2 * Copyright (c) International Business Machines Corp., 2006
3 * Copyright (c) Nokia Corporation, 2006, 2007
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
13 * the GNU General Public License for more details.
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 * Author: Artem Bityutskiy (Битюцкий Артём)
23 * UBI input/output sub-system.
25 * This sub-system provides a uniform way to work with all kinds of the
26 * underlying MTD devices. It also implements handy functions for reading and
27 * writing UBI headers.
29 * We are trying to have a paranoid mindset and not to trust to what we read
30 * from the flash media in order to be more secure and robust. So this
31 * sub-system validates every single header it reads from the flash media.
33 * Some words about how the eraseblock headers are stored.
35 * The erase counter header is always stored at offset zero. By default, the
36 * VID header is stored after the EC header at the closest aligned offset
37 * (i.e. aligned to the minimum I/O unit size). Data starts next to the VID
38 * header at the closest aligned offset. But this default layout may be
39 * changed. For example, for different reasons (e.g., optimization) UBI may be
40 * asked to put the VID header at further offset, and even at an unaligned
41 * offset. Of course, if the offset of the VID header is unaligned, UBI adds
42 * proper padding in front of it. Data offset may also be changed but it has to
45 * About minimal I/O units. In general, UBI assumes flash device model where
46 * there is only one minimal I/O unit size. E.g., in case of NOR flash it is 1,
47 * in case of NAND flash it is a NAND page, etc. This is reported by MTD in the
48 * @ubi->mtd->writesize field. But as an exception, UBI admits of using another
49 * (smaller) minimal I/O unit size for EC and VID headers to make it possible
50 * to do different optimizations.
52 * This is extremely useful in case of NAND flashes which admit of several
53 * write operations to one NAND page. In this case UBI can fit EC and VID
54 * headers at one NAND page. Thus, UBI may use "sub-page" size as the minimal
55 * I/O unit for the headers (the @ubi->hdrs_min_io_size field). But it still
56 * reports NAND page size (@ubi->min_io_size) as a minimal I/O unit for the UBI
59 * Example: some Samsung NANDs with 2KiB pages allow 4x 512-byte writes, so
60 * although the minimal I/O unit is 2K, UBI uses 512 bytes for EC and VID
63 * Q: why not just to treat sub-page as a minimal I/O unit of this flash
64 * device, e.g., make @ubi->min_io_size = 512 in the example above?
66 * A: because when writing a sub-page, MTD still writes a full 2K page but the
67 * bytes which are not relevant to the sub-page are 0xFF. So, basically,
68 * writing 4x512 sub-pages is 4 times slower than writing one 2KiB NAND page.
69 * Thus, we prefer to use sub-pages only for EC and VID headers.
71 * As it was noted above, the VID header may start at a non-aligned offset.
72 * For example, in case of a 2KiB page NAND flash with a 512 bytes sub-page,
73 * the VID header may reside at offset 1984 which is the last 64 bytes of the
74 * last sub-page (EC header is always at offset zero). This causes some
75 * difficulties when reading and writing VID headers.
77 * Suppose we have a 64-byte buffer and we read a VID header at it. We change
78 * the data and want to write this VID header out. As we can only write in
79 * 512-byte chunks, we have to allocate one more buffer and copy our VID header
80 * to offset 448 of this buffer.
82 * The I/O sub-system does the following trick in order to avoid this extra
83 * copy. It always allocates a @ubi->vid_hdr_alsize bytes buffer for the VID
84 * header and returns a pointer to offset @ubi->vid_hdr_shift of this buffer.
85 * When the VID header is being written out, it shifts the VID header pointer
86 * back and writes the whole sub-page.
89 #include <linux/crc32.h>
90 #include <linux/err.h>
91 #include <linux/slab.h>
94 #ifdef CONFIG_MTD_UBI_DEBUG
95 static int paranoid_check_not_bad(const struct ubi_device
*ubi
, int pnum
);
96 static int paranoid_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
);
97 static int paranoid_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
98 const struct ubi_ec_hdr
*ec_hdr
);
99 static int paranoid_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
);
100 static int paranoid_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
101 const struct ubi_vid_hdr
*vid_hdr
);
103 #define paranoid_check_not_bad(ubi, pnum) 0
104 #define paranoid_check_peb_ec_hdr(ubi, pnum) 0
105 #define paranoid_check_ec_hdr(ubi, pnum, ec_hdr) 0
106 #define paranoid_check_peb_vid_hdr(ubi, pnum) 0
107 #define paranoid_check_vid_hdr(ubi, pnum, vid_hdr) 0
111 * ubi_io_read - read data from a physical eraseblock.
112 * @ubi: UBI device description object
113 * @buf: buffer where to store the read data
114 * @pnum: physical eraseblock number to read from
115 * @offset: offset within the physical eraseblock from where to read
116 * @len: how many bytes to read
118 * This function reads data from offset @offset of physical eraseblock @pnum
119 * and stores the read data in the @buf buffer. The following return codes are
122 * o %0 if all the requested data were successfully read;
123 * o %UBI_IO_BITFLIPS if all the requested data were successfully read, but
124 * correctable bit-flips were detected; this is harmless but may indicate
125 * that this eraseblock may become bad soon (but do not have to);
126 * o %-EBADMSG if the MTD subsystem reported about data integrity problems, for
127 * example it can be an ECC error in case of NAND; this most probably means
128 * that the data is corrupted;
129 * o %-EIO if some I/O error occurred;
130 * o other negative error codes in case of other errors.
132 int ubi_io_read(const struct ubi_device
*ubi
, void *buf
, int pnum
, int offset
,
135 int err
, retries
= 0;
139 dbg_io("read %d bytes from PEB %d:%d", len
, pnum
, offset
);
141 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
142 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
145 err
= paranoid_check_not_bad(ubi
, pnum
);
150 * Deliberately corrupt the buffer to improve robustness. Indeed, if we
151 * do not do this, the following may happen:
152 * 1. The buffer contains data from previous operation, e.g., read from
153 * another PEB previously. The data looks like expected, e.g., if we
154 * just do not read anything and return - the caller would not
155 * notice this. E.g., if we are reading a VID header, the buffer may
156 * contain a valid VID header from another PEB.
157 * 2. The driver is buggy and returns us success or -EBADMSG or
158 * -EUCLEAN, but it does not actually put any data to the buffer.
160 * This may confuse UBI or upper layers - they may think the buffer
161 * contains valid data while in fact it is just old data. This is
162 * especially possible because UBI (and UBIFS) relies on CRC, and
163 * treats data as correct even in case of ECC errors if the CRC is
166 * Try to prevent this situation by changing the first byte of the
169 *((uint8_t *)buf
) ^= 0xFF;
171 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
173 err
= ubi
->mtd
->read(ubi
->mtd
, addr
, len
, &read
, buf
);
175 const char *errstr
= (err
== -EBADMSG
) ? " (ECC error)" : "";
177 if (err
== -EUCLEAN
) {
179 * -EUCLEAN is reported if there was a bit-flip which
180 * was corrected, so this is harmless.
182 * We do not report about it here unless debugging is
183 * enabled. A corresponding message will be printed
184 * later, when it is has been scrubbed.
186 dbg_msg("fixable bit-flip detected at PEB %d", pnum
);
187 ubi_assert(len
== read
);
188 return UBI_IO_BITFLIPS
;
191 if (retries
++ < UBI_IO_RETRIES
) {
192 dbg_io("error %d%s while reading %d bytes from PEB "
193 "%d:%d, read only %zd bytes, retry",
194 err
, errstr
, len
, pnum
, offset
, read
);
199 ubi_err("error %d%s while reading %d bytes from PEB %d:%d, "
200 "read %zd bytes", err
, errstr
, len
, pnum
, offset
, read
);
201 ubi_dbg_dump_stack();
204 * The driver should never return -EBADMSG if it failed to read
205 * all the requested data. But some buggy drivers might do
206 * this, so we change it to -EIO.
208 if (read
!= len
&& err
== -EBADMSG
) {
213 ubi_assert(len
== read
);
215 if (ubi_dbg_is_bitflip(ubi
)) {
216 dbg_gen("bit-flip (emulated)");
217 err
= UBI_IO_BITFLIPS
;
225 * ubi_io_write - write data to a physical eraseblock.
226 * @ubi: UBI device description object
227 * @buf: buffer with the data to write
228 * @pnum: physical eraseblock number to write to
229 * @offset: offset within the physical eraseblock where to write
230 * @len: how many bytes to write
232 * This function writes @len bytes of data from buffer @buf to offset @offset
233 * of physical eraseblock @pnum. If all the data were successfully written,
234 * zero is returned. If an error occurred, this function returns a negative
235 * error code. If %-EIO is returned, the physical eraseblock most probably went
238 * Note, in case of an error, it is possible that something was still written
239 * to the flash media, but may be some garbage.
241 int ubi_io_write(struct ubi_device
*ubi
, const void *buf
, int pnum
, int offset
,
248 dbg_io("write %d bytes to PEB %d:%d", len
, pnum
, offset
);
250 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
251 ubi_assert(offset
>= 0 && offset
+ len
<= ubi
->peb_size
);
252 ubi_assert(offset
% ubi
->hdrs_min_io_size
== 0);
253 ubi_assert(len
> 0 && len
% ubi
->hdrs_min_io_size
== 0);
256 ubi_err("read-only mode");
260 /* The below has to be compiled out if paranoid checks are disabled */
262 err
= paranoid_check_not_bad(ubi
, pnum
);
266 /* The area we are writing to has to contain all 0xFF bytes */
267 err
= ubi_dbg_check_all_ff(ubi
, pnum
, offset
, len
);
271 if (offset
>= ubi
->leb_start
) {
273 * We write to the data area of the physical eraseblock. Make
274 * sure it has valid EC and VID headers.
276 err
= paranoid_check_peb_ec_hdr(ubi
, pnum
);
279 err
= paranoid_check_peb_vid_hdr(ubi
, pnum
);
284 if (ubi_dbg_is_write_failure(ubi
)) {
285 dbg_err("cannot write %d bytes to PEB %d:%d "
286 "(emulated)", len
, pnum
, offset
);
287 ubi_dbg_dump_stack();
291 addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
292 err
= ubi
->mtd
->write(ubi
->mtd
, addr
, len
, &written
, buf
);
294 ubi_err("error %d while writing %d bytes to PEB %d:%d, written "
295 "%zd bytes", err
, len
, pnum
, offset
, written
);
296 ubi_dbg_dump_stack();
297 ubi_dbg_dump_flash(ubi
, pnum
, offset
, len
);
299 ubi_assert(written
== len
);
302 err
= ubi_dbg_check_write(ubi
, buf
, pnum
, offset
, len
);
307 * Since we always write sequentially, the rest of the PEB has
308 * to contain only 0xFF bytes.
311 len
= ubi
->peb_size
- offset
;
313 err
= ubi_dbg_check_all_ff(ubi
, pnum
, offset
, len
);
320 * erase_callback - MTD erasure call-back.
321 * @ei: MTD erase information object.
323 * Note, even though MTD erase interface is asynchronous, all the current
324 * implementations are synchronous anyway.
326 static void erase_callback(struct erase_info
*ei
)
328 wake_up_interruptible((wait_queue_head_t
*)ei
->priv
);
332 * do_sync_erase - synchronously erase a physical eraseblock.
333 * @ubi: UBI device description object
334 * @pnum: the physical eraseblock number to erase
336 * This function synchronously erases physical eraseblock @pnum and returns
337 * zero in case of success and a negative error code in case of failure. If
338 * %-EIO is returned, the physical eraseblock most probably went bad.
340 static int do_sync_erase(struct ubi_device
*ubi
, int pnum
)
342 int err
, retries
= 0;
343 struct erase_info ei
;
344 wait_queue_head_t wq
;
346 dbg_io("erase PEB %d", pnum
);
347 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
350 ubi_err("read-only mode");
355 init_waitqueue_head(&wq
);
356 memset(&ei
, 0, sizeof(struct erase_info
));
359 ei
.addr
= (loff_t
)pnum
* ubi
->peb_size
;
360 ei
.len
= ubi
->peb_size
;
361 ei
.callback
= erase_callback
;
362 ei
.priv
= (unsigned long)&wq
;
364 err
= ubi
->mtd
->erase(ubi
->mtd
, &ei
);
366 if (retries
++ < UBI_IO_RETRIES
) {
367 dbg_io("error %d while erasing PEB %d, retry",
372 ubi_err("cannot erase PEB %d, error %d", pnum
, err
);
373 ubi_dbg_dump_stack();
377 err
= wait_event_interruptible(wq
, ei
.state
== MTD_ERASE_DONE
||
378 ei
.state
== MTD_ERASE_FAILED
);
380 ubi_err("interrupted PEB %d erasure", pnum
);
384 if (ei
.state
== MTD_ERASE_FAILED
) {
385 if (retries
++ < UBI_IO_RETRIES
) {
386 dbg_io("error while erasing PEB %d, retry", pnum
);
390 ubi_err("cannot erase PEB %d", pnum
);
391 ubi_dbg_dump_stack();
395 err
= ubi_dbg_check_all_ff(ubi
, pnum
, 0, ubi
->peb_size
);
399 if (ubi_dbg_is_erase_failure(ubi
)) {
400 dbg_err("cannot erase PEB %d (emulated)", pnum
);
407 /* Patterns to write to a physical eraseblock when torturing it */
408 static uint8_t patterns
[] = {0xa5, 0x5a, 0x0};
411 * torture_peb - test a supposedly bad physical eraseblock.
412 * @ubi: UBI device description object
413 * @pnum: the physical eraseblock number to test
415 * This function returns %-EIO if the physical eraseblock did not pass the
416 * test, a positive number of erase operations done if the test was
417 * successfully passed, and other negative error codes in case of other errors.
419 static int torture_peb(struct ubi_device
*ubi
, int pnum
)
421 int err
, i
, patt_count
;
423 ubi_msg("run torture test for PEB %d", pnum
);
424 patt_count
= ARRAY_SIZE(patterns
);
425 ubi_assert(patt_count
> 0);
427 mutex_lock(&ubi
->buf_mutex
);
428 for (i
= 0; i
< patt_count
; i
++) {
429 err
= do_sync_erase(ubi
, pnum
);
433 /* Make sure the PEB contains only 0xFF bytes */
434 err
= ubi_io_read(ubi
, ubi
->peb_buf1
, pnum
, 0, ubi
->peb_size
);
438 err
= ubi_check_pattern(ubi
->peb_buf1
, 0xFF, ubi
->peb_size
);
440 ubi_err("erased PEB %d, but a non-0xFF byte found",
446 /* Write a pattern and check it */
447 memset(ubi
->peb_buf1
, patterns
[i
], ubi
->peb_size
);
448 err
= ubi_io_write(ubi
, ubi
->peb_buf1
, pnum
, 0, ubi
->peb_size
);
452 memset(ubi
->peb_buf1
, ~patterns
[i
], ubi
->peb_size
);
453 err
= ubi_io_read(ubi
, ubi
->peb_buf1
, pnum
, 0, ubi
->peb_size
);
457 err
= ubi_check_pattern(ubi
->peb_buf1
, patterns
[i
],
460 ubi_err("pattern %x checking failed for PEB %d",
468 ubi_msg("PEB %d passed torture test, do not mark it as bad", pnum
);
471 mutex_unlock(&ubi
->buf_mutex
);
472 if (err
== UBI_IO_BITFLIPS
|| err
== -EBADMSG
) {
474 * If a bit-flip or data integrity error was detected, the test
475 * has not passed because it happened on a freshly erased
476 * physical eraseblock which means something is wrong with it.
478 ubi_err("read problems on freshly erased PEB %d, must be bad",
486 * nor_erase_prepare - prepare a NOR flash PEB for erasure.
487 * @ubi: UBI device description object
488 * @pnum: physical eraseblock number to prepare
490 * NOR flash, or at least some of them, have peculiar embedded PEB erasure
491 * algorithm: the PEB is first filled with zeroes, then it is erased. And
492 * filling with zeroes starts from the end of the PEB. This was observed with
493 * Spansion S29GL512N NOR flash.
495 * This means that in case of a power cut we may end up with intact data at the
496 * beginning of the PEB, and all zeroes at the end of PEB. In other words, the
497 * EC and VID headers are OK, but a large chunk of data at the end of PEB is
498 * zeroed. This makes UBI mistakenly treat this PEB as used and associate it
499 * with an LEB, which leads to subsequent failures (e.g., UBIFS fails).
501 * This function is called before erasing NOR PEBs and it zeroes out EC and VID
502 * magic numbers in order to invalidate them and prevent the failures. Returns
503 * zero in case of success and a negative error code in case of failure.
505 static int nor_erase_prepare(struct ubi_device
*ubi
, int pnum
)
512 * Note, we cannot generally define VID header buffers on stack,
513 * because of the way we deal with these buffers (see the header
514 * comment in this file). But we know this is a NOR-specific piece of
515 * code, so we can do this. But yes, this is error-prone and we should
516 * (pre-)allocate VID header buffer instead.
518 struct ubi_vid_hdr vid_hdr
;
521 * It is important to first invalidate the EC header, and then the VID
522 * header. Otherwise a power cut may lead to valid EC header and
523 * invalid VID header, in which case UBI will treat this PEB as
524 * corrupted and will try to preserve it, and print scary warnings (see
525 * the header comment in scan.c for more information).
527 addr
= (loff_t
)pnum
* ubi
->peb_size
;
528 err
= ubi
->mtd
->write(ubi
->mtd
, addr
, 4, &written
, (void *)&data
);
530 addr
+= ubi
->vid_hdr_aloffset
;
531 err
= ubi
->mtd
->write(ubi
->mtd
, addr
, 4, &written
,
538 * We failed to write to the media. This was observed with Spansion
539 * S29GL512N NOR flash. Most probably the previously eraseblock erasure
540 * was interrupted at a very inappropriate moment, so it became
541 * unwritable. In this case we probably anyway have garbage in this
544 err1
= ubi_io_read_vid_hdr(ubi
, pnum
, &vid_hdr
, 0);
545 if (err1
== UBI_IO_BAD_HDR_EBADMSG
|| err1
== UBI_IO_BAD_HDR
||
547 struct ubi_ec_hdr ec_hdr
;
549 err1
= ubi_io_read_ec_hdr(ubi
, pnum
, &ec_hdr
, 0);
550 if (err1
== UBI_IO_BAD_HDR_EBADMSG
|| err1
== UBI_IO_BAD_HDR
||
553 * Both VID and EC headers are corrupted, so we can
554 * safely erase this PEB and not afraid that it will be
555 * treated as a valid PEB in case of an unclean reboot.
561 * The PEB contains a valid VID header, but we cannot invalidate it.
562 * Supposedly the flash media or the driver is screwed up, so return an
565 ubi_err("cannot invalidate PEB %d, write returned %d read returned %d",
567 ubi_dbg_dump_flash(ubi
, pnum
, 0, ubi
->peb_size
);
572 * ubi_io_sync_erase - synchronously erase a physical eraseblock.
573 * @ubi: UBI device description object
574 * @pnum: physical eraseblock number to erase
575 * @torture: if this physical eraseblock has to be tortured
577 * This function synchronously erases physical eraseblock @pnum. If @torture
578 * flag is not zero, the physical eraseblock is checked by means of writing
579 * different patterns to it and reading them back. If the torturing is enabled,
580 * the physical eraseblock is erased more than once.
582 * This function returns the number of erasures made in case of success, %-EIO
583 * if the erasure failed or the torturing test failed, and other negative error
584 * codes in case of other errors. Note, %-EIO means that the physical
587 int ubi_io_sync_erase(struct ubi_device
*ubi
, int pnum
, int torture
)
591 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
593 err
= paranoid_check_not_bad(ubi
, pnum
);
598 ubi_err("read-only mode");
602 if (ubi
->nor_flash
) {
603 err
= nor_erase_prepare(ubi
, pnum
);
609 ret
= torture_peb(ubi
, pnum
);
614 err
= do_sync_erase(ubi
, pnum
);
622 * ubi_io_is_bad - check if a physical eraseblock is bad.
623 * @ubi: UBI device description object
624 * @pnum: the physical eraseblock number to check
626 * This function returns a positive number if the physical eraseblock is bad,
627 * zero if not, and a negative error code if an error occurred.
629 int ubi_io_is_bad(const struct ubi_device
*ubi
, int pnum
)
631 struct mtd_info
*mtd
= ubi
->mtd
;
633 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
635 if (ubi
->bad_allowed
) {
638 ret
= mtd
->block_isbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
640 ubi_err("error %d while checking if PEB %d is bad",
643 dbg_io("PEB %d is bad", pnum
);
651 * ubi_io_mark_bad - mark a physical eraseblock as bad.
652 * @ubi: UBI device description object
653 * @pnum: the physical eraseblock number to mark
655 * This function returns zero in case of success and a negative error code in
658 int ubi_io_mark_bad(const struct ubi_device
*ubi
, int pnum
)
661 struct mtd_info
*mtd
= ubi
->mtd
;
663 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
666 ubi_err("read-only mode");
670 if (!ubi
->bad_allowed
)
673 err
= mtd
->block_markbad(mtd
, (loff_t
)pnum
* ubi
->peb_size
);
675 ubi_err("cannot mark PEB %d bad, error %d", pnum
, err
);
680 * validate_ec_hdr - validate an erase counter header.
681 * @ubi: UBI device description object
682 * @ec_hdr: the erase counter header to check
684 * This function returns zero if the erase counter header is OK, and %1 if
687 static int validate_ec_hdr(const struct ubi_device
*ubi
,
688 const struct ubi_ec_hdr
*ec_hdr
)
691 int vid_hdr_offset
, leb_start
;
693 ec
= be64_to_cpu(ec_hdr
->ec
);
694 vid_hdr_offset
= be32_to_cpu(ec_hdr
->vid_hdr_offset
);
695 leb_start
= be32_to_cpu(ec_hdr
->data_offset
);
697 if (ec_hdr
->version
!= UBI_VERSION
) {
698 ubi_err("node with incompatible UBI version found: "
699 "this UBI version is %d, image version is %d",
700 UBI_VERSION
, (int)ec_hdr
->version
);
704 if (vid_hdr_offset
!= ubi
->vid_hdr_offset
) {
705 ubi_err("bad VID header offset %d, expected %d",
706 vid_hdr_offset
, ubi
->vid_hdr_offset
);
710 if (leb_start
!= ubi
->leb_start
) {
711 ubi_err("bad data offset %d, expected %d",
712 leb_start
, ubi
->leb_start
);
716 if (ec
< 0 || ec
> UBI_MAX_ERASECOUNTER
) {
717 ubi_err("bad erase counter %lld", ec
);
724 ubi_err("bad EC header");
725 ubi_dbg_dump_ec_hdr(ec_hdr
);
726 ubi_dbg_dump_stack();
731 * ubi_io_read_ec_hdr - read and check an erase counter header.
732 * @ubi: UBI device description object
733 * @pnum: physical eraseblock to read from
734 * @ec_hdr: a &struct ubi_ec_hdr object where to store the read erase counter
736 * @verbose: be verbose if the header is corrupted or was not found
738 * This function reads erase counter header from physical eraseblock @pnum and
739 * stores it in @ec_hdr. This function also checks CRC checksum of the read
740 * erase counter header. The following codes may be returned:
742 * o %0 if the CRC checksum is correct and the header was successfully read;
743 * o %UBI_IO_BITFLIPS if the CRC is correct, but bit-flips were detected
744 * and corrected by the flash driver; this is harmless but may indicate that
745 * this eraseblock may become bad soon (but may be not);
746 * o %UBI_IO_BAD_HDR if the erase counter header is corrupted (a CRC error);
747 * o %UBI_IO_BAD_HDR_EBADMSG is the same as %UBI_IO_BAD_HDR, but there also was
748 * a data integrity error (uncorrectable ECC error in case of NAND);
749 * o %UBI_IO_FF if only 0xFF bytes were read (the PEB is supposedly empty)
750 * o a negative error code in case of failure.
752 int ubi_io_read_ec_hdr(struct ubi_device
*ubi
, int pnum
,
753 struct ubi_ec_hdr
*ec_hdr
, int verbose
)
756 uint32_t crc
, magic
, hdr_crc
;
758 dbg_io("read EC header from PEB %d", pnum
);
759 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
761 read_err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
763 if (read_err
!= UBI_IO_BITFLIPS
&& read_err
!= -EBADMSG
)
767 * We read all the data, but either a correctable bit-flip
768 * occurred, or MTD reported a data integrity error
769 * (uncorrectable ECC error in case of NAND). The former is
770 * harmless, the later may mean that the read data is
771 * corrupted. But we have a CRC check-sum and we will detect
772 * this. If the EC header is still OK, we just report this as
773 * there was a bit-flip, to force scrubbing.
777 magic
= be32_to_cpu(ec_hdr
->magic
);
778 if (magic
!= UBI_EC_HDR_MAGIC
) {
779 if (read_err
== -EBADMSG
)
780 return UBI_IO_BAD_HDR_EBADMSG
;
783 * The magic field is wrong. Let's check if we have read all
784 * 0xFF. If yes, this physical eraseblock is assumed to be
787 if (ubi_check_pattern(ec_hdr
, 0xFF, UBI_EC_HDR_SIZE
)) {
788 /* The physical eraseblock is supposedly empty */
790 ubi_warn("no EC header found at PEB %d, "
791 "only 0xFF bytes", pnum
);
792 dbg_bld("no EC header found at PEB %d, "
793 "only 0xFF bytes", pnum
);
797 return UBI_IO_FF_BITFLIPS
;
801 * This is not a valid erase counter header, and these are not
802 * 0xFF bytes. Report that the header is corrupted.
805 ubi_warn("bad magic number at PEB %d: %08x instead of "
806 "%08x", pnum
, magic
, UBI_EC_HDR_MAGIC
);
807 ubi_dbg_dump_ec_hdr(ec_hdr
);
809 dbg_bld("bad magic number at PEB %d: %08x instead of "
810 "%08x", pnum
, magic
, UBI_EC_HDR_MAGIC
);
811 return UBI_IO_BAD_HDR
;
814 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
815 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
817 if (hdr_crc
!= crc
) {
819 ubi_warn("bad EC header CRC at PEB %d, calculated "
820 "%#08x, read %#08x", pnum
, crc
, hdr_crc
);
821 ubi_dbg_dump_ec_hdr(ec_hdr
);
823 dbg_bld("bad EC header CRC at PEB %d, calculated "
824 "%#08x, read %#08x", pnum
, crc
, hdr_crc
);
827 return UBI_IO_BAD_HDR
;
829 return UBI_IO_BAD_HDR_EBADMSG
;
832 /* And of course validate what has just been read from the media */
833 err
= validate_ec_hdr(ubi
, ec_hdr
);
835 ubi_err("validation failed for PEB %d", pnum
);
840 * If there was %-EBADMSG, but the header CRC is still OK, report about
841 * a bit-flip to force scrubbing on this PEB.
843 return read_err
? UBI_IO_BITFLIPS
: 0;
847 * ubi_io_write_ec_hdr - write an erase counter header.
848 * @ubi: UBI device description object
849 * @pnum: physical eraseblock to write to
850 * @ec_hdr: the erase counter header to write
852 * This function writes erase counter header described by @ec_hdr to physical
853 * eraseblock @pnum. It also fills most fields of @ec_hdr before writing, so
854 * the caller do not have to fill them. Callers must only fill the @ec_hdr->ec
857 * This function returns zero in case of success and a negative error code in
858 * case of failure. If %-EIO is returned, the physical eraseblock most probably
861 int ubi_io_write_ec_hdr(struct ubi_device
*ubi
, int pnum
,
862 struct ubi_ec_hdr
*ec_hdr
)
867 dbg_io("write EC header to PEB %d", pnum
);
868 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
870 ec_hdr
->magic
= cpu_to_be32(UBI_EC_HDR_MAGIC
);
871 ec_hdr
->version
= UBI_VERSION
;
872 ec_hdr
->vid_hdr_offset
= cpu_to_be32(ubi
->vid_hdr_offset
);
873 ec_hdr
->data_offset
= cpu_to_be32(ubi
->leb_start
);
874 ec_hdr
->image_seq
= cpu_to_be32(ubi
->image_seq
);
875 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
876 ec_hdr
->hdr_crc
= cpu_to_be32(crc
);
878 err
= paranoid_check_ec_hdr(ubi
, pnum
, ec_hdr
);
882 err
= ubi_io_write(ubi
, ec_hdr
, pnum
, 0, ubi
->ec_hdr_alsize
);
887 * validate_vid_hdr - validate a volume identifier header.
888 * @ubi: UBI device description object
889 * @vid_hdr: the volume identifier header to check
891 * This function checks that data stored in the volume identifier header
892 * @vid_hdr. Returns zero if the VID header is OK and %1 if not.
894 static int validate_vid_hdr(const struct ubi_device
*ubi
,
895 const struct ubi_vid_hdr
*vid_hdr
)
897 int vol_type
= vid_hdr
->vol_type
;
898 int copy_flag
= vid_hdr
->copy_flag
;
899 int vol_id
= be32_to_cpu(vid_hdr
->vol_id
);
900 int lnum
= be32_to_cpu(vid_hdr
->lnum
);
901 int compat
= vid_hdr
->compat
;
902 int data_size
= be32_to_cpu(vid_hdr
->data_size
);
903 int used_ebs
= be32_to_cpu(vid_hdr
->used_ebs
);
904 int data_pad
= be32_to_cpu(vid_hdr
->data_pad
);
905 int data_crc
= be32_to_cpu(vid_hdr
->data_crc
);
906 int usable_leb_size
= ubi
->leb_size
- data_pad
;
908 if (copy_flag
!= 0 && copy_flag
!= 1) {
909 dbg_err("bad copy_flag");
913 if (vol_id
< 0 || lnum
< 0 || data_size
< 0 || used_ebs
< 0 ||
915 dbg_err("negative values");
919 if (vol_id
>= UBI_MAX_VOLUMES
&& vol_id
< UBI_INTERNAL_VOL_START
) {
920 dbg_err("bad vol_id");
924 if (vol_id
< UBI_INTERNAL_VOL_START
&& compat
!= 0) {
925 dbg_err("bad compat");
929 if (vol_id
>= UBI_INTERNAL_VOL_START
&& compat
!= UBI_COMPAT_DELETE
&&
930 compat
!= UBI_COMPAT_RO
&& compat
!= UBI_COMPAT_PRESERVE
&&
931 compat
!= UBI_COMPAT_REJECT
) {
932 dbg_err("bad compat");
936 if (vol_type
!= UBI_VID_DYNAMIC
&& vol_type
!= UBI_VID_STATIC
) {
937 dbg_err("bad vol_type");
941 if (data_pad
>= ubi
->leb_size
/ 2) {
942 dbg_err("bad data_pad");
946 if (vol_type
== UBI_VID_STATIC
) {
948 * Although from high-level point of view static volumes may
949 * contain zero bytes of data, but no VID headers can contain
950 * zero at these fields, because they empty volumes do not have
951 * mapped logical eraseblocks.
954 dbg_err("zero used_ebs");
957 if (data_size
== 0) {
958 dbg_err("zero data_size");
961 if (lnum
< used_ebs
- 1) {
962 if (data_size
!= usable_leb_size
) {
963 dbg_err("bad data_size");
966 } else if (lnum
== used_ebs
- 1) {
967 if (data_size
== 0) {
968 dbg_err("bad data_size at last LEB");
972 dbg_err("too high lnum");
976 if (copy_flag
== 0) {
978 dbg_err("non-zero data CRC");
981 if (data_size
!= 0) {
982 dbg_err("non-zero data_size");
986 if (data_size
== 0) {
987 dbg_err("zero data_size of copy");
992 dbg_err("bad used_ebs");
1000 ubi_err("bad VID header");
1001 ubi_dbg_dump_vid_hdr(vid_hdr
);
1002 ubi_dbg_dump_stack();
1007 * ubi_io_read_vid_hdr - read and check a volume identifier header.
1008 * @ubi: UBI device description object
1009 * @pnum: physical eraseblock number to read from
1010 * @vid_hdr: &struct ubi_vid_hdr object where to store the read volume
1012 * @verbose: be verbose if the header is corrupted or wasn't found
1014 * This function reads the volume identifier header from physical eraseblock
1015 * @pnum and stores it in @vid_hdr. It also checks CRC checksum of the read
1016 * volume identifier header. The error codes are the same as in
1017 * 'ubi_io_read_ec_hdr()'.
1019 * Note, the implementation of this function is also very similar to
1020 * 'ubi_io_read_ec_hdr()', so refer commentaries in 'ubi_io_read_ec_hdr()'.
1022 int ubi_io_read_vid_hdr(struct ubi_device
*ubi
, int pnum
,
1023 struct ubi_vid_hdr
*vid_hdr
, int verbose
)
1026 uint32_t crc
, magic
, hdr_crc
;
1029 dbg_io("read VID header from PEB %d", pnum
);
1030 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
1032 p
= (char *)vid_hdr
- ubi
->vid_hdr_shift
;
1033 read_err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1034 ubi
->vid_hdr_alsize
);
1035 if (read_err
&& read_err
!= UBI_IO_BITFLIPS
&& read_err
!= -EBADMSG
)
1038 magic
= be32_to_cpu(vid_hdr
->magic
);
1039 if (magic
!= UBI_VID_HDR_MAGIC
) {
1040 if (read_err
== -EBADMSG
)
1041 return UBI_IO_BAD_HDR_EBADMSG
;
1043 if (ubi_check_pattern(vid_hdr
, 0xFF, UBI_VID_HDR_SIZE
)) {
1045 ubi_warn("no VID header found at PEB %d, "
1046 "only 0xFF bytes", pnum
);
1047 dbg_bld("no VID header found at PEB %d, "
1048 "only 0xFF bytes", pnum
);
1052 return UBI_IO_FF_BITFLIPS
;
1056 ubi_warn("bad magic number at PEB %d: %08x instead of "
1057 "%08x", pnum
, magic
, UBI_VID_HDR_MAGIC
);
1058 ubi_dbg_dump_vid_hdr(vid_hdr
);
1060 dbg_bld("bad magic number at PEB %d: %08x instead of "
1061 "%08x", pnum
, magic
, UBI_VID_HDR_MAGIC
);
1062 return UBI_IO_BAD_HDR
;
1065 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1066 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1068 if (hdr_crc
!= crc
) {
1070 ubi_warn("bad CRC at PEB %d, calculated %#08x, "
1071 "read %#08x", pnum
, crc
, hdr_crc
);
1072 ubi_dbg_dump_vid_hdr(vid_hdr
);
1074 dbg_bld("bad CRC at PEB %d, calculated %#08x, "
1075 "read %#08x", pnum
, crc
, hdr_crc
);
1077 return UBI_IO_BAD_HDR
;
1079 return UBI_IO_BAD_HDR_EBADMSG
;
1082 err
= validate_vid_hdr(ubi
, vid_hdr
);
1084 ubi_err("validation failed for PEB %d", pnum
);
1088 return read_err
? UBI_IO_BITFLIPS
: 0;
1092 * ubi_io_write_vid_hdr - write a volume identifier header.
1093 * @ubi: UBI device description object
1094 * @pnum: the physical eraseblock number to write to
1095 * @vid_hdr: the volume identifier header to write
1097 * This function writes the volume identifier header described by @vid_hdr to
1098 * physical eraseblock @pnum. This function automatically fills the
1099 * @vid_hdr->magic and the @vid_hdr->version fields, as well as calculates
1100 * header CRC checksum and stores it at vid_hdr->hdr_crc.
1102 * This function returns zero in case of success and a negative error code in
1103 * case of failure. If %-EIO is returned, the physical eraseblock probably went
1106 int ubi_io_write_vid_hdr(struct ubi_device
*ubi
, int pnum
,
1107 struct ubi_vid_hdr
*vid_hdr
)
1113 dbg_io("write VID header to PEB %d", pnum
);
1114 ubi_assert(pnum
>= 0 && pnum
< ubi
->peb_count
);
1116 err
= paranoid_check_peb_ec_hdr(ubi
, pnum
);
1120 vid_hdr
->magic
= cpu_to_be32(UBI_VID_HDR_MAGIC
);
1121 vid_hdr
->version
= UBI_VERSION
;
1122 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_VID_HDR_SIZE_CRC
);
1123 vid_hdr
->hdr_crc
= cpu_to_be32(crc
);
1125 err
= paranoid_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1129 p
= (char *)vid_hdr
- ubi
->vid_hdr_shift
;
1130 err
= ubi_io_write(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1131 ubi
->vid_hdr_alsize
);
1135 #ifdef CONFIG_MTD_UBI_DEBUG
1138 * paranoid_check_not_bad - ensure that a physical eraseblock is not bad.
1139 * @ubi: UBI device description object
1140 * @pnum: physical eraseblock number to check
1142 * This function returns zero if the physical eraseblock is good, %-EINVAL if
1143 * it is bad and a negative error code if an error occurred.
1145 static int paranoid_check_not_bad(const struct ubi_device
*ubi
, int pnum
)
1149 if (!ubi
->dbg
->chk_io
)
1152 err
= ubi_io_is_bad(ubi
, pnum
);
1156 ubi_err("paranoid check failed for PEB %d", pnum
);
1157 ubi_dbg_dump_stack();
1158 return err
> 0 ? -EINVAL
: err
;
1162 * paranoid_check_ec_hdr - check if an erase counter header is all right.
1163 * @ubi: UBI device description object
1164 * @pnum: physical eraseblock number the erase counter header belongs to
1165 * @ec_hdr: the erase counter header to check
1167 * This function returns zero if the erase counter header contains valid
1168 * values, and %-EINVAL if not.
1170 static int paranoid_check_ec_hdr(const struct ubi_device
*ubi
, int pnum
,
1171 const struct ubi_ec_hdr
*ec_hdr
)
1176 if (!ubi
->dbg
->chk_io
)
1179 magic
= be32_to_cpu(ec_hdr
->magic
);
1180 if (magic
!= UBI_EC_HDR_MAGIC
) {
1181 ubi_err("bad magic %#08x, must be %#08x",
1182 magic
, UBI_EC_HDR_MAGIC
);
1186 err
= validate_ec_hdr(ubi
, ec_hdr
);
1188 ubi_err("paranoid check failed for PEB %d", pnum
);
1195 ubi_dbg_dump_ec_hdr(ec_hdr
);
1196 ubi_dbg_dump_stack();
1201 * paranoid_check_peb_ec_hdr - check erase counter header.
1202 * @ubi: UBI device description object
1203 * @pnum: the physical eraseblock number to check
1205 * This function returns zero if the erase counter header is all right and and
1206 * a negative error code if not or if an error occurred.
1208 static int paranoid_check_peb_ec_hdr(const struct ubi_device
*ubi
, int pnum
)
1211 uint32_t crc
, hdr_crc
;
1212 struct ubi_ec_hdr
*ec_hdr
;
1214 if (!ubi
->dbg
->chk_io
)
1217 ec_hdr
= kzalloc(ubi
->ec_hdr_alsize
, GFP_NOFS
);
1221 err
= ubi_io_read(ubi
, ec_hdr
, pnum
, 0, UBI_EC_HDR_SIZE
);
1222 if (err
&& err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
1225 crc
= crc32(UBI_CRC32_INIT
, ec_hdr
, UBI_EC_HDR_SIZE_CRC
);
1226 hdr_crc
= be32_to_cpu(ec_hdr
->hdr_crc
);
1227 if (hdr_crc
!= crc
) {
1228 ubi_err("bad CRC, calculated %#08x, read %#08x", crc
, hdr_crc
);
1229 ubi_err("paranoid check failed for PEB %d", pnum
);
1230 ubi_dbg_dump_ec_hdr(ec_hdr
);
1231 ubi_dbg_dump_stack();
1236 err
= paranoid_check_ec_hdr(ubi
, pnum
, ec_hdr
);
1244 * paranoid_check_vid_hdr - check that a volume identifier header is all right.
1245 * @ubi: UBI device description object
1246 * @pnum: physical eraseblock number the volume identifier header belongs to
1247 * @vid_hdr: the volume identifier header to check
1249 * This function returns zero if the volume identifier header is all right, and
1252 static int paranoid_check_vid_hdr(const struct ubi_device
*ubi
, int pnum
,
1253 const struct ubi_vid_hdr
*vid_hdr
)
1258 if (!ubi
->dbg
->chk_io
)
1261 magic
= be32_to_cpu(vid_hdr
->magic
);
1262 if (magic
!= UBI_VID_HDR_MAGIC
) {
1263 ubi_err("bad VID header magic %#08x at PEB %d, must be %#08x",
1264 magic
, pnum
, UBI_VID_HDR_MAGIC
);
1268 err
= validate_vid_hdr(ubi
, vid_hdr
);
1270 ubi_err("paranoid check failed for PEB %d", pnum
);
1277 ubi_err("paranoid check failed for PEB %d", pnum
);
1278 ubi_dbg_dump_vid_hdr(vid_hdr
);
1279 ubi_dbg_dump_stack();
1285 * paranoid_check_peb_vid_hdr - check volume identifier header.
1286 * @ubi: UBI device description object
1287 * @pnum: the physical eraseblock number to check
1289 * This function returns zero if the volume identifier header is all right,
1290 * and a negative error code if not or if an error occurred.
1292 static int paranoid_check_peb_vid_hdr(const struct ubi_device
*ubi
, int pnum
)
1295 uint32_t crc
, hdr_crc
;
1296 struct ubi_vid_hdr
*vid_hdr
;
1299 if (!ubi
->dbg
->chk_io
)
1302 vid_hdr
= ubi_zalloc_vid_hdr(ubi
, GFP_NOFS
);
1306 p
= (char *)vid_hdr
- ubi
->vid_hdr_shift
;
1307 err
= ubi_io_read(ubi
, p
, pnum
, ubi
->vid_hdr_aloffset
,
1308 ubi
->vid_hdr_alsize
);
1309 if (err
&& err
!= UBI_IO_BITFLIPS
&& err
!= -EBADMSG
)
1312 crc
= crc32(UBI_CRC32_INIT
, vid_hdr
, UBI_EC_HDR_SIZE_CRC
);
1313 hdr_crc
= be32_to_cpu(vid_hdr
->hdr_crc
);
1314 if (hdr_crc
!= crc
) {
1315 ubi_err("bad VID header CRC at PEB %d, calculated %#08x, "
1316 "read %#08x", pnum
, crc
, hdr_crc
);
1317 ubi_err("paranoid check failed for PEB %d", pnum
);
1318 ubi_dbg_dump_vid_hdr(vid_hdr
);
1319 ubi_dbg_dump_stack();
1324 err
= paranoid_check_vid_hdr(ubi
, pnum
, vid_hdr
);
1327 ubi_free_vid_hdr(ubi
, vid_hdr
);
1332 * ubi_dbg_check_write - make sure write succeeded.
1333 * @ubi: UBI device description object
1334 * @buf: buffer with data which were written
1335 * @pnum: physical eraseblock number the data were written to
1336 * @offset: offset within the physical eraseblock the data were written to
1337 * @len: how many bytes were written
1339 * This functions reads data which were recently written and compares it with
1340 * the original data buffer - the data have to match. Returns zero if the data
1341 * match and a negative error code if not or in case of failure.
1343 int ubi_dbg_check_write(struct ubi_device
*ubi
, const void *buf
, int pnum
,
1344 int offset
, int len
)
1349 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1351 if (!ubi
->dbg
->chk_io
)
1354 buf1
= __vmalloc(len
, GFP_NOFS
, PAGE_KERNEL
);
1356 ubi_err("cannot allocate memory to check writes");
1360 err
= ubi
->mtd
->read(ubi
->mtd
, addr
, len
, &read
, buf1
);
1361 if (err
&& err
!= -EUCLEAN
)
1364 for (i
= 0; i
< len
; i
++) {
1365 uint8_t c
= ((uint8_t *)buf
)[i
];
1366 uint8_t c1
= ((uint8_t *)buf1
)[i
];
1372 ubi_err("paranoid check failed for PEB %d:%d, len %d",
1374 ubi_msg("data differ at position %d", i
);
1375 dump_len
= max_t(int, 128, len
- i
);
1376 ubi_msg("hex dump of the original buffer from %d to %d",
1378 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1379 buf
+ i
, dump_len
, 1);
1380 ubi_msg("hex dump of the read buffer from %d to %d",
1382 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
1383 buf1
+ i
, dump_len
, 1);
1384 ubi_dbg_dump_stack();
1398 * ubi_dbg_check_all_ff - check that a region of flash is empty.
1399 * @ubi: UBI device description object
1400 * @pnum: the physical eraseblock number to check
1401 * @offset: the starting offset within the physical eraseblock to check
1402 * @len: the length of the region to check
1404 * This function returns zero if only 0xFF bytes are present at offset
1405 * @offset of the physical eraseblock @pnum, and a negative error code if not
1406 * or if an error occurred.
1408 int ubi_dbg_check_all_ff(struct ubi_device
*ubi
, int pnum
, int offset
, int len
)
1413 loff_t addr
= (loff_t
)pnum
* ubi
->peb_size
+ offset
;
1415 if (!ubi
->dbg
->chk_io
)
1418 buf
= __vmalloc(len
, GFP_NOFS
, PAGE_KERNEL
);
1420 ubi_err("cannot allocate memory to check for 0xFFs");
1424 err
= ubi
->mtd
->read(ubi
->mtd
, addr
, len
, &read
, buf
);
1425 if (err
&& err
!= -EUCLEAN
) {
1426 ubi_err("error %d while reading %d bytes from PEB %d:%d, "
1427 "read %zd bytes", err
, len
, pnum
, offset
, read
);
1431 err
= ubi_check_pattern(buf
, 0xFF, len
);
1433 ubi_err("flash region at PEB %d:%d, length %d does not "
1434 "contain all 0xFF bytes", pnum
, offset
, len
);
1442 ubi_err("paranoid check failed for PEB %d", pnum
);
1443 ubi_msg("hex dump of the %d-%d region", offset
, offset
+ len
);
1444 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1, buf
, len
, 1);
1447 ubi_dbg_dump_stack();
1452 #endif /* CONFIG_MTD_UBI_DEBUG */