Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / drivers / media / video / cx25840 / cx25840-ir.c
blob7eb79af28aa3737780ca3cf7ea101b5530094874
1 /*
2 * Driver for the Conexant CX2584x Audio/Video decoder chip and related cores
4 * Integrated Consumer Infrared Controller
6 * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
24 #include <linux/slab.h>
25 #include <linux/kfifo.h>
26 #include <media/cx25840.h>
27 #include <media/rc-core.h>
29 #include "cx25840-core.h"
31 static unsigned int ir_debug;
32 module_param(ir_debug, int, 0644);
33 MODULE_PARM_DESC(ir_debug, "enable integrated IR debug messages");
35 #define CX25840_IR_REG_BASE 0x200
37 #define CX25840_IR_CNTRL_REG 0x200
38 #define CNTRL_WIN_3_3 0x00000000
39 #define CNTRL_WIN_4_3 0x00000001
40 #define CNTRL_WIN_3_4 0x00000002
41 #define CNTRL_WIN_4_4 0x00000003
42 #define CNTRL_WIN 0x00000003
43 #define CNTRL_EDG_NONE 0x00000000
44 #define CNTRL_EDG_FALL 0x00000004
45 #define CNTRL_EDG_RISE 0x00000008
46 #define CNTRL_EDG_BOTH 0x0000000C
47 #define CNTRL_EDG 0x0000000C
48 #define CNTRL_DMD 0x00000010
49 #define CNTRL_MOD 0x00000020
50 #define CNTRL_RFE 0x00000040
51 #define CNTRL_TFE 0x00000080
52 #define CNTRL_RXE 0x00000100
53 #define CNTRL_TXE 0x00000200
54 #define CNTRL_RIC 0x00000400
55 #define CNTRL_TIC 0x00000800
56 #define CNTRL_CPL 0x00001000
57 #define CNTRL_LBM 0x00002000
58 #define CNTRL_R 0x00004000
60 #define CX25840_IR_TXCLK_REG 0x204
61 #define TXCLK_TCD 0x0000FFFF
63 #define CX25840_IR_RXCLK_REG 0x208
64 #define RXCLK_RCD 0x0000FFFF
66 #define CX25840_IR_CDUTY_REG 0x20C
67 #define CDUTY_CDC 0x0000000F
69 #define CX25840_IR_STATS_REG 0x210
70 #define STATS_RTO 0x00000001
71 #define STATS_ROR 0x00000002
72 #define STATS_RBY 0x00000004
73 #define STATS_TBY 0x00000008
74 #define STATS_RSR 0x00000010
75 #define STATS_TSR 0x00000020
77 #define CX25840_IR_IRQEN_REG 0x214
78 #define IRQEN_RTE 0x00000001
79 #define IRQEN_ROE 0x00000002
80 #define IRQEN_RSE 0x00000010
81 #define IRQEN_TSE 0x00000020
82 #define IRQEN_MSK 0x00000033
84 #define CX25840_IR_FILTR_REG 0x218
85 #define FILTR_LPF 0x0000FFFF
87 #define CX25840_IR_FIFO_REG 0x23C
88 #define FIFO_RXTX 0x0000FFFF
89 #define FIFO_RXTX_LVL 0x00010000
90 #define FIFO_RXTX_RTO 0x0001FFFF
91 #define FIFO_RX_NDV 0x00020000
92 #define FIFO_RX_DEPTH 8
93 #define FIFO_TX_DEPTH 8
95 #define CX25840_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
96 #define CX25840_IR_REFCLK_FREQ (CX25840_VIDCLK_FREQ / 2)
99 * We use this union internally for convenience, but callers to tx_write
100 * and rx_read will be expecting records of type struct ir_raw_event.
101 * Always ensure the size of this union is dictated by struct ir_raw_event.
103 union cx25840_ir_fifo_rec {
104 u32 hw_fifo_data;
105 struct ir_raw_event ir_core_data;
108 #define CX25840_IR_RX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
109 #define CX25840_IR_TX_KFIFO_SIZE (256 * sizeof(union cx25840_ir_fifo_rec))
111 struct cx25840_ir_state {
112 struct i2c_client *c;
114 struct v4l2_subdev_ir_parameters rx_params;
115 struct mutex rx_params_lock; /* protects Rx parameter settings cache */
116 atomic_t rxclk_divider;
117 atomic_t rx_invert;
119 struct kfifo rx_kfifo;
120 spinlock_t rx_kfifo_lock; /* protect Rx data kfifo */
122 struct v4l2_subdev_ir_parameters tx_params;
123 struct mutex tx_params_lock; /* protects Tx parameter settings cache */
124 atomic_t txclk_divider;
127 static inline struct cx25840_ir_state *to_ir_state(struct v4l2_subdev *sd)
129 struct cx25840_state *state = to_state(sd);
130 return state ? state->ir_state : NULL;
135 * Rx and Tx Clock Divider register computations
137 * Note the largest clock divider value of 0xffff corresponds to:
138 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
139 * which fits in 21 bits, so we'll use unsigned int for time arguments.
141 static inline u16 count_to_clock_divider(unsigned int d)
143 if (d > RXCLK_RCD + 1)
144 d = RXCLK_RCD;
145 else if (d < 2)
146 d = 1;
147 else
148 d--;
149 return (u16) d;
152 static inline u16 ns_to_clock_divider(unsigned int ns)
154 return count_to_clock_divider(
155 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
158 static inline unsigned int clock_divider_to_ns(unsigned int divider)
160 /* Period of the Rx or Tx clock in ns */
161 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
162 CX25840_IR_REFCLK_FREQ / 1000000);
165 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
167 return count_to_clock_divider(
168 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * 16));
171 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
173 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, (divider + 1) * 16);
176 static inline u16 freq_to_clock_divider(unsigned int freq,
177 unsigned int rollovers)
179 return count_to_clock_divider(
180 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ, freq * rollovers));
183 static inline unsigned int clock_divider_to_freq(unsigned int divider,
184 unsigned int rollovers)
186 return DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ,
187 (divider + 1) * rollovers);
191 * Low Pass Filter register calculations
193 * Note the largest count value of 0xffff corresponds to:
194 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
195 * which fits in 21 bits, so we'll use unsigned int for time arguments.
197 static inline u16 count_to_lpf_count(unsigned int d)
199 if (d > FILTR_LPF)
200 d = FILTR_LPF;
201 else if (d < 4)
202 d = 0;
203 return (u16) d;
206 static inline u16 ns_to_lpf_count(unsigned int ns)
208 return count_to_lpf_count(
209 DIV_ROUND_CLOSEST(CX25840_IR_REFCLK_FREQ / 1000000 * ns, 1000));
212 static inline unsigned int lpf_count_to_ns(unsigned int count)
214 /* Duration of the Low Pass Filter rejection window in ns */
215 return DIV_ROUND_CLOSEST(count * 1000,
216 CX25840_IR_REFCLK_FREQ / 1000000);
219 static inline unsigned int lpf_count_to_us(unsigned int count)
221 /* Duration of the Low Pass Filter rejection window in us */
222 return DIV_ROUND_CLOSEST(count, CX25840_IR_REFCLK_FREQ / 1000000);
226 * FIFO register pulse width count compuations
228 static u32 clock_divider_to_resolution(u16 divider)
231 * Resolution is the duration of 1 tick of the readable portion of
232 * of the pulse width counter as read from the FIFO. The two lsb's are
233 * not readable, hence the << 2. This function returns ns.
235 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
236 CX25840_IR_REFCLK_FREQ / 1000000);
239 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
241 u64 n;
242 u32 rem;
245 * The 2 lsb's of the pulse width timer count are not readable, hence
246 * the (count << 2) | 0x3
248 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
249 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
250 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
251 n++;
252 return n;
255 #if 0
256 /* Keep as we will need this for Transmit functionality */
257 static u16 ns_to_pulse_width_count(u32 ns, u16 divider)
259 u64 n;
260 u32 d;
261 u32 rem;
264 * The 2 lsb's of the pulse width timer count are not accessible, hence
265 * the (1 << 2)
267 n = ((u64) ns) * CX25840_IR_REFCLK_FREQ / 1000000; /* millicycles */
268 d = (1 << 2) * ((u32) divider + 1) * 1000; /* millicycles/count */
269 rem = do_div(n, d);
270 if (rem >= d / 2)
271 n++;
273 if (n > FIFO_RXTX)
274 n = FIFO_RXTX;
275 else if (n == 0)
276 n = 1;
277 return (u16) n;
280 #endif
281 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
283 u64 n;
284 u32 rem;
287 * The 2 lsb's of the pulse width timer count are not readable, hence
288 * the (count << 2) | 0x3
290 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
291 rem = do_div(n, CX25840_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
292 if (rem >= CX25840_IR_REFCLK_FREQ / 1000000 / 2)
293 n++;
294 return (unsigned int) n;
298 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
300 * The total pulse clock count is an 18 bit pulse width timer count as the most
301 * significant part and (up to) 16 bit clock divider count as a modulus.
302 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
303 * width timer count's least significant bit.
305 static u64 ns_to_pulse_clocks(u32 ns)
307 u64 clocks;
308 u32 rem;
309 clocks = CX25840_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
310 rem = do_div(clocks, 1000); /* /1000 = cycles */
311 if (rem >= 1000 / 2)
312 clocks++;
313 return clocks;
316 static u16 pulse_clocks_to_clock_divider(u64 count)
318 u32 rem;
320 rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
322 /* net result needs to be rounded down and decremented by 1 */
323 if (count > RXCLK_RCD + 1)
324 count = RXCLK_RCD;
325 else if (count < 2)
326 count = 1;
327 else
328 count--;
329 return (u16) count;
333 * IR Control Register helpers
335 enum tx_fifo_watermark {
336 TX_FIFO_HALF_EMPTY = 0,
337 TX_FIFO_EMPTY = CNTRL_TIC,
340 enum rx_fifo_watermark {
341 RX_FIFO_HALF_FULL = 0,
342 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
345 static inline void control_tx_irq_watermark(struct i2c_client *c,
346 enum tx_fifo_watermark level)
348 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_TIC, level);
351 static inline void control_rx_irq_watermark(struct i2c_client *c,
352 enum rx_fifo_watermark level)
354 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_RIC, level);
357 static inline void control_tx_enable(struct i2c_client *c, bool enable)
359 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
360 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
363 static inline void control_rx_enable(struct i2c_client *c, bool enable)
365 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
366 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
369 static inline void control_tx_modulation_enable(struct i2c_client *c,
370 bool enable)
372 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_MOD,
373 enable ? CNTRL_MOD : 0);
376 static inline void control_rx_demodulation_enable(struct i2c_client *c,
377 bool enable)
379 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_DMD,
380 enable ? CNTRL_DMD : 0);
383 static inline void control_rx_s_edge_detection(struct i2c_client *c,
384 u32 edge_types)
386 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
387 edge_types & CNTRL_EDG_BOTH);
390 static void control_rx_s_carrier_window(struct i2c_client *c,
391 unsigned int carrier,
392 unsigned int *carrier_range_low,
393 unsigned int *carrier_range_high)
395 u32 v;
396 unsigned int c16 = carrier * 16;
398 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
399 v = CNTRL_WIN_3_4;
400 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
401 } else {
402 v = CNTRL_WIN_3_3;
403 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
406 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
407 v |= CNTRL_WIN_4_3;
408 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
409 } else {
410 v |= CNTRL_WIN_3_3;
411 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
413 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_WIN, v);
416 static inline void control_tx_polarity_invert(struct i2c_client *c,
417 bool invert)
419 cx25840_and_or4(c, CX25840_IR_CNTRL_REG, ~CNTRL_CPL,
420 invert ? CNTRL_CPL : 0);
424 * IR Rx & Tx Clock Register helpers
426 static unsigned int txclk_tx_s_carrier(struct i2c_client *c,
427 unsigned int freq,
428 u16 *divider)
430 *divider = carrier_freq_to_clock_divider(freq);
431 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
432 return clock_divider_to_carrier_freq(*divider);
435 static unsigned int rxclk_rx_s_carrier(struct i2c_client *c,
436 unsigned int freq,
437 u16 *divider)
439 *divider = carrier_freq_to_clock_divider(freq);
440 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
441 return clock_divider_to_carrier_freq(*divider);
444 static u32 txclk_tx_s_max_pulse_width(struct i2c_client *c, u32 ns,
445 u16 *divider)
447 u64 pulse_clocks;
449 if (ns > IR_MAX_DURATION)
450 ns = IR_MAX_DURATION;
451 pulse_clocks = ns_to_pulse_clocks(ns);
452 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
453 cx25840_write4(c, CX25840_IR_TXCLK_REG, *divider);
454 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
457 static u32 rxclk_rx_s_max_pulse_width(struct i2c_client *c, u32 ns,
458 u16 *divider)
460 u64 pulse_clocks;
462 if (ns > IR_MAX_DURATION)
463 ns = IR_MAX_DURATION;
464 pulse_clocks = ns_to_pulse_clocks(ns);
465 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
466 cx25840_write4(c, CX25840_IR_RXCLK_REG, *divider);
467 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
471 * IR Tx Carrier Duty Cycle register helpers
473 static unsigned int cduty_tx_s_duty_cycle(struct i2c_client *c,
474 unsigned int duty_cycle)
476 u32 n;
477 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
478 if (n != 0)
479 n--;
480 if (n > 15)
481 n = 15;
482 cx25840_write4(c, CX25840_IR_CDUTY_REG, n);
483 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
487 * IR Filter Register helpers
489 static u32 filter_rx_s_min_width(struct i2c_client *c, u32 min_width_ns)
491 u32 count = ns_to_lpf_count(min_width_ns);
492 cx25840_write4(c, CX25840_IR_FILTR_REG, count);
493 return lpf_count_to_ns(count);
497 * IR IRQ Enable Register helpers
499 static inline void irqenable_rx(struct v4l2_subdev *sd, u32 mask)
501 struct cx25840_state *state = to_state(sd);
503 if (is_cx23885(state) || is_cx23887(state))
504 mask ^= IRQEN_MSK;
505 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
506 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG,
507 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
510 static inline void irqenable_tx(struct v4l2_subdev *sd, u32 mask)
512 struct cx25840_state *state = to_state(sd);
514 if (is_cx23885(state) || is_cx23887(state))
515 mask ^= IRQEN_MSK;
516 mask &= IRQEN_TSE;
517 cx25840_and_or4(state->c, CX25840_IR_IRQEN_REG, ~IRQEN_TSE, mask);
521 * V4L2 Subdevice IR Ops
523 int cx25840_ir_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled)
525 struct cx25840_state *state = to_state(sd);
526 struct cx25840_ir_state *ir_state = to_ir_state(sd);
527 struct i2c_client *c = NULL;
528 unsigned long flags;
530 union cx25840_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
531 unsigned int i, j, k;
532 u32 events, v;
533 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
534 u32 cntrl, irqen, stats;
536 *handled = false;
537 if (ir_state == NULL)
538 return -ENODEV;
540 c = ir_state->c;
542 /* Only support the IR controller for the CX2388[57] AV Core for now */
543 if (!(is_cx23885(state) || is_cx23887(state)))
544 return -ENODEV;
546 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
547 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
548 if (is_cx23885(state) || is_cx23887(state))
549 irqen ^= IRQEN_MSK;
550 stats = cx25840_read4(c, CX25840_IR_STATS_REG);
552 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
553 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
554 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
555 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
557 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
558 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
559 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
560 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
562 v4l2_dbg(2, ir_debug, sd, "IR IRQ Status: %s %s %s %s %s %s\n",
563 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
564 rto ? "rto" : " ", ror ? "ror" : " ",
565 stats & STATS_TBY ? "tby" : " ",
566 stats & STATS_RBY ? "rby" : " ");
568 v4l2_dbg(2, ir_debug, sd, "IR IRQ Enables: %s %s %s %s\n",
569 tse ? "tse" : " ", rse ? "rse" : " ",
570 rte ? "rte" : " ", roe ? "roe" : " ");
573 * Transmitter interrupt service
575 if (tse && tsr) {
577 * TODO:
578 * Check the watermark threshold setting
579 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
580 * Push the data to the hardware FIFO.
581 * If there was nothing more to send in the tx_kfifo, disable
582 * the TSR IRQ and notify the v4l2_device.
583 * If there was something in the tx_kfifo, check the tx_kfifo
584 * level and notify the v4l2_device, if it is low.
586 /* For now, inhibit TSR interrupt until Tx is implemented */
587 irqenable_tx(sd, 0);
588 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
589 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
590 *handled = true;
594 * Receiver interrupt service
596 kror = 0;
597 if ((rse && rsr) || (rte && rto)) {
599 * Receive data on RSR to clear the STATS_RSR.
600 * Receive data on RTO, since we may not have yet hit the RSR
601 * watermark when we receive the RTO.
603 for (i = 0, v = FIFO_RX_NDV;
604 (v & FIFO_RX_NDV) && !kror; i = 0) {
605 for (j = 0;
606 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
607 v = cx25840_read4(c, CX25840_IR_FIFO_REG);
608 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
609 i++;
611 if (i == 0)
612 break;
613 j = i * sizeof(union cx25840_ir_fifo_rec);
614 k = kfifo_in_locked(&ir_state->rx_kfifo,
615 (unsigned char *) rx_data, j,
616 &ir_state->rx_kfifo_lock);
617 if (k != j)
618 kror++; /* rx_kfifo over run */
620 *handled = true;
623 events = 0;
624 v = 0;
625 if (kror) {
626 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
627 v4l2_err(sd, "IR receiver software FIFO overrun\n");
629 if (roe && ror) {
631 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
632 * the Rx FIFO Over Run status (STATS_ROR)
634 v |= CNTRL_RFE;
635 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
636 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
638 if (rte && rto) {
640 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
641 * the Rx Pulse Width Timer Time Out (STATS_RTO)
643 v |= CNTRL_RXE;
644 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
646 if (v) {
647 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
648 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl & ~v);
649 cx25840_write4(c, CX25840_IR_CNTRL_REG, cntrl);
650 *handled = true;
652 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
653 if (kfifo_len(&ir_state->rx_kfifo) >= CX25840_IR_RX_KFIFO_SIZE / 2)
654 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
655 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
657 if (events)
658 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
659 return 0;
662 /* Receiver */
663 static int cx25840_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
664 ssize_t *num)
666 struct cx25840_ir_state *ir_state = to_ir_state(sd);
667 bool invert;
668 u16 divider;
669 unsigned int i, n;
670 union cx25840_ir_fifo_rec *p;
671 unsigned u, v;
673 if (ir_state == NULL)
674 return -ENODEV;
676 invert = (bool) atomic_read(&ir_state->rx_invert);
677 divider = (u16) atomic_read(&ir_state->rxclk_divider);
679 n = count / sizeof(union cx25840_ir_fifo_rec)
680 * sizeof(union cx25840_ir_fifo_rec);
681 if (n == 0) {
682 *num = 0;
683 return 0;
686 n = kfifo_out_locked(&ir_state->rx_kfifo, buf, n,
687 &ir_state->rx_kfifo_lock);
689 n /= sizeof(union cx25840_ir_fifo_rec);
690 *num = n * sizeof(union cx25840_ir_fifo_rec);
692 for (p = (union cx25840_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
694 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
695 /* Assume RTO was because of no IR light input */
696 u = 0;
697 v4l2_dbg(2, ir_debug, sd, "rx read: end of rx\n");
698 } else {
699 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
700 if (invert)
701 u = u ? 0 : 1;
704 v = (unsigned) pulse_width_count_to_ns(
705 (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
706 if (v > IR_MAX_DURATION)
707 v = IR_MAX_DURATION;
709 init_ir_raw_event(&p->ir_core_data);
710 p->ir_core_data.pulse = u;
711 p->ir_core_data.duration = v;
713 v4l2_dbg(2, ir_debug, sd, "rx read: %10u ns %s\n",
714 v, u ? "mark" : "space");
716 return 0;
719 static int cx25840_ir_rx_g_parameters(struct v4l2_subdev *sd,
720 struct v4l2_subdev_ir_parameters *p)
722 struct cx25840_ir_state *ir_state = to_ir_state(sd);
724 if (ir_state == NULL)
725 return -ENODEV;
727 mutex_lock(&ir_state->rx_params_lock);
728 memcpy(p, &ir_state->rx_params,
729 sizeof(struct v4l2_subdev_ir_parameters));
730 mutex_unlock(&ir_state->rx_params_lock);
731 return 0;
734 static int cx25840_ir_rx_shutdown(struct v4l2_subdev *sd)
736 struct cx25840_ir_state *ir_state = to_ir_state(sd);
737 struct i2c_client *c;
739 if (ir_state == NULL)
740 return -ENODEV;
742 c = ir_state->c;
743 mutex_lock(&ir_state->rx_params_lock);
745 /* Disable or slow down all IR Rx circuits and counters */
746 irqenable_rx(sd, 0);
747 control_rx_enable(c, false);
748 control_rx_demodulation_enable(c, false);
749 control_rx_s_edge_detection(c, CNTRL_EDG_NONE);
750 filter_rx_s_min_width(c, 0);
751 cx25840_write4(c, CX25840_IR_RXCLK_REG, RXCLK_RCD);
753 ir_state->rx_params.shutdown = true;
755 mutex_unlock(&ir_state->rx_params_lock);
756 return 0;
759 static int cx25840_ir_rx_s_parameters(struct v4l2_subdev *sd,
760 struct v4l2_subdev_ir_parameters *p)
762 struct cx25840_ir_state *ir_state = to_ir_state(sd);
763 struct i2c_client *c;
764 struct v4l2_subdev_ir_parameters *o;
765 u16 rxclk_divider;
767 if (ir_state == NULL)
768 return -ENODEV;
770 if (p->shutdown)
771 return cx25840_ir_rx_shutdown(sd);
773 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
774 return -ENOSYS;
776 c = ir_state->c;
777 o = &ir_state->rx_params;
779 mutex_lock(&ir_state->rx_params_lock);
781 o->shutdown = p->shutdown;
783 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
784 o->mode = p->mode;
786 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
787 o->bytes_per_data_element = p->bytes_per_data_element;
789 /* Before we tweak the hardware, we have to disable the receiver */
790 irqenable_rx(sd, 0);
791 control_rx_enable(c, false);
793 control_rx_demodulation_enable(c, p->modulation);
794 o->modulation = p->modulation;
796 if (p->modulation) {
797 p->carrier_freq = rxclk_rx_s_carrier(c, p->carrier_freq,
798 &rxclk_divider);
800 o->carrier_freq = p->carrier_freq;
802 p->duty_cycle = 50;
803 o->duty_cycle = p->duty_cycle;
805 control_rx_s_carrier_window(c, p->carrier_freq,
806 &p->carrier_range_lower,
807 &p->carrier_range_upper);
808 o->carrier_range_lower = p->carrier_range_lower;
809 o->carrier_range_upper = p->carrier_range_upper;
811 p->max_pulse_width =
812 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
813 } else {
814 p->max_pulse_width =
815 rxclk_rx_s_max_pulse_width(c, p->max_pulse_width,
816 &rxclk_divider);
818 o->max_pulse_width = p->max_pulse_width;
819 atomic_set(&ir_state->rxclk_divider, rxclk_divider);
821 p->noise_filter_min_width =
822 filter_rx_s_min_width(c, p->noise_filter_min_width);
823 o->noise_filter_min_width = p->noise_filter_min_width;
825 p->resolution = clock_divider_to_resolution(rxclk_divider);
826 o->resolution = p->resolution;
828 /* FIXME - make this dependent on resolution for better performance */
829 control_rx_irq_watermark(c, RX_FIFO_HALF_FULL);
831 control_rx_s_edge_detection(c, CNTRL_EDG_BOTH);
833 o->invert_level = p->invert_level;
834 atomic_set(&ir_state->rx_invert, p->invert_level);
836 o->interrupt_enable = p->interrupt_enable;
837 o->enable = p->enable;
838 if (p->enable) {
839 unsigned long flags;
841 spin_lock_irqsave(&ir_state->rx_kfifo_lock, flags);
842 kfifo_reset(&ir_state->rx_kfifo);
843 spin_unlock_irqrestore(&ir_state->rx_kfifo_lock, flags);
844 if (p->interrupt_enable)
845 irqenable_rx(sd, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
846 control_rx_enable(c, p->enable);
849 mutex_unlock(&ir_state->rx_params_lock);
850 return 0;
853 /* Transmitter */
854 static int cx25840_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
855 ssize_t *num)
857 struct cx25840_ir_state *ir_state = to_ir_state(sd);
858 struct i2c_client *c;
860 if (ir_state == NULL)
861 return -ENODEV;
863 c = ir_state->c;
864 #if 0
866 * FIXME - the code below is an incomplete and untested sketch of what
867 * may need to be done. The critical part is to get 4 (or 8) pulses
868 * from the tx_kfifo, or converted from ns to the proper units from the
869 * input, and push them off to the hardware Tx FIFO right away, if the
870 * HW TX fifo needs service. The rest can be pushed to the tx_kfifo in
871 * a less critical timeframe. Also watch out for overruning the
872 * tx_kfifo - don't let it happen and let the caller know not all his
873 * pulses were written.
875 u32 *ns_pulse = (u32 *) buf;
876 unsigned int n;
877 u32 fifo_pulse[FIFO_TX_DEPTH];
878 u32 mark;
880 /* Compute how much we can fit in the tx kfifo */
881 n = CX25840_IR_TX_KFIFO_SIZE - kfifo_len(ir_state->tx_kfifo);
882 n = min(n, (unsigned int) count);
883 n /= sizeof(u32);
885 /* FIXME - turn on Tx Fifo service interrupt
886 * check hardware fifo level, and other stuff
888 for (i = 0; i < n; ) {
889 for (j = 0; j < FIFO_TX_DEPTH / 2 && i < n; j++) {
890 mark = ns_pulse[i] & LEVEL_MASK;
891 fifo_pulse[j] = ns_to_pulse_width_count(
892 ns_pulse[i] &
893 ~LEVEL_MASK,
894 ir_state->txclk_divider);
895 if (mark)
896 fifo_pulse[j] &= FIFO_RXTX_LVL;
897 i++;
899 kfifo_put(ir_state->tx_kfifo, (u8 *) fifo_pulse,
900 j * sizeof(u32));
902 *num = n * sizeof(u32);
903 #else
904 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
905 irqenable_tx(sd, IRQEN_TSE);
906 *num = count;
907 #endif
908 return 0;
911 static int cx25840_ir_tx_g_parameters(struct v4l2_subdev *sd,
912 struct v4l2_subdev_ir_parameters *p)
914 struct cx25840_ir_state *ir_state = to_ir_state(sd);
916 if (ir_state == NULL)
917 return -ENODEV;
919 mutex_lock(&ir_state->tx_params_lock);
920 memcpy(p, &ir_state->tx_params,
921 sizeof(struct v4l2_subdev_ir_parameters));
922 mutex_unlock(&ir_state->tx_params_lock);
923 return 0;
926 static int cx25840_ir_tx_shutdown(struct v4l2_subdev *sd)
928 struct cx25840_ir_state *ir_state = to_ir_state(sd);
929 struct i2c_client *c;
931 if (ir_state == NULL)
932 return -ENODEV;
934 c = ir_state->c;
935 mutex_lock(&ir_state->tx_params_lock);
937 /* Disable or slow down all IR Tx circuits and counters */
938 irqenable_tx(sd, 0);
939 control_tx_enable(c, false);
940 control_tx_modulation_enable(c, false);
941 cx25840_write4(c, CX25840_IR_TXCLK_REG, TXCLK_TCD);
943 ir_state->tx_params.shutdown = true;
945 mutex_unlock(&ir_state->tx_params_lock);
946 return 0;
949 static int cx25840_ir_tx_s_parameters(struct v4l2_subdev *sd,
950 struct v4l2_subdev_ir_parameters *p)
952 struct cx25840_ir_state *ir_state = to_ir_state(sd);
953 struct i2c_client *c;
954 struct v4l2_subdev_ir_parameters *o;
955 u16 txclk_divider;
957 if (ir_state == NULL)
958 return -ENODEV;
960 if (p->shutdown)
961 return cx25840_ir_tx_shutdown(sd);
963 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
964 return -ENOSYS;
966 c = ir_state->c;
967 o = &ir_state->tx_params;
968 mutex_lock(&ir_state->tx_params_lock);
970 o->shutdown = p->shutdown;
972 p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
973 o->mode = p->mode;
975 p->bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec);
976 o->bytes_per_data_element = p->bytes_per_data_element;
978 /* Before we tweak the hardware, we have to disable the transmitter */
979 irqenable_tx(sd, 0);
980 control_tx_enable(c, false);
982 control_tx_modulation_enable(c, p->modulation);
983 o->modulation = p->modulation;
985 if (p->modulation) {
986 p->carrier_freq = txclk_tx_s_carrier(c, p->carrier_freq,
987 &txclk_divider);
988 o->carrier_freq = p->carrier_freq;
990 p->duty_cycle = cduty_tx_s_duty_cycle(c, p->duty_cycle);
991 o->duty_cycle = p->duty_cycle;
993 p->max_pulse_width =
994 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
995 } else {
996 p->max_pulse_width =
997 txclk_tx_s_max_pulse_width(c, p->max_pulse_width,
998 &txclk_divider);
1000 o->max_pulse_width = p->max_pulse_width;
1001 atomic_set(&ir_state->txclk_divider, txclk_divider);
1003 p->resolution = clock_divider_to_resolution(txclk_divider);
1004 o->resolution = p->resolution;
1006 /* FIXME - make this dependent on resolution for better performance */
1007 control_tx_irq_watermark(c, TX_FIFO_HALF_EMPTY);
1009 control_tx_polarity_invert(c, p->invert_carrier_sense);
1010 o->invert_carrier_sense = p->invert_carrier_sense;
1013 * FIXME: we don't have hardware help for IO pin level inversion
1014 * here like we have on the CX23888.
1015 * Act on this with some mix of logical inversion of data levels,
1016 * carrier polarity, and carrier duty cycle.
1018 o->invert_level = p->invert_level;
1020 o->interrupt_enable = p->interrupt_enable;
1021 o->enable = p->enable;
1022 if (p->enable) {
1023 /* reset tx_fifo here */
1024 if (p->interrupt_enable)
1025 irqenable_tx(sd, IRQEN_TSE);
1026 control_tx_enable(c, p->enable);
1029 mutex_unlock(&ir_state->tx_params_lock);
1030 return 0;
1035 * V4L2 Subdevice Core Ops support
1037 int cx25840_ir_log_status(struct v4l2_subdev *sd)
1039 struct cx25840_state *state = to_state(sd);
1040 struct i2c_client *c = state->c;
1041 char *s;
1042 int i, j;
1043 u32 cntrl, txclk, rxclk, cduty, stats, irqen, filtr;
1045 /* The CX23888 chip doesn't have an IR controller on the A/V core */
1046 if (is_cx23888(state))
1047 return 0;
1049 cntrl = cx25840_read4(c, CX25840_IR_CNTRL_REG);
1050 txclk = cx25840_read4(c, CX25840_IR_TXCLK_REG) & TXCLK_TCD;
1051 rxclk = cx25840_read4(c, CX25840_IR_RXCLK_REG) & RXCLK_RCD;
1052 cduty = cx25840_read4(c, CX25840_IR_CDUTY_REG) & CDUTY_CDC;
1053 stats = cx25840_read4(c, CX25840_IR_STATS_REG);
1054 irqen = cx25840_read4(c, CX25840_IR_IRQEN_REG);
1055 if (is_cx23885(state) || is_cx23887(state))
1056 irqen ^= IRQEN_MSK;
1057 filtr = cx25840_read4(c, CX25840_IR_FILTR_REG) & FILTR_LPF;
1059 v4l2_info(sd, "IR Receiver:\n");
1060 v4l2_info(sd, "\tEnabled: %s\n",
1061 cntrl & CNTRL_RXE ? "yes" : "no");
1062 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
1063 cntrl & CNTRL_DMD ? "enabled" : "disabled");
1064 v4l2_info(sd, "\tFIFO: %s\n",
1065 cntrl & CNTRL_RFE ? "enabled" : "disabled");
1066 switch (cntrl & CNTRL_EDG) {
1067 case CNTRL_EDG_NONE:
1068 s = "disabled";
1069 break;
1070 case CNTRL_EDG_FALL:
1071 s = "falling edge";
1072 break;
1073 case CNTRL_EDG_RISE:
1074 s = "rising edge";
1075 break;
1076 case CNTRL_EDG_BOTH:
1077 s = "rising & falling edges";
1078 break;
1079 default:
1080 s = "??? edge";
1081 break;
1083 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
1084 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
1085 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
1086 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1087 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
1088 v4l2_info(sd, "\tLoopback mode: %s\n",
1089 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
1090 if (cntrl & CNTRL_DMD) {
1091 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
1092 clock_divider_to_carrier_freq(rxclk));
1093 switch (cntrl & CNTRL_WIN) {
1094 case CNTRL_WIN_3_3:
1095 i = 3;
1096 j = 3;
1097 break;
1098 case CNTRL_WIN_4_3:
1099 i = 4;
1100 j = 3;
1101 break;
1102 case CNTRL_WIN_3_4:
1103 i = 3;
1104 j = 4;
1105 break;
1106 case CNTRL_WIN_4_4:
1107 i = 4;
1108 j = 4;
1109 break;
1110 default:
1111 i = 0;
1112 j = 0;
1113 break;
1115 v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
1116 "-%1d/+%1d, %u to %u Hz\n", i, j,
1117 clock_divider_to_freq(rxclk, 16 + j),
1118 clock_divider_to_freq(rxclk, 16 - i));
1120 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
1121 pulse_width_count_to_us(FIFO_RXTX, rxclk),
1122 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1123 v4l2_info(sd, "\tLow pass filter: %s\n",
1124 filtr ? "enabled" : "disabled");
1125 if (filtr)
1126 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
1127 "%u ns\n",
1128 lpf_count_to_us(filtr),
1129 lpf_count_to_ns(filtr));
1130 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1131 stats & STATS_RTO ? "yes" : "no");
1132 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1133 irqen & IRQEN_RTE ? "enabled" : "disabled");
1134 v4l2_info(sd, "\tFIFO overrun: %s\n",
1135 stats & STATS_ROR ? "yes" : "no");
1136 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1137 irqen & IRQEN_ROE ? "enabled" : "disabled");
1138 v4l2_info(sd, "\tBusy: %s\n",
1139 stats & STATS_RBY ? "yes" : "no");
1140 v4l2_info(sd, "\tFIFO service requested: %s\n",
1141 stats & STATS_RSR ? "yes" : "no");
1142 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1143 irqen & IRQEN_RSE ? "enabled" : "disabled");
1145 v4l2_info(sd, "IR Transmitter:\n");
1146 v4l2_info(sd, "\tEnabled: %s\n",
1147 cntrl & CNTRL_TXE ? "yes" : "no");
1148 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1149 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1150 v4l2_info(sd, "\tFIFO: %s\n",
1151 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1152 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1153 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1154 v4l2_info(sd, "\tCarrier polarity: %s\n",
1155 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1156 : "space:noburst mark:burst");
1157 if (cntrl & CNTRL_MOD) {
1158 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1159 clock_divider_to_carrier_freq(txclk));
1160 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1161 cduty + 1);
1163 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1164 pulse_width_count_to_us(FIFO_RXTX, txclk),
1165 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1166 v4l2_info(sd, "\tBusy: %s\n",
1167 stats & STATS_TBY ? "yes" : "no");
1168 v4l2_info(sd, "\tFIFO service requested: %s\n",
1169 stats & STATS_TSR ? "yes" : "no");
1170 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1171 irqen & IRQEN_TSE ? "enabled" : "disabled");
1173 return 0;
1177 const struct v4l2_subdev_ir_ops cx25840_ir_ops = {
1178 .rx_read = cx25840_ir_rx_read,
1179 .rx_g_parameters = cx25840_ir_rx_g_parameters,
1180 .rx_s_parameters = cx25840_ir_rx_s_parameters,
1182 .tx_write = cx25840_ir_tx_write,
1183 .tx_g_parameters = cx25840_ir_tx_g_parameters,
1184 .tx_s_parameters = cx25840_ir_tx_s_parameters,
1188 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1189 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1190 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1192 .enable = false,
1193 .interrupt_enable = false,
1194 .shutdown = true,
1196 .modulation = true,
1197 .carrier_freq = 36000, /* 36 kHz - RC-5, and RC-6 carrier */
1199 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1200 /* RC-6: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1201 .noise_filter_min_width = 333333, /* ns */
1202 .carrier_range_lower = 35000,
1203 .carrier_range_upper = 37000,
1204 .invert_level = false,
1207 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1208 .bytes_per_data_element = sizeof(union cx25840_ir_fifo_rec),
1209 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1211 .enable = false,
1212 .interrupt_enable = false,
1213 .shutdown = true,
1215 .modulation = true,
1216 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1217 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1218 .invert_level = false,
1219 .invert_carrier_sense = false,
1222 int cx25840_ir_probe(struct v4l2_subdev *sd)
1224 struct cx25840_state *state = to_state(sd);
1225 struct cx25840_ir_state *ir_state;
1226 struct v4l2_subdev_ir_parameters default_params;
1228 /* Only init the IR controller for the CX2388[57] AV Core for now */
1229 if (!(is_cx23885(state) || is_cx23887(state)))
1230 return 0;
1232 ir_state = kzalloc(sizeof(struct cx25840_ir_state), GFP_KERNEL);
1233 if (ir_state == NULL)
1234 return -ENOMEM;
1236 spin_lock_init(&ir_state->rx_kfifo_lock);
1237 if (kfifo_alloc(&ir_state->rx_kfifo,
1238 CX25840_IR_RX_KFIFO_SIZE, GFP_KERNEL)) {
1239 kfree(ir_state);
1240 return -ENOMEM;
1243 ir_state->c = state->c;
1244 state->ir_state = ir_state;
1246 /* Ensure no interrupts arrive yet */
1247 if (is_cx23885(state) || is_cx23887(state))
1248 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, IRQEN_MSK);
1249 else
1250 cx25840_write4(ir_state->c, CX25840_IR_IRQEN_REG, 0);
1252 mutex_init(&ir_state->rx_params_lock);
1253 memcpy(&default_params, &default_rx_params,
1254 sizeof(struct v4l2_subdev_ir_parameters));
1255 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1257 mutex_init(&ir_state->tx_params_lock);
1258 memcpy(&default_params, &default_tx_params,
1259 sizeof(struct v4l2_subdev_ir_parameters));
1260 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1262 return 0;
1265 int cx25840_ir_remove(struct v4l2_subdev *sd)
1267 struct cx25840_state *state = to_state(sd);
1268 struct cx25840_ir_state *ir_state = to_ir_state(sd);
1270 if (ir_state == NULL)
1271 return -ENODEV;
1273 cx25840_ir_rx_shutdown(sd);
1274 cx25840_ir_tx_shutdown(sd);
1276 kfifo_free(&ir_state->rx_kfifo);
1277 kfree(ir_state);
1278 state->ir_state = NULL;
1279 return 0;