Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / drivers / net / ethernet / apple / macmace.c
blob7cf81bbffe0e6121689514bcc965d6024701f585
1 /*
2 * Driver for the Macintosh 68K onboard MACE controller with PSC
3 * driven DMA. The MACE driver code is derived from mace.c. The
4 * Mac68k theory of operation is courtesy of the MacBSD wizards.
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 * Copyright (C) 1996 Paul Mackerras.
12 * Copyright (C) 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
14 * Modified heavily by Joshua M. Thompson based on Dave Huang's NetBSD driver
16 * Copyright (C) 2007 Finn Thain
18 * Converted to DMA API, converted to unified driver model,
19 * sync'd some routines with mace.c and fixed various bugs.
23 #include <linux/kernel.h>
24 #include <linux/module.h>
25 #include <linux/netdevice.h>
26 #include <linux/etherdevice.h>
27 #include <linux/delay.h>
28 #include <linux/string.h>
29 #include <linux/crc32.h>
30 #include <linux/bitrev.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/platform_device.h>
33 #include <linux/gfp.h>
34 #include <linux/interrupt.h>
35 #include <asm/io.h>
36 #include <asm/macints.h>
37 #include <asm/mac_psc.h>
38 #include <asm/page.h>
39 #include "mace.h"
41 static char mac_mace_string[] = "macmace";
43 #define N_TX_BUFF_ORDER 0
44 #define N_TX_RING (1 << N_TX_BUFF_ORDER)
45 #define N_RX_BUFF_ORDER 3
46 #define N_RX_RING (1 << N_RX_BUFF_ORDER)
48 #define TX_TIMEOUT HZ
50 #define MACE_BUFF_SIZE 0x800
52 /* Chip rev needs workaround on HW & multicast addr change */
53 #define BROKEN_ADDRCHG_REV 0x0941
55 /* The MACE is simply wired down on a Mac68K box */
57 #define MACE_BASE (void *)(0x50F1C000)
58 #define MACE_PROM (void *)(0x50F08001)
60 struct mace_data {
61 volatile struct mace *mace;
62 unsigned char *tx_ring;
63 dma_addr_t tx_ring_phys;
64 unsigned char *rx_ring;
65 dma_addr_t rx_ring_phys;
66 int dma_intr;
67 int rx_slot, rx_tail;
68 int tx_slot, tx_sloti, tx_count;
69 int chipid;
70 struct device *device;
73 struct mace_frame {
74 u8 rcvcnt;
75 u8 pad1;
76 u8 rcvsts;
77 u8 pad2;
78 u8 rntpc;
79 u8 pad3;
80 u8 rcvcc;
81 u8 pad4;
82 u32 pad5;
83 u32 pad6;
84 u8 data[1];
85 /* And frame continues.. */
88 #define PRIV_BYTES sizeof(struct mace_data)
90 static int mace_open(struct net_device *dev);
91 static int mace_close(struct net_device *dev);
92 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev);
93 static void mace_set_multicast(struct net_device *dev);
94 static int mace_set_address(struct net_device *dev, void *addr);
95 static void mace_reset(struct net_device *dev);
96 static irqreturn_t mace_interrupt(int irq, void *dev_id);
97 static irqreturn_t mace_dma_intr(int irq, void *dev_id);
98 static void mace_tx_timeout(struct net_device *dev);
99 static void __mace_set_address(struct net_device *dev, void *addr);
102 * Load a receive DMA channel with a base address and ring length
105 static void mace_load_rxdma_base(struct net_device *dev, int set)
107 struct mace_data *mp = netdev_priv(dev);
109 psc_write_word(PSC_ENETRD_CMD + set, 0x0100);
110 psc_write_long(PSC_ENETRD_ADDR + set, (u32) mp->rx_ring_phys);
111 psc_write_long(PSC_ENETRD_LEN + set, N_RX_RING);
112 psc_write_word(PSC_ENETRD_CMD + set, 0x9800);
113 mp->rx_tail = 0;
117 * Reset the receive DMA subsystem
120 static void mace_rxdma_reset(struct net_device *dev)
122 struct mace_data *mp = netdev_priv(dev);
123 volatile struct mace *mace = mp->mace;
124 u8 maccc = mace->maccc;
126 mace->maccc = maccc & ~ENRCV;
128 psc_write_word(PSC_ENETRD_CTL, 0x8800);
129 mace_load_rxdma_base(dev, 0x00);
130 psc_write_word(PSC_ENETRD_CTL, 0x0400);
132 psc_write_word(PSC_ENETRD_CTL, 0x8800);
133 mace_load_rxdma_base(dev, 0x10);
134 psc_write_word(PSC_ENETRD_CTL, 0x0400);
136 mace->maccc = maccc;
137 mp->rx_slot = 0;
139 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x9800);
140 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x9800);
144 * Reset the transmit DMA subsystem
147 static void mace_txdma_reset(struct net_device *dev)
149 struct mace_data *mp = netdev_priv(dev);
150 volatile struct mace *mace = mp->mace;
151 u8 maccc;
153 psc_write_word(PSC_ENETWR_CTL, 0x8800);
155 maccc = mace->maccc;
156 mace->maccc = maccc & ~ENXMT;
158 mp->tx_slot = mp->tx_sloti = 0;
159 mp->tx_count = N_TX_RING;
161 psc_write_word(PSC_ENETWR_CTL, 0x0400);
162 mace->maccc = maccc;
166 * Disable DMA
169 static void mace_dma_off(struct net_device *dev)
171 psc_write_word(PSC_ENETRD_CTL, 0x8800);
172 psc_write_word(PSC_ENETRD_CTL, 0x1000);
173 psc_write_word(PSC_ENETRD_CMD + PSC_SET0, 0x1100);
174 psc_write_word(PSC_ENETRD_CMD + PSC_SET1, 0x1100);
176 psc_write_word(PSC_ENETWR_CTL, 0x8800);
177 psc_write_word(PSC_ENETWR_CTL, 0x1000);
178 psc_write_word(PSC_ENETWR_CMD + PSC_SET0, 0x1100);
179 psc_write_word(PSC_ENETWR_CMD + PSC_SET1, 0x1100);
182 static const struct net_device_ops mace_netdev_ops = {
183 .ndo_open = mace_open,
184 .ndo_stop = mace_close,
185 .ndo_start_xmit = mace_xmit_start,
186 .ndo_tx_timeout = mace_tx_timeout,
187 .ndo_set_rx_mode = mace_set_multicast,
188 .ndo_set_mac_address = mace_set_address,
189 .ndo_change_mtu = eth_change_mtu,
190 .ndo_validate_addr = eth_validate_addr,
194 * Not really much of a probe. The hardware table tells us if this
195 * model of Macintrash has a MACE (AV macintoshes)
198 static int __devinit mace_probe(struct platform_device *pdev)
200 int j;
201 struct mace_data *mp;
202 unsigned char *addr;
203 struct net_device *dev;
204 unsigned char checksum = 0;
205 int err;
207 dev = alloc_etherdev(PRIV_BYTES);
208 if (!dev)
209 return -ENOMEM;
211 mp = netdev_priv(dev);
213 mp->device = &pdev->dev;
214 SET_NETDEV_DEV(dev, &pdev->dev);
216 dev->base_addr = (u32)MACE_BASE;
217 mp->mace = MACE_BASE;
219 dev->irq = IRQ_MAC_MACE;
220 mp->dma_intr = IRQ_MAC_MACE_DMA;
222 mp->chipid = mp->mace->chipid_hi << 8 | mp->mace->chipid_lo;
225 * The PROM contains 8 bytes which total 0xFF when XOR'd
226 * together. Due to the usual peculiar apple brain damage
227 * the bytes are spaced out in a strange boundary and the
228 * bits are reversed.
231 addr = (void *)MACE_PROM;
233 for (j = 0; j < 6; ++j) {
234 u8 v = bitrev8(addr[j<<4]);
235 checksum ^= v;
236 dev->dev_addr[j] = v;
238 for (; j < 8; ++j) {
239 checksum ^= bitrev8(addr[j<<4]);
242 if (checksum != 0xFF) {
243 free_netdev(dev);
244 return -ENODEV;
247 dev->netdev_ops = &mace_netdev_ops;
248 dev->watchdog_timeo = TX_TIMEOUT;
250 printk(KERN_INFO "%s: 68K MACE, hardware address %pM\n",
251 dev->name, dev->dev_addr);
253 err = register_netdev(dev);
254 if (!err)
255 return 0;
257 free_netdev(dev);
258 return err;
262 * Reset the chip.
265 static void mace_reset(struct net_device *dev)
267 struct mace_data *mp = netdev_priv(dev);
268 volatile struct mace *mb = mp->mace;
269 int i;
271 /* soft-reset the chip */
272 i = 200;
273 while (--i) {
274 mb->biucc = SWRST;
275 if (mb->biucc & SWRST) {
276 udelay(10);
277 continue;
279 break;
281 if (!i) {
282 printk(KERN_ERR "macmace: cannot reset chip!\n");
283 return;
286 mb->maccc = 0; /* turn off tx, rx */
287 mb->imr = 0xFF; /* disable all intrs for now */
288 i = mb->ir;
290 mb->biucc = XMTSP_64;
291 mb->utr = RTRD;
292 mb->fifocc = XMTFW_8 | RCVFW_64 | XMTFWU | RCVFWU;
294 mb->xmtfc = AUTO_PAD_XMIT; /* auto-pad short frames */
295 mb->rcvfc = 0;
297 /* load up the hardware address */
298 __mace_set_address(dev, dev->dev_addr);
300 /* clear the multicast filter */
301 if (mp->chipid == BROKEN_ADDRCHG_REV)
302 mb->iac = LOGADDR;
303 else {
304 mb->iac = ADDRCHG | LOGADDR;
305 while ((mb->iac & ADDRCHG) != 0)
308 for (i = 0; i < 8; ++i)
309 mb->ladrf = 0;
311 /* done changing address */
312 if (mp->chipid != BROKEN_ADDRCHG_REV)
313 mb->iac = 0;
315 mb->plscc = PORTSEL_AUI;
319 * Load the address on a mace controller.
322 static void __mace_set_address(struct net_device *dev, void *addr)
324 struct mace_data *mp = netdev_priv(dev);
325 volatile struct mace *mb = mp->mace;
326 unsigned char *p = addr;
327 int i;
329 /* load up the hardware address */
330 if (mp->chipid == BROKEN_ADDRCHG_REV)
331 mb->iac = PHYADDR;
332 else {
333 mb->iac = ADDRCHG | PHYADDR;
334 while ((mb->iac & ADDRCHG) != 0)
337 for (i = 0; i < 6; ++i)
338 mb->padr = dev->dev_addr[i] = p[i];
339 if (mp->chipid != BROKEN_ADDRCHG_REV)
340 mb->iac = 0;
343 static int mace_set_address(struct net_device *dev, void *addr)
345 struct mace_data *mp = netdev_priv(dev);
346 volatile struct mace *mb = mp->mace;
347 unsigned long flags;
348 u8 maccc;
350 local_irq_save(flags);
352 maccc = mb->maccc;
354 __mace_set_address(dev, addr);
356 mb->maccc = maccc;
358 local_irq_restore(flags);
360 return 0;
364 * Open the Macintosh MACE. Most of this is playing with the DMA
365 * engine. The ethernet chip is quite friendly.
368 static int mace_open(struct net_device *dev)
370 struct mace_data *mp = netdev_priv(dev);
371 volatile struct mace *mb = mp->mace;
373 /* reset the chip */
374 mace_reset(dev);
376 if (request_irq(dev->irq, mace_interrupt, 0, dev->name, dev)) {
377 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, dev->irq);
378 return -EAGAIN;
380 if (request_irq(mp->dma_intr, mace_dma_intr, 0, dev->name, dev)) {
381 printk(KERN_ERR "%s: can't get irq %d\n", dev->name, mp->dma_intr);
382 free_irq(dev->irq, dev);
383 return -EAGAIN;
386 /* Allocate the DMA ring buffers */
388 mp->tx_ring = dma_alloc_coherent(mp->device,
389 N_TX_RING * MACE_BUFF_SIZE,
390 &mp->tx_ring_phys, GFP_KERNEL);
391 if (mp->tx_ring == NULL) {
392 printk(KERN_ERR "%s: unable to allocate DMA tx buffers\n", dev->name);
393 goto out1;
396 mp->rx_ring = dma_alloc_coherent(mp->device,
397 N_RX_RING * MACE_BUFF_SIZE,
398 &mp->rx_ring_phys, GFP_KERNEL);
399 if (mp->rx_ring == NULL) {
400 printk(KERN_ERR "%s: unable to allocate DMA rx buffers\n", dev->name);
401 goto out2;
404 mace_dma_off(dev);
406 /* Not sure what these do */
408 psc_write_word(PSC_ENETWR_CTL, 0x9000);
409 psc_write_word(PSC_ENETRD_CTL, 0x9000);
410 psc_write_word(PSC_ENETWR_CTL, 0x0400);
411 psc_write_word(PSC_ENETRD_CTL, 0x0400);
413 mace_rxdma_reset(dev);
414 mace_txdma_reset(dev);
416 /* turn it on! */
417 mb->maccc = ENXMT | ENRCV;
418 /* enable all interrupts except receive interrupts */
419 mb->imr = RCVINT;
420 return 0;
422 out2:
423 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
424 mp->tx_ring, mp->tx_ring_phys);
425 out1:
426 free_irq(dev->irq, dev);
427 free_irq(mp->dma_intr, dev);
428 return -ENOMEM;
432 * Shut down the mace and its interrupt channel
435 static int mace_close(struct net_device *dev)
437 struct mace_data *mp = netdev_priv(dev);
438 volatile struct mace *mb = mp->mace;
440 mb->maccc = 0; /* disable rx and tx */
441 mb->imr = 0xFF; /* disable all irqs */
442 mace_dma_off(dev); /* disable rx and tx dma */
444 return 0;
448 * Transmit a frame
451 static int mace_xmit_start(struct sk_buff *skb, struct net_device *dev)
453 struct mace_data *mp = netdev_priv(dev);
454 unsigned long flags;
456 /* Stop the queue since there's only the one buffer */
458 local_irq_save(flags);
459 netif_stop_queue(dev);
460 if (!mp->tx_count) {
461 printk(KERN_ERR "macmace: tx queue running but no free buffers.\n");
462 local_irq_restore(flags);
463 return NETDEV_TX_BUSY;
465 mp->tx_count--;
466 local_irq_restore(flags);
468 dev->stats.tx_packets++;
469 dev->stats.tx_bytes += skb->len;
471 /* We need to copy into our xmit buffer to take care of alignment and caching issues */
472 skb_copy_from_linear_data(skb, mp->tx_ring, skb->len);
474 /* load the Tx DMA and fire it off */
476 psc_write_long(PSC_ENETWR_ADDR + mp->tx_slot, (u32) mp->tx_ring_phys);
477 psc_write_long(PSC_ENETWR_LEN + mp->tx_slot, skb->len);
478 psc_write_word(PSC_ENETWR_CMD + mp->tx_slot, 0x9800);
480 mp->tx_slot ^= 0x10;
482 dev_kfree_skb(skb);
484 return NETDEV_TX_OK;
487 static void mace_set_multicast(struct net_device *dev)
489 struct mace_data *mp = netdev_priv(dev);
490 volatile struct mace *mb = mp->mace;
491 int i;
492 u32 crc;
493 u8 maccc;
494 unsigned long flags;
496 local_irq_save(flags);
497 maccc = mb->maccc;
498 mb->maccc &= ~PROM;
500 if (dev->flags & IFF_PROMISC) {
501 mb->maccc |= PROM;
502 } else {
503 unsigned char multicast_filter[8];
504 struct netdev_hw_addr *ha;
506 if (dev->flags & IFF_ALLMULTI) {
507 for (i = 0; i < 8; i++) {
508 multicast_filter[i] = 0xFF;
510 } else {
511 for (i = 0; i < 8; i++)
512 multicast_filter[i] = 0;
513 netdev_for_each_mc_addr(ha, dev) {
514 crc = ether_crc_le(6, ha->addr);
515 /* bit number in multicast_filter */
516 i = crc >> 26;
517 multicast_filter[i >> 3] |= 1 << (i & 7);
521 if (mp->chipid == BROKEN_ADDRCHG_REV)
522 mb->iac = LOGADDR;
523 else {
524 mb->iac = ADDRCHG | LOGADDR;
525 while ((mb->iac & ADDRCHG) != 0)
528 for (i = 0; i < 8; ++i)
529 mb->ladrf = multicast_filter[i];
530 if (mp->chipid != BROKEN_ADDRCHG_REV)
531 mb->iac = 0;
534 mb->maccc = maccc;
535 local_irq_restore(flags);
538 static void mace_handle_misc_intrs(struct net_device *dev, int intr)
540 struct mace_data *mp = netdev_priv(dev);
541 volatile struct mace *mb = mp->mace;
542 static int mace_babbles, mace_jabbers;
544 if (intr & MPCO)
545 dev->stats.rx_missed_errors += 256;
546 dev->stats.rx_missed_errors += mb->mpc; /* reading clears it */
547 if (intr & RNTPCO)
548 dev->stats.rx_length_errors += 256;
549 dev->stats.rx_length_errors += mb->rntpc; /* reading clears it */
550 if (intr & CERR)
551 ++dev->stats.tx_heartbeat_errors;
552 if (intr & BABBLE)
553 if (mace_babbles++ < 4)
554 printk(KERN_DEBUG "macmace: babbling transmitter\n");
555 if (intr & JABBER)
556 if (mace_jabbers++ < 4)
557 printk(KERN_DEBUG "macmace: jabbering transceiver\n");
560 static irqreturn_t mace_interrupt(int irq, void *dev_id)
562 struct net_device *dev = (struct net_device *) dev_id;
563 struct mace_data *mp = netdev_priv(dev);
564 volatile struct mace *mb = mp->mace;
565 int intr, fs;
566 unsigned long flags;
568 /* don't want the dma interrupt handler to fire */
569 local_irq_save(flags);
571 intr = mb->ir; /* read interrupt register */
572 mace_handle_misc_intrs(dev, intr);
574 if (intr & XMTINT) {
575 fs = mb->xmtfs;
576 if ((fs & XMTSV) == 0) {
577 printk(KERN_ERR "macmace: xmtfs not valid! (fs=%x)\n", fs);
578 mace_reset(dev);
580 * XXX mace likes to hang the machine after a xmtfs error.
581 * This is hard to reproduce, reseting *may* help
584 /* dma should have finished */
585 if (!mp->tx_count) {
586 printk(KERN_DEBUG "macmace: tx ring ran out? (fs=%x)\n", fs);
588 /* Update stats */
589 if (fs & (UFLO|LCOL|LCAR|RTRY)) {
590 ++dev->stats.tx_errors;
591 if (fs & LCAR)
592 ++dev->stats.tx_carrier_errors;
593 else if (fs & (UFLO|LCOL|RTRY)) {
594 ++dev->stats.tx_aborted_errors;
595 if (mb->xmtfs & UFLO) {
596 printk(KERN_ERR "%s: DMA underrun.\n", dev->name);
597 dev->stats.tx_fifo_errors++;
598 mace_txdma_reset(dev);
604 if (mp->tx_count)
605 netif_wake_queue(dev);
607 local_irq_restore(flags);
609 return IRQ_HANDLED;
612 static void mace_tx_timeout(struct net_device *dev)
614 struct mace_data *mp = netdev_priv(dev);
615 volatile struct mace *mb = mp->mace;
616 unsigned long flags;
618 local_irq_save(flags);
620 /* turn off both tx and rx and reset the chip */
621 mb->maccc = 0;
622 printk(KERN_ERR "macmace: transmit timeout - resetting\n");
623 mace_txdma_reset(dev);
624 mace_reset(dev);
626 /* restart rx dma */
627 mace_rxdma_reset(dev);
629 mp->tx_count = N_TX_RING;
630 netif_wake_queue(dev);
632 /* turn it on! */
633 mb->maccc = ENXMT | ENRCV;
634 /* enable all interrupts except receive interrupts */
635 mb->imr = RCVINT;
637 local_irq_restore(flags);
641 * Handle a newly arrived frame
644 static void mace_dma_rx_frame(struct net_device *dev, struct mace_frame *mf)
646 struct sk_buff *skb;
647 unsigned int frame_status = mf->rcvsts;
649 if (frame_status & (RS_OFLO | RS_CLSN | RS_FRAMERR | RS_FCSERR)) {
650 dev->stats.rx_errors++;
651 if (frame_status & RS_OFLO) {
652 printk(KERN_DEBUG "%s: fifo overflow.\n", dev->name);
653 dev->stats.rx_fifo_errors++;
655 if (frame_status & RS_CLSN)
656 dev->stats.collisions++;
657 if (frame_status & RS_FRAMERR)
658 dev->stats.rx_frame_errors++;
659 if (frame_status & RS_FCSERR)
660 dev->stats.rx_crc_errors++;
661 } else {
662 unsigned int frame_length = mf->rcvcnt + ((frame_status & 0x0F) << 8 );
664 skb = dev_alloc_skb(frame_length + 2);
665 if (!skb) {
666 dev->stats.rx_dropped++;
667 return;
669 skb_reserve(skb, 2);
670 memcpy(skb_put(skb, frame_length), mf->data, frame_length);
672 skb->protocol = eth_type_trans(skb, dev);
673 netif_rx(skb);
674 dev->stats.rx_packets++;
675 dev->stats.rx_bytes += frame_length;
680 * The PSC has passed us a DMA interrupt event.
683 static irqreturn_t mace_dma_intr(int irq, void *dev_id)
685 struct net_device *dev = (struct net_device *) dev_id;
686 struct mace_data *mp = netdev_priv(dev);
687 int left, head;
688 u16 status;
689 u32 baka;
691 /* Not sure what this does */
693 while ((baka = psc_read_long(PSC_MYSTERY)) != psc_read_long(PSC_MYSTERY));
694 if (!(baka & 0x60000000)) return IRQ_NONE;
697 * Process the read queue
700 status = psc_read_word(PSC_ENETRD_CTL);
702 if (status & 0x2000) {
703 mace_rxdma_reset(dev);
704 } else if (status & 0x0100) {
705 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x1100);
707 left = psc_read_long(PSC_ENETRD_LEN + mp->rx_slot);
708 head = N_RX_RING - left;
710 /* Loop through the ring buffer and process new packages */
712 while (mp->rx_tail < head) {
713 mace_dma_rx_frame(dev, (struct mace_frame*) (mp->rx_ring
714 + (mp->rx_tail * MACE_BUFF_SIZE)));
715 mp->rx_tail++;
718 /* If we're out of buffers in this ring then switch to */
719 /* the other set, otherwise just reactivate this one. */
721 if (!left) {
722 mace_load_rxdma_base(dev, mp->rx_slot);
723 mp->rx_slot ^= 0x10;
724 } else {
725 psc_write_word(PSC_ENETRD_CMD + mp->rx_slot, 0x9800);
730 * Process the write queue
733 status = psc_read_word(PSC_ENETWR_CTL);
735 if (status & 0x2000) {
736 mace_txdma_reset(dev);
737 } else if (status & 0x0100) {
738 psc_write_word(PSC_ENETWR_CMD + mp->tx_sloti, 0x0100);
739 mp->tx_sloti ^= 0x10;
740 mp->tx_count++;
742 return IRQ_HANDLED;
745 MODULE_LICENSE("GPL");
746 MODULE_DESCRIPTION("Macintosh MACE ethernet driver");
747 MODULE_ALIAS("platform:macmace");
749 static int __devexit mac_mace_device_remove (struct platform_device *pdev)
751 struct net_device *dev = platform_get_drvdata(pdev);
752 struct mace_data *mp = netdev_priv(dev);
754 unregister_netdev(dev);
756 free_irq(dev->irq, dev);
757 free_irq(IRQ_MAC_MACE_DMA, dev);
759 dma_free_coherent(mp->device, N_RX_RING * MACE_BUFF_SIZE,
760 mp->rx_ring, mp->rx_ring_phys);
761 dma_free_coherent(mp->device, N_TX_RING * MACE_BUFF_SIZE,
762 mp->tx_ring, mp->tx_ring_phys);
764 free_netdev(dev);
766 return 0;
769 static struct platform_driver mac_mace_driver = {
770 .probe = mace_probe,
771 .remove = __devexit_p(mac_mace_device_remove),
772 .driver = {
773 .name = mac_mace_string,
774 .owner = THIS_MODULE,
778 static int __init mac_mace_init_module(void)
780 if (!MACH_IS_MAC)
781 return -ENODEV;
783 return platform_driver_register(&mac_mace_driver);
786 static void __exit mac_mace_cleanup_module(void)
788 platform_driver_unregister(&mac_mace_driver);
791 module_init(mac_mace_init_module);
792 module_exit(mac_mace_cleanup_module);