2 * Linux-DVB Driver for DiBcom's DiB8000 chip (ISDB-T).
4 * Copyright (C) 2009 DiBcom (http://www.dibcom.fr/)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation, version 2.
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/i2c.h>
15 #include "dvb_frontend.h"
24 #define FE_CALLBACK_TIME_NEVER 0xffffffff
25 #define MAX_NUMBER_OF_FRONTENDS 6
28 module_param(debug
, int, 0644);
29 MODULE_PARM_DESC(debug
, "turn on debugging (default: 0)");
31 #define dprintk(args...) do { if (debug) { printk(KERN_DEBUG "DiB8000: "); printk(args); printk("\n"); } } while (0)
33 #define FE_STATUS_TUNE_FAILED 0
36 struct i2c_adapter
*adap
;
42 struct dib8000_state
{
43 struct dib8000_config cfg
;
45 struct i2c_device i2c
;
47 struct dibx000_i2c_master i2c_master
;
52 u32 current_bandwidth
;
53 struct dibx000_agc_config
*current_agc
;
62 u8 differential_constellation
;
65 s16 ber_monitored_layer
;
71 enum frontend_tune_state tune_state
;
74 struct dvb_frontend
*fe
[MAX_NUMBER_OF_FRONTENDS
];
76 /* for the I2C transfer */
77 struct i2c_msg msg
[2];
78 u8 i2c_write_buffer
[4];
79 u8 i2c_read_buffer
[2];
82 enum dib8000_power_mode
{
83 DIB8000M_POWER_ALL
= 0,
84 DIB8000M_POWER_INTERFACE_ONLY
,
87 static u16
dib8000_i2c_read16(struct i2c_device
*i2c
, u16 reg
)
89 struct i2c_msg msg
[2] = {
90 {.addr
= i2c
->addr
>> 1, .flags
= 0,
91 .buf
= i2c
->i2c_write_buffer
, .len
= 2},
92 {.addr
= i2c
->addr
>> 1, .flags
= I2C_M_RD
,
93 .buf
= i2c
->i2c_read_buffer
, .len
= 2},
96 msg
[0].buf
[0] = reg
>> 8;
97 msg
[0].buf
[1] = reg
& 0xff;
99 if (i2c_transfer(i2c
->adap
, msg
, 2) != 2)
100 dprintk("i2c read error on %d", reg
);
102 return (msg
[1].buf
[0] << 8) | msg
[1].buf
[1];
105 static u16
dib8000_read_word(struct dib8000_state
*state
, u16 reg
)
107 state
->i2c_write_buffer
[0] = reg
>> 8;
108 state
->i2c_write_buffer
[1] = reg
& 0xff;
110 memset(state
->msg
, 0, 2 * sizeof(struct i2c_msg
));
111 state
->msg
[0].addr
= state
->i2c
.addr
>> 1;
112 state
->msg
[0].flags
= 0;
113 state
->msg
[0].buf
= state
->i2c_write_buffer
;
114 state
->msg
[0].len
= 2;
115 state
->msg
[1].addr
= state
->i2c
.addr
>> 1;
116 state
->msg
[1].flags
= I2C_M_RD
;
117 state
->msg
[1].buf
= state
->i2c_read_buffer
;
118 state
->msg
[1].len
= 2;
120 if (i2c_transfer(state
->i2c
.adap
, state
->msg
, 2) != 2)
121 dprintk("i2c read error on %d", reg
);
123 return (state
->i2c_read_buffer
[0] << 8) | state
->i2c_read_buffer
[1];
126 static u32
dib8000_read32(struct dib8000_state
*state
, u16 reg
)
130 rw
[0] = dib8000_read_word(state
, reg
+ 0);
131 rw
[1] = dib8000_read_word(state
, reg
+ 1);
133 return ((rw
[0] << 16) | (rw
[1]));
136 static int dib8000_i2c_write16(struct i2c_device
*i2c
, u16 reg
, u16 val
)
138 struct i2c_msg msg
= {.addr
= i2c
->addr
>> 1, .flags
= 0,
139 .buf
= i2c
->i2c_write_buffer
, .len
= 4};
142 msg
.buf
[0] = (reg
>> 8) & 0xff;
143 msg
.buf
[1] = reg
& 0xff;
144 msg
.buf
[2] = (val
>> 8) & 0xff;
145 msg
.buf
[3] = val
& 0xff;
147 ret
= i2c_transfer(i2c
->adap
, &msg
, 1) != 1 ? -EREMOTEIO
: 0;
152 static int dib8000_write_word(struct dib8000_state
*state
, u16 reg
, u16 val
)
154 state
->i2c_write_buffer
[0] = (reg
>> 8) & 0xff;
155 state
->i2c_write_buffer
[1] = reg
& 0xff;
156 state
->i2c_write_buffer
[2] = (val
>> 8) & 0xff;
157 state
->i2c_write_buffer
[3] = val
& 0xff;
159 memset(&state
->msg
[0], 0, sizeof(struct i2c_msg
));
160 state
->msg
[0].addr
= state
->i2c
.addr
>> 1;
161 state
->msg
[0].flags
= 0;
162 state
->msg
[0].buf
= state
->i2c_write_buffer
;
163 state
->msg
[0].len
= 4;
165 return i2c_transfer(state
->i2c
.adap
, state
->msg
, 1) != 1 ? -EREMOTEIO
: 0;
168 static const s16 coeff_2k_sb_1seg_dqpsk
[8] = {
169 (769 << 5) | 0x0a, (745 << 5) | 0x03, (595 << 5) | 0x0d, (769 << 5) | 0x0a, (920 << 5) | 0x09, (784 << 5) | 0x02, (519 << 5) | 0x0c,
173 static const s16 coeff_2k_sb_1seg
[8] = {
174 (692 << 5) | 0x0b, (683 << 5) | 0x01, (519 << 5) | 0x09, (692 << 5) | 0x0b, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f, 0 | 0x1f
177 static const s16 coeff_2k_sb_3seg_0dqpsk_1dqpsk
[8] = {
178 (832 << 5) | 0x10, (912 << 5) | 0x05, (900 << 5) | 0x12, (832 << 5) | 0x10, (-931 << 5) | 0x0f, (912 << 5) | 0x04, (807 << 5) | 0x11,
182 static const s16 coeff_2k_sb_3seg_0dqpsk
[8] = {
183 (622 << 5) | 0x0c, (941 << 5) | 0x04, (796 << 5) | 0x10, (622 << 5) | 0x0c, (982 << 5) | 0x0c, (519 << 5) | 0x02, (572 << 5) | 0x0e,
187 static const s16 coeff_2k_sb_3seg_1dqpsk
[8] = {
188 (699 << 5) | 0x14, (607 << 5) | 0x04, (944 << 5) | 0x13, (699 << 5) | 0x14, (-720 << 5) | 0x0d, (640 << 5) | 0x03, (866 << 5) | 0x12,
192 static const s16 coeff_2k_sb_3seg
[8] = {
193 (664 << 5) | 0x0c, (925 << 5) | 0x03, (937 << 5) | 0x10, (664 << 5) | 0x0c, (-610 << 5) | 0x0a, (697 << 5) | 0x01, (836 << 5) | 0x0e,
197 static const s16 coeff_4k_sb_1seg_dqpsk
[8] = {
198 (-955 << 5) | 0x0e, (687 << 5) | 0x04, (818 << 5) | 0x10, (-955 << 5) | 0x0e, (-922 << 5) | 0x0d, (750 << 5) | 0x03, (665 << 5) | 0x0f,
202 static const s16 coeff_4k_sb_1seg
[8] = {
203 (638 << 5) | 0x0d, (683 << 5) | 0x02, (638 << 5) | 0x0d, (638 << 5) | 0x0d, (-655 << 5) | 0x0a, (517 << 5) | 0x00, (698 << 5) | 0x0d,
207 static const s16 coeff_4k_sb_3seg_0dqpsk_1dqpsk
[8] = {
208 (-707 << 5) | 0x14, (910 << 5) | 0x06, (889 << 5) | 0x16, (-707 << 5) | 0x14, (-958 << 5) | 0x13, (993 << 5) | 0x05, (523 << 5) | 0x14,
212 static const s16 coeff_4k_sb_3seg_0dqpsk
[8] = {
213 (-723 << 5) | 0x13, (910 << 5) | 0x05, (777 << 5) | 0x14, (-723 << 5) | 0x13, (-568 << 5) | 0x0f, (547 << 5) | 0x03, (696 << 5) | 0x12,
217 static const s16 coeff_4k_sb_3seg_1dqpsk
[8] = {
218 (-940 << 5) | 0x15, (607 << 5) | 0x05, (915 << 5) | 0x16, (-940 << 5) | 0x15, (-848 << 5) | 0x13, (683 << 5) | 0x04, (543 << 5) | 0x14,
222 static const s16 coeff_4k_sb_3seg
[8] = {
223 (612 << 5) | 0x12, (910 << 5) | 0x04, (864 << 5) | 0x14, (612 << 5) | 0x12, (-869 << 5) | 0x13, (683 << 5) | 0x02, (869 << 5) | 0x12,
227 static const s16 coeff_8k_sb_1seg_dqpsk
[8] = {
228 (-835 << 5) | 0x12, (684 << 5) | 0x05, (735 << 5) | 0x14, (-835 << 5) | 0x12, (-598 << 5) | 0x10, (781 << 5) | 0x04, (739 << 5) | 0x13,
232 static const s16 coeff_8k_sb_1seg
[8] = {
233 (673 << 5) | 0x0f, (683 << 5) | 0x03, (808 << 5) | 0x12, (673 << 5) | 0x0f, (585 << 5) | 0x0f, (512 << 5) | 0x01, (780 << 5) | 0x0f,
237 static const s16 coeff_8k_sb_3seg_0dqpsk_1dqpsk
[8] = {
238 (863 << 5) | 0x17, (930 << 5) | 0x07, (878 << 5) | 0x19, (863 << 5) | 0x17, (0 << 5) | 0x14, (521 << 5) | 0x05, (980 << 5) | 0x18,
242 static const s16 coeff_8k_sb_3seg_0dqpsk
[8] = {
243 (-924 << 5) | 0x17, (910 << 5) | 0x06, (774 << 5) | 0x17, (-924 << 5) | 0x17, (-877 << 5) | 0x15, (565 << 5) | 0x04, (553 << 5) | 0x15,
247 static const s16 coeff_8k_sb_3seg_1dqpsk
[8] = {
248 (-921 << 5) | 0x19, (607 << 5) | 0x06, (881 << 5) | 0x19, (-921 << 5) | 0x19, (-921 << 5) | 0x14, (713 << 5) | 0x05, (1018 << 5) | 0x18,
252 static const s16 coeff_8k_sb_3seg
[8] = {
253 (514 << 5) | 0x14, (910 << 5) | 0x05, (861 << 5) | 0x17, (514 << 5) | 0x14, (690 << 5) | 0x14, (683 << 5) | 0x03, (662 << 5) | 0x15,
257 static const s16 ana_fe_coeff_3seg
[24] = {
258 81, 80, 78, 74, 68, 61, 54, 45, 37, 28, 19, 11, 4, 1022, 1017, 1013, 1010, 1008, 1008, 1008, 1008, 1010, 1014, 1017
261 static const s16 ana_fe_coeff_1seg
[24] = {
262 249, 226, 164, 82, 5, 981, 970, 988, 1018, 20, 31, 26, 8, 1012, 1000, 1018, 1012, 8, 15, 14, 9, 3, 1017, 1003
265 static const s16 ana_fe_coeff_13seg
[24] = {
266 396, 305, 105, -51, -77, -12, 41, 31, -11, -30, -11, 14, 15, -2, -13, -7, 5, 8, 1, -6, -7, -3, 0, 1
269 static u16
fft_to_mode(struct dib8000_state
*state
)
272 switch (state
->fe
[0]->dtv_property_cache
.transmission_mode
) {
273 case TRANSMISSION_MODE_2K
:
276 case TRANSMISSION_MODE_4K
:
280 case TRANSMISSION_MODE_AUTO
:
281 case TRANSMISSION_MODE_8K
:
288 static void dib8000_set_acquisition_mode(struct dib8000_state
*state
)
290 u16 nud
= dib8000_read_word(state
, 298);
291 nud
|= (1 << 3) | (1 << 0);
292 dprintk("acquisition mode activated");
293 dib8000_write_word(state
, 298, nud
);
295 static int dib8000_set_output_mode(struct dvb_frontend
*fe
, int mode
)
297 struct dib8000_state
*state
= fe
->demodulator_priv
;
299 u16 outreg
, fifo_threshold
, smo_mode
, sram
= 0x0205; /* by default SDRAM deintlv is enabled */
302 fifo_threshold
= 1792;
303 smo_mode
= (dib8000_read_word(state
, 299) & 0x0050) | (1 << 1);
305 dprintk("-I- Setting output mode for demod %p to %d",
306 &state
->fe
[0], mode
);
309 case OUTMODE_MPEG2_PAR_GATED_CLK
: // STBs with parallel gated clock
310 outreg
= (1 << 10); /* 0x0400 */
312 case OUTMODE_MPEG2_PAR_CONT_CLK
: // STBs with parallel continues clock
313 outreg
= (1 << 10) | (1 << 6); /* 0x0440 */
315 case OUTMODE_MPEG2_SERIAL
: // STBs with serial input
316 outreg
= (1 << 10) | (2 << 6) | (0 << 1); /* 0x0482 */
318 case OUTMODE_DIVERSITY
:
319 if (state
->cfg
.hostbus_diversity
) {
320 outreg
= (1 << 10) | (4 << 6); /* 0x0500 */
325 case OUTMODE_MPEG2_FIFO
: // e.g. USB feeding
326 smo_mode
|= (3 << 1);
327 fifo_threshold
= 512;
328 outreg
= (1 << 10) | (5 << 6);
330 case OUTMODE_HIGH_Z
: // disable
334 case OUTMODE_ANALOG_ADC
:
335 outreg
= (1 << 10) | (3 << 6);
336 dib8000_set_acquisition_mode(state
);
340 dprintk("Unhandled output_mode passed to be set for demod %p",
345 if (state
->cfg
.output_mpeg2_in_188_bytes
)
346 smo_mode
|= (1 << 5);
348 dib8000_write_word(state
, 299, smo_mode
);
349 dib8000_write_word(state
, 300, fifo_threshold
); /* synchronous fread */
350 dib8000_write_word(state
, 1286, outreg
);
351 dib8000_write_word(state
, 1291, sram
);
356 static int dib8000_set_diversity_in(struct dvb_frontend
*fe
, int onoff
)
358 struct dib8000_state
*state
= fe
->demodulator_priv
;
359 u16 sync_wait
= dib8000_read_word(state
, 273) & 0xfff0;
361 if (!state
->differential_constellation
) {
362 dib8000_write_word(state
, 272, 1 << 9); //dvsy_off_lmod4 = 1
363 dib8000_write_word(state
, 273, sync_wait
| (1 << 2) | 2); // sync_enable = 1; comb_mode = 2
365 dib8000_write_word(state
, 272, 0); //dvsy_off_lmod4 = 0
366 dib8000_write_word(state
, 273, sync_wait
); // sync_enable = 0; comb_mode = 0
368 state
->diversity_onoff
= onoff
;
371 case 0: /* only use the internal way - not the diversity input */
372 dib8000_write_word(state
, 270, 1);
373 dib8000_write_word(state
, 271, 0);
375 case 1: /* both ways */
376 dib8000_write_word(state
, 270, 6);
377 dib8000_write_word(state
, 271, 6);
379 case 2: /* only the diversity input */
380 dib8000_write_word(state
, 270, 0);
381 dib8000_write_word(state
, 271, 1);
387 static void dib8000_set_power_mode(struct dib8000_state
*state
, enum dib8000_power_mode mode
)
389 /* by default everything is going to be powered off */
390 u16 reg_774
= 0x3fff, reg_775
= 0xffff, reg_776
= 0xffff,
391 reg_900
= (dib8000_read_word(state
, 900) & 0xfffc) | 0x3,
392 reg_1280
= (dib8000_read_word(state
, 1280) & 0x00ff) | 0xff00;
394 /* now, depending on the requested mode, we power on */
396 /* power up everything in the demod */
397 case DIB8000M_POWER_ALL
:
404 case DIB8000M_POWER_INTERFACE_ONLY
:
409 dprintk("powermode : 774 : %x ; 775 : %x; 776 : %x ; 900 : %x; 1280 : %x", reg_774
, reg_775
, reg_776
, reg_900
, reg_1280
);
410 dib8000_write_word(state
, 774, reg_774
);
411 dib8000_write_word(state
, 775, reg_775
);
412 dib8000_write_word(state
, 776, reg_776
);
413 dib8000_write_word(state
, 900, reg_900
);
414 dib8000_write_word(state
, 1280, reg_1280
);
417 static int dib8000_set_adc_state(struct dib8000_state
*state
, enum dibx000_adc_states no
)
420 u16 reg_907
= dib8000_read_word(state
, 907), reg_908
= dib8000_read_word(state
, 908);
423 case DIBX000_SLOW_ADC_ON
:
424 reg_908
|= (1 << 1) | (1 << 0);
425 ret
|= dib8000_write_word(state
, 908, reg_908
);
426 reg_908
&= ~(1 << 1);
429 case DIBX000_SLOW_ADC_OFF
:
430 reg_908
|= (1 << 1) | (1 << 0);
438 case DIBX000_ADC_OFF
: // leave the VBG voltage on
439 reg_907
|= (1 << 14) | (1 << 13) | (1 << 12);
440 reg_908
|= (1 << 5) | (1 << 4) | (1 << 3) | (1 << 2);
443 case DIBX000_VBG_ENABLE
:
444 reg_907
&= ~(1 << 15);
447 case DIBX000_VBG_DISABLE
:
448 reg_907
|= (1 << 15);
455 ret
|= dib8000_write_word(state
, 907, reg_907
);
456 ret
|= dib8000_write_word(state
, 908, reg_908
);
461 static int dib8000_set_bandwidth(struct dvb_frontend
*fe
, u32 bw
)
463 struct dib8000_state
*state
= fe
->demodulator_priv
;
469 if (state
->timf
== 0) {
470 dprintk("using default timf");
471 timf
= state
->timf_default
;
473 dprintk("using updated timf");
477 dib8000_write_word(state
, 29, (u16
) ((timf
>> 16) & 0xffff));
478 dib8000_write_word(state
, 30, (u16
) ((timf
) & 0xffff));
483 static int dib8000_sad_calib(struct dib8000_state
*state
)
486 dib8000_write_word(state
, 923, (0 << 1) | (0 << 0));
487 dib8000_write_word(state
, 924, 776); // 0.625*3.3 / 4096
489 /* do the calibration */
490 dib8000_write_word(state
, 923, (1 << 0));
491 dib8000_write_word(state
, 923, (0 << 0));
497 int dib8000_set_wbd_ref(struct dvb_frontend
*fe
, u16 value
)
499 struct dib8000_state
*state
= fe
->demodulator_priv
;
502 state
->wbd_ref
= value
;
503 return dib8000_write_word(state
, 106, value
);
506 EXPORT_SYMBOL(dib8000_set_wbd_ref
);
507 static void dib8000_reset_pll_common(struct dib8000_state
*state
, const struct dibx000_bandwidth_config
*bw
)
509 dprintk("ifreq: %d %x, inversion: %d", bw
->ifreq
, bw
->ifreq
, bw
->ifreq
>> 25);
510 dib8000_write_word(state
, 23, (u16
) (((bw
->internal
* 1000) >> 16) & 0xffff)); /* P_sec_len */
511 dib8000_write_word(state
, 24, (u16
) ((bw
->internal
* 1000) & 0xffff));
512 dib8000_write_word(state
, 27, (u16
) ((bw
->ifreq
>> 16) & 0x01ff));
513 dib8000_write_word(state
, 28, (u16
) (bw
->ifreq
& 0xffff));
514 dib8000_write_word(state
, 26, (u16
) ((bw
->ifreq
>> 25) & 0x0003));
516 dib8000_write_word(state
, 922, bw
->sad_cfg
);
519 static void dib8000_reset_pll(struct dib8000_state
*state
)
521 const struct dibx000_bandwidth_config
*pll
= state
->cfg
.pll
;
525 dib8000_write_word(state
, 901, (pll
->pll_prediv
<< 8) | (pll
->pll_ratio
<< 0));
528 clk_cfg1
= (1 << 10) | (0 << 9) | (pll
->IO_CLK_en_core
<< 8) |
529 (pll
->bypclk_div
<< 5) | (pll
->enable_refdiv
<< 4) | (1 << 3) |
530 (pll
->pll_range
<< 1) | (pll
->pll_reset
<< 0);
532 dib8000_write_word(state
, 902, clk_cfg1
);
533 clk_cfg1
= (clk_cfg1
& 0xfff7) | (pll
->pll_bypass
<< 3);
534 dib8000_write_word(state
, 902, clk_cfg1
);
536 dprintk("clk_cfg1: 0x%04x", clk_cfg1
); /* 0x507 1 0 1 000 0 0 11 1 */
538 /* smpl_cfg: P_refclksel=2, P_ensmplsel=1 nodivsmpl=1 */
539 if (state
->cfg
.pll
->ADClkSrc
== 0)
540 dib8000_write_word(state
, 904, (0 << 15) | (0 << 12) | (0 << 10) |
541 (pll
->modulo
<< 8) | (pll
->ADClkSrc
<< 7) | (0 << 1));
542 else if (state
->cfg
.refclksel
!= 0)
543 dib8000_write_word(state
, 904, (0 << 15) | (1 << 12) |
544 ((state
->cfg
.refclksel
& 0x3) << 10) | (pll
->modulo
<< 8) |
545 (pll
->ADClkSrc
<< 7) | (0 << 1));
547 dib8000_write_word(state
, 904, (0 << 15) | (1 << 12) | (3 << 10) | (pll
->modulo
<< 8) | (pll
->ADClkSrc
<< 7) | (0 << 1));
549 dib8000_reset_pll_common(state
, pll
);
552 static int dib8000_reset_gpio(struct dib8000_state
*st
)
554 /* reset the GPIOs */
555 dib8000_write_word(st
, 1029, st
->cfg
.gpio_dir
);
556 dib8000_write_word(st
, 1030, st
->cfg
.gpio_val
);
558 /* TODO 782 is P_gpio_od */
560 dib8000_write_word(st
, 1032, st
->cfg
.gpio_pwm_pos
);
562 dib8000_write_word(st
, 1037, st
->cfg
.pwm_freq_div
);
566 static int dib8000_cfg_gpio(struct dib8000_state
*st
, u8 num
, u8 dir
, u8 val
)
568 st
->cfg
.gpio_dir
= dib8000_read_word(st
, 1029);
569 st
->cfg
.gpio_dir
&= ~(1 << num
); /* reset the direction bit */
570 st
->cfg
.gpio_dir
|= (dir
& 0x1) << num
; /* set the new direction */
571 dib8000_write_word(st
, 1029, st
->cfg
.gpio_dir
);
573 st
->cfg
.gpio_val
= dib8000_read_word(st
, 1030);
574 st
->cfg
.gpio_val
&= ~(1 << num
); /* reset the direction bit */
575 st
->cfg
.gpio_val
|= (val
& 0x01) << num
; /* set the new value */
576 dib8000_write_word(st
, 1030, st
->cfg
.gpio_val
);
578 dprintk("gpio dir: %x: gpio val: %x", st
->cfg
.gpio_dir
, st
->cfg
.gpio_val
);
583 int dib8000_set_gpio(struct dvb_frontend
*fe
, u8 num
, u8 dir
, u8 val
)
585 struct dib8000_state
*state
= fe
->demodulator_priv
;
586 return dib8000_cfg_gpio(state
, num
, dir
, val
);
589 EXPORT_SYMBOL(dib8000_set_gpio
);
590 static const u16 dib8000_defaults
[] = {
591 /* auto search configuration - lock0 by default waiting
592 * for cpil_lock; lock1 cpil_lock; lock2 tmcc_sync_lock */
613 0x6680 // P_corm_thres Lock algorithms configuration */
615 11, 80, /* set ADC level to -16 */
616 (1 << 13) - 825 - 117,
617 (1 << 13) - 837 - 117,
618 (1 << 13) - 811 - 117,
619 (1 << 13) - 766 - 117,
620 (1 << 13) - 737 - 117,
621 (1 << 13) - 693 - 117,
622 (1 << 13) - 648 - 117,
623 (1 << 13) - 619 - 117,
624 (1 << 13) - 575 - 117,
625 (1 << 13) - 531 - 117,
626 (1 << 13) - 501 - 117,
637 8192, // P_fft_nb_to_cut
640 0x2800, // P_coff_corthres_ ( 2k 4k 8k ) 0x2800
643 0x2800, // P_coff_cpilthres_ ( 2k 4k 8k ) 0x2800
648 0x0666, // P_pha3_thres
649 0x0000, // P_cti_use_cpe, P_cti_use_prog
652 0x200f, // P_cspu_regul, P_cspu_win_cut
653 0x000f, // P_des_shift_work
656 0x023d, // P_adp_regul_cnt
657 0x00a4, // P_adp_noise_cnt
658 0x00a4, // P_adp_regul_ext
659 0x7ff0, // P_adp_noise_ext
663 0x0000, // P_2d_byp_ti_num
666 0x800, //P_equal_thres_wgn
669 (2 << 9) | 39, // P_equal_ctrl_synchro, P_equal_speedmode
672 0x0001, // P_div_lock0_wait
676 0x0062, /* P_smo_mode, P_smo_rs_discard, P_smo_fifo_flush, P_smo_pid_parse, P_smo_error_discard */
679 (1 << 12) | // P_ctrl_corm_thres4pre_freq_inh=1
681 (0 << 9) | /* P_ctrl_pre_freq_inh=0 */
682 (3 << 5) | /* P_ctrl_pre_freq_step=3 */
683 (1 << 0), /* P_pre_freq_win_len=1 */
686 (0 << 4) | 2, // P_divclksel=0 P_divbitsel=2 (was clk=3,bit=1 for MPW)
691 static u16
dib8000_identify(struct i2c_device
*client
)
695 //because of glitches sometimes
696 value
= dib8000_i2c_read16(client
, 896);
698 if ((value
= dib8000_i2c_read16(client
, 896)) != 0x01b3) {
699 dprintk("wrong Vendor ID (read=0x%x)", value
);
703 value
= dib8000_i2c_read16(client
, 897);
704 if (value
!= 0x8000 && value
!= 0x8001 && value
!= 0x8002) {
705 dprintk("wrong Device ID (%x)", value
);
711 dprintk("found DiB8000A");
714 dprintk("found DiB8000B");
717 dprintk("found DiB8000C");
723 static int dib8000_reset(struct dvb_frontend
*fe
)
725 struct dib8000_state
*state
= fe
->demodulator_priv
;
727 dib8000_write_word(state
, 1287, 0x0003); /* sram lead in, rdy */
729 if ((state
->revision
= dib8000_identify(&state
->i2c
)) == 0)
732 if (state
->revision
== 0x8000)
733 dprintk("error : dib8000 MA not supported");
735 dibx000_reset_i2c_master(&state
->i2c_master
);
737 dib8000_set_power_mode(state
, DIB8000M_POWER_ALL
);
739 /* always leave the VBG voltage on - it consumes almost nothing but takes a long time to start */
740 dib8000_set_adc_state(state
, DIBX000_VBG_ENABLE
);
742 /* restart all parts */
743 dib8000_write_word(state
, 770, 0xffff);
744 dib8000_write_word(state
, 771, 0xffff);
745 dib8000_write_word(state
, 772, 0xfffc);
746 dib8000_write_word(state
, 898, 0x000c); // sad
747 dib8000_write_word(state
, 1280, 0x004d);
748 dib8000_write_word(state
, 1281, 0x000c);
750 dib8000_write_word(state
, 770, 0x0000);
751 dib8000_write_word(state
, 771, 0x0000);
752 dib8000_write_word(state
, 772, 0x0000);
753 dib8000_write_word(state
, 898, 0x0004); // sad
754 dib8000_write_word(state
, 1280, 0x0000);
755 dib8000_write_word(state
, 1281, 0x0000);
758 if (state
->cfg
.drives
)
759 dib8000_write_word(state
, 906, state
->cfg
.drives
);
761 dprintk("using standard PAD-drive-settings, please adjust settings in config-struct to be optimal.");
762 dib8000_write_word(state
, 906, 0x2d98); // min drive SDRAM - not optimal - adjust
765 dib8000_reset_pll(state
);
767 if (dib8000_reset_gpio(state
) != 0)
768 dprintk("GPIO reset was not successful.");
770 if (dib8000_set_output_mode(fe
, OUTMODE_HIGH_Z
) != 0)
771 dprintk("OUTPUT_MODE could not be resetted.");
773 state
->current_agc
= NULL
;
775 // P_iqc_alpha_pha, P_iqc_alpha_amp, P_iqc_dcc_alpha, ...
776 /* P_iqc_ca2 = 0; P_iqc_impnc_on = 0; P_iqc_mode = 0; */
777 if (state
->cfg
.pll
->ifreq
== 0)
778 dib8000_write_word(state
, 40, 0x0755); /* P_iqc_corr_inh = 0 enable IQcorr block */
780 dib8000_write_word(state
, 40, 0x1f55); /* P_iqc_corr_inh = 1 disable IQcorr block */
785 n
= dib8000_defaults
;
790 dib8000_write_word(state
, r
, *n
++);
796 state
->isdbt_cfg_loaded
= 0;
798 //div_cfg override for special configs
799 if (state
->cfg
.div_cfg
!= 0)
800 dib8000_write_word(state
, 903, state
->cfg
.div_cfg
);
802 /* unforce divstr regardless whether i2c enumeration was done or not */
803 dib8000_write_word(state
, 1285, dib8000_read_word(state
, 1285) & ~(1 << 1));
805 dib8000_set_bandwidth(fe
, 6000);
807 dib8000_set_adc_state(state
, DIBX000_SLOW_ADC_ON
);
808 dib8000_sad_calib(state
);
809 dib8000_set_adc_state(state
, DIBX000_SLOW_ADC_OFF
);
811 dib8000_set_power_mode(state
, DIB8000M_POWER_INTERFACE_ONLY
);
816 static void dib8000_restart_agc(struct dib8000_state
*state
)
818 // P_restart_iqc & P_restart_agc
819 dib8000_write_word(state
, 770, 0x0a00);
820 dib8000_write_word(state
, 770, 0x0000);
823 static int dib8000_update_lna(struct dib8000_state
*state
)
827 if (state
->cfg
.update_lna
) {
828 // read dyn_gain here (because it is demod-dependent and not tuner)
829 dyn_gain
= dib8000_read_word(state
, 390);
831 if (state
->cfg
.update_lna(state
->fe
[0], dyn_gain
)) {
832 dib8000_restart_agc(state
);
839 static int dib8000_set_agc_config(struct dib8000_state
*state
, u8 band
)
841 struct dibx000_agc_config
*agc
= NULL
;
843 if (state
->current_band
== band
&& state
->current_agc
!= NULL
)
845 state
->current_band
= band
;
847 for (i
= 0; i
< state
->cfg
.agc_config_count
; i
++)
848 if (state
->cfg
.agc
[i
].band_caps
& band
) {
849 agc
= &state
->cfg
.agc
[i
];
854 dprintk("no valid AGC configuration found for band 0x%02x", band
);
858 state
->current_agc
= agc
;
861 dib8000_write_word(state
, 76, agc
->setup
);
862 dib8000_write_word(state
, 77, agc
->inv_gain
);
863 dib8000_write_word(state
, 78, agc
->time_stabiliz
);
864 dib8000_write_word(state
, 101, (agc
->alpha_level
<< 12) | agc
->thlock
);
866 // Demod AGC loop configuration
867 dib8000_write_word(state
, 102, (agc
->alpha_mant
<< 5) | agc
->alpha_exp
);
868 dib8000_write_word(state
, 103, (agc
->beta_mant
<< 6) | agc
->beta_exp
);
870 dprintk("WBD: ref: %d, sel: %d, active: %d, alpha: %d",
871 state
->wbd_ref
!= 0 ? state
->wbd_ref
: agc
->wbd_ref
, agc
->wbd_sel
, !agc
->perform_agc_softsplit
, agc
->wbd_sel
);
874 if (state
->wbd_ref
!= 0)
875 dib8000_write_word(state
, 106, state
->wbd_ref
);
877 dib8000_write_word(state
, 106, agc
->wbd_ref
);
878 dib8000_write_word(state
, 107, (agc
->wbd_alpha
<< 9) | (agc
->perform_agc_softsplit
<< 8));
879 dib8000_write_word(state
, 108, agc
->agc1_max
);
880 dib8000_write_word(state
, 109, agc
->agc1_min
);
881 dib8000_write_word(state
, 110, agc
->agc2_max
);
882 dib8000_write_word(state
, 111, agc
->agc2_min
);
883 dib8000_write_word(state
, 112, (agc
->agc1_pt1
<< 8) | agc
->agc1_pt2
);
884 dib8000_write_word(state
, 113, (agc
->agc1_slope1
<< 8) | agc
->agc1_slope2
);
885 dib8000_write_word(state
, 114, (agc
->agc2_pt1
<< 8) | agc
->agc2_pt2
);
886 dib8000_write_word(state
, 115, (agc
->agc2_slope1
<< 8) | agc
->agc2_slope2
);
888 dib8000_write_word(state
, 75, agc
->agc1_pt3
);
889 dib8000_write_word(state
, 923, (dib8000_read_word(state
, 923) & 0xffe3) | (agc
->wbd_inv
<< 4) | (agc
->wbd_sel
<< 2)); /*LB : 929 -> 923 */
894 void dib8000_pwm_agc_reset(struct dvb_frontend
*fe
)
896 struct dib8000_state
*state
= fe
->demodulator_priv
;
897 dib8000_set_adc_state(state
, DIBX000_ADC_ON
);
898 dib8000_set_agc_config(state
, (unsigned char)(BAND_OF_FREQUENCY(fe
->dtv_property_cache
.frequency
/ 1000)));
900 EXPORT_SYMBOL(dib8000_pwm_agc_reset
);
902 static int dib8000_agc_soft_split(struct dib8000_state
*state
)
904 u16 agc
, split_offset
;
906 if (!state
->current_agc
|| !state
->current_agc
->perform_agc_softsplit
|| state
->current_agc
->split
.max
== 0)
907 return FE_CALLBACK_TIME_NEVER
;
910 agc
= dib8000_read_word(state
, 390);
912 if (agc
> state
->current_agc
->split
.min_thres
)
913 split_offset
= state
->current_agc
->split
.min
;
914 else if (agc
< state
->current_agc
->split
.max_thres
)
915 split_offset
= state
->current_agc
->split
.max
;
917 split_offset
= state
->current_agc
->split
.max
*
918 (agc
- state
->current_agc
->split
.min_thres
) /
919 (state
->current_agc
->split
.max_thres
- state
->current_agc
->split
.min_thres
);
921 dprintk("AGC split_offset: %d", split_offset
);
923 // P_agc_force_split and P_agc_split_offset
924 dib8000_write_word(state
, 107, (dib8000_read_word(state
, 107) & 0xff00) | split_offset
);
928 static int dib8000_agc_startup(struct dvb_frontend
*fe
)
930 struct dib8000_state
*state
= fe
->demodulator_priv
;
931 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
935 switch (*tune_state
) {
937 // set power-up level: interf+analog+AGC
939 dib8000_set_adc_state(state
, DIBX000_ADC_ON
);
941 if (dib8000_set_agc_config(state
, (unsigned char)(BAND_OF_FREQUENCY(fe
->dtv_property_cache
.frequency
/ 1000))) != 0) {
942 *tune_state
= CT_AGC_STOP
;
943 state
->status
= FE_STATUS_TUNE_FAILED
;
948 *tune_state
= CT_AGC_STEP_0
;
953 if (state
->cfg
.agc_control
)
954 state
->cfg
.agc_control(fe
, 1);
956 dib8000_restart_agc(state
);
958 // wait AGC rough lock time
960 *tune_state
= CT_AGC_STEP_1
;
964 // wait AGC accurate lock time
967 if (dib8000_update_lna(state
))
968 // wait only AGC rough lock time
971 *tune_state
= CT_AGC_STEP_2
;
975 dib8000_agc_soft_split(state
);
977 if (state
->cfg
.agc_control
)
978 state
->cfg
.agc_control(fe
, 0);
980 *tune_state
= CT_AGC_STOP
;
983 ret
= dib8000_agc_soft_split(state
);
990 static const s32 lut_1000ln_mant
[] =
992 908, 7003, 7090, 7170, 7244, 7313, 7377, 7438, 7495, 7549, 7600
995 s32
dib8000_get_adc_power(struct dvb_frontend
*fe
, u8 mode
)
997 struct dib8000_state
*state
= fe
->demodulator_priv
;
998 u32 ix
= 0, tmp_val
= 0, exp
= 0, mant
= 0;
1001 val
= dib8000_read32(state
, 384);
1004 while (tmp_val
>>= 1)
1006 mant
= (val
* 1000 / (1<<exp
));
1007 ix
= (u8
)((mant
-1000)/100); /* index of the LUT */
1008 val
= (lut_1000ln_mant
[ix
] + 693*(exp
-20) - 6908);
1009 val
= (val
*256)/1000;
1013 EXPORT_SYMBOL(dib8000_get_adc_power
);
1015 static void dib8000_update_timf(struct dib8000_state
*state
)
1017 u32 timf
= state
->timf
= dib8000_read32(state
, 435);
1019 dib8000_write_word(state
, 29, (u16
) (timf
>> 16));
1020 dib8000_write_word(state
, 30, (u16
) (timf
& 0xffff));
1021 dprintk("Updated timing frequency: %d (default: %d)", state
->timf
, state
->timf_default
);
1024 static const u16 adc_target_16dB
[11] = {
1025 (1 << 13) - 825 - 117,
1026 (1 << 13) - 837 - 117,
1027 (1 << 13) - 811 - 117,
1028 (1 << 13) - 766 - 117,
1029 (1 << 13) - 737 - 117,
1030 (1 << 13) - 693 - 117,
1031 (1 << 13) - 648 - 117,
1032 (1 << 13) - 619 - 117,
1033 (1 << 13) - 575 - 117,
1034 (1 << 13) - 531 - 117,
1035 (1 << 13) - 501 - 117
1037 static const u8 permu_seg
[] = { 6, 5, 7, 4, 8, 3, 9, 2, 10, 1, 11, 0, 12 };
1039 static void dib8000_set_channel(struct dib8000_state
*state
, u8 seq
, u8 autosearching
)
1041 u16 mode
, max_constellation
, seg_diff_mask
= 0, nbseg_diff
= 0;
1042 u8 guard
, crate
, constellation
, timeI
;
1043 u16 i
, coeff
[4], P_cfr_left_edge
= 0, P_cfr_right_edge
= 0, seg_mask13
= 0x1fff; // All 13 segments enabled
1044 const s16
*ncoeff
= NULL
, *ana_fe
;
1046 u16 coff_pow
= 0x2800;
1047 u16 init_prbs
= 0xfff;
1050 if (state
->ber_monitored_layer
!= LAYER_ALL
)
1051 dib8000_write_word(state
, 285, (dib8000_read_word(state
, 285) & 0x60) | state
->ber_monitored_layer
);
1053 dib8000_write_word(state
, 285, dib8000_read_word(state
, 285) & 0x60);
1055 i
= dib8000_read_word(state
, 26) & 1; // P_dds_invspec
1056 dib8000_write_word(state
, 26, state
->fe
[0]->dtv_property_cache
.inversion
^i
);
1058 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
) {
1059 //compute new dds_freq for the seg and adjust prbs
1061 state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_idx
-
1062 (state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_count
/ 2) -
1063 (state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_count
% 2);
1064 int clk
= state
->cfg
.pll
->internal
;
1065 u32 segtodds
= ((u32
) (430 << 23) / clk
) << 3; // segtodds = SegBW / Fclk * pow(2,26)
1066 int dds_offset
= seg_offset
* segtodds
;
1067 int new_dds
, sub_channel
;
1068 if ((state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_count
% 2) == 0)
1069 dds_offset
-= (int)(segtodds
/ 2);
1071 if (state
->cfg
.pll
->ifreq
== 0) {
1072 if ((state
->fe
[0]->dtv_property_cache
.inversion
^ i
) == 0) {
1073 dib8000_write_word(state
, 26, dib8000_read_word(state
, 26) | 1);
1074 new_dds
= dds_offset
;
1076 new_dds
= dds_offset
;
1078 // We shift tuning frequency if the wanted segment is :
1079 // - the segment of center frequency with an odd total number of segments
1080 // - the segment to the left of center frequency with an even total number of segments
1081 // - the segment to the right of center frequency with an even total number of segments
1082 if ((state
->fe
[0]->dtv_property_cache
.delivery_system
== SYS_ISDBT
)
1083 && (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1)
1084 && (((state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_count
% 2)
1085 && (state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_idx
==
1086 ((state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_count
/ 2) + 1)))
1087 || (((state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_count
% 2) == 0)
1088 && (state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_idx
== (state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_count
/ 2)))
1089 || (((state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_count
% 2) == 0)
1090 && (state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_idx
==
1091 ((state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_count
/ 2) + 1)))
1093 new_dds
-= ((u32
) (850 << 22) / clk
) << 4; // new_dds = 850 (freq shift in KHz) / Fclk * pow(2,26)
1096 if ((state
->fe
[0]->dtv_property_cache
.inversion
^ i
) == 0)
1097 new_dds
= state
->cfg
.pll
->ifreq
- dds_offset
;
1099 new_dds
= state
->cfg
.pll
->ifreq
+ dds_offset
;
1101 dib8000_write_word(state
, 27, (u16
) ((new_dds
>> 16) & 0x01ff));
1102 dib8000_write_word(state
, 28, (u16
) (new_dds
& 0xffff));
1103 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_segment_count
% 2)
1104 sub_channel
= ((state
->fe
[0]->dtv_property_cache
.isdbt_sb_subchannel
+ (3 * seg_offset
) + 1) % 41) / 3;
1106 sub_channel
= ((state
->fe
[0]->dtv_property_cache
.isdbt_sb_subchannel
+ (3 * seg_offset
)) % 41) / 3;
1109 if (state
->fe
[0]->dtv_property_cache
.transmission_mode
== TRANSMISSION_MODE_2K
1110 || state
->fe
[0]->dtv_property_cache
.transmission_mode
== TRANSMISSION_MODE_4K
) {
1111 dib8000_write_word(state
, 219, dib8000_read_word(state
, 219) | 0x1); //adp_pass =1
1112 dib8000_write_word(state
, 190, dib8000_read_word(state
, 190) | (0x1 << 14)); //pha3_force_pha_shift = 1
1114 dib8000_write_word(state
, 219, dib8000_read_word(state
, 219) & 0xfffe); //adp_pass =0
1115 dib8000_write_word(state
, 190, dib8000_read_word(state
, 190) & 0xbfff); //pha3_force_pha_shift = 0
1118 switch (state
->fe
[0]->dtv_property_cache
.transmission_mode
) {
1119 case TRANSMISSION_MODE_2K
:
1120 switch (sub_channel
) {
1167 case TRANSMISSION_MODE_4K
:
1168 switch (sub_channel
) {
1216 case TRANSMISSION_MODE_8K
:
1217 switch (sub_channel
) {
1265 dib8000_write_word(state
, 27, (u16
) ((state
->cfg
.pll
->ifreq
>> 16) & 0x01ff));
1266 dib8000_write_word(state
, 28, (u16
) (state
->cfg
.pll
->ifreq
& 0xffff));
1267 dib8000_write_word(state
, 26, (u16
) ((state
->cfg
.pll
->ifreq
>> 25) & 0x0003));
1270 dib8000_write_word(state
, 10, (seq
<< 4));
1271 // dib8000_write_word(state, 287, (dib8000_read_word(state, 287) & 0xe000) | 0x1000);
1273 switch (state
->fe
[0]->dtv_property_cache
.guard_interval
) {
1274 case GUARD_INTERVAL_1_32
:
1277 case GUARD_INTERVAL_1_16
:
1280 case GUARD_INTERVAL_1_8
:
1283 case GUARD_INTERVAL_1_4
:
1289 dib8000_write_word(state
, 1, (init_prbs
<< 2) | (guard
& 0x3)); // ADDR 1
1291 max_constellation
= DQPSK
;
1292 for (i
= 0; i
< 3; i
++) {
1293 switch (state
->fe
[0]->dtv_property_cache
.layer
[i
].modulation
) {
1309 switch (state
->fe
[0]->dtv_property_cache
.layer
[i
].fec
) {
1328 if ((state
->fe
[0]->dtv_property_cache
.layer
[i
].interleaving
> 0) &&
1329 ((state
->fe
[0]->dtv_property_cache
.layer
[i
].interleaving
<= 3) ||
1330 (state
->fe
[0]->dtv_property_cache
.layer
[i
].interleaving
== 4 && state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1))
1332 timeI
= state
->fe
[0]->dtv_property_cache
.layer
[i
].interleaving
;
1335 dib8000_write_word(state
, 2 + i
, (constellation
<< 10) | ((state
->fe
[0]->dtv_property_cache
.layer
[i
].segment_count
& 0xf) << 6) |
1336 (crate
<< 3) | timeI
);
1337 if (state
->fe
[0]->dtv_property_cache
.layer
[i
].segment_count
> 0) {
1338 switch (max_constellation
) {
1341 if (state
->fe
[0]->dtv_property_cache
.layer
[i
].modulation
== QAM_16
||
1342 state
->fe
[0]->dtv_property_cache
.layer
[i
].modulation
== QAM_64
)
1343 max_constellation
= state
->fe
[0]->dtv_property_cache
.layer
[i
].modulation
;
1346 if (state
->fe
[0]->dtv_property_cache
.layer
[i
].modulation
== QAM_64
)
1347 max_constellation
= state
->fe
[0]->dtv_property_cache
.layer
[i
].modulation
;
1353 mode
= fft_to_mode(state
);
1355 //dib8000_write_word(state, 5, 13); /*p_last_seg = 13*/
1357 dib8000_write_word(state
, 274, (dib8000_read_word(state
, 274) & 0xffcf) |
1358 ((state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
& 1) << 5) | ((state
->fe
[0]->dtv_property_cache
.
1359 isdbt_sb_mode
& 1) << 4));
1361 dprintk("mode = %d ; guard = %d", mode
, state
->fe
[0]->dtv_property_cache
.guard_interval
);
1363 /* signal optimization parameter */
1365 if (state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
) {
1366 seg_diff_mask
= (state
->fe
[0]->dtv_property_cache
.layer
[0].modulation
== DQPSK
) << permu_seg
[0];
1367 for (i
= 1; i
< 3; i
++)
1369 (state
->fe
[0]->dtv_property_cache
.layer
[i
].modulation
== DQPSK
) * state
->fe
[0]->dtv_property_cache
.layer
[i
].segment_count
;
1370 for (i
= 0; i
< nbseg_diff
; i
++)
1371 seg_diff_mask
|= 1 << permu_seg
[i
+ 1];
1373 for (i
= 0; i
< 3; i
++)
1375 (state
->fe
[0]->dtv_property_cache
.layer
[i
].modulation
== DQPSK
) * state
->fe
[0]->dtv_property_cache
.layer
[i
].segment_count
;
1376 for (i
= 0; i
< nbseg_diff
; i
++)
1377 seg_diff_mask
|= 1 << permu_seg
[i
];
1379 dprintk("nbseg_diff = %X (%d)", seg_diff_mask
, seg_diff_mask
);
1381 state
->differential_constellation
= (seg_diff_mask
!= 0);
1382 dib8000_set_diversity_in(state
->fe
[0], state
->diversity_onoff
);
1384 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1) {
1385 if (state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
== 1)
1386 seg_mask13
= 0x00E0;
1388 seg_mask13
= 0x0040;
1390 seg_mask13
= 0x1fff;
1392 // WRITE: Mode & Diff mask
1393 dib8000_write_word(state
, 0, (mode
<< 13) | seg_diff_mask
);
1395 if ((seg_diff_mask
) || (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
))
1396 dib8000_write_word(state
, 268, (dib8000_read_word(state
, 268) & 0xF9FF) | 0x0200);
1398 dib8000_write_word(state
, 268, (2 << 9) | 39); //init value
1402 dib8000_write_word(state
, 352, seg_diff_mask
); // ADDR 352
1404 dib8000_write_word(state
, 353, seg_mask13
); // ADDR 353
1406 /* // P_small_narrow_band=0, P_small_last_seg=13, P_small_offset_num_car=5 */
1409 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1) {
1410 switch (state
->fe
[0]->dtv_property_cache
.transmission_mode
) {
1411 case TRANSMISSION_MODE_2K
:
1412 if (state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
== 0) {
1413 if (state
->fe
[0]->dtv_property_cache
.layer
[0].modulation
== DQPSK
)
1414 ncoeff
= coeff_2k_sb_1seg_dqpsk
;
1416 ncoeff
= coeff_2k_sb_1seg
;
1417 } else { // 3-segments
1418 if (state
->fe
[0]->dtv_property_cache
.layer
[0].modulation
== DQPSK
) {
1419 if (state
->fe
[0]->dtv_property_cache
.layer
[1].modulation
== DQPSK
)
1420 ncoeff
= coeff_2k_sb_3seg_0dqpsk_1dqpsk
;
1421 else // QPSK or QAM on external segments
1422 ncoeff
= coeff_2k_sb_3seg_0dqpsk
;
1423 } else { // QPSK or QAM on central segment
1424 if (state
->fe
[0]->dtv_property_cache
.layer
[1].modulation
== DQPSK
)
1425 ncoeff
= coeff_2k_sb_3seg_1dqpsk
;
1426 else // QPSK or QAM on external segments
1427 ncoeff
= coeff_2k_sb_3seg
;
1432 case TRANSMISSION_MODE_4K
:
1433 if (state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
== 0) {
1434 if (state
->fe
[0]->dtv_property_cache
.layer
[0].modulation
== DQPSK
)
1435 ncoeff
= coeff_4k_sb_1seg_dqpsk
;
1437 ncoeff
= coeff_4k_sb_1seg
;
1438 } else { // 3-segments
1439 if (state
->fe
[0]->dtv_property_cache
.layer
[0].modulation
== DQPSK
) {
1440 if (state
->fe
[0]->dtv_property_cache
.layer
[1].modulation
== DQPSK
) {
1441 ncoeff
= coeff_4k_sb_3seg_0dqpsk_1dqpsk
;
1442 } else { // QPSK or QAM on external segments
1443 ncoeff
= coeff_4k_sb_3seg_0dqpsk
;
1445 } else { // QPSK or QAM on central segment
1446 if (state
->fe
[0]->dtv_property_cache
.layer
[1].modulation
== DQPSK
) {
1447 ncoeff
= coeff_4k_sb_3seg_1dqpsk
;
1448 } else // QPSK or QAM on external segments
1449 ncoeff
= coeff_4k_sb_3seg
;
1454 case TRANSMISSION_MODE_AUTO
:
1455 case TRANSMISSION_MODE_8K
:
1457 if (state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
== 0) {
1458 if (state
->fe
[0]->dtv_property_cache
.layer
[0].modulation
== DQPSK
)
1459 ncoeff
= coeff_8k_sb_1seg_dqpsk
;
1461 ncoeff
= coeff_8k_sb_1seg
;
1462 } else { // 3-segments
1463 if (state
->fe
[0]->dtv_property_cache
.layer
[0].modulation
== DQPSK
) {
1464 if (state
->fe
[0]->dtv_property_cache
.layer
[1].modulation
== DQPSK
) {
1465 ncoeff
= coeff_8k_sb_3seg_0dqpsk_1dqpsk
;
1466 } else { // QPSK or QAM on external segments
1467 ncoeff
= coeff_8k_sb_3seg_0dqpsk
;
1469 } else { // QPSK or QAM on central segment
1470 if (state
->fe
[0]->dtv_property_cache
.layer
[1].modulation
== DQPSK
) {
1471 ncoeff
= coeff_8k_sb_3seg_1dqpsk
;
1472 } else // QPSK or QAM on external segments
1473 ncoeff
= coeff_8k_sb_3seg
;
1478 for (i
= 0; i
< 8; i
++)
1479 dib8000_write_word(state
, 343 + i
, ncoeff
[i
]);
1482 // P_small_coef_ext_enable=ISDB-Tsb, P_small_narrow_band=ISDB-Tsb, P_small_last_seg=13, P_small_offset_num_car=5
1483 dib8000_write_word(state
, 351,
1484 (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
<< 9) | (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
<< 8) | (13 << 4) | 5);
1487 // Carloff, the most robust
1488 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1) {
1490 // P_coff_cpil_alpha=4, P_coff_inh=0, P_coff_cpil_winlen=64
1491 // P_coff_narrow_band=1, P_coff_square_val=1, P_coff_one_seg=~partial_rcpt, P_coff_use_tmcc=1, P_coff_use_ac=1
1492 dib8000_write_word(state
, 187,
1493 (4 << 12) | (0 << 11) | (63 << 5) | (0x3 << 3) | ((~state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
& 1) << 2)
1496 /* // P_small_coef_ext_enable = 1 */
1497 /* dib8000_write_word(state, 351, dib8000_read_word(state, 351) | 0x200); */
1499 if (state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
== 0) {
1501 // P_coff_winlen=63, P_coff_thres_lock=15, P_coff_one_seg_width= (P_mode == 3) , P_coff_one_seg_sym= (P_mode-1)
1503 dib8000_write_word(state
, 180, 0x1fcf | ((mode
- 1) << 14));
1505 dib8000_write_word(state
, 180, 0x0fcf | ((mode
- 1) << 14));
1506 // P_ctrl_corm_thres4pre_freq_inh=1,P_ctrl_pre_freq_mode_sat=1,
1507 // P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 5, P_pre_freq_win_len=4
1508 dib8000_write_word(state
, 338, (1 << 12) | (1 << 10) | (0 << 9) | (5 << 5) | 4);
1509 // P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8
1510 dib8000_write_word(state
, 340, (16 << 6) | (8 << 0));
1511 // P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1
1512 dib8000_write_word(state
, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
1514 // P_coff_corthres_8k, 4k, 2k and P_coff_cpilthres_8k, 4k, 2k
1515 dib8000_write_word(state
, 181, 300);
1516 dib8000_write_word(state
, 182, 150);
1517 dib8000_write_word(state
, 183, 80);
1518 dib8000_write_word(state
, 184, 300);
1519 dib8000_write_word(state
, 185, 150);
1520 dib8000_write_word(state
, 186, 80);
1521 } else { // Sound Broadcasting mode 3 seg
1522 // P_coff_one_seg_sym= 1, P_coff_one_seg_width= 1, P_coff_winlen=63, P_coff_thres_lock=15
1523 /* if (mode == 3) */
1524 /* dib8000_write_word(state, 180, 0x2fca | ((0) << 14)); */
1526 /* dib8000_write_word(state, 180, 0x2fca | ((1) << 14)); */
1527 dib8000_write_word(state
, 180, 0x1fcf | (1 << 14));
1529 // P_ctrl_corm_thres4pre_freq_inh = 1, P_ctrl_pre_freq_mode_sat=1,
1530 // P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 4, P_pre_freq_win_len=4
1531 dib8000_write_word(state
, 338, (1 << 12) | (1 << 10) | (0 << 9) | (4 << 5) | 4);
1532 // P_ctrl_pre_freq_win_len=16, P_ctrl_pre_freq_thres_lockin=8
1533 dib8000_write_word(state
, 340, (16 << 6) | (8 << 0));
1534 //P_ctrl_pre_freq_thres_lockout=6, P_small_use_tmcc/ac/cp=1
1535 dib8000_write_word(state
, 341, (6 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
1537 // P_coff_corthres_8k, 4k, 2k and P_coff_cpilthres_8k, 4k, 2k
1538 dib8000_write_word(state
, 181, 350);
1539 dib8000_write_word(state
, 182, 300);
1540 dib8000_write_word(state
, 183, 250);
1541 dib8000_write_word(state
, 184, 350);
1542 dib8000_write_word(state
, 185, 300);
1543 dib8000_write_word(state
, 186, 250);
1546 } else if (state
->isdbt_cfg_loaded
== 0) { // if not Sound Broadcasting mode : put default values for 13 segments
1547 dib8000_write_word(state
, 180, (16 << 6) | 9);
1548 dib8000_write_word(state
, 187, (4 << 12) | (8 << 5) | 0x2);
1550 for (i
= 0; i
< 6; i
++)
1551 dib8000_write_word(state
, 181 + i
, coff_pow
);
1553 // P_ctrl_corm_thres4pre_freq_inh=1, P_ctrl_pre_freq_mode_sat=1,
1554 // P_ctrl_pre_freq_mode_sat=1, P_ctrl_pre_freq_inh=0, P_ctrl_pre_freq_step = 3, P_pre_freq_win_len=1
1555 dib8000_write_word(state
, 338, (1 << 12) | (1 << 10) | (0 << 9) | (3 << 5) | 1);
1557 // P_ctrl_pre_freq_win_len=8, P_ctrl_pre_freq_thres_lockin=6
1558 dib8000_write_word(state
, 340, (8 << 6) | (6 << 0));
1559 // P_ctrl_pre_freq_thres_lockout=4, P_small_use_tmcc/ac/cp=1
1560 dib8000_write_word(state
, 341, (4 << 3) | (1 << 2) | (1 << 1) | (1 << 0));
1563 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1 && state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
== 0)
1564 dib8000_write_word(state
, 178, 64); // P_fft_powrange=64
1566 dib8000_write_word(state
, 178, 32); // P_fft_powrange=32
1568 /* make the cpil_coff_lock more robust but slower p_coff_winlen
1569 * 6bits; p_coff_thres_lock 6bits (for coff lock if needed)
1571 /* if ( ( nbseg_diff>0)&&(nbseg_diff<13))
1572 dib8000_write_word(state, 187, (dib8000_read_word(state, 187) & 0xfffb) | (1 << 3)); */
1574 dib8000_write_word(state
, 189, ~seg_mask13
| seg_diff_mask
); /* P_lmod4_seg_inh */
1575 dib8000_write_word(state
, 192, ~seg_mask13
| seg_diff_mask
); /* P_pha3_seg_inh */
1576 dib8000_write_word(state
, 225, ~seg_mask13
| seg_diff_mask
); /* P_tac_seg_inh */
1577 if ((!state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
) && (state
->cfg
.pll
->ifreq
== 0))
1578 dib8000_write_word(state
, 266, ~seg_mask13
| seg_diff_mask
| 0x40); /* P_equal_noise_seg_inh */
1580 dib8000_write_word(state
, 266, ~seg_mask13
| seg_diff_mask
); /* P_equal_noise_seg_inh */
1581 dib8000_write_word(state
, 287, ~seg_mask13
| 0x1000); /* P_tmcc_seg_inh */
1582 //dib8000_write_word(state, 288, ~seg_mask13 | seg_diff_mask); /* P_tmcc_seg_eq_inh */
1584 dib8000_write_word(state
, 288, (~seg_mask13
| seg_diff_mask
) & 0x1fff); /* P_tmcc_seg_eq_inh */
1586 dib8000_write_word(state
, 288, 0x1fff); //disable equalisation of the tmcc when autosearch to be able to find the DQPSK channels.
1587 dprintk("287 = %X (%d)", ~seg_mask13
| 0x1000, ~seg_mask13
| 0x1000);
1589 dib8000_write_word(state
, 211, seg_mask13
& (~seg_diff_mask
)); /* P_des_seg_enabled */
1591 /* offset loop parameters */
1592 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1) {
1593 if (state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
== 0)
1594 /* P_timf_alpha = (11-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */
1595 dib8000_write_word(state
, 32, ((11 - mode
) << 12) | (6 << 8) | 0x40);
1597 else // Sound Broadcasting mode 3 seg
1598 /* P_timf_alpha = (10-P_mode), P_corm_alpha=6, P_corm_thres=0x80 */
1599 dib8000_write_word(state
, 32, ((10 - mode
) << 12) | (6 << 8) | 0x60);
1601 // TODO in 13 seg, timf_alpha can always be the same or not ?
1602 /* P_timf_alpha = (9-P_mode, P_corm_alpha=6, P_corm_thres=0x80 */
1603 dib8000_write_word(state
, 32, ((9 - mode
) << 12) | (6 << 8) | 0x80);
1605 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1) {
1606 if (state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
== 0)
1607 /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (11-P_mode) */
1608 dib8000_write_word(state
, 37, (3 << 5) | (0 << 4) | (10 - mode
));
1610 else // Sound Broadcasting mode 3 seg
1611 /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = (10-P_mode) */
1612 dib8000_write_word(state
, 37, (3 << 5) | (0 << 4) | (9 - mode
));
1614 /* P_ctrl_pha_off_max=3 P_ctrl_sfreq_inh =0 P_ctrl_sfreq_step = 9 */
1615 dib8000_write_word(state
, 37, (3 << 5) | (0 << 4) | (8 - mode
));
1617 /* P_dvsy_sync_wait - reuse mode */
1618 switch (state
->fe
[0]->dtv_property_cache
.transmission_mode
) {
1619 case TRANSMISSION_MODE_8K
:
1622 case TRANSMISSION_MODE_4K
:
1626 case TRANSMISSION_MODE_2K
:
1630 if (state
->cfg
.diversity_delay
== 0)
1631 mode
= (mode
* (1 << (guard
)) * 3) / 2 + 48; // add 50% SFN margin + compensate for one DVSY-fifo
1633 mode
= (mode
* (1 << (guard
)) * 3) / 2 + state
->cfg
.diversity_delay
; // add 50% SFN margin + compensate for DVSY-fifo
1635 dib8000_write_word(state
, 273, (dib8000_read_word(state
, 273) & 0x000f) | mode
);
1637 /* channel estimation fine configuration */
1638 switch (max_constellation
) {
1640 ana_gain
= 0x7; // -1 : avoid def_est saturation when ADC target is -16dB
1641 coeff
[0] = 0x0148; /* P_adp_regul_cnt 0.04 */
1642 coeff
[1] = 0xfff0; /* P_adp_noise_cnt -0.002 */
1643 coeff
[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
1644 coeff
[3] = 0xfff8; /* P_adp_noise_ext -0.001 */
1645 //if (!state->cfg.hostbus_diversity) //if diversity, we should prehaps use the configuration of the max_constallation -1
1648 ana_gain
= 0x7; // -1 : avoid def_est saturation when ADC target is -16dB
1649 coeff
[0] = 0x023d; /* P_adp_regul_cnt 0.07 */
1650 coeff
[1] = 0xffdf; /* P_adp_noise_cnt -0.004 */
1651 coeff
[2] = 0x00a4; /* P_adp_regul_ext 0.02 */
1652 coeff
[3] = 0xfff0; /* P_adp_noise_ext -0.002 */
1653 //if (!((state->cfg.hostbus_diversity) && (max_constellation == QAM_16)))
1656 ana_gain
= 0; // 0 : goes along with ADC target at -22dB to keep good mobile performance and lock at sensitivity level
1657 coeff
[0] = 0x099a; /* P_adp_regul_cnt 0.3 */
1658 coeff
[1] = 0xffae; /* P_adp_noise_cnt -0.01 */
1659 coeff
[2] = 0x0333; /* P_adp_regul_ext 0.1 */
1660 coeff
[3] = 0xfff8; /* P_adp_noise_ext -0.002 */
1663 for (mode
= 0; mode
< 4; mode
++)
1664 dib8000_write_word(state
, 215 + mode
, coeff
[mode
]);
1666 // update ana_gain depending on max constellation
1667 dib8000_write_word(state
, 116, ana_gain
);
1668 // update ADC target depending on ana_gain
1669 if (ana_gain
) { // set -16dB ADC target for ana_gain=-1
1670 for (i
= 0; i
< 10; i
++)
1671 dib8000_write_word(state
, 80 + i
, adc_target_16dB
[i
]);
1672 } else { // set -22dB ADC target for ana_gain=0
1673 for (i
= 0; i
< 10; i
++)
1674 dib8000_write_word(state
, 80 + i
, adc_target_16dB
[i
] - 355);
1678 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
) {
1679 if (state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
== 1)
1680 ana_fe
= ana_fe_coeff_3seg
;
1682 ana_fe
= ana_fe_coeff_1seg
;
1684 ana_fe
= ana_fe_coeff_13seg
;
1686 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1 || state
->isdbt_cfg_loaded
== 0)
1687 for (mode
= 0; mode
< 24; mode
++)
1688 dib8000_write_word(state
, 117 + mode
, ana_fe
[mode
]);
1690 // ---- CHAN_BLK ----
1691 for (i
= 0; i
< 13; i
++) {
1692 if ((((~seg_diff_mask
) >> i
) & 1) == 1) {
1693 P_cfr_left_edge
+= (1 << i
) * ((i
== 0) || ((((seg_mask13
& (~seg_diff_mask
)) >> (i
- 1)) & 1) == 0));
1694 P_cfr_right_edge
+= (1 << i
) * ((i
== 12) || ((((seg_mask13
& (~seg_diff_mask
)) >> (i
+ 1)) & 1) == 0));
1697 dib8000_write_word(state
, 222, P_cfr_left_edge
); // P_cfr_left_edge
1698 dib8000_write_word(state
, 223, P_cfr_right_edge
); // P_cfr_right_edge
1699 // "P_cspu_left_edge" not used => do not care
1700 // "P_cspu_right_edge" not used => do not care
1702 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1) {
1703 dib8000_write_word(state
, 228, 1); // P_2d_mode_byp=1
1704 dib8000_write_word(state
, 205, dib8000_read_word(state
, 205) & 0xfff0); // P_cspu_win_cut = 0
1705 if (state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
== 0
1706 && state
->fe
[0]->dtv_property_cache
.transmission_mode
== TRANSMISSION_MODE_2K
) {
1707 //dib8000_write_word(state, 219, dib8000_read_word(state, 219) & 0xfffe); // P_adp_pass = 0
1708 dib8000_write_word(state
, 265, 15); // P_equal_noise_sel = 15
1710 } else if (state
->isdbt_cfg_loaded
== 0) {
1711 dib8000_write_word(state
, 228, 0); // default value
1712 dib8000_write_word(state
, 265, 31); // default value
1713 dib8000_write_word(state
, 205, 0x200f); // init value
1716 for (i
= 0; i
< 3; i
++)
1718 (((state
->fe
[0]->dtv_property_cache
.layer
[i
].modulation
== DQPSK
) * 4 + 1) * state
->fe
[0]->dtv_property_cache
.layer
[i
].segment_count
);
1719 // Quantif of "P_tmcc_dec_thres_?k" is (0, 5+mode, 9);
1720 // Threshold is set at 1/4 of max power.
1721 tmcc_pow
*= (1 << (9 - 2));
1723 dib8000_write_word(state
, 290, tmcc_pow
); // P_tmcc_dec_thres_2k
1724 dib8000_write_word(state
, 291, tmcc_pow
); // P_tmcc_dec_thres_4k
1725 dib8000_write_word(state
, 292, tmcc_pow
); // P_tmcc_dec_thres_8k
1726 //dib8000_write_word(state, 287, (1 << 13) | 0x1000 );
1729 if (state
->isdbt_cfg_loaded
== 0)
1730 dib8000_write_word(state
, 250, 3285); /*p_2d_hspeed_thr0 */
1732 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1)
1733 state
->isdbt_cfg_loaded
= 0;
1735 state
->isdbt_cfg_loaded
= 1;
1739 static int dib8000_autosearch_start(struct dvb_frontend
*fe
)
1743 struct dib8000_state
*state
= fe
->demodulator_priv
;
1747 state
->fe
[0]->dtv_property_cache
.inversion
= 0;
1748 if (!state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
)
1749 state
->fe
[0]->dtv_property_cache
.layer
[0].segment_count
= 13;
1750 state
->fe
[0]->dtv_property_cache
.layer
[0].modulation
= QAM_64
;
1751 state
->fe
[0]->dtv_property_cache
.layer
[0].fec
= FEC_2_3
;
1752 state
->fe
[0]->dtv_property_cache
.layer
[0].interleaving
= 0;
1754 //choose the right list, in sb, always do everything
1755 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
) {
1756 state
->fe
[0]->dtv_property_cache
.transmission_mode
= TRANSMISSION_MODE_8K
;
1757 state
->fe
[0]->dtv_property_cache
.guard_interval
= GUARD_INTERVAL_1_8
;
1759 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x9fff) | (1 << 13));
1761 if (state
->fe
[0]->dtv_property_cache
.guard_interval
== GUARD_INTERVAL_AUTO
) {
1762 if (state
->fe
[0]->dtv_property_cache
.transmission_mode
== TRANSMISSION_MODE_AUTO
) {
1764 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x9fff) | (1 << 13)); // P_mode = 1 to have autosearch start ok with mode2
1768 if (state
->fe
[0]->dtv_property_cache
.transmission_mode
== TRANSMISSION_MODE_AUTO
) {
1770 dib8000_write_word(state
, 0, (dib8000_read_word(state
, 0) & 0x9fff) | (1 << 13)); // P_mode = 1
1775 if (state
->fe
[0]->dtv_property_cache
.transmission_mode
== TRANSMISSION_MODE_AUTO
)
1776 state
->fe
[0]->dtv_property_cache
.transmission_mode
= TRANSMISSION_MODE_8K
;
1777 if (state
->fe
[0]->dtv_property_cache
.guard_interval
== GUARD_INTERVAL_AUTO
)
1778 state
->fe
[0]->dtv_property_cache
.guard_interval
= GUARD_INTERVAL_1_8
;
1780 dprintk("using list for autosearch : %d", slist
);
1781 dib8000_set_channel(state
, (unsigned char)slist
, 1);
1782 //dib8000_write_word(state, 0, (dib8000_read_word(state, 0) & 0x9fff) | (1 << 13)); // P_mode = 1
1786 //set lock_mask values
1787 dib8000_write_word(state
, 6, 0x4);
1788 dib8000_write_word(state
, 7, 0x8);
1789 dib8000_write_word(state
, 8, 0x1000);
1791 //set lock_mask wait time values
1792 value
= 50 * state
->cfg
.pll
->internal
* factor
;
1793 dib8000_write_word(state
, 11, (u16
) ((value
>> 16) & 0xffff)); // lock0 wait time
1794 dib8000_write_word(state
, 12, (u16
) (value
& 0xffff)); // lock0 wait time
1795 value
= 100 * state
->cfg
.pll
->internal
* factor
;
1796 dib8000_write_word(state
, 13, (u16
) ((value
>> 16) & 0xffff)); // lock1 wait time
1797 dib8000_write_word(state
, 14, (u16
) (value
& 0xffff)); // lock1 wait time
1798 value
= 1000 * state
->cfg
.pll
->internal
* factor
;
1799 dib8000_write_word(state
, 15, (u16
) ((value
>> 16) & 0xffff)); // lock2 wait time
1800 dib8000_write_word(state
, 16, (u16
) (value
& 0xffff)); // lock2 wait time
1802 value
= dib8000_read_word(state
, 0);
1803 dib8000_write_word(state
, 0, (u16
) ((1 << 15) | value
));
1804 dib8000_read_word(state
, 1284); // reset the INT. n_irq_pending
1805 dib8000_write_word(state
, 0, (u16
) value
);
1812 static int dib8000_autosearch_irq(struct dvb_frontend
*fe
)
1814 struct dib8000_state
*state
= fe
->demodulator_priv
;
1815 u16 irq_pending
= dib8000_read_word(state
, 1284);
1817 if (irq_pending
& 0x1) { // failed
1818 dprintk("dib8000_autosearch_irq failed");
1822 if (irq_pending
& 0x2) { // succeeded
1823 dprintk("dib8000_autosearch_irq succeeded");
1827 return 0; // still pending
1830 static int dib8000_tune(struct dvb_frontend
*fe
)
1832 struct dib8000_state
*state
= fe
->demodulator_priv
;
1834 u16 value
, mode
= fft_to_mode(state
);
1836 // we are already tuned - just resuming from suspend
1840 dib8000_set_bandwidth(fe
, state
->fe
[0]->dtv_property_cache
.bandwidth_hz
/ 1000);
1841 dib8000_set_channel(state
, 0, 0);
1844 ret
|= dib8000_write_word(state
, 770, 0x4000);
1845 ret
|= dib8000_write_word(state
, 770, 0x0000);
1848 /* P_ctrl_inh_cor=0, P_ctrl_alpha_cor=4, P_ctrl_inh_isi=0, P_ctrl_alpha_isi=3 */
1849 /* ret |= dib8000_write_word(state, 29, (0 << 9) | (4 << 5) | (0 << 4) | (3 << 0) ); workaround inh_isi stays at 1 */
1851 // never achieved a lock before - wait for timfreq to update
1852 if (state
->timf
== 0) {
1853 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1) {
1854 if (state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
== 0)
1856 else // Sound Broadcasting mode 3 seg
1861 if (state
->fe
[0]->dtv_property_cache
.isdbt_sb_mode
== 1) {
1862 if (state
->fe
[0]->dtv_property_cache
.isdbt_partial_reception
== 0) {
1864 /* P_timf_alpha = (13-P_mode) , P_corm_alpha=6, P_corm_thres=0x40 alpha to check on board */
1865 dib8000_write_word(state
, 32, ((13 - mode
) << 12) | (6 << 8) | 0x40);
1866 //dib8000_write_word(state, 32, (8 << 12) | (6 << 8) | 0x80);
1868 /* P_ctrl_sfreq_step= (12-P_mode) P_ctrl_sfreq_inh =0 P_ctrl_pha_off_max */
1869 ret
|= dib8000_write_word(state
, 37, (12 - mode
) | ((5 + mode
) << 5));
1871 } else { // Sound Broadcasting mode 3 seg
1873 /* P_timf_alpha = (12-P_mode) , P_corm_alpha=6, P_corm_thres=0x60 alpha to check on board */
1874 dib8000_write_word(state
, 32, ((12 - mode
) << 12) | (6 << 8) | 0x60);
1876 ret
|= dib8000_write_word(state
, 37, (11 - mode
) | ((5 + mode
) << 5));
1880 /* P_timf_alpha = 8 , P_corm_alpha=6, P_corm_thres=0x80 alpha to check on board */
1881 dib8000_write_word(state
, 32, ((11 - mode
) << 12) | (6 << 8) | 0x80);
1883 ret
|= dib8000_write_word(state
, 37, (10 - mode
) | ((5 + mode
) << 5));
1887 // we achieved a coff_cpil_lock - it's time to update the timf
1888 if ((dib8000_read_word(state
, 568) >> 11) & 0x1)
1889 dib8000_update_timf(state
);
1891 //now that tune is finished, lock0 should lock on fec_mpeg to output this lock on MP_LOCK. It's changed in autosearch start
1892 dib8000_write_word(state
, 6, 0x200);
1894 if (state
->revision
== 0x8002) {
1895 value
= dib8000_read_word(state
, 903);
1896 dib8000_write_word(state
, 903, value
& ~(1 << 3));
1898 dib8000_write_word(state
, 903, value
| (1 << 3));
1904 static int dib8000_wakeup(struct dvb_frontend
*fe
)
1906 struct dib8000_state
*state
= fe
->demodulator_priv
;
1910 dib8000_set_power_mode(state
, DIB8000M_POWER_ALL
);
1911 dib8000_set_adc_state(state
, DIBX000_ADC_ON
);
1912 if (dib8000_set_adc_state(state
, DIBX000_SLOW_ADC_ON
) != 0)
1913 dprintk("could not start Slow ADC");
1915 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
1916 ret
= state
->fe
[index_frontend
]->ops
.init(state
->fe
[index_frontend
]);
1924 static int dib8000_sleep(struct dvb_frontend
*fe
)
1926 struct dib8000_state
*state
= fe
->demodulator_priv
;
1930 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
1931 ret
= state
->fe
[index_frontend
]->ops
.sleep(state
->fe
[index_frontend
]);
1936 dib8000_set_output_mode(fe
, OUTMODE_HIGH_Z
);
1937 dib8000_set_power_mode(state
, DIB8000M_POWER_INTERFACE_ONLY
);
1938 return dib8000_set_adc_state(state
, DIBX000_SLOW_ADC_OFF
) | dib8000_set_adc_state(state
, DIBX000_ADC_OFF
);
1941 enum frontend_tune_state
dib8000_get_tune_state(struct dvb_frontend
*fe
)
1943 struct dib8000_state
*state
= fe
->demodulator_priv
;
1944 return state
->tune_state
;
1946 EXPORT_SYMBOL(dib8000_get_tune_state
);
1948 int dib8000_set_tune_state(struct dvb_frontend
*fe
, enum frontend_tune_state tune_state
)
1950 struct dib8000_state
*state
= fe
->demodulator_priv
;
1951 state
->tune_state
= tune_state
;
1954 EXPORT_SYMBOL(dib8000_set_tune_state
);
1956 static int dib8000_get_frontend(struct dvb_frontend
*fe
, struct dvb_frontend_parameters
*fep
)
1958 struct dib8000_state
*state
= fe
->demodulator_priv
;
1961 u8 index_frontend
, sub_index_frontend
;
1963 fe
->dtv_property_cache
.bandwidth_hz
= 6000000;
1965 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
1966 state
->fe
[index_frontend
]->ops
.read_status(state
->fe
[index_frontend
], &stat
);
1967 if (stat
&FE_HAS_SYNC
) {
1968 dprintk("TMCC lock on the slave%i", index_frontend
);
1969 /* synchronize the cache with the other frontends */
1970 state
->fe
[index_frontend
]->ops
.get_frontend(state
->fe
[index_frontend
], fep
);
1971 for (sub_index_frontend
= 0; (sub_index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[sub_index_frontend
] != NULL
); sub_index_frontend
++) {
1972 if (sub_index_frontend
!= index_frontend
) {
1973 state
->fe
[sub_index_frontend
]->dtv_property_cache
.isdbt_sb_mode
= state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_sb_mode
;
1974 state
->fe
[sub_index_frontend
]->dtv_property_cache
.inversion
= state
->fe
[index_frontend
]->dtv_property_cache
.inversion
;
1975 state
->fe
[sub_index_frontend
]->dtv_property_cache
.transmission_mode
= state
->fe
[index_frontend
]->dtv_property_cache
.transmission_mode
;
1976 state
->fe
[sub_index_frontend
]->dtv_property_cache
.guard_interval
= state
->fe
[index_frontend
]->dtv_property_cache
.guard_interval
;
1977 state
->fe
[sub_index_frontend
]->dtv_property_cache
.isdbt_partial_reception
= state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_partial_reception
;
1978 for (i
= 0; i
< 3; i
++) {
1979 state
->fe
[sub_index_frontend
]->dtv_property_cache
.layer
[i
].segment_count
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].segment_count
;
1980 state
->fe
[sub_index_frontend
]->dtv_property_cache
.layer
[i
].interleaving
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].interleaving
;
1981 state
->fe
[sub_index_frontend
]->dtv_property_cache
.layer
[i
].fec
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].fec
;
1982 state
->fe
[sub_index_frontend
]->dtv_property_cache
.layer
[i
].modulation
= state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].modulation
;
1990 fe
->dtv_property_cache
.isdbt_sb_mode
= dib8000_read_word(state
, 508) & 0x1;
1992 val
= dib8000_read_word(state
, 570);
1993 fe
->dtv_property_cache
.inversion
= (val
& 0x40) >> 6;
1994 switch ((val
& 0x30) >> 4) {
1996 fe
->dtv_property_cache
.transmission_mode
= TRANSMISSION_MODE_2K
;
2000 fe
->dtv_property_cache
.transmission_mode
= TRANSMISSION_MODE_8K
;
2004 switch (val
& 0x3) {
2006 fe
->dtv_property_cache
.guard_interval
= GUARD_INTERVAL_1_32
;
2007 dprintk("dib8000_get_frontend GI = 1/32 ");
2010 fe
->dtv_property_cache
.guard_interval
= GUARD_INTERVAL_1_16
;
2011 dprintk("dib8000_get_frontend GI = 1/16 ");
2014 dprintk("dib8000_get_frontend GI = 1/8 ");
2015 fe
->dtv_property_cache
.guard_interval
= GUARD_INTERVAL_1_8
;
2018 dprintk("dib8000_get_frontend GI = 1/4 ");
2019 fe
->dtv_property_cache
.guard_interval
= GUARD_INTERVAL_1_4
;
2023 val
= dib8000_read_word(state
, 505);
2024 fe
->dtv_property_cache
.isdbt_partial_reception
= val
& 1;
2025 dprintk("dib8000_get_frontend : partial_reception = %d ", fe
->dtv_property_cache
.isdbt_partial_reception
);
2027 for (i
= 0; i
< 3; i
++) {
2028 val
= dib8000_read_word(state
, 493 + i
);
2029 fe
->dtv_property_cache
.layer
[i
].segment_count
= val
& 0x0F;
2030 dprintk("dib8000_get_frontend : Layer %d segments = %d ", i
, fe
->dtv_property_cache
.layer
[i
].segment_count
);
2032 val
= dib8000_read_word(state
, 499 + i
);
2033 fe
->dtv_property_cache
.layer
[i
].interleaving
= val
& 0x3;
2034 dprintk("dib8000_get_frontend : Layer %d time_intlv = %d ", i
, fe
->dtv_property_cache
.layer
[i
].interleaving
);
2036 val
= dib8000_read_word(state
, 481 + i
);
2037 switch (val
& 0x7) {
2039 fe
->dtv_property_cache
.layer
[i
].fec
= FEC_1_2
;
2040 dprintk("dib8000_get_frontend : Layer %d Code Rate = 1/2 ", i
);
2043 fe
->dtv_property_cache
.layer
[i
].fec
= FEC_2_3
;
2044 dprintk("dib8000_get_frontend : Layer %d Code Rate = 2/3 ", i
);
2047 fe
->dtv_property_cache
.layer
[i
].fec
= FEC_3_4
;
2048 dprintk("dib8000_get_frontend : Layer %d Code Rate = 3/4 ", i
);
2051 fe
->dtv_property_cache
.layer
[i
].fec
= FEC_5_6
;
2052 dprintk("dib8000_get_frontend : Layer %d Code Rate = 5/6 ", i
);
2055 fe
->dtv_property_cache
.layer
[i
].fec
= FEC_7_8
;
2056 dprintk("dib8000_get_frontend : Layer %d Code Rate = 7/8 ", i
);
2060 val
= dib8000_read_word(state
, 487 + i
);
2061 switch (val
& 0x3) {
2063 dprintk("dib8000_get_frontend : Layer %d DQPSK ", i
);
2064 fe
->dtv_property_cache
.layer
[i
].modulation
= DQPSK
;
2067 fe
->dtv_property_cache
.layer
[i
].modulation
= QPSK
;
2068 dprintk("dib8000_get_frontend : Layer %d QPSK ", i
);
2071 fe
->dtv_property_cache
.layer
[i
].modulation
= QAM_16
;
2072 dprintk("dib8000_get_frontend : Layer %d QAM16 ", i
);
2076 dprintk("dib8000_get_frontend : Layer %d QAM64 ", i
);
2077 fe
->dtv_property_cache
.layer
[i
].modulation
= QAM_64
;
2082 /* synchronize the cache with the other frontends */
2083 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
2084 state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_sb_mode
= fe
->dtv_property_cache
.isdbt_sb_mode
;
2085 state
->fe
[index_frontend
]->dtv_property_cache
.inversion
= fe
->dtv_property_cache
.inversion
;
2086 state
->fe
[index_frontend
]->dtv_property_cache
.transmission_mode
= fe
->dtv_property_cache
.transmission_mode
;
2087 state
->fe
[index_frontend
]->dtv_property_cache
.guard_interval
= fe
->dtv_property_cache
.guard_interval
;
2088 state
->fe
[index_frontend
]->dtv_property_cache
.isdbt_partial_reception
= fe
->dtv_property_cache
.isdbt_partial_reception
;
2089 for (i
= 0; i
< 3; i
++) {
2090 state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].segment_count
= fe
->dtv_property_cache
.layer
[i
].segment_count
;
2091 state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].interleaving
= fe
->dtv_property_cache
.layer
[i
].interleaving
;
2092 state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].fec
= fe
->dtv_property_cache
.layer
[i
].fec
;
2093 state
->fe
[index_frontend
]->dtv_property_cache
.layer
[i
].modulation
= fe
->dtv_property_cache
.layer
[i
].modulation
;
2099 static int dib8000_set_frontend(struct dvb_frontend
*fe
, struct dvb_frontend_parameters
*fep
)
2101 struct dib8000_state
*state
= fe
->demodulator_priv
;
2102 u8 nbr_pending
, exit_condition
, index_frontend
;
2103 s8 index_frontend_success
= -1;
2105 int time_slave
= FE_CALLBACK_TIME_NEVER
;
2107 if (state
->fe
[0]->dtv_property_cache
.frequency
== 0) {
2108 dprintk("dib8000: must at least specify frequency ");
2112 if (state
->fe
[0]->dtv_property_cache
.bandwidth_hz
== 0) {
2113 dprintk("dib8000: no bandwidth specified, set to default ");
2114 state
->fe
[0]->dtv_property_cache
.bandwidth_hz
= 6000000;
2117 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
2118 /* synchronization of the cache */
2119 state
->fe
[index_frontend
]->dtv_property_cache
.delivery_system
= SYS_ISDBT
;
2120 memcpy(&state
->fe
[index_frontend
]->dtv_property_cache
, &fe
->dtv_property_cache
, sizeof(struct dtv_frontend_properties
));
2122 dib8000_set_output_mode(state
->fe
[index_frontend
], OUTMODE_HIGH_Z
);
2123 if (state
->fe
[index_frontend
]->ops
.tuner_ops
.set_params
)
2124 state
->fe
[index_frontend
]->ops
.tuner_ops
.set_params(state
->fe
[index_frontend
], fep
);
2126 dib8000_set_tune_state(state
->fe
[index_frontend
], CT_AGC_START
);
2129 /* start up the AGC */
2131 time
= dib8000_agc_startup(state
->fe
[0]);
2132 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
2133 time_slave
= dib8000_agc_startup(state
->fe
[index_frontend
]);
2134 if (time
== FE_CALLBACK_TIME_NEVER
)
2136 else if ((time_slave
!= FE_CALLBACK_TIME_NEVER
) && (time_slave
> time
))
2139 if (time
!= FE_CALLBACK_TIME_NEVER
)
2144 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
2145 if (dib8000_get_tune_state(state
->fe
[index_frontend
]) != CT_AGC_STOP
) {
2150 } while (exit_condition
== 0);
2152 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++)
2153 dib8000_set_tune_state(state
->fe
[index_frontend
], CT_DEMOD_START
);
2155 if ((state
->fe
[0]->dtv_property_cache
.delivery_system
!= SYS_ISDBT
) ||
2156 (state
->fe
[0]->dtv_property_cache
.inversion
== INVERSION_AUTO
) ||
2157 (state
->fe
[0]->dtv_property_cache
.transmission_mode
== TRANSMISSION_MODE_AUTO
) ||
2158 (state
->fe
[0]->dtv_property_cache
.guard_interval
== GUARD_INTERVAL_AUTO
) ||
2159 (((state
->fe
[0]->dtv_property_cache
.isdbt_layer_enabled
& (1 << 0)) != 0) &&
2160 (state
->fe
[0]->dtv_property_cache
.layer
[0].segment_count
!= 0xff) &&
2161 (state
->fe
[0]->dtv_property_cache
.layer
[0].segment_count
!= 0) &&
2162 ((state
->fe
[0]->dtv_property_cache
.layer
[0].modulation
== QAM_AUTO
) ||
2163 (state
->fe
[0]->dtv_property_cache
.layer
[0].fec
== FEC_AUTO
))) ||
2164 (((state
->fe
[0]->dtv_property_cache
.isdbt_layer_enabled
& (1 << 1)) != 0) &&
2165 (state
->fe
[0]->dtv_property_cache
.layer
[1].segment_count
!= 0xff) &&
2166 (state
->fe
[0]->dtv_property_cache
.layer
[1].segment_count
!= 0) &&
2167 ((state
->fe
[0]->dtv_property_cache
.layer
[1].modulation
== QAM_AUTO
) ||
2168 (state
->fe
[0]->dtv_property_cache
.layer
[1].fec
== FEC_AUTO
))) ||
2169 (((state
->fe
[0]->dtv_property_cache
.isdbt_layer_enabled
& (1 << 2)) != 0) &&
2170 (state
->fe
[0]->dtv_property_cache
.layer
[2].segment_count
!= 0xff) &&
2171 (state
->fe
[0]->dtv_property_cache
.layer
[2].segment_count
!= 0) &&
2172 ((state
->fe
[0]->dtv_property_cache
.layer
[2].modulation
== QAM_AUTO
) ||
2173 (state
->fe
[0]->dtv_property_cache
.layer
[2].fec
== FEC_AUTO
))) ||
2174 (((state
->fe
[0]->dtv_property_cache
.layer
[0].segment_count
== 0) ||
2175 ((state
->fe
[0]->dtv_property_cache
.isdbt_layer_enabled
& (1 << 0)) == 0)) &&
2176 ((state
->fe
[0]->dtv_property_cache
.layer
[1].segment_count
== 0) ||
2177 ((state
->fe
[0]->dtv_property_cache
.isdbt_layer_enabled
& (2 << 0)) == 0)) &&
2178 ((state
->fe
[0]->dtv_property_cache
.layer
[2].segment_count
== 0) || ((state
->fe
[0]->dtv_property_cache
.isdbt_layer_enabled
& (3 << 0)) == 0)))) {
2183 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
2184 dib8000_set_bandwidth(state
->fe
[index_frontend
], fe
->dtv_property_cache
.bandwidth_hz
/ 1000);
2185 dib8000_autosearch_start(state
->fe
[index_frontend
]);
2191 exit_condition
= 0; /* 0: tune pending; 1: tune failed; 2:tune success */
2192 for (index_frontend
= 0; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
2193 if (((tune_failed
>> index_frontend
) & 0x1) == 0) {
2194 found
= dib8000_autosearch_irq(state
->fe
[index_frontend
]);
2196 case 0: /* tune pending */
2200 dprintk("autosearch succeed on the frontend%i", index_frontend
);
2202 index_frontend_success
= index_frontend
;
2205 dprintk("unhandled autosearch result");
2207 dprintk("autosearch failed for the frontend%i", index_frontend
);
2213 /* if all tune are done and no success, exit: tune failed */
2214 if ((nbr_pending
== 0) && (exit_condition
== 0))
2216 } while ((exit_condition
== 0) && i
--);
2218 if (exit_condition
== 1) { /* tune failed */
2219 dprintk("tune failed");
2223 dprintk("tune success on frontend%i", index_frontend_success
);
2225 dib8000_get_frontend(fe
, fep
);
2228 for (index_frontend
= 0, ret
= 0; (ret
>= 0) && (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++)
2229 ret
= dib8000_tune(state
->fe
[index_frontend
]);
2231 /* set output mode and diversity input */
2232 dib8000_set_output_mode(state
->fe
[0], state
->cfg
.output_mode
);
2233 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
2234 dib8000_set_output_mode(state
->fe
[index_frontend
], OUTMODE_DIVERSITY
);
2235 dib8000_set_diversity_in(state
->fe
[index_frontend
-1], 1);
2238 /* turn off the diversity of the last chip */
2239 dib8000_set_diversity_in(state
->fe
[index_frontend
-1], 0);
2244 static u16
dib8000_read_lock(struct dvb_frontend
*fe
)
2246 struct dib8000_state
*state
= fe
->demodulator_priv
;
2248 return dib8000_read_word(state
, 568);
2251 static int dib8000_read_status(struct dvb_frontend
*fe
, fe_status_t
* stat
)
2253 struct dib8000_state
*state
= fe
->demodulator_priv
;
2254 u16 lock_slave
= 0, lock
= dib8000_read_word(state
, 568);
2257 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++)
2258 lock_slave
|= dib8000_read_lock(state
->fe
[index_frontend
]);
2262 if (((lock
>> 13) & 1) || ((lock_slave
>> 13) & 1))
2263 *stat
|= FE_HAS_SIGNAL
;
2265 if (((lock
>> 8) & 1) || ((lock_slave
>> 8) & 1)) /* Equal */
2266 *stat
|= FE_HAS_CARRIER
;
2268 if ((((lock
>> 1) & 0xf) == 0xf) || (((lock_slave
>> 1) & 0xf) == 0xf)) /* TMCC_SYNC */
2269 *stat
|= FE_HAS_SYNC
;
2271 if ((((lock
>> 12) & 1) || ((lock_slave
>> 12) & 1)) && ((lock
>> 5) & 7)) /* FEC MPEG */
2272 *stat
|= FE_HAS_LOCK
;
2274 if (((lock
>> 12) & 1) || ((lock_slave
>> 12) & 1)) {
2275 lock
= dib8000_read_word(state
, 554); /* Viterbi Layer A */
2277 *stat
|= FE_HAS_VITERBI
;
2279 lock
= dib8000_read_word(state
, 555); /* Viterbi Layer B */
2281 *stat
|= FE_HAS_VITERBI
;
2283 lock
= dib8000_read_word(state
, 556); /* Viterbi Layer C */
2285 *stat
|= FE_HAS_VITERBI
;
2291 static int dib8000_read_ber(struct dvb_frontend
*fe
, u32
* ber
)
2293 struct dib8000_state
*state
= fe
->demodulator_priv
;
2294 *ber
= (dib8000_read_word(state
, 560) << 16) | dib8000_read_word(state
, 561); // 13 segments
2298 static int dib8000_read_unc_blocks(struct dvb_frontend
*fe
, u32
* unc
)
2300 struct dib8000_state
*state
= fe
->demodulator_priv
;
2301 *unc
= dib8000_read_word(state
, 565); // packet error on 13 seg
2305 static int dib8000_read_signal_strength(struct dvb_frontend
*fe
, u16
* strength
)
2307 struct dib8000_state
*state
= fe
->demodulator_priv
;
2312 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++) {
2313 state
->fe
[index_frontend
]->ops
.read_signal_strength(state
->fe
[index_frontend
], &val
);
2314 if (val
> 65535 - *strength
)
2320 val
= 65535 - dib8000_read_word(state
, 390);
2321 if (val
> 65535 - *strength
)
2328 static u32
dib8000_get_snr(struct dvb_frontend
*fe
)
2330 struct dib8000_state
*state
= fe
->demodulator_priv
;
2334 val
= dib8000_read_word(state
, 542);
2335 n
= (val
>> 6) & 0xff;
2337 if ((exp
& 0x20) != 0)
2341 val
= dib8000_read_word(state
, 543);
2342 s
= (val
>> 6) & 0xff;
2344 if ((exp
& 0x20) != 0)
2349 u32 t
= (s
/n
) << 16;
2350 return t
+ ((s
<< 16) - n
*t
) / n
;
2355 static int dib8000_read_snr(struct dvb_frontend
*fe
, u16
* snr
)
2357 struct dib8000_state
*state
= fe
->demodulator_priv
;
2361 snr_master
= dib8000_get_snr(fe
);
2362 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
); index_frontend
++)
2363 snr_master
+= dib8000_get_snr(state
->fe
[index_frontend
]);
2365 if (snr_master
!= 0) {
2366 snr_master
= 10*intlog10(snr_master
>>16);
2367 *snr
= snr_master
/ ((1 << 24) / 10);
2375 int dib8000_set_slave_frontend(struct dvb_frontend
*fe
, struct dvb_frontend
*fe_slave
)
2377 struct dib8000_state
*state
= fe
->demodulator_priv
;
2378 u8 index_frontend
= 1;
2380 while ((index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
))
2382 if (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) {
2383 dprintk("set slave fe %p to index %i", fe_slave
, index_frontend
);
2384 state
->fe
[index_frontend
] = fe_slave
;
2388 dprintk("too many slave frontend");
2391 EXPORT_SYMBOL(dib8000_set_slave_frontend
);
2393 int dib8000_remove_slave_frontend(struct dvb_frontend
*fe
)
2395 struct dib8000_state
*state
= fe
->demodulator_priv
;
2396 u8 index_frontend
= 1;
2398 while ((index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (state
->fe
[index_frontend
] != NULL
))
2400 if (index_frontend
!= 1) {
2401 dprintk("remove slave fe %p (index %i)", state
->fe
[index_frontend
-1], index_frontend
-1);
2402 state
->fe
[index_frontend
] = NULL
;
2406 dprintk("no frontend to be removed");
2409 EXPORT_SYMBOL(dib8000_remove_slave_frontend
);
2411 struct dvb_frontend
*dib8000_get_slave_frontend(struct dvb_frontend
*fe
, int slave_index
)
2413 struct dib8000_state
*state
= fe
->demodulator_priv
;
2415 if (slave_index
>= MAX_NUMBER_OF_FRONTENDS
)
2417 return state
->fe
[slave_index
];
2419 EXPORT_SYMBOL(dib8000_get_slave_frontend
);
2422 int dib8000_i2c_enumeration(struct i2c_adapter
*host
, int no_of_demods
, u8 default_addr
, u8 first_addr
)
2426 struct i2c_device client
= {.adap
= host
};
2428 client
.i2c_write_buffer
= kzalloc(4 * sizeof(u8
), GFP_KERNEL
);
2429 if (!client
.i2c_write_buffer
) {
2430 dprintk("%s: not enough memory", __func__
);
2433 client
.i2c_read_buffer
= kzalloc(4 * sizeof(u8
), GFP_KERNEL
);
2434 if (!client
.i2c_read_buffer
) {
2435 dprintk("%s: not enough memory", __func__
);
2440 for (k
= no_of_demods
- 1; k
>= 0; k
--) {
2441 /* designated i2c address */
2442 new_addr
= first_addr
+ (k
<< 1);
2444 client
.addr
= new_addr
;
2445 dib8000_i2c_write16(&client
, 1287, 0x0003); /* sram lead in, rdy */
2446 if (dib8000_identify(&client
) == 0) {
2447 dib8000_i2c_write16(&client
, 1287, 0x0003); /* sram lead in, rdy */
2448 client
.addr
= default_addr
;
2449 if (dib8000_identify(&client
) == 0) {
2450 dprintk("#%d: not identified", k
);
2456 /* start diversity to pull_down div_str - just for i2c-enumeration */
2457 dib8000_i2c_write16(&client
, 1286, (1 << 10) | (4 << 6));
2459 /* set new i2c address and force divstart */
2460 dib8000_i2c_write16(&client
, 1285, (new_addr
<< 2) | 0x2);
2461 client
.addr
= new_addr
;
2462 dib8000_identify(&client
);
2464 dprintk("IC %d initialized (to i2c_address 0x%x)", k
, new_addr
);
2467 for (k
= 0; k
< no_of_demods
; k
++) {
2468 new_addr
= first_addr
| (k
<< 1);
2469 client
.addr
= new_addr
;
2472 dib8000_i2c_write16(&client
, 1285, new_addr
<< 2);
2474 /* deactivate div - it was just for i2c-enumeration */
2475 dib8000_i2c_write16(&client
, 1286, 0);
2479 kfree(client
.i2c_read_buffer
);
2481 kfree(client
.i2c_write_buffer
);
2486 EXPORT_SYMBOL(dib8000_i2c_enumeration
);
2487 static int dib8000_fe_get_tune_settings(struct dvb_frontend
*fe
, struct dvb_frontend_tune_settings
*tune
)
2489 tune
->min_delay_ms
= 1000;
2490 tune
->step_size
= 0;
2491 tune
->max_drift
= 0;
2495 static void dib8000_release(struct dvb_frontend
*fe
)
2497 struct dib8000_state
*st
= fe
->demodulator_priv
;
2500 for (index_frontend
= 1; (index_frontend
< MAX_NUMBER_OF_FRONTENDS
) && (st
->fe
[index_frontend
] != NULL
); index_frontend
++)
2501 dvb_frontend_detach(st
->fe
[index_frontend
]);
2503 dibx000_exit_i2c_master(&st
->i2c_master
);
2508 struct i2c_adapter
*dib8000_get_i2c_master(struct dvb_frontend
*fe
, enum dibx000_i2c_interface intf
, int gating
)
2510 struct dib8000_state
*st
= fe
->demodulator_priv
;
2511 return dibx000_get_i2c_adapter(&st
->i2c_master
, intf
, gating
);
2514 EXPORT_SYMBOL(dib8000_get_i2c_master
);
2516 int dib8000_pid_filter_ctrl(struct dvb_frontend
*fe
, u8 onoff
)
2518 struct dib8000_state
*st
= fe
->demodulator_priv
;
2519 u16 val
= dib8000_read_word(st
, 299) & 0xffef;
2520 val
|= (onoff
& 0x1) << 4;
2522 dprintk("pid filter enabled %d", onoff
);
2523 return dib8000_write_word(st
, 299, val
);
2525 EXPORT_SYMBOL(dib8000_pid_filter_ctrl
);
2527 int dib8000_pid_filter(struct dvb_frontend
*fe
, u8 id
, u16 pid
, u8 onoff
)
2529 struct dib8000_state
*st
= fe
->demodulator_priv
;
2530 dprintk("Index %x, PID %d, OnOff %d", id
, pid
, onoff
);
2531 return dib8000_write_word(st
, 305 + id
, onoff
? (1 << 13) | pid
: 0);
2533 EXPORT_SYMBOL(dib8000_pid_filter
);
2535 static const struct dvb_frontend_ops dib8000_ops
= {
2537 .name
= "DiBcom 8000 ISDB-T",
2539 .frequency_min
= 44250000,
2540 .frequency_max
= 867250000,
2541 .frequency_stepsize
= 62500,
2542 .caps
= FE_CAN_INVERSION_AUTO
|
2543 FE_CAN_FEC_1_2
| FE_CAN_FEC_2_3
| FE_CAN_FEC_3_4
|
2544 FE_CAN_FEC_5_6
| FE_CAN_FEC_7_8
| FE_CAN_FEC_AUTO
|
2545 FE_CAN_QPSK
| FE_CAN_QAM_16
| FE_CAN_QAM_64
| FE_CAN_QAM_AUTO
|
2546 FE_CAN_TRANSMISSION_MODE_AUTO
| FE_CAN_GUARD_INTERVAL_AUTO
| FE_CAN_RECOVER
| FE_CAN_HIERARCHY_AUTO
,
2549 .release
= dib8000_release
,
2551 .init
= dib8000_wakeup
,
2552 .sleep
= dib8000_sleep
,
2554 .set_frontend
= dib8000_set_frontend
,
2555 .get_tune_settings
= dib8000_fe_get_tune_settings
,
2556 .get_frontend
= dib8000_get_frontend
,
2558 .read_status
= dib8000_read_status
,
2559 .read_ber
= dib8000_read_ber
,
2560 .read_signal_strength
= dib8000_read_signal_strength
,
2561 .read_snr
= dib8000_read_snr
,
2562 .read_ucblocks
= dib8000_read_unc_blocks
,
2565 struct dvb_frontend
*dib8000_attach(struct i2c_adapter
*i2c_adap
, u8 i2c_addr
, struct dib8000_config
*cfg
)
2567 struct dvb_frontend
*fe
;
2568 struct dib8000_state
*state
;
2570 dprintk("dib8000_attach");
2572 state
= kzalloc(sizeof(struct dib8000_state
), GFP_KERNEL
);
2575 fe
= kzalloc(sizeof(struct dvb_frontend
), GFP_KERNEL
);
2579 memcpy(&state
->cfg
, cfg
, sizeof(struct dib8000_config
));
2580 state
->i2c
.adap
= i2c_adap
;
2581 state
->i2c
.addr
= i2c_addr
;
2582 state
->i2c
.i2c_write_buffer
= state
->i2c_write_buffer
;
2583 state
->i2c
.i2c_read_buffer
= state
->i2c_read_buffer
;
2584 state
->gpio_val
= cfg
->gpio_val
;
2585 state
->gpio_dir
= cfg
->gpio_dir
;
2587 /* Ensure the output mode remains at the previous default if it's
2588 * not specifically set by the caller.
2590 if ((state
->cfg
.output_mode
!= OUTMODE_MPEG2_SERIAL
) && (state
->cfg
.output_mode
!= OUTMODE_MPEG2_PAR_GATED_CLK
))
2591 state
->cfg
.output_mode
= OUTMODE_MPEG2_FIFO
;
2594 fe
->demodulator_priv
= state
;
2595 memcpy(&state
->fe
[0]->ops
, &dib8000_ops
, sizeof(struct dvb_frontend_ops
));
2597 state
->timf_default
= cfg
->pll
->timf
;
2599 if (dib8000_identify(&state
->i2c
) == 0)
2602 dibx000_init_i2c_master(&state
->i2c_master
, DIB8000
, state
->i2c
.adap
, state
->i2c
.addr
);
2606 dib8000_write_word(state
, 285, (dib8000_read_word(state
, 285) & ~0x60) | (3 << 5)); /* ber_rs_len = 3 */
2615 EXPORT_SYMBOL(dib8000_attach
);
2617 MODULE_AUTHOR("Olivier Grenie <Olivier.Grenie@dibcom.fr, " "Patrick Boettcher <pboettcher@dibcom.fr>");
2618 MODULE_DESCRIPTION("Driver for the DiBcom 8000 ISDB-T demodulator");
2619 MODULE_LICENSE("GPL");