 } else if (s
->uptodate
== disks
-2 && s
->failed
>= 2) {
2441 /* Computing 2-failure is *very* expensive; only
2442 * do it if failed >= 2
2445 for (other
= disks
; other
--; ) {
2446 if (other
== disk_idx
)
2448 if (!test_bit(R5_UPTODATE
,
2449 &sh
->dev
[other
].flags
))
2453 pr_debug("Computing stripe %llu blocks %d,%d\n",
2454 (unsigned long long)sh
->sector
,
2456 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2457 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2458 set_bit(R5_Wantcompute
, &sh
->dev
[disk_idx
].flags
);
2459 set_bit(R5_Wantcompute
, &sh
->dev
[other
].flags
);
2460 sh
->ops
.target
= disk_idx
;
2461 sh
->ops
.target2
= other
;
2465 } else if (test_bit(R5_Insync
, &dev
->flags
)) {
2466 set_bit(R5_LOCKED
, &dev
->flags
);
2467 set_bit(R5_Wantread
, &dev
->flags
);
2469 pr_debug("Reading block %d (sync=%d)\n",
2470 disk_idx
, s
->syncing
);
2478 * handle_stripe_fill - read or compute data to satisfy pending requests.
2480 static void handle_stripe_fill(struct stripe_head
*sh
,
2481 struct stripe_head_state
*s
,
2486 /* look for blocks to read/compute, skip this if a compute
2487 * is already in flight, or if the stripe contents are in the
2488 * midst of changing due to a write
2490 if (!test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) && !sh
->check_state
&&
2491 !sh
->reconstruct_state
)
2492 for (i
= disks
; i
--; )
2493 if (fetch_block(sh
, s
, i
, disks
))
2495 set_bit(STRIPE_HANDLE
, &sh
->state
);
2499 /* handle_stripe_clean_event
2500 * any written block on an uptodate or failed drive can be returned.
2501 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2502 * never LOCKED, so we don't need to test 'failed' directly.
2504 static void handle_stripe_clean_event(struct r5conf
*conf
,
2505 struct stripe_head
*sh
, int disks
, struct bio
**return_bi
)
2510 for (i
= disks
; i
--; )
2511 if (sh
->dev
[i
].written
) {
2513 if (!test_bit(R5_LOCKED
, &dev
->flags
) &&
2514 test_bit(R5_UPTODATE
, &dev
->flags
)) {
2515 /* We can return any write requests */
2516 struct bio
*wbi
, *wbi2
;
2518 pr_debug("Return write for disc %d\n", i
);
2519 spin_lock_irq(&conf
->device_lock
);
2521 dev
->written
= NULL
;
2522 while (wbi
&& wbi
->bi_sector
<
2523 dev
->sector
+ STRIPE_SECTORS
) {
2524 wbi2
= r5_next_bio(wbi
, dev
->sector
);
2525 if (!raid5_dec_bi_phys_segments(wbi
)) {
2526 md_write_end(conf
->mddev
);
2527 wbi
->bi_next
= *return_bi
;
2532 if (dev
->towrite
== NULL
)
2534 spin_unlock_irq(&conf
->device_lock
);
2536 bitmap_endwrite(conf
->mddev
->bitmap
,
2539 !test_bit(STRIPE_DEGRADED
, &sh
->state
),
2544 if (test_and_clear_bit(STRIPE_FULL_WRITE
, &sh
->state
))
2545 if (atomic_dec_and_test(&conf
->pending_full_writes
))
2546 md_wakeup_thread(conf
->mddev
->thread
);
2549 static void handle_stripe_dirtying(struct r5conf
*conf
,
2550 struct stripe_head
*sh
,
2551 struct stripe_head_state
*s
,
2554 int rmw
= 0, rcw
= 0, i
;
2555 if (conf
->max_degraded
== 2) {
2556 /* RAID6 requires 'rcw' in current implementation
2557 * Calculate the real rcw later - for now fake it
2558 * look like rcw is cheaper
2561 } else for (i
= disks
; i
--; ) {
2562 /* would I have to read this buffer for read_modify_write */
2563 struct r5dev
*dev
= &sh
->dev
[i
];
2564 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2565 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2566 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2567 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2568 if (test_bit(R5_Insync
, &dev
->flags
))
2571 rmw
+= 2*disks
; /* cannot read it */
2573 /* Would I have to read this buffer for reconstruct_write */
2574 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) && i
!= sh
->pd_idx
&&
2575 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2576 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2577 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2578 if (test_bit(R5_Insync
, &dev
->flags
)) rcw
++;
2583 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2584 (unsigned long long)sh
->sector
, rmw
, rcw
);
2585 set_bit(STRIPE_HANDLE
, &sh
->state
);
2586 if (rmw
< rcw
&& rmw
> 0)
2587 /* prefer read-modify-write, but need to get some data */
2588 for (i
= disks
; i
--; ) {
2589 struct r5dev
*dev
= &sh
->dev
[i
];
2590 if ((dev
->towrite
|| i
== sh
->pd_idx
) &&
2591 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2592 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2593 test_bit(R5_Wantcompute
, &dev
->flags
)) &&
2594 test_bit(R5_Insync
, &dev
->flags
)) {
2596 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2597 pr_debug("Read_old block "
2598 "%d for r-m-w\n", i
);
2599 set_bit(R5_LOCKED
, &dev
->flags
);
2600 set_bit(R5_Wantread
, &dev
->flags
);
2603 set_bit(STRIPE_DELAYED
, &sh
->state
);
2604 set_bit(STRIPE_HANDLE
, &sh
->state
);
2608 if (rcw
<= rmw
&& rcw
> 0) {
2609 /* want reconstruct write, but need to get some data */
2611 for (i
= disks
; i
--; ) {
2612 struct r5dev
*dev
= &sh
->dev
[i
];
2613 if (!test_bit(R5_OVERWRITE
, &dev
->flags
) &&
2614 i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
&&
2615 !test_bit(R5_LOCKED
, &dev
->flags
) &&
2616 !(test_bit(R5_UPTODATE
, &dev
->flags
) ||
2617 test_bit(R5_Wantcompute
, &dev
->flags
))) {
2619 if (!test_bit(R5_Insync
, &dev
->flags
))
2620 continue; /* it's a failed drive */
2622 test_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
)) {
2623 pr_debug("Read_old block "
2624 "%d for Reconstruct\n", i
);
2625 set_bit(R5_LOCKED
, &dev
->flags
);
2626 set_bit(R5_Wantread
, &dev
->flags
);
2629 set_bit(STRIPE_DELAYED
, &sh
->state
);
2630 set_bit(STRIPE_HANDLE
, &sh
->state
);
2635 /* now if nothing is locked, and if we have enough data,
2636 * we can start a write request
2638 /* since handle_stripe can be called at any time we need to handle the
2639 * case where a compute block operation has been submitted and then a
2640 * subsequent call wants to start a write request. raid_run_ops only
2641 * handles the case where compute block and reconstruct are requested
2642 * simultaneously. If this is not the case then new writes need to be
2643 * held off until the compute completes.
2645 if ((s
->req_compute
|| !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
)) &&
2646 (s
->locked
== 0 && (rcw
== 0 || rmw
== 0) &&
2647 !test_bit(STRIPE_BIT_DELAY
, &sh
->state
)))
2648 schedule_reconstruction(sh
, s
, rcw
== 0, 0);
2651 static void handle_parity_checks5(struct r5conf
*conf
, struct stripe_head
*sh
,
2652 struct stripe_head_state
*s
, int disks
)
2654 struct r5dev
*dev
= NULL
;
2656 set_bit(STRIPE_HANDLE
, &sh
->state
);
2658 switch (sh
->check_state
) {
2659 case check_state_idle
:
2660 /* start a new check operation if there are no failures */
2661 if (s
->failed
== 0) {
2662 BUG_ON(s
->uptodate
!= disks
);
2663 sh
->check_state
= check_state_run
;
2664 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2665 clear_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
);
2669 dev
= &sh
->dev
[s
->failed_num
[0]];
2671 case check_state_compute_result
:
2672 sh
->check_state
= check_state_idle
;
2674 dev
= &sh
->dev
[sh
->pd_idx
];
2676 /* check that a write has not made the stripe insync */
2677 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2680 /* either failed parity check, or recovery is happening */
2681 BUG_ON(!test_bit(R5_UPTODATE
, &dev
->flags
));
2682 BUG_ON(s
->uptodate
!= disks
);
2684 set_bit(R5_LOCKED
, &dev
->flags
);
2686 set_bit(R5_Wantwrite
, &dev
->flags
);
2688 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2689 set_bit(STRIPE_INSYNC
, &sh
->state
);
2691 case check_state_run
:
2692 break; /* we will be called again upon completion */
2693 case check_state_check_result
:
2694 sh
->check_state
= check_state_idle
;
2696 /* if a failure occurred during the check operation, leave
2697 * STRIPE_INSYNC not set and let the stripe be handled again
2702 /* handle a successful check operation, if parity is correct
2703 * we are done. Otherwise update the mismatch count and repair
2704 * parity if !MD_RECOVERY_CHECK
2706 if ((sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) == 0)
2707 /* parity is correct (on disc,
2708 * not in buffer any more)
2710 set_bit(STRIPE_INSYNC
, &sh
->state
);
2712 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2713 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2714 /* don't try to repair!! */
2715 set_bit(STRIPE_INSYNC
, &sh
->state
);
2717 sh
->check_state
= check_state_compute_run
;
2718 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2719 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2720 set_bit(R5_Wantcompute
,
2721 &sh
->dev
[sh
->pd_idx
].flags
);
2722 sh
->ops
.target
= sh
->pd_idx
;
2723 sh
->ops
.target2
= -1;
2728 case check_state_compute_run
:
2731 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2732 __func__
, sh
->check_state
,
2733 (unsigned long long) sh
->sector
);
2739 static void handle_parity_checks6(struct r5conf
*conf
, struct stripe_head
*sh
,
2740 struct stripe_head_state
*s
,
2743 int pd_idx
= sh
->pd_idx
;
2744 int qd_idx
= sh
->qd_idx
;
2747 set_bit(STRIPE_HANDLE
, &sh
->state
);
2749 BUG_ON(s
->failed
> 2);
2751 /* Want to check and possibly repair P and Q.
2752 * However there could be one 'failed' device, in which
2753 * case we can only check one of them, possibly using the
2754 * other to generate missing data
2757 switch (sh
->check_state
) {
2758 case check_state_idle
:
2759 /* start a new check operation if there are < 2 failures */
2760 if (s
->failed
== s
->q_failed
) {
2761 /* The only possible failed device holds Q, so it
2762 * makes sense to check P (If anything else were failed,
2763 * we would have used P to recreate it).
2765 sh
->check_state
= check_state_run
;
2767 if (!s
->q_failed
&& s
->failed
< 2) {
2768 /* Q is not failed, and we didn't use it to generate
2769 * anything, so it makes sense to check it
2771 if (sh
->check_state
== check_state_run
)
2772 sh
->check_state
= check_state_run_pq
;
2774 sh
->check_state
= check_state_run_q
;
2777 /* discard potentially stale zero_sum_result */
2778 sh
->ops
.zero_sum_result
= 0;
2780 if (sh
->check_state
== check_state_run
) {
2781 /* async_xor_zero_sum destroys the contents of P */
2782 clear_bit(R5_UPTODATE
, &sh
->dev
[pd_idx
].flags
);
2785 if (sh
->check_state
>= check_state_run
&&
2786 sh
->check_state
<= check_state_run_pq
) {
2787 /* async_syndrome_zero_sum preserves P and Q, so
2788 * no need to mark them !uptodate here
2790 set_bit(STRIPE_OP_CHECK
, &s
->ops_request
);
2794 /* we have 2-disk failure */
2795 BUG_ON(s
->failed
!= 2);
2797 case check_state_compute_result
:
2798 sh
->check_state
= check_state_idle
;
2800 /* check that a write has not made the stripe insync */
2801 if (test_bit(STRIPE_INSYNC
, &sh
->state
))
2804 /* now write out any block on a failed drive,
2805 * or P or Q if they were recomputed
2807 BUG_ON(s
->uptodate
< disks
- 1); /* We don't need Q to recover */
2808 if (s
->failed
== 2) {
2809 dev
= &sh
->dev
[s
->failed_num
[1]];
2811 set_bit(R5_LOCKED
, &dev
->flags
);
2812 set_bit(R5_Wantwrite
, &dev
->flags
);
2814 if (s
->failed
>= 1) {
2815 dev
= &sh
->dev
[s
->failed_num
[0]];
2817 set_bit(R5_LOCKED
, &dev
->flags
);
2818 set_bit(R5_Wantwrite
, &dev
->flags
);
2820 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2821 dev
= &sh
->dev
[pd_idx
];
2823 set_bit(R5_LOCKED
, &dev
->flags
);
2824 set_bit(R5_Wantwrite
, &dev
->flags
);
2826 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2827 dev
= &sh
->dev
[qd_idx
];
2829 set_bit(R5_LOCKED
, &dev
->flags
);
2830 set_bit(R5_Wantwrite
, &dev
->flags
);
2832 clear_bit(STRIPE_DEGRADED
, &sh
->state
);
2834 set_bit(STRIPE_INSYNC
, &sh
->state
);
2836 case check_state_run
:
2837 case check_state_run_q
:
2838 case check_state_run_pq
:
2839 break; /* we will be called again upon completion */
2840 case check_state_check_result
:
2841 sh
->check_state
= check_state_idle
;
2843 /* handle a successful check operation, if parity is correct
2844 * we are done. Otherwise update the mismatch count and repair
2845 * parity if !MD_RECOVERY_CHECK
2847 if (sh
->ops
.zero_sum_result
== 0) {
2848 /* both parities are correct */
2850 set_bit(STRIPE_INSYNC
, &sh
->state
);
2852 /* in contrast to the raid5 case we can validate
2853 * parity, but still have a failure to write
2856 sh
->check_state
= check_state_compute_result
;
2857 /* Returning at this point means that we may go
2858 * off and bring p and/or q uptodate again so
2859 * we make sure to check zero_sum_result again
2860 * to verify if p or q need writeback
2864 conf
->mddev
->resync_mismatches
+= STRIPE_SECTORS
;
2865 if (test_bit(MD_RECOVERY_CHECK
, &conf
->mddev
->recovery
))
2866 /* don't try to repair!! */
2867 set_bit(STRIPE_INSYNC
, &sh
->state
);
2869 int *target
= &sh
->ops
.target
;
2871 sh
->ops
.target
= -1;
2872 sh
->ops
.target2
= -1;
2873 sh
->check_state
= check_state_compute_run
;
2874 set_bit(STRIPE_COMPUTE_RUN
, &sh
->state
);
2875 set_bit(STRIPE_OP_COMPUTE_BLK
, &s
->ops_request
);
2876 if (sh
->ops
.zero_sum_result
& SUM_CHECK_P_RESULT
) {
2877 set_bit(R5_Wantcompute
,
2878 &sh
->dev
[pd_idx
].flags
);
2880 target
= &sh
->ops
.target2
;
2883 if (sh
->ops
.zero_sum_result
& SUM_CHECK_Q_RESULT
) {
2884 set_bit(R5_Wantcompute
,
2885 &sh
->dev
[qd_idx
].flags
);
2892 case check_state_compute_run
:
2895 printk(KERN_ERR
"%s: unknown check_state: %d sector: %llu\n",
2896 __func__
, sh
->check_state
,
2897 (unsigned long long) sh
->sector
);
2902 static void handle_stripe_expansion(struct r5conf
*conf
, struct stripe_head
*sh
)
2906 /* We have read all the blocks in this stripe and now we need to
2907 * copy some of them into a target stripe for expand.
2909 struct dma_async_tx_descriptor
*tx
= NULL
;
2910 clear_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2911 for (i
= 0; i
< sh
->disks
; i
++)
2912 if (i
!= sh
->pd_idx
&& i
!= sh
->qd_idx
) {
2914 struct stripe_head
*sh2
;
2915 struct async_submit_ctl submit
;
2917 sector_t bn
= compute_blocknr(sh
, i
, 1);
2918 sector_t s
= raid5_compute_sector(conf
, bn
, 0,
2920 sh2
= get_active_stripe(conf
, s
, 0, 1, 1);
2922 /* so far only the early blocks of this stripe
2923 * have been requested. When later blocks
2924 * get requested, we will try again
2927 if (!test_bit(STRIPE_EXPANDING
, &sh2
->state
) ||
2928 test_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
)) {
2929 /* must have already done this block */
2930 release_stripe(sh2
);
2934 /* place all the copies on one channel */
2935 init_async_submit(&submit
, 0, tx
, NULL
, NULL
, NULL
);
2936 tx
= async_memcpy(sh2
->dev
[dd_idx
].page
,
2937 sh
->dev
[i
].page
, 0, 0, STRIPE_SIZE
,
2940 set_bit(R5_Expanded
, &sh2
->dev
[dd_idx
].flags
);
2941 set_bit(R5_UPTODATE
, &sh2
->dev
[dd_idx
].flags
);
2942 for (j
= 0; j
< conf
->raid_disks
; j
++)
2943 if (j
!= sh2
->pd_idx
&&
2945 !test_bit(R5_Expanded
, &sh2
->dev
[j
].flags
))
2947 if (j
== conf
->raid_disks
) {
2948 set_bit(STRIPE_EXPAND_READY
, &sh2
->state
);
2949 set_bit(STRIPE_HANDLE
, &sh2
->state
);
2951 release_stripe(sh2
);
2954 /* done submitting copies, wait for them to complete */
2957 dma_wait_for_async_tx(tx
);
2963 * handle_stripe - do things to a stripe.
2965 * We lock the stripe and then examine the state of various bits
2966 * to see what needs to be done.
2968 * return some read request which now have data
2969 * return some write requests which are safely on disc
2970 * schedule a read on some buffers
2971 * schedule a write of some buffers
2972 * return confirmation of parity correctness
2974 * buffers are taken off read_list or write_list, and bh_cache buffers
2975 * get BH_Lock set before the stripe lock is released.
2979 static void analyse_stripe(struct stripe_head
*sh
, struct stripe_head_state
*s
)
2981 struct r5conf
*conf
= sh
->raid_conf
;
2982 int disks
= sh
->disks
;
2986 memset(s
, 0, sizeof(*s
));
2988 s
->syncing
= test_bit(STRIPE_SYNCING
, &sh
->state
);
2989 s
->expanding
= test_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
2990 s
->expanded
= test_bit(STRIPE_EXPAND_READY
, &sh
->state
);
2991 s
->failed_num
[0] = -1;
2992 s
->failed_num
[1] = -1;
2994 /* Now to look around and see what can be done */
2996 spin_lock_irq(&conf
->device_lock
);
2997 for (i
=disks
; i
--; ) {
2998 struct md_rdev
*rdev
;
3005 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3006 i
, dev
->flags
, dev
->toread
, dev
->towrite
, dev
->written
);
3007 /* maybe we can reply to a read
3009 * new wantfill requests are only permitted while
3010 * ops_complete_biofill is guaranteed to be inactive
3012 if (test_bit(R5_UPTODATE
, &dev
->flags
) && dev
->toread
&&
3013 !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
))
3014 set_bit(R5_Wantfill
, &dev
->flags
);
3016 /* now count some things */
3017 if (test_bit(R5_LOCKED
, &dev
->flags
))
3019 if (test_bit(R5_UPTODATE
, &dev
->flags
))
3021 if (test_bit(R5_Wantcompute
, &dev
->flags
)) {
3023 BUG_ON(s
->compute
> 2);
3026 if (test_bit(R5_Wantfill
, &dev
->flags
))
3028 else if (dev
->toread
)
3032 if (!test_bit(R5_OVERWRITE
, &dev
->flags
))
3037 rdev
= rcu_dereference(conf
->disks
[i
].rdev
);
3039 is_bad
= is_badblock(rdev
, sh
->sector
, STRIPE_SECTORS
,
3040 &first_bad
, &bad_sectors
);
3041 if (s
->blocked_rdev
== NULL
3042 && (test_bit(Blocked
, &rdev
->flags
)
3045 set_bit(BlockedBadBlocks
,
3047 s
->blocked_rdev
= rdev
;
3048 atomic_inc(&rdev
->nr_pending
);
3051 clear_bit(R5_Insync
, &dev
->flags
);
3055 /* also not in-sync */
3056 if (!test_bit(WriteErrorSeen
, &rdev
->flags
)) {
3057 /* treat as in-sync, but with a read error
3058 * which we can now try to correct
3060 set_bit(R5_Insync
, &dev
->flags
);
3061 set_bit(R5_ReadError
, &dev
->flags
);
3063 } else if (test_bit(In_sync
, &rdev
->flags
))
3064 set_bit(R5_Insync
, &dev
->flags
);
3065 else if (!test_bit(Faulty
, &rdev
->flags
)) {
3066 /* in sync if before recovery_offset */
3067 if (sh
->sector
+ STRIPE_SECTORS
<= rdev
->recovery_offset
)
3068 set_bit(R5_Insync
, &dev
->flags
);
3070 if (test_bit(R5_WriteError
, &dev
->flags
)) {
3071 clear_bit(R5_Insync
, &dev
->flags
);
3072 if (!test_bit(Faulty
, &rdev
->flags
)) {
3073 s
->handle_bad_blocks
= 1;
3074 atomic_inc(&rdev
->nr_pending
);
3076 clear_bit(R5_WriteError
, &dev
->flags
);
3078 if (test_bit(R5_MadeGood
, &dev
->flags
)) {
3079 if (!test_bit(Faulty
, &rdev
->flags
)) {
3080 s
->handle_bad_blocks
= 1;
3081 atomic_inc(&rdev
->nr_pending
);
3083 clear_bit(R5_MadeGood
, &dev
->flags
);
3085 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3086 /* The ReadError flag will just be confusing now */
3087 clear_bit(R5_ReadError
, &dev
->flags
);
3088 clear_bit(R5_ReWrite
, &dev
->flags
);
3090 if (test_bit(R5_ReadError
, &dev
->flags
))
3091 clear_bit(R5_Insync
, &dev
->flags
);
3092 if (!test_bit(R5_Insync
, &dev
->flags
)) {
3094 s
->failed_num
[s
->failed
] = i
;
3098 spin_unlock_irq(&conf
->device_lock
);
3102 static void handle_stripe(struct stripe_head
*sh
)
3104 struct stripe_head_state s
;
3105 struct r5conf
*conf
= sh
->raid_conf
;
3108 int disks
= sh
->disks
;
3109 struct r5dev
*pdev
, *qdev
;
3111 clear_bit(STRIPE_HANDLE
, &sh
->state
);
3112 if (test_and_set_bit(STRIPE_ACTIVE
, &sh
->state
)) {
3113 /* already being handled, ensure it gets handled
3114 * again when current action finishes */
3115 set_bit(STRIPE_HANDLE
, &sh
->state
);
3119 if (test_and_clear_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
)) {
3120 set_bit(STRIPE_SYNCING
, &sh
->state
);
3121 clear_bit(STRIPE_INSYNC
, &sh
->state
);
3123 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3125 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3126 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3127 (unsigned long long)sh
->sector
, sh
->state
,
3128 atomic_read(&sh
->count
), sh
->pd_idx
, sh
->qd_idx
,
3129 sh
->check_state
, sh
->reconstruct_state
);
3131 analyse_stripe(sh
, &s
);
3133 if (s
.handle_bad_blocks
) {
3134 set_bit(STRIPE_HANDLE
, &sh
->state
);
3138 if (unlikely(s
.blocked_rdev
)) {
3139 if (s
.syncing
|| s
.expanding
|| s
.expanded
||
3140 s
.to_write
|| s
.written
) {
3141 set_bit(STRIPE_HANDLE
, &sh
->state
);
3144 /* There is nothing for the blocked_rdev to block */
3145 rdev_dec_pending(s
.blocked_rdev
, conf
->mddev
);
3146 s
.blocked_rdev
= NULL
;
3149 if (s
.to_fill
&& !test_bit(STRIPE_BIOFILL_RUN
, &sh
->state
)) {
3150 set_bit(STRIPE_OP_BIOFILL
, &s
.ops_request
);
3151 set_bit(STRIPE_BIOFILL_RUN
, &sh
->state
);
3154 pr_debug("locked=%d uptodate=%d to_read=%d"
3155 " to_write=%d failed=%d failed_num=%d,%d\n",
3156 s
.locked
, s
.uptodate
, s
.to_read
, s
.to_write
, s
.failed
,
3157 s
.failed_num
[0], s
.failed_num
[1]);
3158 /* check if the array has lost more than max_degraded devices and,
3159 * if so, some requests might need to be failed.
3161 if (s
.failed
> conf
->max_degraded
&& s
.to_read
+s
.to_write
+s
.written
)
3162 handle_failed_stripe(conf
, sh
, &s
, disks
, &s
.return_bi
);
3163 if (s
.failed
> conf
->max_degraded
&& s
.syncing
)
3164 handle_failed_sync(conf
, sh
, &s
);
3167 * might be able to return some write requests if the parity blocks
3168 * are safe, or on a failed drive
3170 pdev
= &sh
->dev
[sh
->pd_idx
];
3171 s
.p_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->pd_idx
)
3172 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->pd_idx
);
3173 qdev
= &sh
->dev
[sh
->qd_idx
];
3174 s
.q_failed
= (s
.failed
>= 1 && s
.failed_num
[0] == sh
->qd_idx
)
3175 || (s
.failed
>= 2 && s
.failed_num
[1] == sh
->qd_idx
)
3179 (s
.p_failed
|| ((test_bit(R5_Insync
, &pdev
->flags
)
3180 && !test_bit(R5_LOCKED
, &pdev
->flags
)
3181 && test_bit(R5_UPTODATE
, &pdev
->flags
)))) &&
3182 (s
.q_failed
|| ((test_bit(R5_Insync
, &qdev
->flags
)
3183 && !test_bit(R5_LOCKED
, &qdev
->flags
)
3184 && test_bit(R5_UPTODATE
, &qdev
->flags
)))))
3185 handle_stripe_clean_event(conf
, sh
, disks
, &s
.return_bi
);
3187 /* Now we might consider reading some blocks, either to check/generate
3188 * parity, or to satisfy requests
3189 * or to load a block that is being partially written.
3191 if (s
.to_read
|| s
.non_overwrite
3192 || (conf
->level
== 6 && s
.to_write
&& s
.failed
)
3193 || (s
.syncing
&& (s
.uptodate
+ s
.compute
< disks
)) || s
.expanding
)
3194 handle_stripe_fill(sh
, &s
, disks
);
3196 /* Now we check to see if any write operations have recently
3200 if (sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
)
3202 if (sh
->reconstruct_state
== reconstruct_state_drain_result
||
3203 sh
->reconstruct_state
== reconstruct_state_prexor_drain_result
) {
3204 sh
->reconstruct_state
= reconstruct_state_idle
;
3206 /* All the 'written' buffers and the parity block are ready to
3207 * be written back to disk
3209 BUG_ON(!test_bit(R5_UPTODATE
, &sh
->dev
[sh
->pd_idx
].flags
));
3210 BUG_ON(sh
->qd_idx
>= 0 &&
3211 !test_bit(R5_UPTODATE
, &sh
->dev
[sh
->qd_idx
].flags
));
3212 for (i
= disks
; i
--; ) {
3213 struct r5dev
*dev
= &sh
->dev
[i
];
3214 if (test_bit(R5_LOCKED
, &dev
->flags
) &&
3215 (i
== sh
->pd_idx
|| i
== sh
->qd_idx
||
3217 pr_debug("Writing block %d\n", i
);
3218 set_bit(R5_Wantwrite
, &dev
->flags
);
3221 if (!test_bit(R5_Insync
, &dev
->flags
) ||
3222 ((i
== sh
->pd_idx
|| i
== sh
->qd_idx
) &&
3224 set_bit(STRIPE_INSYNC
, &sh
->state
);
3227 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3228 s
.dec_preread_active
= 1;
3231 /* Now to consider new write requests and what else, if anything
3232 * should be read. We do not handle new writes when:
3233 * 1/ A 'write' operation (copy+xor) is already in flight.
3234 * 2/ A 'check' operation is in flight, as it may clobber the parity
3237 if (s
.to_write
&& !sh
->reconstruct_state
&& !sh
->check_state
)
3238 handle_stripe_dirtying(conf
, sh
, &s
, disks
);
3240 /* maybe we need to check and possibly fix the parity for this stripe
3241 * Any reads will already have been scheduled, so we just see if enough
3242 * data is available. The parity check is held off while parity
3243 * dependent operations are in flight.
3245 if (sh
->check_state
||
3246 (s
.syncing
&& s
.locked
== 0 &&
3247 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
) &&
3248 !test_bit(STRIPE_INSYNC
, &sh
->state
))) {
3249 if (conf
->level
== 6)
3250 handle_parity_checks6(conf
, sh
, &s
, disks
);
3252 handle_parity_checks5(conf
, sh
, &s
, disks
);
3255 if (s
.syncing
&& s
.locked
== 0 && test_bit(STRIPE_INSYNC
, &sh
->state
)) {
3256 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3257 clear_bit(STRIPE_SYNCING
, &sh
->state
);
3260 /* If the failed drives are just a ReadError, then we might need
3261 * to progress the repair/check process
3263 if (s
.failed
<= conf
->max_degraded
&& !conf
->mddev
->ro
)
3264 for (i
= 0; i
< s
.failed
; i
++) {
3265 struct r5dev
*dev
= &sh
->dev
[s
.failed_num
[i
]];
3266 if (test_bit(R5_ReadError
, &dev
->flags
)
3267 && !test_bit(R5_LOCKED
, &dev
->flags
)
3268 && test_bit(R5_UPTODATE
, &dev
->flags
)
3270 if (!test_bit(R5_ReWrite
, &dev
->flags
)) {
3271 set_bit(R5_Wantwrite
, &dev
->flags
);
3272 set_bit(R5_ReWrite
, &dev
->flags
);
3273 set_bit(R5_LOCKED
, &dev
->flags
);
3276 /* let's read it back */
3277 set_bit(R5_Wantread
, &dev
->flags
);
3278 set_bit(R5_LOCKED
, &dev
->flags
);
3285 /* Finish reconstruct operations initiated by the expansion process */
3286 if (sh
->reconstruct_state
== reconstruct_state_result
) {
3287 struct stripe_head
*sh_src
3288 = get_active_stripe(conf
, sh
->sector
, 1, 1, 1);
3289 if (sh_src
&& test_bit(STRIPE_EXPAND_SOURCE
, &sh_src
->state
)) {
3290 /* sh cannot be written until sh_src has been read.
3291 * so arrange for sh to be delayed a little
3293 set_bit(STRIPE_DELAYED
, &sh
->state
);
3294 set_bit(STRIPE_HANDLE
, &sh
->state
);
3295 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
,
3297 atomic_inc(&conf
->preread_active_stripes
);
3298 release_stripe(sh_src
);
3302 release_stripe(sh_src
);
3304 sh
->reconstruct_state
= reconstruct_state_idle
;
3305 clear_bit(STRIPE_EXPANDING
, &sh
->state
);
3306 for (i
= conf
->raid_disks
; i
--; ) {
3307 set_bit(R5_Wantwrite
, &sh
->dev
[i
].flags
);
3308 set_bit(R5_LOCKED
, &sh
->dev
[i
].flags
);
3313 if (s
.expanded
&& test_bit(STRIPE_EXPANDING
, &sh
->state
) &&
3314 !sh
->reconstruct_state
) {
3315 /* Need to write out all blocks after computing parity */
3316 sh
->disks
= conf
->raid_disks
;
3317 stripe_set_idx(sh
->sector
, conf
, 0, sh
);
3318 schedule_reconstruction(sh
, &s
, 1, 1);
3319 } else if (s
.expanded
&& !sh
->reconstruct_state
&& s
.locked
== 0) {
3320 clear_bit(STRIPE_EXPAND_READY
, &sh
->state
);
3321 atomic_dec(&conf
->reshape_stripes
);
3322 wake_up(&conf
->wait_for_overlap
);
3323 md_done_sync(conf
->mddev
, STRIPE_SECTORS
, 1);
3326 if (s
.expanding
&& s
.locked
== 0 &&
3327 !test_bit(STRIPE_COMPUTE_RUN
, &sh
->state
))
3328 handle_stripe_expansion(conf
, sh
);
3331 /* wait for this device to become unblocked */
3332 if (conf
->mddev
->external
&& unlikely(s
.blocked_rdev
))
3333 md_wait_for_blocked_rdev(s
.blocked_rdev
, conf
->mddev
);
3335 if (s
.handle_bad_blocks
)
3336 for (i
= disks
; i
--; ) {
3337 struct md_rdev
*rdev
;
3338 struct r5dev
*dev
= &sh
->dev
[i
];
3339 if (test_and_clear_bit(R5_WriteError
, &dev
->flags
)) {
3340 /* We own a safe reference to the rdev */
3341 rdev
= conf
->disks
[i
].rdev
;
3342 if (!rdev_set_badblocks(rdev
, sh
->sector
,
3344 md_error(conf
->mddev
, rdev
);
3345 rdev_dec_pending(rdev
, conf
->mddev
);
3347 if (test_and_clear_bit(R5_MadeGood
, &dev
->flags
)) {
3348 rdev
= conf
->disks
[i
].rdev
;
3349 rdev_clear_badblocks(rdev
, sh
->sector
,
3351 rdev_dec_pending(rdev
, conf
->mddev
);
3356 raid_run_ops(sh
, s
.ops_request
);
3360 if (s
.dec_preread_active
) {
3361 /* We delay this until after ops_run_io so that if make_request
3362 * is waiting on a flush, it won't continue until the writes
3363 * have actually been submitted.
3365 atomic_dec(&conf
->preread_active_stripes
);
3366 if (atomic_read(&conf
->preread_active_stripes
) <
3368 md_wakeup_thread(conf
->mddev
->thread
);
3371 return_io(s
.return_bi
);
3373 clear_bit(STRIPE_ACTIVE
, &sh
->state
);
3376 static void raid5_activate_delayed(struct r5conf
*conf
)
3378 if (atomic_read(&conf
->preread_active_stripes
) < IO_THRESHOLD
) {
3379 while (!list_empty(&conf
->delayed_list
)) {
3380 struct list_head
*l
= conf
->delayed_list
.next
;
3381 struct stripe_head
*sh
;
3382 sh
= list_entry(l
, struct stripe_head
, lru
);
3384 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3385 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3386 atomic_inc(&conf
->preread_active_stripes
);
3387 list_add_tail(&sh
->lru
, &conf
->hold_list
);
3392 static void activate_bit_delay(struct r5conf
*conf
)
3394 /* device_lock is held */
3395 struct list_head head
;
3396 list_add(&head
, &conf
->bitmap_list
);
3397 list_del_init(&conf
->bitmap_list
);
3398 while (!list_empty(&head
)) {
3399 struct stripe_head
*sh
= list_entry(head
.next
, struct stripe_head
, lru
);
3400 list_del_init(&sh
->lru
);
3401 atomic_inc(&sh
->count
);
3402 __release_stripe(conf
, sh
);
3406 int md_raid5_congested(struct mddev
*mddev
, int bits
)
3408 struct r5conf
*conf
= mddev
->private;
3410 /* No difference between reads and writes. Just check
3411 * how busy the stripe_cache is
3414 if (conf
->inactive_blocked
)
3418 if (list_empty_careful(&conf
->inactive_list
))
3423 EXPORT_SYMBOL_GPL(md_raid5_congested
);
3425 static int raid5_congested(void *data
, int bits
)
3427 struct mddev
*mddev
= data
;
3429 return mddev_congested(mddev
, bits
) ||
3430 md_raid5_congested(mddev
, bits
);
3433 /* We want read requests to align with chunks where possible,
3434 * but write requests don't need to.
3436 static int raid5_mergeable_bvec(struct request_queue
*q
,
3437 struct bvec_merge_data
*bvm
,
3438 struct bio_vec
*biovec
)
3440 struct mddev
*mddev
= q
->queuedata
;
3441 sector_t sector
= bvm
->bi_sector
+ get_start_sect(bvm
->bi_bdev
);
3443 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3444 unsigned int bio_sectors
= bvm
->bi_size
>> 9;
3446 if ((bvm
->bi_rw
& 1) == WRITE
)
3447 return biovec
->bv_len
; /* always allow writes to be mergeable */
3449 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3450 chunk_sectors
= mddev
->new_chunk_sectors
;
3451 max
= (chunk_sectors
- ((sector
& (chunk_sectors
- 1)) + bio_sectors
)) << 9;
3452 if (max
< 0) max
= 0;
3453 if (max
<= biovec
->bv_len
&& bio_sectors
== 0)
3454 return biovec
->bv_len
;
3460 static int in_chunk_boundary(struct mddev
*mddev
, struct bio
*bio
)
3462 sector_t sector
= bio
->bi_sector
+ get_start_sect(bio
->bi_bdev
);
3463 unsigned int chunk_sectors
= mddev
->chunk_sectors
;
3464 unsigned int bio_sectors
= bio
->bi_size
>> 9;
3466 if (mddev
->new_chunk_sectors
< mddev
->chunk_sectors
)
3467 chunk_sectors
= mddev
->new_chunk_sectors
;
3468 return chunk_sectors
>=
3469 ((sector
& (chunk_sectors
- 1)) + bio_sectors
);
3473 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3474 * later sampled by raid5d.
3476 static void add_bio_to_retry(struct bio
*bi
,struct r5conf
*conf
)
3478 unsigned long flags
;
3480 spin_lock_irqsave(&conf
->device_lock
, flags
);
3482 bi
->bi_next
= conf
->retry_read_aligned_list
;
3483 conf
->retry_read_aligned_list
= bi
;
3485 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
3486 md_wakeup_thread(conf
->mddev
->thread
);
3490 static struct bio
*remove_bio_from_retry(struct r5conf
*conf
)
3494 bi
= conf
->retry_read_aligned
;
3496 conf
->retry_read_aligned
= NULL
;
3499 bi
= conf
->retry_read_aligned_list
;
3501 conf
->retry_read_aligned_list
= bi
->bi_next
;
3504 * this sets the active strip count to 1 and the processed
3505 * strip count to zero (upper 8 bits)
3507 bi
->bi_phys_segments
= 1; /* biased count of active stripes */
3515 * The "raid5_align_endio" should check if the read succeeded and if it
3516 * did, call bio_endio on the original bio (having bio_put the new bio
3518 * If the read failed..
3520 static void raid5_align_endio(struct bio
*bi
, int error
)
3522 struct bio
* raid_bi
= bi
->bi_private
;
3523 struct mddev
*mddev
;
3524 struct r5conf
*conf
;
3525 int uptodate
= test_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3526 struct md_rdev
*rdev
;
3530 rdev
= (void*)raid_bi
->bi_next
;
3531 raid_bi
->bi_next
= NULL
;
3532 mddev
= rdev
->mddev
;
3533 conf
= mddev
->private;
3535 rdev_dec_pending(rdev
, conf
->mddev
);
3537 if (!error
&& uptodate
) {
3538 bio_endio(raid_bi
, 0);
3539 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
3540 wake_up(&conf
->wait_for_stripe
);
3545 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3547 add_bio_to_retry(raid_bi
, conf
);
3550 static int bio_fits_rdev(struct bio
*bi
)
3552 struct request_queue
*q
= bdev_get_queue(bi
->bi_bdev
);
3554 if ((bi
->bi_size
>>9) > queue_max_sectors(q
))
3556 blk_recount_segments(q
, bi
);
3557 if (bi
->bi_phys_segments
> queue_max_segments(q
))
3560 if (q
->merge_bvec_fn
)
3561 /* it's too hard to apply the merge_bvec_fn at this stage,
3570 static int chunk_aligned_read(struct mddev
*mddev
, struct bio
* raid_bio
)
3572 struct r5conf
*conf
= mddev
->private;
3574 struct bio
* align_bi
;
3575 struct md_rdev
*rdev
;
3577 if (!in_chunk_boundary(mddev
, raid_bio
)) {
3578 pr_debug("chunk_aligned_read : non aligned\n");
3582 * use bio_clone_mddev to make a copy of the bio
3584 align_bi
= bio_clone_mddev(raid_bio
, GFP_NOIO
, mddev
);
3588 * set bi_end_io to a new function, and set bi_private to the
3591 align_bi
->bi_end_io
= raid5_align_endio
;
3592 align_bi
->bi_private
= raid_bio
;
3596 align_bi
->bi_sector
= raid5_compute_sector(conf
, raid_bio
->bi_sector
,
3601 rdev
= rcu_dereference(conf
->disks
[dd_idx
].rdev
);
3602 if (rdev
&& test_bit(In_sync
, &rdev
->flags
)) {
3606 atomic_inc(&rdev
->nr_pending
);
3608 raid_bio
->bi_next
= (void*)rdev
;
3609 align_bi
->bi_bdev
= rdev
->bdev
;
3610 align_bi
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
3611 align_bi
->bi_sector
+= rdev
->data_offset
;
3613 if (!bio_fits_rdev(align_bi
) ||
3614 is_badblock(rdev
, align_bi
->bi_sector
, align_bi
->bi_size
>>9,
3615 &first_bad
, &bad_sectors
)) {
3616 /* too big in some way, or has a known bad block */
3618 rdev_dec_pending(rdev
, mddev
);
3622 spin_lock_irq(&conf
->device_lock
);
3623 wait_event_lock_irq(conf
->wait_for_stripe
,
3625 conf
->device_lock
, /* nothing */);
3626 atomic_inc(&conf
->active_aligned_reads
);
3627 spin_unlock_irq(&conf
->device_lock
);
3629 generic_make_request(align_bi
);
3638 /* __get_priority_stripe - get the next stripe to process
3640 * Full stripe writes are allowed to pass preread active stripes up until
3641 * the bypass_threshold is exceeded. In general the bypass_count
3642 * increments when the handle_list is handled before the hold_list; however, it
3643 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3644 * stripe with in flight i/o. The bypass_count will be reset when the
3645 * head of the hold_list has changed, i.e. the head was promoted to the
3648 static struct stripe_head
*__get_priority_stripe(struct r5conf
*conf
)
3650 struct stripe_head
*sh
;
3652 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3654 list_empty(&conf
->handle_list
) ? "empty" : "busy",
3655 list_empty(&conf
->hold_list
) ? "empty" : "busy",
3656 atomic_read(&conf
->pending_full_writes
), conf
->bypass_count
);
3658 if (!list_empty(&conf
->handle_list
)) {
3659 sh
= list_entry(conf
->handle_list
.next
, typeof(*sh
), lru
);
3661 if (list_empty(&conf
->hold_list
))
3662 conf
->bypass_count
= 0;
3663 else if (!test_bit(STRIPE_IO_STARTED
, &sh
->state
)) {
3664 if (conf
->hold_list
.next
== conf
->last_hold
)
3665 conf
->bypass_count
++;
3667 conf
->last_hold
= conf
->hold_list
.next
;
3668 conf
->bypass_count
-= conf
->bypass_threshold
;
3669 if (conf
->bypass_count
< 0)
3670 conf
->bypass_count
= 0;
3673 } else if (!list_empty(&conf
->hold_list
) &&
3674 ((conf
->bypass_threshold
&&
3675 conf
->bypass_count
> conf
->bypass_threshold
) ||
3676 atomic_read(&conf
->pending_full_writes
) == 0)) {
3677 sh
= list_entry(conf
->hold_list
.next
,
3679 conf
->bypass_count
-= conf
->bypass_threshold
;
3680 if (conf
->bypass_count
< 0)
3681 conf
->bypass_count
= 0;
3685 list_del_init(&sh
->lru
);
3686 atomic_inc(&sh
->count
);
3687 BUG_ON(atomic_read(&sh
->count
) != 1);
3691 static int make_request(struct mddev
*mddev
, struct bio
* bi
)
3693 struct r5conf
*conf
= mddev
->private;
3695 sector_t new_sector
;
3696 sector_t logical_sector
, last_sector
;
3697 struct stripe_head
*sh
;
3698 const int rw
= bio_data_dir(bi
);
3702 if (unlikely(bi
->bi_rw
& REQ_FLUSH
)) {
3703 md_flush_request(mddev
, bi
);
3707 md_write_start(mddev
, bi
);
3710 mddev
->reshape_position
== MaxSector
&&
3711 chunk_aligned_read(mddev
,bi
))
3714 logical_sector
= bi
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
3715 last_sector
= bi
->bi_sector
+ (bi
->bi_size
>>9);
3717 bi
->bi_phys_segments
= 1; /* over-loaded to count active stripes */
3719 plugged
= mddev_check_plugged(mddev
);
3720 for (;logical_sector
< last_sector
; logical_sector
+= STRIPE_SECTORS
) {
3722 int disks
, data_disks
;
3727 disks
= conf
->raid_disks
;
3728 prepare_to_wait(&conf
->wait_for_overlap
, &w
, TASK_UNINTERRUPTIBLE
);
3729 if (unlikely(conf
->reshape_progress
!= MaxSector
)) {
3730 /* spinlock is needed as reshape_progress may be
3731 * 64bit on a 32bit platform, and so it might be
3732 * possible to see a half-updated value
3733 * Of course reshape_progress could change after
3734 * the lock is dropped, so once we get a reference
3735 * to the stripe that we think it is, we will have
3738 spin_lock_irq(&conf
->device_lock
);
3739 if (mddev
->delta_disks
< 0
3740 ? logical_sector
< conf
->reshape_progress
3741 : logical_sector
>= conf
->reshape_progress
) {
3742 disks
= conf
->previous_raid_disks
;
3745 if (mddev
->delta_disks
< 0
3746 ? logical_sector
< conf
->reshape_safe
3747 : logical_sector
>= conf
->reshape_safe
) {
3748 spin_unlock_irq(&conf
->device_lock
);
3753 spin_unlock_irq(&conf
->device_lock
);
3755 data_disks
= disks
- conf
->max_degraded
;
3757 new_sector
= raid5_compute_sector(conf
, logical_sector
,
3760 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3761 (unsigned long long)new_sector
,
3762 (unsigned long long)logical_sector
);
3764 sh
= get_active_stripe(conf
, new_sector
, previous
,
3765 (bi
->bi_rw
&RWA_MASK
), 0);
3767 if (unlikely(previous
)) {
3768 /* expansion might have moved on while waiting for a
3769 * stripe, so we must do the range check again.
3770 * Expansion could still move past after this
3771 * test, but as we are holding a reference to
3772 * 'sh', we know that if that happens,
3773 * STRIPE_EXPANDING will get set and the expansion
3774 * won't proceed until we finish with the stripe.
3777 spin_lock_irq(&conf
->device_lock
);
3778 if (mddev
->delta_disks
< 0
3779 ? logical_sector
>= conf
->reshape_progress
3780 : logical_sector
< conf
->reshape_progress
)
3781 /* mismatch, need to try again */
3783 spin_unlock_irq(&conf
->device_lock
);
3792 logical_sector
>= mddev
->suspend_lo
&&
3793 logical_sector
< mddev
->suspend_hi
) {
3795 /* As the suspend_* range is controlled by
3796 * userspace, we want an interruptible
3799 flush_signals(current
);
3800 prepare_to_wait(&conf
->wait_for_overlap
,
3801 &w
, TASK_INTERRUPTIBLE
);
3802 if (logical_sector
>= mddev
->suspend_lo
&&
3803 logical_sector
< mddev
->suspend_hi
)
3808 if (test_bit(STRIPE_EXPANDING
, &sh
->state
) ||
3809 !add_stripe_bio(sh
, bi
, dd_idx
, rw
)) {
3810 /* Stripe is busy expanding or
3811 * add failed due to overlap. Flush everything
3814 md_wakeup_thread(mddev
->thread
);
3819 finish_wait(&conf
->wait_for_overlap
, &w
);
3820 set_bit(STRIPE_HANDLE
, &sh
->state
);
3821 clear_bit(STRIPE_DELAYED
, &sh
->state
);
3822 if ((bi
->bi_rw
& REQ_SYNC
) &&
3823 !test_and_set_bit(STRIPE_PREREAD_ACTIVE
, &sh
->state
))
3824 atomic_inc(&conf
->preread_active_stripes
);
3827 /* cannot get stripe for read-ahead, just give-up */
3828 clear_bit(BIO_UPTODATE
, &bi
->bi_flags
);
3829 finish_wait(&conf
->wait_for_overlap
, &w
);
3835 md_wakeup_thread(mddev
->thread
);
3837 spin_lock_irq(&conf
->device_lock
);
3838 remaining
= raid5_dec_bi_phys_segments(bi
);
3839 spin_unlock_irq(&conf
->device_lock
);
3840 if (remaining
== 0) {
3843 md_write_end(mddev
);
3851 static sector_t
raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
);
3853 static sector_t
reshape_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
)
3855 /* reshaping is quite different to recovery/resync so it is
3856 * handled quite separately ... here.
3858 * On each call to sync_request, we gather one chunk worth of
3859 * destination stripes and flag them as expanding.
3860 * Then we find all the source stripes and request reads.
3861 * As the reads complete, handle_stripe will copy the data
3862 * into the destination stripe and release that stripe.
3864 struct r5conf
*conf
= mddev
->private;
3865 struct stripe_head
*sh
;
3866 sector_t first_sector
, last_sector
;
3867 int raid_disks
= conf
->previous_raid_disks
;
3868 int data_disks
= raid_disks
- conf
->max_degraded
;
3869 int new_data_disks
= conf
->raid_disks
- conf
->max_degraded
;
3872 sector_t writepos
, readpos
, safepos
;
3873 sector_t stripe_addr
;
3874 int reshape_sectors
;
3875 struct list_head stripes
;
3877 if (sector_nr
== 0) {
3878 /* If restarting in the middle, skip the initial sectors */
3879 if (mddev
->delta_disks
< 0 &&
3880 conf
->reshape_progress
< raid5_size(mddev
, 0, 0)) {
3881 sector_nr
= raid5_size(mddev
, 0, 0)
3882 - conf
->reshape_progress
;
3883 } else if (mddev
->delta_disks
>= 0 &&
3884 conf
->reshape_progress
> 0)
3885 sector_nr
= conf
->reshape_progress
;
3886 sector_div(sector_nr
, new_data_disks
);
3888 mddev
->curr_resync_completed
= sector_nr
;
3889 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
3895 /* We need to process a full chunk at a time.
3896 * If old and new chunk sizes differ, we need to process the
3899 if (mddev
->new_chunk_sectors
> mddev
->chunk_sectors
)
3900 reshape_sectors
= mddev
->new_chunk_sectors
;
3902 reshape_sectors
= mddev
->chunk_sectors
;
3904 /* we update the metadata when there is more than 3Meg
3905 * in the block range (that is rather arbitrary, should
3906 * probably be time based) or when the data about to be
3907 * copied would over-write the source of the data at
3908 * the front of the range.
3909 * i.e. one new_stripe along from reshape_progress new_maps
3910 * to after where reshape_safe old_maps to
3912 writepos
= conf
->reshape_progress
;
3913 sector_div(writepos
, new_data_disks
);
3914 readpos
= conf
->reshape_progress
;
3915 sector_div(readpos
, data_disks
);
3916 safepos
= conf
->reshape_safe
;
3917 sector_div(safepos
, data_disks
);
3918 if (mddev
->delta_disks
< 0) {
3919 writepos
-= min_t(sector_t
, reshape_sectors
, writepos
);
3920 readpos
+= reshape_sectors
;
3921 safepos
+= reshape_sectors
;
3923 writepos
+= reshape_sectors
;
3924 readpos
-= min_t(sector_t
, reshape_sectors
, readpos
);
3925 safepos
-= min_t(sector_t
, reshape_sectors
, safepos
);
3928 /* 'writepos' is the most advanced device address we might write.
3929 * 'readpos' is the least advanced device address we might read.
3930 * 'safepos' is the least address recorded in the metadata as having
3932 * If 'readpos' is behind 'writepos', then there is no way that we can
3933 * ensure safety in the face of a crash - that must be done by userspace
3934 * making a backup of the data. So in that case there is no particular
3935 * rush to update metadata.
3936 * Otherwise if 'safepos' is behind 'writepos', then we really need to
3937 * update the metadata to advance 'safepos' to match 'readpos' so that
3938 * we can be safe in the event of a crash.
3939 * So we insist on updating metadata if safepos is behind writepos and
3940 * readpos is beyond writepos.
3941 * In any case, update the metadata every 10 seconds.
3942 * Maybe that number should be configurable, but I'm not sure it is
3943 * worth it.... maybe it could be a multiple of safemode_delay???
3945 if ((mddev
->delta_disks
< 0
3946 ? (safepos
> writepos
&& readpos
< writepos
)
3947 : (safepos
< writepos
&& readpos
> writepos
)) ||
3948 time_after(jiffies
, conf
->reshape_checkpoint
+ 10*HZ
)) {
3949 /* Cannot proceed until we've updated the superblock... */
3950 wait_event(conf
->wait_for_overlap
,
3951 atomic_read(&conf
->reshape_stripes
)==0);
3952 mddev
->reshape_position
= conf
->reshape_progress
;
3953 mddev
->curr_resync_completed
= sector_nr
;
3954 conf
->reshape_checkpoint
= jiffies
;
3955 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3956 md_wakeup_thread(mddev
->thread
);
3957 wait_event(mddev
->sb_wait
, mddev
->flags
== 0 ||
3958 kthread_should_stop());
3959 spin_lock_irq(&conf
->device_lock
);
3960 conf
->reshape_safe
= mddev
->reshape_position
;
3961 spin_unlock_irq(&conf
->device_lock
);
3962 wake_up(&conf
->wait_for_overlap
);
3963 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
3966 if (mddev
->delta_disks
< 0) {
3967 BUG_ON(conf
->reshape_progress
== 0);
3968 stripe_addr
= writepos
;
3969 BUG_ON((mddev
->dev_sectors
&
3970 ~((sector_t
)reshape_sectors
- 1))
3971 - reshape_sectors
- stripe_addr
3974 BUG_ON(writepos
!= sector_nr
+ reshape_sectors
);
3975 stripe_addr
= sector_nr
;
3977 INIT_LIST_HEAD(&stripes
);
3978 for (i
= 0; i
< reshape_sectors
; i
+= STRIPE_SECTORS
) {
3980 int skipped_disk
= 0;
3981 sh
= get_active_stripe(conf
, stripe_addr
+i
, 0, 0, 1);
3982 set_bit(STRIPE_EXPANDING
, &sh
->state
);
3983 atomic_inc(&conf
->reshape_stripes
);
3984 /* If any of this stripe is beyond the end of the old
3985 * array, then we need to zero those blocks
3987 for (j
=sh
->disks
; j
--;) {
3989 if (j
== sh
->pd_idx
)
3991 if (conf
->level
== 6 &&
3994 s
= compute_blocknr(sh
, j
, 0);
3995 if (s
< raid5_size(mddev
, 0, 0)) {
3999 memset(page_address(sh
->dev
[j
].page
), 0, STRIPE_SIZE
);
4000 set_bit(R5_Expanded
, &sh
->dev
[j
].flags
);
4001 set_bit(R5_UPTODATE
, &sh
->dev
[j
].flags
);
4003 if (!skipped_disk
) {
4004 set_bit(STRIPE_EXPAND_READY
, &sh
->state
);
4005 set_bit(STRIPE_HANDLE
, &sh
->state
);
4007 list_add(&sh
->lru
, &stripes
);
4009 spin_lock_irq(&conf
->device_lock
);
4010 if (mddev
->delta_disks
< 0)
4011 conf
->reshape_progress
-= reshape_sectors
* new_data_disks
;
4013 conf
->reshape_progress
+= reshape_sectors
* new_data_disks
;
4014 spin_unlock_irq(&conf
->device_lock
);
4015 /* Ok, those stripe are ready. We can start scheduling
4016 * reads on the source stripes.
4017 * The source stripes are determined by mapping the first and last
4018 * block on the destination stripes.
4021 raid5_compute_sector(conf
, stripe_addr
*(new_data_disks
),
4024 raid5_compute_sector(conf
, ((stripe_addr
+reshape_sectors
)
4025 * new_data_disks
- 1),
4027 if (last_sector
>= mddev
->dev_sectors
)
4028 last_sector
= mddev
->dev_sectors
- 1;
4029 while (first_sector
<= last_sector
) {
4030 sh
= get_active_stripe(conf
, first_sector
, 1, 0, 1);
4031 set_bit(STRIPE_EXPAND_SOURCE
, &sh
->state
);
4032 set_bit(STRIPE_HANDLE
, &sh
->state
);
4034 first_sector
+= STRIPE_SECTORS
;
4036 /* Now that the sources are clearly marked, we can release
4037 * the destination stripes
4039 while (!list_empty(&stripes
)) {
4040 sh
= list_entry(stripes
.next
, struct stripe_head
, lru
);
4041 list_del_init(&sh
->lru
);
4044 /* If this takes us to the resync_max point where we have to pause,
4045 * then we need to write out the superblock.
4047 sector_nr
+= reshape_sectors
;
4048 if ((sector_nr
- mddev
->curr_resync_completed
) * 2
4049 >= mddev
->resync_max
- mddev
->curr_resync_completed
) {
4050 /* Cannot proceed until we've updated the superblock... */
4051 wait_event(conf
->wait_for_overlap
,
4052 atomic_read(&conf
->reshape_stripes
) == 0);
4053 mddev
->reshape_position
= conf
->reshape_progress
;
4054 mddev
->curr_resync_completed
= sector_nr
;
4055 conf
->reshape_checkpoint
= jiffies
;
4056 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
4057 md_wakeup_thread(mddev
->thread
);
4058 wait_event(mddev
->sb_wait
,
4059 !test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)
4060 || kthread_should_stop());
4061 spin_lock_irq(&conf
->device_lock
);
4062 conf
->reshape_safe
= mddev
->reshape_position
;
4063 spin_unlock_irq(&conf
->device_lock
);
4064 wake_up(&conf
->wait_for_overlap
);
4065 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
4067 return reshape_sectors
;
4070 /* FIXME go_faster isn't used */
4071 static inline sector_t
sync_request(struct mddev
*mddev
, sector_t sector_nr
, int *skipped
, int go_faster
)
4073 struct r5conf
*conf
= mddev
->private;
4074 struct stripe_head
*sh
;
4075 sector_t max_sector
= mddev
->dev_sectors
;
4076 sector_t sync_blocks
;
4077 int still_degraded
= 0;
4080 if (sector_nr
>= max_sector
) {
4081 /* just being told to finish up .. nothing much to do */
4083 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)) {
4088 if (mddev
->curr_resync
< max_sector
) /* aborted */
4089 bitmap_end_sync(mddev
->bitmap
, mddev
->curr_resync
,
4091 else /* completed sync */
4093 bitmap_close_sync(mddev
->bitmap
);
4098 /* Allow raid5_quiesce to complete */
4099 wait_event(conf
->wait_for_overlap
, conf
->quiesce
!= 2);
4101 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4102 return reshape_request(mddev
, sector_nr
, skipped
);
4104 /* No need to check resync_max as we never do more than one
4105 * stripe, and as resync_max will always be on a chunk boundary,
4106 * if the check in md_do_sync didn't fire, there is no chance
4107 * of overstepping resync_max here
4110 /* if there is too many failed drives and we are trying
4111 * to resync, then assert that we are finished, because there is
4112 * nothing we can do.
4114 if (mddev
->degraded
>= conf
->max_degraded
&&
4115 test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4116 sector_t rv
= mddev
->dev_sectors
- sector_nr
;
4120 if (!bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, 1) &&
4121 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
) &&
4122 !conf
->fullsync
&& sync_blocks
>= STRIPE_SECTORS
) {
4123 /* we can skip this block, and probably more */
4124 sync_blocks
/= STRIPE_SECTORS
;
4126 return sync_blocks
* STRIPE_SECTORS
; /* keep things rounded to whole stripes */
4130 bitmap_cond_end_sync(mddev
->bitmap
, sector_nr
);
4132 sh
= get_active_stripe(conf
, sector_nr
, 0, 1, 0);
4134 sh
= get_active_stripe(conf
, sector_nr
, 0, 0, 0);
4135 /* make sure we don't swamp the stripe cache if someone else
4136 * is trying to get access
4138 schedule_timeout_uninterruptible(1);
4140 /* Need to check if array will still be degraded after recovery/resync
4141 * We don't need to check the 'failed' flag as when that gets set,
4144 for (i
= 0; i
< conf
->raid_disks
; i
++)
4145 if (conf
->disks
[i
].rdev
== NULL
)
4148 bitmap_start_sync(mddev
->bitmap
, sector_nr
, &sync_blocks
, still_degraded
);
4150 set_bit(STRIPE_SYNC_REQUESTED
, &sh
->state
);
4155 return STRIPE_SECTORS
;
4158 static int retry_aligned_read(struct r5conf
*conf
, struct bio
*raid_bio
)
4160 /* We may not be able to submit a whole bio at once as there
4161 * may not be enough stripe_heads available.
4162 * We cannot pre-allocate enough stripe_heads as we may need
4163 * more than exist in the cache (if we allow ever large chunks).
4164 * So we do one stripe head at a time and record in
4165 * ->bi_hw_segments how many have been done.
4167 * We *know* that this entire raid_bio is in one chunk, so
4168 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4170 struct stripe_head
*sh
;
4172 sector_t sector
, logical_sector
, last_sector
;
4177 logical_sector
= raid_bio
->bi_sector
& ~((sector_t
)STRIPE_SECTORS
-1);
4178 sector
= raid5_compute_sector(conf
, logical_sector
,
4180 last_sector
= raid_bio
->bi_sector
+ (raid_bio
->bi_size
>>9);
4182 for (; logical_sector
< last_sector
;
4183 logical_sector
+= STRIPE_SECTORS
,
4184 sector
+= STRIPE_SECTORS
,
4187 if (scnt
< raid5_bi_hw_segments(raid_bio
))
4188 /* already done this stripe */
4191 sh
= get_active_stripe(conf
, sector
, 0, 1, 0);
4194 /* failed to get a stripe - must wait */
4195 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4196 conf
->retry_read_aligned
= raid_bio
;
4200 set_bit(R5_ReadError
, &sh
->dev
[dd_idx
].flags
);
4201 if (!add_stripe_bio(sh
, raid_bio
, dd_idx
, 0)) {
4203 raid5_set_bi_hw_segments(raid_bio
, scnt
);
4204 conf
->retry_read_aligned
= raid_bio
;
4212 spin_lock_irq(&conf
->device_lock
);
4213 remaining
= raid5_dec_bi_phys_segments(raid_bio
);
4214 spin_unlock_irq(&conf
->device_lock
);
4216 bio_endio(raid_bio
, 0);
4217 if (atomic_dec_and_test(&conf
->active_aligned_reads
))
4218 wake_up(&conf
->wait_for_stripe
);
4224 * This is our raid5 kernel thread.
4226 * We scan the hash table for stripes which can be handled now.
4227 * During the scan, completed stripes are saved for us by the interrupt
4228 * handler, so that they will not have to wait for our next wakeup.
4230 static void raid5d(struct mddev
*mddev
)
4232 struct stripe_head
*sh
;
4233 struct r5conf
*conf
= mddev
->private;
4235 struct blk_plug plug
;
4237 pr_debug("+++ raid5d active\n");
4239 md_check_recovery(mddev
);
4241 blk_start_plug(&plug
);
4243 spin_lock_irq(&conf
->device_lock
);
4247 if (atomic_read(&mddev
->plug_cnt
) == 0 &&
4248 !list_empty(&conf
->bitmap_list
)) {
4249 /* Now is a good time to flush some bitmap updates */
4251 spin_unlock_irq(&conf
->device_lock
);
4252 bitmap_unplug(mddev
->bitmap
);
4253 spin_lock_irq(&conf
->device_lock
);
4254 conf
->seq_write
= conf
->seq_flush
;
4255 activate_bit_delay(conf
);
4257 if (atomic_read(&mddev
->plug_cnt
) == 0)
4258 raid5_activate_delayed(conf
);
4260 while ((bio
= remove_bio_from_retry(conf
))) {
4262 spin_unlock_irq(&conf
->device_lock
);
4263 ok
= retry_aligned_read(conf
, bio
);
4264 spin_lock_irq(&conf
->device_lock
);
4270 sh
= __get_priority_stripe(conf
);
4274 spin_unlock_irq(&conf
->device_lock
);
4281 if (mddev
->flags
& ~(1<<MD_CHANGE_PENDING
))
4282 md_check_recovery(mddev
);
4284 spin_lock_irq(&conf
->device_lock
);
4286 pr_debug("%d stripes handled\n", handled
);
4288 spin_unlock_irq(&conf
->device_lock
);
4290 async_tx_issue_pending_all();
4291 blk_finish_plug(&plug
);
4293 pr_debug("--- raid5d inactive\n");
4297 raid5_show_stripe_cache_size(struct mddev
*mddev
, char *page
)
4299 struct r5conf
*conf
= mddev
->private;
4301 return sprintf(page
, "%d\n", conf
->max_nr_stripes
);
4307 raid5_set_cache_size(struct mddev
*mddev
, int size
)
4309 struct r5conf
*conf
= mddev
->private;
4312 if (size
<= 16 || size
> 32768)
4314 while (size
< conf
->max_nr_stripes
) {
4315 if (drop_one_stripe(conf
))
4316 conf
->max_nr_stripes
--;
4320 err
= md_allow_write(mddev
);
4323 while (size
> conf
->max_nr_stripes
) {
4324 if (grow_one_stripe(conf
))
4325 conf
->max_nr_stripes
++;
4330 EXPORT_SYMBOL(raid5_set_cache_size
);
4333 raid5_store_stripe_cache_size(struct mddev
*mddev
, const char *page
, size_t len
)
4335 struct r5conf
*conf
= mddev
->private;
4339 if (len
>= PAGE_SIZE
)
4344 if (strict_strtoul(page
, 10, &new))
4346 err
= raid5_set_cache_size(mddev
, new);
4352 static struct md_sysfs_entry
4353 raid5_stripecache_size
= __ATTR(stripe_cache_size
, S_IRUGO
| S_IWUSR
,
4354 raid5_show_stripe_cache_size
,
4355 raid5_store_stripe_cache_size
);
4358 raid5_show_preread_threshold(struct mddev
*mddev
, char *page
)
4360 struct r5conf
*conf
= mddev
->private;
4362 return sprintf(page
, "%d\n", conf
->bypass_threshold
);
4368 raid5_store_preread_threshold(struct mddev
*mddev
, const char *page
, size_t len
)
4370 struct r5conf
*conf
= mddev
->private;
4372 if (len
>= PAGE_SIZE
)
4377 if (strict_strtoul(page
, 10, &new))
4379 if (new > conf
->max_nr_stripes
)
4381 conf
->bypass_threshold
= new;
4385 static struct md_sysfs_entry
4386 raid5_preread_bypass_threshold
= __ATTR(preread_bypass_threshold
,
4388 raid5_show_preread_threshold
,
4389 raid5_store_preread_threshold
);
4392 stripe_cache_active_show(struct mddev
*mddev
, char *page
)
4394 struct r5conf
*conf
= mddev
->private;
4396 return sprintf(page
, "%d\n", atomic_read(&conf
->active_stripes
));
4401 static struct md_sysfs_entry
4402 raid5_stripecache_active
= __ATTR_RO(stripe_cache_active
);
4404 static struct attribute
*raid5_attrs
[] = {
4405 &raid5_stripecache_size
.attr
,
4406 &raid5_stripecache_active
.attr
,
4407 &raid5_preread_bypass_threshold
.attr
,
4410 static struct attribute_group raid5_attrs_group
= {
4412 .attrs
= raid5_attrs
,
4416 raid5_size(struct mddev
*mddev
, sector_t sectors
, int raid_disks
)
4418 struct r5conf
*conf
= mddev
->private;
4421 sectors
= mddev
->dev_sectors
;
4423 /* size is defined by the smallest of previous and new size */
4424 raid_disks
= min(conf
->raid_disks
, conf
->previous_raid_disks
);
4426 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
4427 sectors
&= ~((sector_t
)mddev
->new_chunk_sectors
- 1);
4428 return sectors
* (raid_disks
- conf
->max_degraded
);
4431 static void raid5_free_percpu(struct r5conf
*conf
)
4433 struct raid5_percpu
*percpu
;
4440 for_each_possible_cpu(cpu
) {
4441 percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4442 safe_put_page(percpu
->spare_page
);
4443 kfree(percpu
->scribble
);
4445 #ifdef CONFIG_HOTPLUG_CPU
4446 unregister_cpu_notifier(&conf
->cpu_notify
);
4450 free_percpu(conf
->percpu
);
4453 static void free_conf(struct r5conf
*conf
)
4455 shrink_stripes(conf
);
4456 raid5_free_percpu(conf
);
4458 kfree(conf
->stripe_hashtbl
);
4462 #ifdef CONFIG_HOTPLUG_CPU
4463 static int raid456_cpu_notify(struct notifier_block
*nfb
, unsigned long action
,
4466 struct r5conf
*conf
= container_of(nfb
, struct r5conf
, cpu_notify
);
4467 long cpu
= (long)hcpu
;
4468 struct raid5_percpu
*percpu
= per_cpu_ptr(conf
->percpu
, cpu
);
4471 case CPU_UP_PREPARE
:
4472 case CPU_UP_PREPARE_FROZEN
:
4473 if (conf
->level
== 6 && !percpu
->spare_page
)
4474 percpu
->spare_page
= alloc_page(GFP_KERNEL
);
4475 if (!percpu
->scribble
)
4476 percpu
->scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4478 if (!percpu
->scribble
||
4479 (conf
->level
== 6 && !percpu
->spare_page
)) {
4480 safe_put_page(percpu
->spare_page
);
4481 kfree(percpu
->scribble
);
4482 pr_err("%s: failed memory allocation for cpu%ld\n",
4484 return notifier_from_errno(-ENOMEM
);
4488 case CPU_DEAD_FROZEN
:
4489 safe_put_page(percpu
->spare_page
);
4490 kfree(percpu
->scribble
);
4491 percpu
->spare_page
= NULL
;
4492 percpu
->scribble
= NULL
;
4501 static int raid5_alloc_percpu(struct r5conf
*conf
)
4504 struct page
*spare_page
;
4505 struct raid5_percpu __percpu
*allcpus
;
4509 allcpus
= alloc_percpu(struct raid5_percpu
);
4512 conf
->percpu
= allcpus
;
4516 for_each_present_cpu(cpu
) {
4517 if (conf
->level
== 6) {
4518 spare_page
= alloc_page(GFP_KERNEL
);
4523 per_cpu_ptr(conf
->percpu
, cpu
)->spare_page
= spare_page
;
4525 scribble
= kmalloc(conf
->scribble_len
, GFP_KERNEL
);
4530 per_cpu_ptr(conf
->percpu
, cpu
)->scribble
= scribble
;
4532 #ifdef CONFIG_HOTPLUG_CPU
4533 conf
->cpu_notify
.notifier_call
= raid456_cpu_notify
;
4534 conf
->cpu_notify
.priority
= 0;
4536 err
= register_cpu_notifier(&conf
->cpu_notify
);
4543 static struct r5conf
*setup_conf(struct mddev
*mddev
)
4545 struct r5conf
*conf
;
4546 int raid_disk
, memory
, max_disks
;
4547 struct md_rdev
*rdev
;
4548 struct disk_info
*disk
;
4550 if (mddev
->new_level
!= 5
4551 && mddev
->new_level
!= 4
4552 && mddev
->new_level
!= 6) {
4553 printk(KERN_ERR
"md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4554 mdname(mddev
), mddev
->new_level
);
4555 return ERR_PTR(-EIO
);
4557 if ((mddev
->new_level
== 5
4558 && !algorithm_valid_raid5(mddev
->new_layout
)) ||
4559 (mddev
->new_level
== 6
4560 && !algorithm_valid_raid6(mddev
->new_layout
))) {
4561 printk(KERN_ERR
"md/raid:%s: layout %d not supported\n",
4562 mdname(mddev
), mddev
->new_layout
);
4563 return ERR_PTR(-EIO
);
4565 if (mddev
->new_level
== 6 && mddev
->raid_disks
< 4) {
4566 printk(KERN_ERR
"md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4567 mdname(mddev
), mddev
->raid_disks
);
4568 return ERR_PTR(-EINVAL
);
4571 if (!mddev
->new_chunk_sectors
||
4572 (mddev
->new_chunk_sectors
<< 9) % PAGE_SIZE
||
4573 !is_power_of_2(mddev
->new_chunk_sectors
)) {
4574 printk(KERN_ERR
"md/raid:%s: invalid chunk size %d\n",
4575 mdname(mddev
), mddev
->new_chunk_sectors
<< 9);
4576 return ERR_PTR(-EINVAL
);
4579 conf
= kzalloc(sizeof(struct r5conf
), GFP_KERNEL
);
4582 spin_lock_init(&conf
->device_lock
);
4583 init_waitqueue_head(&conf
->wait_for_stripe
);
4584 init_waitqueue_head(&conf
->wait_for_overlap
);
4585 INIT_LIST_HEAD(&conf
->handle_list
);
4586 INIT_LIST_HEAD(&conf
->hold_list
);
4587 INIT_LIST_HEAD(&conf
->delayed_list
);
4588 INIT_LIST_HEAD(&conf
->bitmap_list
);
4589 INIT_LIST_HEAD(&conf
->inactive_list
);
4590 atomic_set(&conf
->active_stripes
, 0);
4591 atomic_set(&conf
->preread_active_stripes
, 0);
4592 atomic_set(&conf
->active_aligned_reads
, 0);
4593 conf
->bypass_threshold
= BYPASS_THRESHOLD
;
4594 conf
->recovery_disabled
= mddev
->recovery_disabled
- 1;
4596 conf
->raid_disks
= mddev
->raid_disks
;
4597 if (mddev
->reshape_position
== MaxSector
)
4598 conf
->previous_raid_disks
= mddev
->raid_disks
;
4600 conf
->previous_raid_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4601 max_disks
= max(conf
->raid_disks
, conf
->previous_raid_disks
);
4602 conf
->scribble_len
= scribble_len(max_disks
);
4604 conf
->disks
= kzalloc(max_disks
* sizeof(struct disk_info
),
4609 conf
->mddev
= mddev
;
4611 if ((conf
->stripe_hashtbl
= kzalloc(PAGE_SIZE
, GFP_KERNEL
)) == NULL
)
4614 conf
->level
= mddev
->new_level
;
4615 if (raid5_alloc_percpu(conf
) != 0)
4618 pr_debug("raid456: run(%s) called.\n", mdname(mddev
));
4620 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4621 raid_disk
= rdev
->raid_disk
;
4622 if (raid_disk
>= max_disks
4625 disk
= conf
->disks
+ raid_disk
;
4629 if (test_bit(In_sync
, &rdev
->flags
)) {
4630 char b
[BDEVNAME_SIZE
];
4631 printk(KERN_INFO
"md/raid:%s: device %s operational as raid"
4633 mdname(mddev
), bdevname(rdev
->bdev
, b
), raid_disk
);
4634 } else if (rdev
->saved_raid_disk
!= raid_disk
)
4635 /* Cannot rely on bitmap to complete recovery */
4639 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
4640 conf
->level
= mddev
->new_level
;
4641 if (conf
->level
== 6)
4642 conf
->max_degraded
= 2;
4644 conf
->max_degraded
= 1;
4645 conf
->algorithm
= mddev
->new_layout
;
4646 conf
->max_nr_stripes
= NR_STRIPES
;
4647 conf
->reshape_progress
= mddev
->reshape_position
;
4648 if (conf
->reshape_progress
!= MaxSector
) {
4649 conf
->prev_chunk_sectors
= mddev
->chunk_sectors
;
4650 conf
->prev_algo
= mddev
->layout
;
4653 memory
= conf
->max_nr_stripes
* (sizeof(struct stripe_head
) +
4654 max_disks
* ((sizeof(struct bio
) + PAGE_SIZE
))) / 1024;
4655 if (grow_stripes(conf
, conf
->max_nr_stripes
)) {
4657 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4658 mdname(mddev
), memory
);
4661 printk(KERN_INFO
"md/raid:%s: allocated %dkB\n",
4662 mdname(mddev
), memory
);
4664 conf
->thread
= md_register_thread(raid5d
, mddev
, NULL
);
4665 if (!conf
->thread
) {
4667 "md/raid:%s: couldn't allocate thread.\n",
4677 return ERR_PTR(-EIO
);
4679 return ERR_PTR(-ENOMEM
);
4683 static int only_parity(int raid_disk
, int algo
, int raid_disks
, int max_degraded
)
4686 case ALGORITHM_PARITY_0
:
4687 if (raid_disk
< max_degraded
)
4690 case ALGORITHM_PARITY_N
:
4691 if (raid_disk
>= raid_disks
- max_degraded
)
4694 case ALGORITHM_PARITY_0_6
:
4695 if (raid_disk
== 0 ||
4696 raid_disk
== raid_disks
- 1)
4699 case ALGORITHM_LEFT_ASYMMETRIC_6
:
4700 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
4701 case ALGORITHM_LEFT_SYMMETRIC_6
:
4702 case ALGORITHM_RIGHT_SYMMETRIC_6
:
4703 if (raid_disk
== raid_disks
- 1)
4709 static int run(struct mddev
*mddev
)
4711 struct r5conf
*conf
;
4712 int working_disks
= 0;
4713 int dirty_parity_disks
= 0;
4714 struct md_rdev
*rdev
;
4715 sector_t reshape_offset
= 0;
4717 if (mddev
->recovery_cp
!= MaxSector
)
4718 printk(KERN_NOTICE
"md/raid:%s: not clean"
4719 " -- starting background reconstruction\n",
4721 if (mddev
->reshape_position
!= MaxSector
) {
4722 /* Check that we can continue the reshape.
4723 * Currently only disks can change, it must
4724 * increase, and we must be past the point where
4725 * a stripe over-writes itself
4727 sector_t here_new
, here_old
;
4729 int max_degraded
= (mddev
->level
== 6 ? 2 : 1);
4731 if (mddev
->new_level
!= mddev
->level
) {
4732 printk(KERN_ERR
"md/raid:%s: unsupported reshape "
4733 "required - aborting.\n",
4737 old_disks
= mddev
->raid_disks
- mddev
->delta_disks
;
4738 /* reshape_position must be on a new-stripe boundary, and one
4739 * further up in new geometry must map after here in old
4742 here_new
= mddev
->reshape_position
;
4743 if (sector_div(here_new
, mddev
->new_chunk_sectors
*
4744 (mddev
->raid_disks
- max_degraded
))) {
4745 printk(KERN_ERR
"md/raid:%s: reshape_position not "
4746 "on a stripe boundary\n", mdname(mddev
));
4749 reshape_offset
= here_new
* mddev
->new_chunk_sectors
;
4750 /* here_new is the stripe we will write to */
4751 here_old
= mddev
->reshape_position
;
4752 sector_div(here_old
, mddev
->chunk_sectors
*
4753 (old_disks
-max_degraded
));
4754 /* here_old is the first stripe that we might need to read
4756 if (mddev
->delta_disks
== 0) {
4757 /* We cannot be sure it is safe to start an in-place
4758 * reshape. It is only safe if user-space if monitoring
4759 * and taking constant backups.
4760 * mdadm always starts a situation like this in
4761 * readonly mode so it can take control before
4762 * allowing any writes. So just check for that.
4764 if ((here_new
* mddev
->new_chunk_sectors
!=
4765 here_old
* mddev
->chunk_sectors
) ||
4767 printk(KERN_ERR
"md/raid:%s: in-place reshape must be started"
4768 " in read-only mode - aborting\n",
4772 } else if (mddev
->delta_disks
< 0
4773 ? (here_new
* mddev
->new_chunk_sectors
<=
4774 here_old
* mddev
->chunk_sectors
)
4775 : (here_new
* mddev
->new_chunk_sectors
>=
4776 here_old
* mddev
->chunk_sectors
)) {
4777 /* Reading from the same stripe as writing to - bad */
4778 printk(KERN_ERR
"md/raid:%s: reshape_position too early for "
4779 "auto-recovery - aborting.\n",
4783 printk(KERN_INFO
"md/raid:%s: reshape will continue\n",
4785 /* OK, we should be able to continue; */
4787 BUG_ON(mddev
->level
!= mddev
->new_level
);
4788 BUG_ON(mddev
->layout
!= mddev
->new_layout
);
4789 BUG_ON(mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
);
4790 BUG_ON(mddev
->delta_disks
!= 0);
4793 if (mddev
->private == NULL
)
4794 conf
= setup_conf(mddev
);
4796 conf
= mddev
->private;
4799 return PTR_ERR(conf
);
4801 mddev
->thread
= conf
->thread
;
4802 conf
->thread
= NULL
;
4803 mddev
->private = conf
;
4806 * 0 for a fully functional array, 1 or 2 for a degraded array.
4808 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4809 if (rdev
->raid_disk
< 0)
4811 if (test_bit(In_sync
, &rdev
->flags
)) {
4815 /* This disc is not fully in-sync. However if it
4816 * just stored parity (beyond the recovery_offset),
4817 * when we don't need to be concerned about the
4818 * array being dirty.
4819 * When reshape goes 'backwards', we never have
4820 * partially completed devices, so we only need
4821 * to worry about reshape going forwards.
4823 /* Hack because v0.91 doesn't store recovery_offset properly. */
4824 if (mddev
->major_version
== 0 &&
4825 mddev
->minor_version
> 90)
4826 rdev
->recovery_offset
= reshape_offset
;
4828 if (rdev
->recovery_offset
< reshape_offset
) {
4829 /* We need to check old and new layout */
4830 if (!only_parity(rdev
->raid_disk
,
4833 conf
->max_degraded
))
4836 if (!only_parity(rdev
->raid_disk
,
4838 conf
->previous_raid_disks
,
4839 conf
->max_degraded
))
4841 dirty_parity_disks
++;
4844 mddev
->degraded
= (max(conf
->raid_disks
, conf
->previous_raid_disks
)
4847 if (has_failed(conf
)) {
4848 printk(KERN_ERR
"md/raid:%s: not enough operational devices"
4849 " (%d/%d failed)\n",
4850 mdname(mddev
), mddev
->degraded
, conf
->raid_disks
);
4854 /* device size must be a multiple of chunk size */
4855 mddev
->dev_sectors
&= ~(mddev
->chunk_sectors
- 1);
4856 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
4858 if (mddev
->degraded
> dirty_parity_disks
&&
4859 mddev
->recovery_cp
!= MaxSector
) {
4860 if (mddev
->ok_start_degraded
)
4862 "md/raid:%s: starting dirty degraded array"
4863 " - data corruption possible.\n",
4867 "md/raid:%s: cannot start dirty degraded array.\n",
4873 if (mddev
->degraded
== 0)
4874 printk(KERN_INFO
"md/raid:%s: raid level %d active with %d out of %d"
4875 " devices, algorithm %d\n", mdname(mddev
), conf
->level
,
4876 mddev
->raid_disks
-mddev
->degraded
, mddev
->raid_disks
,
4879 printk(KERN_ALERT
"md/raid:%s: raid level %d active with %d"
4880 " out of %d devices, algorithm %d\n",
4881 mdname(mddev
), conf
->level
,
4882 mddev
->raid_disks
- mddev
->degraded
,
4883 mddev
->raid_disks
, mddev
->new_layout
);
4885 print_raid5_conf(conf
);
4887 if (conf
->reshape_progress
!= MaxSector
) {
4888 conf
->reshape_safe
= conf
->reshape_progress
;
4889 atomic_set(&conf
->reshape_stripes
, 0);
4890 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4891 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4892 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
4893 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
4894 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
4899 /* Ok, everything is just fine now */
4900 if (mddev
->to_remove
== &raid5_attrs_group
)
4901 mddev
->to_remove
= NULL
;
4902 else if (mddev
->kobj
.sd
&&
4903 sysfs_create_group(&mddev
->kobj
, &raid5_attrs_group
))
4905 "raid5: failed to create sysfs attributes for %s\n",
4907 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
4911 /* read-ahead size must cover two whole stripes, which
4912 * is 2 * (datadisks) * chunksize where 'n' is the
4913 * number of raid devices
4915 int data_disks
= conf
->previous_raid_disks
- conf
->max_degraded
;
4916 int stripe
= data_disks
*
4917 ((mddev
->chunk_sectors
<< 9) / PAGE_SIZE
);
4918 if (mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
4919 mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
4921 blk_queue_merge_bvec(mddev
->queue
, raid5_mergeable_bvec
);
4923 mddev
->queue
->backing_dev_info
.congested_data
= mddev
;
4924 mddev
->queue
->backing_dev_info
.congested_fn
= raid5_congested
;
4926 chunk_size
= mddev
->chunk_sectors
<< 9;
4927 blk_queue_io_min(mddev
->queue
, chunk_size
);
4928 blk_queue_io_opt(mddev
->queue
, chunk_size
*
4929 (conf
->raid_disks
- conf
->max_degraded
));
4931 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4932 disk_stack_limits(mddev
->gendisk
, rdev
->bdev
,
4933 rdev
->data_offset
<< 9);
4938 md_unregister_thread(&mddev
->thread
);
4939 print_raid5_conf(conf
);
4941 mddev
->private = NULL
;
4942 printk(KERN_ALERT
"md/raid:%s: failed to run raid set.\n", mdname(mddev
));
4946 static int stop(struct mddev
*mddev
)
4948 struct r5conf
*conf
= mddev
->private;
4950 md_unregister_thread(&mddev
->thread
);
4952 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
4954 mddev
->private = NULL
;
4955 mddev
->to_remove
= &raid5_attrs_group
;
4959 static void status(struct seq_file
*seq
, struct mddev
*mddev
)
4961 struct r5conf
*conf
= mddev
->private;
4964 seq_printf(seq
, " level %d, %dk chunk, algorithm %d", mddev
->level
,
4965 mddev
->chunk_sectors
/ 2, mddev
->layout
);
4966 seq_printf (seq
, " [%d/%d] [", conf
->raid_disks
, conf
->raid_disks
- mddev
->degraded
);
4967 for (i
= 0; i
< conf
->raid_disks
; i
++)
4968 seq_printf (seq
, "%s",
4969 conf
->disks
[i
].rdev
&&
4970 test_bit(In_sync
, &conf
->disks
[i
].rdev
->flags
) ? "U" : "_");
4971 seq_printf (seq
, "]");
4974 static void print_raid5_conf (struct r5conf
*conf
)
4977 struct disk_info
*tmp
;
4979 printk(KERN_DEBUG
"RAID conf printout:\n");
4981 printk("(conf==NULL)\n");
4984 printk(KERN_DEBUG
" --- level:%d rd:%d wd:%d\n", conf
->level
,
4986 conf
->raid_disks
- conf
->mddev
->degraded
);
4988 for (i
= 0; i
< conf
->raid_disks
; i
++) {
4989 char b
[BDEVNAME_SIZE
];
4990 tmp
= conf
->disks
+ i
;
4992 printk(KERN_DEBUG
" disk %d, o:%d, dev:%s\n",
4993 i
, !test_bit(Faulty
, &tmp
->rdev
->flags
),
4994 bdevname(tmp
->rdev
->bdev
, b
));
4998 static int raid5_spare_active(struct mddev
*mddev
)
5001 struct r5conf
*conf
= mddev
->private;
5002 struct disk_info
*tmp
;
5004 unsigned long flags
;
5006 for (i
= 0; i
< conf
->raid_disks
; i
++) {
5007 tmp
= conf
->disks
+ i
;
5009 && tmp
->rdev
->recovery_offset
== MaxSector
5010 && !test_bit(Faulty
, &tmp
->rdev
->flags
)
5011 && !test_and_set_bit(In_sync
, &tmp
->rdev
->flags
)) {
5013 sysfs_notify_dirent_safe(tmp
->rdev
->sysfs_state
);
5016 spin_lock_irqsave(&conf
->device_lock
, flags
);
5017 mddev
->degraded
-= count
;
5018 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5019 print_raid5_conf(conf
);
5023 static int raid5_remove_disk(struct mddev
*mddev
, int number
)
5025 struct r5conf
*conf
= mddev
->private;
5027 struct md_rdev
*rdev
;
5028 struct disk_info
*p
= conf
->disks
+ number
;
5030 print_raid5_conf(conf
);
5033 if (number
>= conf
->raid_disks
&&
5034 conf
->reshape_progress
== MaxSector
)
5035 clear_bit(In_sync
, &rdev
->flags
);
5037 if (test_bit(In_sync
, &rdev
->flags
) ||
5038 atomic_read(&rdev
->nr_pending
)) {
5042 /* Only remove non-faulty devices if recovery
5045 if (!test_bit(Faulty
, &rdev
->flags
) &&
5046 mddev
->recovery_disabled
!= conf
->recovery_disabled
&&
5047 !has_failed(conf
) &&
5048 number
< conf
->raid_disks
) {
5054 if (atomic_read(&rdev
->nr_pending
)) {
5055 /* lost the race, try later */
5062 print_raid5_conf(conf
);
5066 static int raid5_add_disk(struct mddev
*mddev
, struct md_rdev
*rdev
)
5068 struct r5conf
*conf
= mddev
->private;
5071 struct disk_info
*p
;
5073 int last
= conf
->raid_disks
- 1;
5075 if (mddev
->recovery_disabled
== conf
->recovery_disabled
)
5078 if (has_failed(conf
))
5079 /* no point adding a device */
5082 if (rdev
->raid_disk
>= 0)
5083 first
= last
= rdev
->raid_disk
;
5086 * find the disk ... but prefer rdev->saved_raid_disk
5089 if (rdev
->saved_raid_disk
>= 0 &&
5090 rdev
->saved_raid_disk
>= first
&&
5091 conf
->disks
[rdev
->saved_raid_disk
].rdev
== NULL
)
5092 disk
= rdev
->saved_raid_disk
;
5095 for ( ; disk
<= last
; disk
++)
5096 if ((p
=conf
->disks
+ disk
)->rdev
== NULL
) {
5097 clear_bit(In_sync
, &rdev
->flags
);
5098 rdev
->raid_disk
= disk
;
5100 if (rdev
->saved_raid_disk
!= disk
)
5102 rcu_assign_pointer(p
->rdev
, rdev
);
5105 print_raid5_conf(conf
);
5109 static int raid5_resize(struct mddev
*mddev
, sector_t sectors
)
5111 /* no resync is happening, and there is enough space
5112 * on all devices, so we can resize.
5113 * We need to make sure resync covers any new space.
5114 * If the array is shrinking we should possibly wait until
5115 * any io in the removed space completes, but it hardly seems
5118 sectors
&= ~((sector_t
)mddev
->chunk_sectors
- 1);
5119 md_set_array_sectors(mddev
, raid5_size(mddev
, sectors
,
5120 mddev
->raid_disks
));
5121 if (mddev
->array_sectors
>
5122 raid5_size(mddev
, sectors
, mddev
->raid_disks
))
5124 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5125 revalidate_disk(mddev
->gendisk
);
5126 if (sectors
> mddev
->dev_sectors
&&
5127 mddev
->recovery_cp
> mddev
->dev_sectors
) {
5128 mddev
->recovery_cp
= mddev
->dev_sectors
;
5129 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5131 mddev
->dev_sectors
= sectors
;
5132 mddev
->resync_max_sectors
= sectors
;
5136 static int check_stripe_cache(struct mddev
*mddev
)
5138 /* Can only proceed if there are plenty of stripe_heads.
5139 * We need a minimum of one full stripe,, and for sensible progress
5140 * it is best to have about 4 times that.
5141 * If we require 4 times, then the default 256 4K stripe_heads will
5142 * allow for chunk sizes up to 256K, which is probably OK.
5143 * If the chunk size is greater, user-space should request more
5144 * stripe_heads first.
5146 struct r5conf
*conf
= mddev
->private;
5147 if (((mddev
->chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5148 > conf
->max_nr_stripes
||
5149 ((mddev
->new_chunk_sectors
<< 9) / STRIPE_SIZE
) * 4
5150 > conf
->max_nr_stripes
) {
5151 printk(KERN_WARNING
"md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5153 ((max(mddev
->chunk_sectors
, mddev
->new_chunk_sectors
) << 9)
5160 static int check_reshape(struct mddev
*mddev
)
5162 struct r5conf
*conf
= mddev
->private;
5164 if (mddev
->delta_disks
== 0 &&
5165 mddev
->new_layout
== mddev
->layout
&&
5166 mddev
->new_chunk_sectors
== mddev
->chunk_sectors
)
5167 return 0; /* nothing to do */
5169 /* Cannot grow a bitmap yet */
5171 if (has_failed(conf
))
5173 if (mddev
->delta_disks
< 0) {
5174 /* We might be able to shrink, but the devices must
5175 * be made bigger first.
5176 * For raid6, 4 is the minimum size.
5177 * Otherwise 2 is the minimum
5180 if (mddev
->level
== 6)
5182 if (mddev
->raid_disks
+ mddev
->delta_disks
< min
)
5186 if (!check_stripe_cache(mddev
))
5189 return resize_stripes(conf
, conf
->raid_disks
+ mddev
->delta_disks
);
5192 static int raid5_start_reshape(struct mddev
*mddev
)
5194 struct r5conf
*conf
= mddev
->private;
5195 struct md_rdev
*rdev
;
5197 unsigned long flags
;
5199 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
5202 if (!check_stripe_cache(mddev
))
5205 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5206 if (!test_bit(In_sync
, &rdev
->flags
)
5207 && !test_bit(Faulty
, &rdev
->flags
))
5210 if (spares
- mddev
->degraded
< mddev
->delta_disks
- conf
->max_degraded
)
5211 /* Not enough devices even to make a degraded array
5216 /* Refuse to reduce size of the array. Any reductions in
5217 * array size must be through explicit setting of array_size
5220 if (raid5_size(mddev
, 0, conf
->raid_disks
+ mddev
->delta_disks
)
5221 < mddev
->array_sectors
) {
5222 printk(KERN_ERR
"md/raid:%s: array size must be reduced "
5223 "before number of disks\n", mdname(mddev
));
5227 atomic_set(&conf
->reshape_stripes
, 0);
5228 spin_lock_irq(&conf
->device_lock
);
5229 conf
->previous_raid_disks
= conf
->raid_disks
;
5230 conf
->raid_disks
+= mddev
->delta_disks
;
5231 conf
->prev_chunk_sectors
= conf
->chunk_sectors
;
5232 conf
->chunk_sectors
= mddev
->new_chunk_sectors
;
5233 conf
->prev_algo
= conf
->algorithm
;
5234 conf
->algorithm
= mddev
->new_layout
;
5235 if (mddev
->delta_disks
< 0)
5236 conf
->reshape_progress
= raid5_size(mddev
, 0, 0);
5238 conf
->reshape_progress
= 0;
5239 conf
->reshape_safe
= conf
->reshape_progress
;
5241 spin_unlock_irq(&conf
->device_lock
);
5243 /* Add some new drives, as many as will fit.
5244 * We know there are enough to make the newly sized array work.
5245 * Don't add devices if we are reducing the number of
5246 * devices in the array. This is because it is not possible
5247 * to correctly record the "partially reconstructed" state of
5248 * such devices during the reshape and confusion could result.
5250 if (mddev
->delta_disks
>= 0) {
5251 int added_devices
= 0;
5252 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5253 if (rdev
->raid_disk
< 0 &&
5254 !test_bit(Faulty
, &rdev
->flags
)) {
5255 if (raid5_add_disk(mddev
, rdev
) == 0) {
5257 >= conf
->previous_raid_disks
) {
5258 set_bit(In_sync
, &rdev
->flags
);
5261 rdev
->recovery_offset
= 0;
5263 if (sysfs_link_rdev(mddev
, rdev
))
5264 /* Failure here is OK */;
5266 } else if (rdev
->raid_disk
>= conf
->previous_raid_disks
5267 && !test_bit(Faulty
, &rdev
->flags
)) {
5268 /* This is a spare that was manually added */
5269 set_bit(In_sync
, &rdev
->flags
);
5273 /* When a reshape changes the number of devices,
5274 * ->degraded is measured against the larger of the
5275 * pre and post number of devices.
5277 spin_lock_irqsave(&conf
->device_lock
, flags
);
5278 mddev
->degraded
+= (conf
->raid_disks
- conf
->previous_raid_disks
)
5280 spin_unlock_irqrestore(&conf
->device_lock
, flags
);
5282 mddev
->raid_disks
= conf
->raid_disks
;
5283 mddev
->reshape_position
= conf
->reshape_progress
;
5284 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5286 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
5287 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
5288 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
5289 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
5290 mddev
->sync_thread
= md_register_thread(md_do_sync
, mddev
,
5292 if (!mddev
->sync_thread
) {
5293 mddev
->recovery
= 0;
5294 spin_lock_irq(&conf
->device_lock
);
5295 mddev
->raid_disks
= conf
->raid_disks
= conf
->previous_raid_disks
;
5296 conf
->reshape_progress
= MaxSector
;
5297 spin_unlock_irq(&conf
->device_lock
);
5300 conf
->reshape_checkpoint
= jiffies
;
5301 md_wakeup_thread(mddev
->sync_thread
);
5302 md_new_event(mddev
);
5306 /* This is called from the reshape thread and should make any
5307 * changes needed in 'conf'
5309 static void end_reshape(struct r5conf
*conf
)
5312 if (!test_bit(MD_RECOVERY_INTR
, &conf
->mddev
->recovery
)) {
5314 spin_lock_irq(&conf
->device_lock
);
5315 conf
->previous_raid_disks
= conf
->raid_disks
;
5316 conf
->reshape_progress
= MaxSector
;
5317 spin_unlock_irq(&conf
->device_lock
);
5318 wake_up(&conf
->wait_for_overlap
);
5320 /* read-ahead size must cover two whole stripes, which is
5321 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5323 if (conf
->mddev
->queue
) {
5324 int data_disks
= conf
->raid_disks
- conf
->max_degraded
;
5325 int stripe
= data_disks
* ((conf
->chunk_sectors
<< 9)
5327 if (conf
->mddev
->queue
->backing_dev_info
.ra_pages
< 2 * stripe
)
5328 conf
->mddev
->queue
->backing_dev_info
.ra_pages
= 2 * stripe
;
5333 /* This is called from the raid5d thread with mddev_lock held.
5334 * It makes config changes to the device.
5336 static void raid5_finish_reshape(struct mddev
*mddev
)
5338 struct r5conf
*conf
= mddev
->private;
5340 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
5342 if (mddev
->delta_disks
> 0) {
5343 md_set_array_sectors(mddev
, raid5_size(mddev
, 0, 0));
5344 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
5345 revalidate_disk(mddev
->gendisk
);
5348 mddev
->degraded
= conf
->raid_disks
;
5349 for (d
= 0; d
< conf
->raid_disks
; d
++)
5350 if (conf
->disks
[d
].rdev
&&
5352 &conf
->disks
[d
].rdev
->flags
))
5354 for (d
= conf
->raid_disks
;
5355 d
< conf
->raid_disks
- mddev
->delta_disks
;
5357 struct md_rdev
*rdev
= conf
->disks
[d
].rdev
;
5358 if (rdev
&& raid5_remove_disk(mddev
, d
) == 0) {
5359 sysfs_unlink_rdev(mddev
, rdev
);
5360 rdev
->raid_disk
= -1;
5364 mddev
->layout
= conf
->algorithm
;
5365 mddev
->chunk_sectors
= conf
->chunk_sectors
;
5366 mddev
->reshape_position
= MaxSector
;
5367 mddev
->delta_disks
= 0;
5371 static void raid5_quiesce(struct mddev
*mddev
, int state
)
5373 struct r5conf
*conf
= mddev
->private;
5376 case 2: /* resume for a suspend */
5377 wake_up(&conf
->wait_for_overlap
);
5380 case 1: /* stop all writes */
5381 spin_lock_irq(&conf
->device_lock
);
5382 /* '2' tells resync/reshape to pause so that all
5383 * active stripes can drain
5386 wait_event_lock_irq(conf
->wait_for_stripe
,
5387 atomic_read(&conf
->active_stripes
) == 0 &&
5388 atomic_read(&conf
->active_aligned_reads
) == 0,
5389 conf
->device_lock
, /* nothing */);
5391 spin_unlock_irq(&conf
->device_lock
);
5392 /* allow reshape to continue */
5393 wake_up(&conf
->wait_for_overlap
);
5396 case 0: /* re-enable writes */
5397 spin_lock_irq(&conf
->device_lock
);
5399 wake_up(&conf
->wait_for_stripe
);
5400 wake_up(&conf
->wait_for_overlap
);
5401 spin_unlock_irq(&conf
->device_lock
);
5407 static void *raid45_takeover_raid0(struct mddev
*mddev
, int level
)
5409 struct r0conf
*raid0_conf
= mddev
->private;
5412 /* for raid0 takeover only one zone is supported */
5413 if (raid0_conf
->nr_strip_zones
> 1) {
5414 printk(KERN_ERR
"md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5416 return ERR_PTR(-EINVAL
);
5419 sectors
= raid0_conf
->strip_zone
[0].zone_end
;
5420 sector_div(sectors
, raid0_conf
->strip_zone
[0].nb_dev
);
5421 mddev
->dev_sectors
= sectors
;
5422 mddev
->new_level
= level
;
5423 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5424 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
5425 mddev
->raid_disks
+= 1;
5426 mddev
->delta_disks
= 1;
5427 /* make sure it will be not marked as dirty */
5428 mddev
->recovery_cp
= MaxSector
;
5430 return setup_conf(mddev
);
5434 static void *raid5_takeover_raid1(struct mddev
*mddev
)
5438 if (mddev
->raid_disks
!= 2 ||
5439 mddev
->degraded
> 1)
5440 return ERR_PTR(-EINVAL
);
5442 /* Should check if there are write-behind devices? */
5444 chunksect
= 64*2; /* 64K by default */
5446 /* The array must be an exact multiple of chunksize */
5447 while (chunksect
&& (mddev
->array_sectors
& (chunksect
-1)))
5450 if ((chunksect
<<9) < STRIPE_SIZE
)
5451 /* array size does not allow a suitable chunk size */
5452 return ERR_PTR(-EINVAL
);
5454 mddev
->new_level
= 5;
5455 mddev
->new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5456 mddev
->new_chunk_sectors
= chunksect
;
5458 return setup_conf(mddev
);
5461 static void *raid5_takeover_raid6(struct mddev
*mddev
)
5465 switch (mddev
->layout
) {
5466 case ALGORITHM_LEFT_ASYMMETRIC_6
:
5467 new_layout
= ALGORITHM_LEFT_ASYMMETRIC
;
5469 case ALGORITHM_RIGHT_ASYMMETRIC_6
:
5470 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC
;
5472 case ALGORITHM_LEFT_SYMMETRIC_6
:
5473 new_layout
= ALGORITHM_LEFT_SYMMETRIC
;
5475 case ALGORITHM_RIGHT_SYMMETRIC_6
:
5476 new_layout
= ALGORITHM_RIGHT_SYMMETRIC
;
5478 case ALGORITHM_PARITY_0_6
:
5479 new_layout
= ALGORITHM_PARITY_0
;
5481 case ALGORITHM_PARITY_N
:
5482 new_layout
= ALGORITHM_PARITY_N
;
5485 return ERR_PTR(-EINVAL
);
5487 mddev
->new_level
= 5;
5488 mddev
->new_layout
= new_layout
;
5489 mddev
->delta_disks
= -1;
5490 mddev
->raid_disks
-= 1;
5491 return setup_conf(mddev
);
5495 static int raid5_check_reshape(struct mddev
*mddev
)
5497 /* For a 2-drive array, the layout and chunk size can be changed
5498 * immediately as not restriping is needed.
5499 * For larger arrays we record the new value - after validation
5500 * to be used by a reshape pass.
5502 struct r5conf
*conf
= mddev
->private;
5503 int new_chunk
= mddev
->new_chunk_sectors
;
5505 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid5(mddev
->new_layout
))
5507 if (new_chunk
> 0) {
5508 if (!is_power_of_2(new_chunk
))
5510 if (new_chunk
< (PAGE_SIZE
>>9))
5512 if (mddev
->array_sectors
& (new_chunk
-1))
5513 /* not factor of array size */
5517 /* They look valid */
5519 if (mddev
->raid_disks
== 2) {
5520 /* can make the change immediately */
5521 if (mddev
->new_layout
>= 0) {
5522 conf
->algorithm
= mddev
->new_layout
;
5523 mddev
->layout
= mddev
->new_layout
;
5525 if (new_chunk
> 0) {
5526 conf
->chunk_sectors
= new_chunk
;
5527 mddev
->chunk_sectors
= new_chunk
;
5529 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5530 md_wakeup_thread(mddev
->thread
);
5532 return check_reshape(mddev
);
5535 static int raid6_check_reshape(struct mddev
*mddev
)
5537 int new_chunk
= mddev
->new_chunk_sectors
;
5539 if (mddev
->new_layout
>= 0 && !algorithm_valid_raid6(mddev
->new_layout
))
5541 if (new_chunk
> 0) {
5542 if (!is_power_of_2(new_chunk
))
5544 if (new_chunk
< (PAGE_SIZE
>> 9))
5546 if (mddev
->array_sectors
& (new_chunk
-1))
5547 /* not factor of array size */
5551 /* They look valid */
5552 return check_reshape(mddev
);
5555 static void *raid5_takeover(struct mddev
*mddev
)
5557 /* raid5 can take over:
5558 * raid0 - if there is only one strip zone - make it a raid4 layout
5559 * raid1 - if there are two drives. We need to know the chunk size
5560 * raid4 - trivial - just use a raid4 layout.
5561 * raid6 - Providing it is a *_6 layout
5563 if (mddev
->level
== 0)
5564 return raid45_takeover_raid0(mddev
, 5);
5565 if (mddev
->level
== 1)
5566 return raid5_takeover_raid1(mddev
);
5567 if (mddev
->level
== 4) {
5568 mddev
->new_layout
= ALGORITHM_PARITY_N
;
5569 mddev
->new_level
= 5;
5570 return setup_conf(mddev
);
5572 if (mddev
->level
== 6)
5573 return raid5_takeover_raid6(mddev
);
5575 return ERR_PTR(-EINVAL
);
5578 static void *raid4_takeover(struct mddev
*mddev
)
5580 /* raid4 can take over:
5581 * raid0 - if there is only one strip zone
5582 * raid5 - if layout is right
5584 if (mddev
->level
== 0)
5585 return raid45_takeover_raid0(mddev
, 4);
5586 if (mddev
->level
== 5 &&
5587 mddev
->layout
== ALGORITHM_PARITY_N
) {
5588 mddev
->new_layout
= 0;
5589 mddev
->new_level
= 4;
5590 return setup_conf(mddev
);
5592 return ERR_PTR(-EINVAL
);
5595 static struct md_personality raid5_personality
;
5597 static void *raid6_takeover(struct mddev
*mddev
)
5599 /* Currently can only take over a raid5. We map the
5600 * personality to an equivalent raid6 personality
5601 * with the Q block at the end.
5605 if (mddev
->pers
!= &raid5_personality
)
5606 return ERR_PTR(-EINVAL
);
5607 if (mddev
->degraded
> 1)
5608 return ERR_PTR(-EINVAL
);
5609 if (mddev
->raid_disks
> 253)
5610 return ERR_PTR(-EINVAL
);
5611 if (mddev
->raid_disks
< 3)
5612 return ERR_PTR(-EINVAL
);
5614 switch (mddev
->layout
) {
5615 case ALGORITHM_LEFT_ASYMMETRIC
:
5616 new_layout
= ALGORITHM_LEFT_ASYMMETRIC_6
;
5618 case ALGORITHM_RIGHT_ASYMMETRIC
:
5619 new_layout
= ALGORITHM_RIGHT_ASYMMETRIC_6
;
5621 case ALGORITHM_LEFT_SYMMETRIC
:
5622 new_layout
= ALGORITHM_LEFT_SYMMETRIC_6
;
5624 case ALGORITHM_RIGHT_SYMMETRIC
:
5625 new_layout
= ALGORITHM_RIGHT_SYMMETRIC_6
;
5627 case ALGORITHM_PARITY_0
:
5628 new_layout
= ALGORITHM_PARITY_0_6
;
5630 case ALGORITHM_PARITY_N
:
5631 new_layout
= ALGORITHM_PARITY_N
;
5634 return ERR_PTR(-EINVAL
);
5636 mddev
->new_level
= 6;
5637 mddev
->new_layout
= new_layout
;
5638 mddev
->delta_disks
= 1;
5639 mddev
->raid_disks
+= 1;
5640 return setup_conf(mddev
);
5644 static struct md_personality raid6_personality
=
5648 .owner
= THIS_MODULE
,
5649 .make_request
= make_request
,
5653 .error_handler
= error
,
5654 .hot_add_disk
= raid5_add_disk
,
5655 .hot_remove_disk
= raid5_remove_disk
,
5656 .spare_active
= raid5_spare_active
,
5657 .sync_request
= sync_request
,
5658 .resize
= raid5_resize
,
5660 .check_reshape
= raid6_check_reshape
,
5661 .start_reshape
= raid5_start_reshape
,
5662 .finish_reshape
= raid5_finish_reshape
,
5663 .quiesce
= raid5_quiesce
,
5664 .takeover
= raid6_takeover
,
5666 static struct md_personality raid5_personality
=
5670 .owner
= THIS_MODULE
,
5671 .make_request
= make_request
,
5675 .error_handler
= error
,
5676 .hot_add_disk
= raid5_add_disk
,
5677 .hot_remove_disk
= raid5_remove_disk
,
5678 .spare_active
= raid5_spare_active
,
5679 .sync_request
= sync_request
,
5680 .resize
= raid5_resize
,
5682 .check_reshape
= raid5_check_reshape
,
5683 .start_reshape
= raid5_start_reshape
,
5684 .finish_reshape
= raid5_finish_reshape
,
5685 .quiesce
= raid5_quiesce
,
5686 .takeover
= raid5_takeover
,
5689 static struct md_personality raid4_personality
=
5693 .owner
= THIS_MODULE
,
5694 .make_request
= make_request
,
5698 .error_handler
= error
,
5699 .hot_add_disk
= raid5_add_disk
,
5700 .hot_remove_disk
= raid5_remove_disk
,
5701 .spare_active
= raid5_spare_active
,
5702 .sync_request
= sync_request
,
5703 .resize
= raid5_resize
,
5705 .check_reshape
= raid5_check_reshape
,
5706 .start_reshape
= raid5_start_reshape
,
5707 .finish_reshape
= raid5_finish_reshape
,
5708 .quiesce
= raid5_quiesce
,
5709 .takeover
= raid4_takeover
,
5712 static int __init
raid5_init(void)
5714 register_md_personality(&raid6_personality
);
5715 register_md_personality(&raid5_personality
);
5716 register_md_personality(&raid4_personality
);
5720 static void raid5_exit(void)
5722 unregister_md_personality(&raid6_personality
);
5723 unregister_md_personality(&raid5_personality
);
5724 unregister_md_personality(&raid4_personality
);
5727 module_init(raid5_init
);
5728 module_exit(raid5_exit
);
5729 MODULE_LICENSE("GPL");
5730 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5731 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5732 MODULE_ALIAS("md-raid5");
5733 MODULE_ALIAS("md-raid4");
5734 MODULE_ALIAS("md-level-5");
5735 MODULE_ALIAS("md-level-4");
5736 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5737 MODULE_ALIAS("md-raid6");
5738 MODULE_ALIAS("md-level-6");
5740 /* This used to be two separate modules, they were: */
5741 MODULE_ALIAS("raid5");
5742 MODULE_ALIAS("raid6");