2 * This file is part of the Chelsio T4 Ethernet driver for Linux.
4 * Copyright (c) 2003-2010 Chelsio Communications, Inc. All rights reserved.
6 * This software is available to you under a choice of one of two
7 * licenses. You may choose to be licensed under the terms of the GNU
8 * General Public License (GPL) Version 2, available from the file
9 * COPYING in the main directory of this source tree, or the
10 * OpenIB.org BSD license below:
12 * Redistribution and use in source and binary forms, with or
13 * without modification, are permitted provided that the following
16 * - Redistributions of source code must retain the above
17 * copyright notice, this list of conditions and the following
20 * - Redistributions in binary form must reproduce the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer in the documentation and/or other materials
23 * provided with the distribution.
25 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
35 #include <linux/skbuff.h>
36 #include <linux/netdevice.h>
37 #include <linux/etherdevice.h>
38 #include <linux/if_vlan.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/jiffies.h>
42 #include <linux/prefetch.h>
51 * Rx buffer size. We use largish buffers if possible but settle for single
52 * pages under memory shortage.
55 # define FL_PG_ORDER 0
57 # define FL_PG_ORDER (16 - PAGE_SHIFT)
60 /* RX_PULL_LEN should be <= RX_COPY_THRES */
61 #define RX_COPY_THRES 256
62 #define RX_PULL_LEN 128
65 * Main body length for sk_buffs used for Rx Ethernet packets with fragments.
66 * Should be >= RX_PULL_LEN but possibly bigger to give pskb_may_pull some room.
68 #define RX_PKT_SKB_LEN 512
70 /* Ethernet header padding prepended to RX_PKTs */
74 * Max number of Tx descriptors we clean up at a time. Should be modest as
75 * freeing skbs isn't cheap and it happens while holding locks. We just need
76 * to free packets faster than they arrive, we eventually catch up and keep
77 * the amortized cost reasonable. Must be >= 2 * TXQ_STOP_THRES.
79 #define MAX_TX_RECLAIM 16
82 * Max number of Rx buffers we replenish at a time. Again keep this modest,
83 * allocating buffers isn't cheap either.
85 #define MAX_RX_REFILL 16U
88 * Period of the Rx queue check timer. This timer is infrequent as it has
89 * something to do only when the system experiences severe memory shortage.
91 #define RX_QCHECK_PERIOD (HZ / 2)
94 * Period of the Tx queue check timer.
96 #define TX_QCHECK_PERIOD (HZ / 2)
99 * Max number of Tx descriptors to be reclaimed by the Tx timer.
101 #define MAX_TIMER_TX_RECLAIM 100
104 * Timer index used when backing off due to memory shortage.
106 #define NOMEM_TMR_IDX (SGE_NTIMERS - 1)
109 * An FL with <= FL_STARVE_THRES buffers is starving and a periodic timer will
110 * attempt to refill it.
112 #define FL_STARVE_THRES 4
115 * Suspend an Ethernet Tx queue with fewer available descriptors than this.
116 * This is the same as calc_tx_descs() for a TSO packet with
117 * nr_frags == MAX_SKB_FRAGS.
119 #define ETHTXQ_STOP_THRES \
120 (1 + DIV_ROUND_UP((3 * MAX_SKB_FRAGS) / 2 + (MAX_SKB_FRAGS & 1), 8))
123 * Suspension threshold for non-Ethernet Tx queues. We require enough room
124 * for a full sized WR.
126 #define TXQ_STOP_THRES (SGE_MAX_WR_LEN / sizeof(struct tx_desc))
129 * Max Tx descriptor space we allow for an Ethernet packet to be inlined
132 #define MAX_IMM_TX_PKT_LEN 128
135 * Max size of a WR sent through a control Tx queue.
137 #define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN
140 /* packet alignment in FL buffers */
141 FL_ALIGN
= L1_CACHE_BYTES
< 32 ? 32 : L1_CACHE_BYTES
,
142 /* egress status entry size */
143 STAT_LEN
= L1_CACHE_BYTES
> 64 ? 128 : 64
146 struct tx_sw_desc
{ /* SW state per Tx descriptor */
148 struct ulptx_sgl
*sgl
;
151 struct rx_sw_desc
{ /* SW state per Rx descriptor */
157 * The low bits of rx_sw_desc.dma_addr have special meaning.
160 RX_LARGE_BUF
= 1 << 0, /* buffer is larger than PAGE_SIZE */
161 RX_UNMAPPED_BUF
= 1 << 1, /* buffer is not mapped */
164 static inline dma_addr_t
get_buf_addr(const struct rx_sw_desc
*d
)
166 return d
->dma_addr
& ~(dma_addr_t
)(RX_LARGE_BUF
| RX_UNMAPPED_BUF
);
169 static inline bool is_buf_mapped(const struct rx_sw_desc
*d
)
171 return !(d
->dma_addr
& RX_UNMAPPED_BUF
);
175 * txq_avail - return the number of available slots in a Tx queue
178 * Returns the number of descriptors in a Tx queue available to write new
181 static inline unsigned int txq_avail(const struct sge_txq
*q
)
183 return q
->size
- 1 - q
->in_use
;
187 * fl_cap - return the capacity of a free-buffer list
190 * Returns the capacity of a free-buffer list. The capacity is less than
191 * the size because one descriptor needs to be left unpopulated, otherwise
192 * HW will think the FL is empty.
194 static inline unsigned int fl_cap(const struct sge_fl
*fl
)
196 return fl
->size
- 8; /* 1 descriptor = 8 buffers */
199 static inline bool fl_starving(const struct sge_fl
*fl
)
201 return fl
->avail
- fl
->pend_cred
<= FL_STARVE_THRES
;
204 static int map_skb(struct device
*dev
, const struct sk_buff
*skb
,
207 const skb_frag_t
*fp
, *end
;
208 const struct skb_shared_info
*si
;
210 *addr
= dma_map_single(dev
, skb
->data
, skb_headlen(skb
), DMA_TO_DEVICE
);
211 if (dma_mapping_error(dev
, *addr
))
214 si
= skb_shinfo(skb
);
215 end
= &si
->frags
[si
->nr_frags
];
217 for (fp
= si
->frags
; fp
< end
; fp
++) {
218 *++addr
= skb_frag_dma_map(dev
, fp
, 0, skb_frag_size(fp
),
220 if (dma_mapping_error(dev
, *addr
))
226 while (fp
-- > si
->frags
)
227 dma_unmap_page(dev
, *--addr
, skb_frag_size(fp
), DMA_TO_DEVICE
);
229 dma_unmap_single(dev
, addr
[-1], skb_headlen(skb
), DMA_TO_DEVICE
);
234 #ifdef CONFIG_NEED_DMA_MAP_STATE
235 static void unmap_skb(struct device
*dev
, const struct sk_buff
*skb
,
236 const dma_addr_t
*addr
)
238 const skb_frag_t
*fp
, *end
;
239 const struct skb_shared_info
*si
;
241 dma_unmap_single(dev
, *addr
++, skb_headlen(skb
), DMA_TO_DEVICE
);
243 si
= skb_shinfo(skb
);
244 end
= &si
->frags
[si
->nr_frags
];
245 for (fp
= si
->frags
; fp
< end
; fp
++)
246 dma_unmap_page(dev
, *addr
++, skb_frag_size(fp
), DMA_TO_DEVICE
);
250 * deferred_unmap_destructor - unmap a packet when it is freed
253 * This is the packet destructor used for Tx packets that need to remain
254 * mapped until they are freed rather than until their Tx descriptors are
257 static void deferred_unmap_destructor(struct sk_buff
*skb
)
259 unmap_skb(skb
->dev
->dev
.parent
, skb
, (dma_addr_t
*)skb
->head
);
263 static void unmap_sgl(struct device
*dev
, const struct sk_buff
*skb
,
264 const struct ulptx_sgl
*sgl
, const struct sge_txq
*q
)
266 const struct ulptx_sge_pair
*p
;
267 unsigned int nfrags
= skb_shinfo(skb
)->nr_frags
;
269 if (likely(skb_headlen(skb
)))
270 dma_unmap_single(dev
, be64_to_cpu(sgl
->addr0
), ntohl(sgl
->len0
),
273 dma_unmap_page(dev
, be64_to_cpu(sgl
->addr0
), ntohl(sgl
->len0
),
279 * the complexity below is because of the possibility of a wrap-around
280 * in the middle of an SGL
282 for (p
= sgl
->sge
; nfrags
>= 2; nfrags
-= 2) {
283 if (likely((u8
*)(p
+ 1) <= (u8
*)q
->stat
)) {
284 unmap
: dma_unmap_page(dev
, be64_to_cpu(p
->addr
[0]),
285 ntohl(p
->len
[0]), DMA_TO_DEVICE
);
286 dma_unmap_page(dev
, be64_to_cpu(p
->addr
[1]),
287 ntohl(p
->len
[1]), DMA_TO_DEVICE
);
289 } else if ((u8
*)p
== (u8
*)q
->stat
) {
290 p
= (const struct ulptx_sge_pair
*)q
->desc
;
292 } else if ((u8
*)p
+ 8 == (u8
*)q
->stat
) {
293 const __be64
*addr
= (const __be64
*)q
->desc
;
295 dma_unmap_page(dev
, be64_to_cpu(addr
[0]),
296 ntohl(p
->len
[0]), DMA_TO_DEVICE
);
297 dma_unmap_page(dev
, be64_to_cpu(addr
[1]),
298 ntohl(p
->len
[1]), DMA_TO_DEVICE
);
299 p
= (const struct ulptx_sge_pair
*)&addr
[2];
301 const __be64
*addr
= (const __be64
*)q
->desc
;
303 dma_unmap_page(dev
, be64_to_cpu(p
->addr
[0]),
304 ntohl(p
->len
[0]), DMA_TO_DEVICE
);
305 dma_unmap_page(dev
, be64_to_cpu(addr
[0]),
306 ntohl(p
->len
[1]), DMA_TO_DEVICE
);
307 p
= (const struct ulptx_sge_pair
*)&addr
[1];
313 if ((u8
*)p
== (u8
*)q
->stat
)
314 p
= (const struct ulptx_sge_pair
*)q
->desc
;
315 addr
= (u8
*)p
+ 16 <= (u8
*)q
->stat
? p
->addr
[0] :
316 *(const __be64
*)q
->desc
;
317 dma_unmap_page(dev
, be64_to_cpu(addr
), ntohl(p
->len
[0]),
323 * free_tx_desc - reclaims Tx descriptors and their buffers
324 * @adapter: the adapter
325 * @q: the Tx queue to reclaim descriptors from
326 * @n: the number of descriptors to reclaim
327 * @unmap: whether the buffers should be unmapped for DMA
329 * Reclaims Tx descriptors from an SGE Tx queue and frees the associated
330 * Tx buffers. Called with the Tx queue lock held.
332 static void free_tx_desc(struct adapter
*adap
, struct sge_txq
*q
,
333 unsigned int n
, bool unmap
)
335 struct tx_sw_desc
*d
;
336 unsigned int cidx
= q
->cidx
;
337 struct device
*dev
= adap
->pdev_dev
;
341 if (d
->skb
) { /* an SGL is present */
343 unmap_sgl(dev
, d
->skb
, d
->sgl
, q
);
348 if (++cidx
== q
->size
) {
357 * Return the number of reclaimable descriptors in a Tx queue.
359 static inline int reclaimable(const struct sge_txq
*q
)
361 int hw_cidx
= ntohs(q
->stat
->cidx
);
363 return hw_cidx
< 0 ? hw_cidx
+ q
->size
: hw_cidx
;
367 * reclaim_completed_tx - reclaims completed Tx descriptors
369 * @q: the Tx queue to reclaim completed descriptors from
370 * @unmap: whether the buffers should be unmapped for DMA
372 * Reclaims Tx descriptors that the SGE has indicated it has processed,
373 * and frees the associated buffers if possible. Called with the Tx
376 static inline void reclaim_completed_tx(struct adapter
*adap
, struct sge_txq
*q
,
379 int avail
= reclaimable(q
);
383 * Limit the amount of clean up work we do at a time to keep
384 * the Tx lock hold time O(1).
386 if (avail
> MAX_TX_RECLAIM
)
387 avail
= MAX_TX_RECLAIM
;
389 free_tx_desc(adap
, q
, avail
, unmap
);
394 static inline int get_buf_size(const struct rx_sw_desc
*d
)
397 return (d
->dma_addr
& RX_LARGE_BUF
) ? (PAGE_SIZE
<< FL_PG_ORDER
) :
405 * free_rx_bufs - free the Rx buffers on an SGE free list
407 * @q: the SGE free list to free buffers from
408 * @n: how many buffers to free
410 * Release the next @n buffers on an SGE free-buffer Rx queue. The
411 * buffers must be made inaccessible to HW before calling this function.
413 static void free_rx_bufs(struct adapter
*adap
, struct sge_fl
*q
, int n
)
416 struct rx_sw_desc
*d
= &q
->sdesc
[q
->cidx
];
418 if (is_buf_mapped(d
))
419 dma_unmap_page(adap
->pdev_dev
, get_buf_addr(d
),
420 get_buf_size(d
), PCI_DMA_FROMDEVICE
);
423 if (++q
->cidx
== q
->size
)
430 * unmap_rx_buf - unmap the current Rx buffer on an SGE free list
432 * @q: the SGE free list
434 * Unmap the current buffer on an SGE free-buffer Rx queue. The
435 * buffer must be made inaccessible to HW before calling this function.
437 * This is similar to @free_rx_bufs above but does not free the buffer.
438 * Do note that the FL still loses any further access to the buffer.
440 static void unmap_rx_buf(struct adapter
*adap
, struct sge_fl
*q
)
442 struct rx_sw_desc
*d
= &q
->sdesc
[q
->cidx
];
444 if (is_buf_mapped(d
))
445 dma_unmap_page(adap
->pdev_dev
, get_buf_addr(d
),
446 get_buf_size(d
), PCI_DMA_FROMDEVICE
);
448 if (++q
->cidx
== q
->size
)
453 static inline void ring_fl_db(struct adapter
*adap
, struct sge_fl
*q
)
455 if (q
->pend_cred
>= 8) {
457 t4_write_reg(adap
, MYPF_REG(SGE_PF_KDOORBELL
), DBPRIO
|
458 QID(q
->cntxt_id
) | PIDX(q
->pend_cred
/ 8));
463 static inline void set_rx_sw_desc(struct rx_sw_desc
*sd
, struct page
*pg
,
467 sd
->dma_addr
= mapping
; /* includes size low bits */
471 * refill_fl - refill an SGE Rx buffer ring
473 * @q: the ring to refill
474 * @n: the number of new buffers to allocate
475 * @gfp: the gfp flags for the allocations
477 * (Re)populate an SGE free-buffer queue with up to @n new packet buffers,
478 * allocated with the supplied gfp flags. The caller must assure that
479 * @n does not exceed the queue's capacity. If afterwards the queue is
480 * found critically low mark it as starving in the bitmap of starving FLs.
482 * Returns the number of buffers allocated.
484 static unsigned int refill_fl(struct adapter
*adap
, struct sge_fl
*q
, int n
,
489 unsigned int cred
= q
->avail
;
490 __be64
*d
= &q
->desc
[q
->pidx
];
491 struct rx_sw_desc
*sd
= &q
->sdesc
[q
->pidx
];
493 gfp
|= __GFP_NOWARN
; /* failures are expected */
497 * Prefer large buffers
500 pg
= alloc_pages(gfp
| __GFP_COMP
, FL_PG_ORDER
);
502 q
->large_alloc_failed
++;
503 break; /* fall back to single pages */
506 mapping
= dma_map_page(adap
->pdev_dev
, pg
, 0,
507 PAGE_SIZE
<< FL_PG_ORDER
,
509 if (unlikely(dma_mapping_error(adap
->pdev_dev
, mapping
))) {
510 __free_pages(pg
, FL_PG_ORDER
);
511 goto out
; /* do not try small pages for this error */
513 mapping
|= RX_LARGE_BUF
;
514 *d
++ = cpu_to_be64(mapping
);
516 set_rx_sw_desc(sd
, pg
, mapping
);
520 if (++q
->pidx
== q
->size
) {
530 pg
= __netdev_alloc_page(adap
->port
[0], gfp
);
536 mapping
= dma_map_page(adap
->pdev_dev
, pg
, 0, PAGE_SIZE
,
538 if (unlikely(dma_mapping_error(adap
->pdev_dev
, mapping
))) {
539 netdev_free_page(adap
->port
[0], pg
);
542 *d
++ = cpu_to_be64(mapping
);
544 set_rx_sw_desc(sd
, pg
, mapping
);
548 if (++q
->pidx
== q
->size
) {
555 out
: cred
= q
->avail
- cred
;
556 q
->pend_cred
+= cred
;
559 if (unlikely(fl_starving(q
))) {
561 set_bit(q
->cntxt_id
- adap
->sge
.egr_start
,
562 adap
->sge
.starving_fl
);
568 static inline void __refill_fl(struct adapter
*adap
, struct sge_fl
*fl
)
570 refill_fl(adap
, fl
, min(MAX_RX_REFILL
, fl_cap(fl
) - fl
->avail
),
575 * alloc_ring - allocate resources for an SGE descriptor ring
576 * @dev: the PCI device's core device
577 * @nelem: the number of descriptors
578 * @elem_size: the size of each descriptor
579 * @sw_size: the size of the SW state associated with each ring element
580 * @phys: the physical address of the allocated ring
581 * @metadata: address of the array holding the SW state for the ring
582 * @stat_size: extra space in HW ring for status information
583 * @node: preferred node for memory allocations
585 * Allocates resources for an SGE descriptor ring, such as Tx queues,
586 * free buffer lists, or response queues. Each SGE ring requires
587 * space for its HW descriptors plus, optionally, space for the SW state
588 * associated with each HW entry (the metadata). The function returns
589 * three values: the virtual address for the HW ring (the return value
590 * of the function), the bus address of the HW ring, and the address
593 static void *alloc_ring(struct device
*dev
, size_t nelem
, size_t elem_size
,
594 size_t sw_size
, dma_addr_t
*phys
, void *metadata
,
595 size_t stat_size
, int node
)
597 size_t len
= nelem
* elem_size
+ stat_size
;
599 void *p
= dma_alloc_coherent(dev
, len
, phys
, GFP_KERNEL
);
604 s
= kzalloc_node(nelem
* sw_size
, GFP_KERNEL
, node
);
607 dma_free_coherent(dev
, len
, p
, *phys
);
612 *(void **)metadata
= s
;
618 * sgl_len - calculates the size of an SGL of the given capacity
619 * @n: the number of SGL entries
621 * Calculates the number of flits needed for a scatter/gather list that
622 * can hold the given number of entries.
624 static inline unsigned int sgl_len(unsigned int n
)
627 return (3 * n
) / 2 + (n
& 1) + 2;
631 * flits_to_desc - returns the num of Tx descriptors for the given flits
632 * @n: the number of flits
634 * Returns the number of Tx descriptors needed for the supplied number
637 static inline unsigned int flits_to_desc(unsigned int n
)
639 BUG_ON(n
> SGE_MAX_WR_LEN
/ 8);
640 return DIV_ROUND_UP(n
, 8);
644 * is_eth_imm - can an Ethernet packet be sent as immediate data?
647 * Returns whether an Ethernet packet is small enough to fit as
650 static inline int is_eth_imm(const struct sk_buff
*skb
)
652 return skb
->len
<= MAX_IMM_TX_PKT_LEN
- sizeof(struct cpl_tx_pkt
);
656 * calc_tx_flits - calculate the number of flits for a packet Tx WR
659 * Returns the number of flits needed for a Tx WR for the given Ethernet
660 * packet, including the needed WR and CPL headers.
662 static inline unsigned int calc_tx_flits(const struct sk_buff
*skb
)
667 return DIV_ROUND_UP(skb
->len
+ sizeof(struct cpl_tx_pkt
), 8);
669 flits
= sgl_len(skb_shinfo(skb
)->nr_frags
+ 1) + 4;
670 if (skb_shinfo(skb
)->gso_size
)
676 * calc_tx_descs - calculate the number of Tx descriptors for a packet
679 * Returns the number of Tx descriptors needed for the given Ethernet
680 * packet, including the needed WR and CPL headers.
682 static inline unsigned int calc_tx_descs(const struct sk_buff
*skb
)
684 return flits_to_desc(calc_tx_flits(skb
));
688 * write_sgl - populate a scatter/gather list for a packet
690 * @q: the Tx queue we are writing into
691 * @sgl: starting location for writing the SGL
692 * @end: points right after the end of the SGL
693 * @start: start offset into skb main-body data to include in the SGL
694 * @addr: the list of bus addresses for the SGL elements
696 * Generates a gather list for the buffers that make up a packet.
697 * The caller must provide adequate space for the SGL that will be written.
698 * The SGL includes all of the packet's page fragments and the data in its
699 * main body except for the first @start bytes. @sgl must be 16-byte
700 * aligned and within a Tx descriptor with available space. @end points
701 * right after the end of the SGL but does not account for any potential
702 * wrap around, i.e., @end > @sgl.
704 static void write_sgl(const struct sk_buff
*skb
, struct sge_txq
*q
,
705 struct ulptx_sgl
*sgl
, u64
*end
, unsigned int start
,
706 const dma_addr_t
*addr
)
709 struct ulptx_sge_pair
*to
;
710 const struct skb_shared_info
*si
= skb_shinfo(skb
);
711 unsigned int nfrags
= si
->nr_frags
;
712 struct ulptx_sge_pair buf
[MAX_SKB_FRAGS
/ 2 + 1];
714 len
= skb_headlen(skb
) - start
;
716 sgl
->len0
= htonl(len
);
717 sgl
->addr0
= cpu_to_be64(addr
[0] + start
);
720 sgl
->len0
= htonl(skb_frag_size(&si
->frags
[0]));
721 sgl
->addr0
= cpu_to_be64(addr
[1]);
724 sgl
->cmd_nsge
= htonl(ULPTX_CMD(ULP_TX_SC_DSGL
) | ULPTX_NSGE(nfrags
));
725 if (likely(--nfrags
== 0))
728 * Most of the complexity below deals with the possibility we hit the
729 * end of the queue in the middle of writing the SGL. For this case
730 * only we create the SGL in a temporary buffer and then copy it.
732 to
= (u8
*)end
> (u8
*)q
->stat
? buf
: sgl
->sge
;
734 for (i
= (nfrags
!= si
->nr_frags
); nfrags
>= 2; nfrags
-= 2, to
++) {
735 to
->len
[0] = cpu_to_be32(skb_frag_size(&si
->frags
[i
]));
736 to
->len
[1] = cpu_to_be32(skb_frag_size(&si
->frags
[++i
]));
737 to
->addr
[0] = cpu_to_be64(addr
[i
]);
738 to
->addr
[1] = cpu_to_be64(addr
[++i
]);
741 to
->len
[0] = cpu_to_be32(skb_frag_size(&si
->frags
[i
]));
742 to
->len
[1] = cpu_to_be32(0);
743 to
->addr
[0] = cpu_to_be64(addr
[i
+ 1]);
745 if (unlikely((u8
*)end
> (u8
*)q
->stat
)) {
746 unsigned int part0
= (u8
*)q
->stat
- (u8
*)sgl
->sge
, part1
;
749 memcpy(sgl
->sge
, buf
, part0
);
750 part1
= (u8
*)end
- (u8
*)q
->stat
;
751 memcpy(q
->desc
, (u8
*)buf
+ part0
, part1
);
752 end
= (void *)q
->desc
+ part1
;
754 if ((uintptr_t)end
& 8) /* 0-pad to multiple of 16 */
759 * ring_tx_db - check and potentially ring a Tx queue's doorbell
762 * @n: number of new descriptors to give to HW
764 * Ring the doorbel for a Tx queue.
766 static inline void ring_tx_db(struct adapter
*adap
, struct sge_txq
*q
, int n
)
768 wmb(); /* write descriptors before telling HW */
769 t4_write_reg(adap
, MYPF_REG(SGE_PF_KDOORBELL
),
770 QID(q
->cntxt_id
) | PIDX(n
));
774 * inline_tx_skb - inline a packet's data into Tx descriptors
776 * @q: the Tx queue where the packet will be inlined
777 * @pos: starting position in the Tx queue where to inline the packet
779 * Inline a packet's contents directly into Tx descriptors, starting at
780 * the given position within the Tx DMA ring.
781 * Most of the complexity of this operation is dealing with wrap arounds
782 * in the middle of the packet we want to inline.
784 static void inline_tx_skb(const struct sk_buff
*skb
, const struct sge_txq
*q
,
788 int left
= (void *)q
->stat
- pos
;
790 if (likely(skb
->len
<= left
)) {
791 if (likely(!skb
->data_len
))
792 skb_copy_from_linear_data(skb
, pos
, skb
->len
);
794 skb_copy_bits(skb
, 0, pos
, skb
->len
);
797 skb_copy_bits(skb
, 0, pos
, left
);
798 skb_copy_bits(skb
, left
, q
->desc
, skb
->len
- left
);
799 pos
= (void *)q
->desc
+ (skb
->len
- left
);
802 /* 0-pad to multiple of 16 */
803 p
= PTR_ALIGN(pos
, 8);
804 if ((uintptr_t)p
& 8)
809 * Figure out what HW csum a packet wants and return the appropriate control
812 static u64
hwcsum(const struct sk_buff
*skb
)
815 const struct iphdr
*iph
= ip_hdr(skb
);
817 if (iph
->version
== 4) {
818 if (iph
->protocol
== IPPROTO_TCP
)
819 csum_type
= TX_CSUM_TCPIP
;
820 else if (iph
->protocol
== IPPROTO_UDP
)
821 csum_type
= TX_CSUM_UDPIP
;
824 * unknown protocol, disable HW csum
825 * and hope a bad packet is detected
827 return TXPKT_L4CSUM_DIS
;
831 * this doesn't work with extension headers
833 const struct ipv6hdr
*ip6h
= (const struct ipv6hdr
*)iph
;
835 if (ip6h
->nexthdr
== IPPROTO_TCP
)
836 csum_type
= TX_CSUM_TCPIP6
;
837 else if (ip6h
->nexthdr
== IPPROTO_UDP
)
838 csum_type
= TX_CSUM_UDPIP6
;
843 if (likely(csum_type
>= TX_CSUM_TCPIP
))
844 return TXPKT_CSUM_TYPE(csum_type
) |
845 TXPKT_IPHDR_LEN(skb_network_header_len(skb
)) |
846 TXPKT_ETHHDR_LEN(skb_network_offset(skb
) - ETH_HLEN
);
848 int start
= skb_transport_offset(skb
);
850 return TXPKT_CSUM_TYPE(csum_type
) | TXPKT_CSUM_START(start
) |
851 TXPKT_CSUM_LOC(start
+ skb
->csum_offset
);
855 static void eth_txq_stop(struct sge_eth_txq
*q
)
857 netif_tx_stop_queue(q
->txq
);
861 static inline void txq_advance(struct sge_txq
*q
, unsigned int n
)
865 if (q
->pidx
>= q
->size
)
870 * t4_eth_xmit - add a packet to an Ethernet Tx queue
872 * @dev: the egress net device
874 * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled.
876 netdev_tx_t
t4_eth_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
881 unsigned int flits
, ndesc
;
882 struct adapter
*adap
;
883 struct sge_eth_txq
*q
;
884 const struct port_info
*pi
;
885 struct fw_eth_tx_pkt_wr
*wr
;
886 struct cpl_tx_pkt_core
*cpl
;
887 const struct skb_shared_info
*ssi
;
888 dma_addr_t addr
[MAX_SKB_FRAGS
+ 1];
891 * The chip min packet length is 10 octets but play safe and reject
892 * anything shorter than an Ethernet header.
894 if (unlikely(skb
->len
< ETH_HLEN
)) {
895 out_free
: dev_kfree_skb(skb
);
899 pi
= netdev_priv(dev
);
901 qidx
= skb_get_queue_mapping(skb
);
902 q
= &adap
->sge
.ethtxq
[qidx
+ pi
->first_qset
];
904 reclaim_completed_tx(adap
, &q
->q
, true);
906 flits
= calc_tx_flits(skb
);
907 ndesc
= flits_to_desc(flits
);
908 credits
= txq_avail(&q
->q
) - ndesc
;
910 if (unlikely(credits
< 0)) {
912 dev_err(adap
->pdev_dev
,
913 "%s: Tx ring %u full while queue awake!\n",
915 return NETDEV_TX_BUSY
;
918 if (!is_eth_imm(skb
) &&
919 unlikely(map_skb(adap
->pdev_dev
, skb
, addr
) < 0)) {
924 wr_mid
= FW_WR_LEN16(DIV_ROUND_UP(flits
, 2));
925 if (unlikely(credits
< ETHTXQ_STOP_THRES
)) {
927 wr_mid
|= FW_WR_EQUEQ
| FW_WR_EQUIQ
;
930 wr
= (void *)&q
->q
.desc
[q
->q
.pidx
];
931 wr
->equiq_to_len16
= htonl(wr_mid
);
932 wr
->r3
= cpu_to_be64(0);
933 end
= (u64
*)wr
+ flits
;
935 ssi
= skb_shinfo(skb
);
937 struct cpl_tx_pkt_lso
*lso
= (void *)wr
;
938 bool v6
= (ssi
->gso_type
& SKB_GSO_TCPV6
) != 0;
939 int l3hdr_len
= skb_network_header_len(skb
);
940 int eth_xtra_len
= skb_network_offset(skb
) - ETH_HLEN
;
942 wr
->op_immdlen
= htonl(FW_WR_OP(FW_ETH_TX_PKT_WR
) |
943 FW_WR_IMMDLEN(sizeof(*lso
)));
944 lso
->c
.lso_ctrl
= htonl(LSO_OPCODE(CPL_TX_PKT_LSO
) |
945 LSO_FIRST_SLICE
| LSO_LAST_SLICE
|
947 LSO_ETHHDR_LEN(eth_xtra_len
/ 4) |
948 LSO_IPHDR_LEN(l3hdr_len
/ 4) |
949 LSO_TCPHDR_LEN(tcp_hdr(skb
)->doff
));
950 lso
->c
.ipid_ofst
= htons(0);
951 lso
->c
.mss
= htons(ssi
->gso_size
);
952 lso
->c
.seqno_offset
= htonl(0);
953 lso
->c
.len
= htonl(skb
->len
);
954 cpl
= (void *)(lso
+ 1);
955 cntrl
= TXPKT_CSUM_TYPE(v6
? TX_CSUM_TCPIP6
: TX_CSUM_TCPIP
) |
956 TXPKT_IPHDR_LEN(l3hdr_len
) |
957 TXPKT_ETHHDR_LEN(eth_xtra_len
);
959 q
->tx_cso
+= ssi
->gso_segs
;
963 len
= is_eth_imm(skb
) ? skb
->len
+ sizeof(*cpl
) : sizeof(*cpl
);
964 wr
->op_immdlen
= htonl(FW_WR_OP(FW_ETH_TX_PKT_WR
) |
966 cpl
= (void *)(wr
+ 1);
967 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
968 cntrl
= hwcsum(skb
) | TXPKT_IPCSUM_DIS
;
971 cntrl
= TXPKT_L4CSUM_DIS
| TXPKT_IPCSUM_DIS
;
974 if (vlan_tx_tag_present(skb
)) {
976 cntrl
|= TXPKT_VLAN_VLD
| TXPKT_VLAN(vlan_tx_tag_get(skb
));
979 cpl
->ctrl0
= htonl(TXPKT_OPCODE(CPL_TX_PKT_XT
) |
980 TXPKT_INTF(pi
->tx_chan
) | TXPKT_PF(adap
->fn
));
981 cpl
->pack
= htons(0);
982 cpl
->len
= htons(skb
->len
);
983 cpl
->ctrl1
= cpu_to_be64(cntrl
);
985 if (is_eth_imm(skb
)) {
986 inline_tx_skb(skb
, &q
->q
, cpl
+ 1);
991 write_sgl(skb
, &q
->q
, (struct ulptx_sgl
*)(cpl
+ 1), end
, 0,
995 last_desc
= q
->q
.pidx
+ ndesc
- 1;
996 if (last_desc
>= q
->q
.size
)
997 last_desc
-= q
->q
.size
;
998 q
->q
.sdesc
[last_desc
].skb
= skb
;
999 q
->q
.sdesc
[last_desc
].sgl
= (struct ulptx_sgl
*)(cpl
+ 1);
1002 txq_advance(&q
->q
, ndesc
);
1004 ring_tx_db(adap
, &q
->q
, ndesc
);
1005 return NETDEV_TX_OK
;
1009 * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs
1010 * @q: the SGE control Tx queue
1012 * This is a variant of reclaim_completed_tx() that is used for Tx queues
1013 * that send only immediate data (presently just the control queues) and
1014 * thus do not have any sk_buffs to release.
1016 static inline void reclaim_completed_tx_imm(struct sge_txq
*q
)
1018 int hw_cidx
= ntohs(q
->stat
->cidx
);
1019 int reclaim
= hw_cidx
- q
->cidx
;
1024 q
->in_use
-= reclaim
;
1029 * is_imm - check whether a packet can be sent as immediate data
1032 * Returns true if a packet can be sent as a WR with immediate data.
1034 static inline int is_imm(const struct sk_buff
*skb
)
1036 return skb
->len
<= MAX_CTRL_WR_LEN
;
1040 * ctrlq_check_stop - check if a control queue is full and should stop
1042 * @wr: most recent WR written to the queue
1044 * Check if a control queue has become full and should be stopped.
1045 * We clean up control queue descriptors very lazily, only when we are out.
1046 * If the queue is still full after reclaiming any completed descriptors
1047 * we suspend it and have the last WR wake it up.
1049 static void ctrlq_check_stop(struct sge_ctrl_txq
*q
, struct fw_wr_hdr
*wr
)
1051 reclaim_completed_tx_imm(&q
->q
);
1052 if (unlikely(txq_avail(&q
->q
) < TXQ_STOP_THRES
)) {
1053 wr
->lo
|= htonl(FW_WR_EQUEQ
| FW_WR_EQUIQ
);
1060 * ctrl_xmit - send a packet through an SGE control Tx queue
1061 * @q: the control queue
1064 * Send a packet through an SGE control Tx queue. Packets sent through
1065 * a control queue must fit entirely as immediate data.
1067 static int ctrl_xmit(struct sge_ctrl_txq
*q
, struct sk_buff
*skb
)
1070 struct fw_wr_hdr
*wr
;
1072 if (unlikely(!is_imm(skb
))) {
1075 return NET_XMIT_DROP
;
1078 ndesc
= DIV_ROUND_UP(skb
->len
, sizeof(struct tx_desc
));
1079 spin_lock(&q
->sendq
.lock
);
1081 if (unlikely(q
->full
)) {
1082 skb
->priority
= ndesc
; /* save for restart */
1083 __skb_queue_tail(&q
->sendq
, skb
);
1084 spin_unlock(&q
->sendq
.lock
);
1088 wr
= (struct fw_wr_hdr
*)&q
->q
.desc
[q
->q
.pidx
];
1089 inline_tx_skb(skb
, &q
->q
, wr
);
1091 txq_advance(&q
->q
, ndesc
);
1092 if (unlikely(txq_avail(&q
->q
) < TXQ_STOP_THRES
))
1093 ctrlq_check_stop(q
, wr
);
1095 ring_tx_db(q
->adap
, &q
->q
, ndesc
);
1096 spin_unlock(&q
->sendq
.lock
);
1099 return NET_XMIT_SUCCESS
;
1103 * restart_ctrlq - restart a suspended control queue
1104 * @data: the control queue to restart
1106 * Resumes transmission on a suspended Tx control queue.
1108 static void restart_ctrlq(unsigned long data
)
1110 struct sk_buff
*skb
;
1111 unsigned int written
= 0;
1112 struct sge_ctrl_txq
*q
= (struct sge_ctrl_txq
*)data
;
1114 spin_lock(&q
->sendq
.lock
);
1115 reclaim_completed_tx_imm(&q
->q
);
1116 BUG_ON(txq_avail(&q
->q
) < TXQ_STOP_THRES
); /* q should be empty */
1118 while ((skb
= __skb_dequeue(&q
->sendq
)) != NULL
) {
1119 struct fw_wr_hdr
*wr
;
1120 unsigned int ndesc
= skb
->priority
; /* previously saved */
1123 * Write descriptors and free skbs outside the lock to limit
1124 * wait times. q->full is still set so new skbs will be queued.
1126 spin_unlock(&q
->sendq
.lock
);
1128 wr
= (struct fw_wr_hdr
*)&q
->q
.desc
[q
->q
.pidx
];
1129 inline_tx_skb(skb
, &q
->q
, wr
);
1133 txq_advance(&q
->q
, ndesc
);
1134 if (unlikely(txq_avail(&q
->q
) < TXQ_STOP_THRES
)) {
1135 unsigned long old
= q
->q
.stops
;
1137 ctrlq_check_stop(q
, wr
);
1138 if (q
->q
.stops
!= old
) { /* suspended anew */
1139 spin_lock(&q
->sendq
.lock
);
1144 ring_tx_db(q
->adap
, &q
->q
, written
);
1147 spin_lock(&q
->sendq
.lock
);
1150 ringdb
: if (written
)
1151 ring_tx_db(q
->adap
, &q
->q
, written
);
1152 spin_unlock(&q
->sendq
.lock
);
1156 * t4_mgmt_tx - send a management message
1157 * @adap: the adapter
1158 * @skb: the packet containing the management message
1160 * Send a management message through control queue 0.
1162 int t4_mgmt_tx(struct adapter
*adap
, struct sk_buff
*skb
)
1167 ret
= ctrl_xmit(&adap
->sge
.ctrlq
[0], skb
);
1173 * is_ofld_imm - check whether a packet can be sent as immediate data
1176 * Returns true if a packet can be sent as an offload WR with immediate
1177 * data. We currently use the same limit as for Ethernet packets.
1179 static inline int is_ofld_imm(const struct sk_buff
*skb
)
1181 return skb
->len
<= MAX_IMM_TX_PKT_LEN
;
1185 * calc_tx_flits_ofld - calculate # of flits for an offload packet
1188 * Returns the number of flits needed for the given offload packet.
1189 * These packets are already fully constructed and no additional headers
1192 static inline unsigned int calc_tx_flits_ofld(const struct sk_buff
*skb
)
1194 unsigned int flits
, cnt
;
1196 if (is_ofld_imm(skb
))
1197 return DIV_ROUND_UP(skb
->len
, 8);
1199 flits
= skb_transport_offset(skb
) / 8U; /* headers */
1200 cnt
= skb_shinfo(skb
)->nr_frags
;
1201 if (skb
->tail
!= skb
->transport_header
)
1203 return flits
+ sgl_len(cnt
);
1207 * txq_stop_maperr - stop a Tx queue due to I/O MMU exhaustion
1208 * @adap: the adapter
1209 * @q: the queue to stop
1211 * Mark a Tx queue stopped due to I/O MMU exhaustion and resulting
1212 * inability to map packets. A periodic timer attempts to restart
1215 static void txq_stop_maperr(struct sge_ofld_txq
*q
)
1219 set_bit(q
->q
.cntxt_id
- q
->adap
->sge
.egr_start
,
1220 q
->adap
->sge
.txq_maperr
);
1224 * ofldtxq_stop - stop an offload Tx queue that has become full
1225 * @q: the queue to stop
1226 * @skb: the packet causing the queue to become full
1228 * Stops an offload Tx queue that has become full and modifies the packet
1229 * being written to request a wakeup.
1231 static void ofldtxq_stop(struct sge_ofld_txq
*q
, struct sk_buff
*skb
)
1233 struct fw_wr_hdr
*wr
= (struct fw_wr_hdr
*)skb
->data
;
1235 wr
->lo
|= htonl(FW_WR_EQUEQ
| FW_WR_EQUIQ
);
1241 * service_ofldq - restart a suspended offload queue
1242 * @q: the offload queue
1244 * Services an offload Tx queue by moving packets from its packet queue
1245 * to the HW Tx ring. The function starts and ends with the queue locked.
1247 static void service_ofldq(struct sge_ofld_txq
*q
)
1251 struct sk_buff
*skb
;
1252 unsigned int written
= 0;
1253 unsigned int flits
, ndesc
;
1255 while ((skb
= skb_peek(&q
->sendq
)) != NULL
&& !q
->full
) {
1257 * We drop the lock but leave skb on sendq, thus retaining
1258 * exclusive access to the state of the queue.
1260 spin_unlock(&q
->sendq
.lock
);
1262 reclaim_completed_tx(q
->adap
, &q
->q
, false);
1264 flits
= skb
->priority
; /* previously saved */
1265 ndesc
= flits_to_desc(flits
);
1266 credits
= txq_avail(&q
->q
) - ndesc
;
1267 BUG_ON(credits
< 0);
1268 if (unlikely(credits
< TXQ_STOP_THRES
))
1269 ofldtxq_stop(q
, skb
);
1271 pos
= (u64
*)&q
->q
.desc
[q
->q
.pidx
];
1272 if (is_ofld_imm(skb
))
1273 inline_tx_skb(skb
, &q
->q
, pos
);
1274 else if (map_skb(q
->adap
->pdev_dev
, skb
,
1275 (dma_addr_t
*)skb
->head
)) {
1277 spin_lock(&q
->sendq
.lock
);
1280 int last_desc
, hdr_len
= skb_transport_offset(skb
);
1282 memcpy(pos
, skb
->data
, hdr_len
);
1283 write_sgl(skb
, &q
->q
, (void *)pos
+ hdr_len
,
1284 pos
+ flits
, hdr_len
,
1285 (dma_addr_t
*)skb
->head
);
1286 #ifdef CONFIG_NEED_DMA_MAP_STATE
1287 skb
->dev
= q
->adap
->port
[0];
1288 skb
->destructor
= deferred_unmap_destructor
;
1290 last_desc
= q
->q
.pidx
+ ndesc
- 1;
1291 if (last_desc
>= q
->q
.size
)
1292 last_desc
-= q
->q
.size
;
1293 q
->q
.sdesc
[last_desc
].skb
= skb
;
1296 txq_advance(&q
->q
, ndesc
);
1298 if (unlikely(written
> 32)) {
1299 ring_tx_db(q
->adap
, &q
->q
, written
);
1303 spin_lock(&q
->sendq
.lock
);
1304 __skb_unlink(skb
, &q
->sendq
);
1305 if (is_ofld_imm(skb
))
1308 if (likely(written
))
1309 ring_tx_db(q
->adap
, &q
->q
, written
);
1313 * ofld_xmit - send a packet through an offload queue
1314 * @q: the Tx offload queue
1317 * Send an offload packet through an SGE offload queue.
1319 static int ofld_xmit(struct sge_ofld_txq
*q
, struct sk_buff
*skb
)
1321 skb
->priority
= calc_tx_flits_ofld(skb
); /* save for restart */
1322 spin_lock(&q
->sendq
.lock
);
1323 __skb_queue_tail(&q
->sendq
, skb
);
1324 if (q
->sendq
.qlen
== 1)
1326 spin_unlock(&q
->sendq
.lock
);
1327 return NET_XMIT_SUCCESS
;
1331 * restart_ofldq - restart a suspended offload queue
1332 * @data: the offload queue to restart
1334 * Resumes transmission on a suspended Tx offload queue.
1336 static void restart_ofldq(unsigned long data
)
1338 struct sge_ofld_txq
*q
= (struct sge_ofld_txq
*)data
;
1340 spin_lock(&q
->sendq
.lock
);
1341 q
->full
= 0; /* the queue actually is completely empty now */
1343 spin_unlock(&q
->sendq
.lock
);
1347 * skb_txq - return the Tx queue an offload packet should use
1350 * Returns the Tx queue an offload packet should use as indicated by bits
1351 * 1-15 in the packet's queue_mapping.
1353 static inline unsigned int skb_txq(const struct sk_buff
*skb
)
1355 return skb
->queue_mapping
>> 1;
1359 * is_ctrl_pkt - return whether an offload packet is a control packet
1362 * Returns whether an offload packet should use an OFLD or a CTRL
1363 * Tx queue as indicated by bit 0 in the packet's queue_mapping.
1365 static inline unsigned int is_ctrl_pkt(const struct sk_buff
*skb
)
1367 return skb
->queue_mapping
& 1;
1370 static inline int ofld_send(struct adapter
*adap
, struct sk_buff
*skb
)
1372 unsigned int idx
= skb_txq(skb
);
1374 if (unlikely(is_ctrl_pkt(skb
)))
1375 return ctrl_xmit(&adap
->sge
.ctrlq
[idx
], skb
);
1376 return ofld_xmit(&adap
->sge
.ofldtxq
[idx
], skb
);
1380 * t4_ofld_send - send an offload packet
1381 * @adap: the adapter
1384 * Sends an offload packet. We use the packet queue_mapping to select the
1385 * appropriate Tx queue as follows: bit 0 indicates whether the packet
1386 * should be sent as regular or control, bits 1-15 select the queue.
1388 int t4_ofld_send(struct adapter
*adap
, struct sk_buff
*skb
)
1393 ret
= ofld_send(adap
, skb
);
1399 * cxgb4_ofld_send - send an offload packet
1400 * @dev: the net device
1403 * Sends an offload packet. This is an exported version of @t4_ofld_send,
1404 * intended for ULDs.
1406 int cxgb4_ofld_send(struct net_device
*dev
, struct sk_buff
*skb
)
1408 return t4_ofld_send(netdev2adap(dev
), skb
);
1410 EXPORT_SYMBOL(cxgb4_ofld_send
);
1412 static inline void copy_frags(struct sk_buff
*skb
,
1413 const struct pkt_gl
*gl
, unsigned int offset
)
1417 /* usually there's just one frag */
1418 __skb_fill_page_desc(skb
, 0, gl
->frags
[0].page
,
1419 gl
->frags
[0].offset
+ offset
,
1420 gl
->frags
[0].size
- offset
);
1421 skb_shinfo(skb
)->nr_frags
= gl
->nfrags
;
1422 for (i
= 1; i
< gl
->nfrags
; i
++)
1423 __skb_fill_page_desc(skb
, i
, gl
->frags
[i
].page
,
1424 gl
->frags
[i
].offset
,
1427 /* get a reference to the last page, we don't own it */
1428 get_page(gl
->frags
[gl
->nfrags
- 1].page
);
1432 * cxgb4_pktgl_to_skb - build an sk_buff from a packet gather list
1433 * @gl: the gather list
1434 * @skb_len: size of sk_buff main body if it carries fragments
1435 * @pull_len: amount of data to move to the sk_buff's main body
1437 * Builds an sk_buff from the given packet gather list. Returns the
1438 * sk_buff or %NULL if sk_buff allocation failed.
1440 struct sk_buff
*cxgb4_pktgl_to_skb(const struct pkt_gl
*gl
,
1441 unsigned int skb_len
, unsigned int pull_len
)
1443 struct sk_buff
*skb
;
1446 * Below we rely on RX_COPY_THRES being less than the smallest Rx buffer
1447 * size, which is expected since buffers are at least PAGE_SIZEd.
1448 * In this case packets up to RX_COPY_THRES have only one fragment.
1450 if (gl
->tot_len
<= RX_COPY_THRES
) {
1451 skb
= dev_alloc_skb(gl
->tot_len
);
1454 __skb_put(skb
, gl
->tot_len
);
1455 skb_copy_to_linear_data(skb
, gl
->va
, gl
->tot_len
);
1457 skb
= dev_alloc_skb(skb_len
);
1460 __skb_put(skb
, pull_len
);
1461 skb_copy_to_linear_data(skb
, gl
->va
, pull_len
);
1463 copy_frags(skb
, gl
, pull_len
);
1464 skb
->len
= gl
->tot_len
;
1465 skb
->data_len
= skb
->len
- pull_len
;
1466 skb
->truesize
+= skb
->data_len
;
1470 EXPORT_SYMBOL(cxgb4_pktgl_to_skb
);
1473 * t4_pktgl_free - free a packet gather list
1474 * @gl: the gather list
1476 * Releases the pages of a packet gather list. We do not own the last
1477 * page on the list and do not free it.
1479 static void t4_pktgl_free(const struct pkt_gl
*gl
)
1482 const struct page_frag
*p
;
1484 for (p
= gl
->frags
, n
= gl
->nfrags
- 1; n
--; p
++)
1489 * Process an MPS trace packet. Give it an unused protocol number so it won't
1490 * be delivered to anyone and send it to the stack for capture.
1492 static noinline
int handle_trace_pkt(struct adapter
*adap
,
1493 const struct pkt_gl
*gl
)
1495 struct sk_buff
*skb
;
1496 struct cpl_trace_pkt
*p
;
1498 skb
= cxgb4_pktgl_to_skb(gl
, RX_PULL_LEN
, RX_PULL_LEN
);
1499 if (unlikely(!skb
)) {
1504 p
= (struct cpl_trace_pkt
*)skb
->data
;
1505 __skb_pull(skb
, sizeof(*p
));
1506 skb_reset_mac_header(skb
);
1507 skb
->protocol
= htons(0xffff);
1508 skb
->dev
= adap
->port
[0];
1509 netif_receive_skb(skb
);
1513 static void do_gro(struct sge_eth_rxq
*rxq
, const struct pkt_gl
*gl
,
1514 const struct cpl_rx_pkt
*pkt
)
1517 struct sk_buff
*skb
;
1519 skb
= napi_get_frags(&rxq
->rspq
.napi
);
1520 if (unlikely(!skb
)) {
1522 rxq
->stats
.rx_drops
++;
1526 copy_frags(skb
, gl
, RX_PKT_PAD
);
1527 skb
->len
= gl
->tot_len
- RX_PKT_PAD
;
1528 skb
->data_len
= skb
->len
;
1529 skb
->truesize
+= skb
->data_len
;
1530 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1531 skb_record_rx_queue(skb
, rxq
->rspq
.idx
);
1532 if (rxq
->rspq
.netdev
->features
& NETIF_F_RXHASH
)
1533 skb
->rxhash
= (__force u32
)pkt
->rsshdr
.hash_val
;
1535 if (unlikely(pkt
->vlan_ex
)) {
1536 __vlan_hwaccel_put_tag(skb
, ntohs(pkt
->vlan
));
1537 rxq
->stats
.vlan_ex
++;
1539 ret
= napi_gro_frags(&rxq
->rspq
.napi
);
1540 if (ret
== GRO_HELD
)
1541 rxq
->stats
.lro_pkts
++;
1542 else if (ret
== GRO_MERGED
|| ret
== GRO_MERGED_FREE
)
1543 rxq
->stats
.lro_merged
++;
1545 rxq
->stats
.rx_cso
++;
1549 * t4_ethrx_handler - process an ingress ethernet packet
1550 * @q: the response queue that received the packet
1551 * @rsp: the response queue descriptor holding the RX_PKT message
1552 * @si: the gather list of packet fragments
1554 * Process an ingress ethernet packet and deliver it to the stack.
1556 int t4_ethrx_handler(struct sge_rspq
*q
, const __be64
*rsp
,
1557 const struct pkt_gl
*si
)
1560 struct sk_buff
*skb
;
1561 const struct cpl_rx_pkt
*pkt
;
1562 struct sge_eth_rxq
*rxq
= container_of(q
, struct sge_eth_rxq
, rspq
);
1564 if (unlikely(*(u8
*)rsp
== CPL_TRACE_PKT
))
1565 return handle_trace_pkt(q
->adap
, si
);
1567 pkt
= (const struct cpl_rx_pkt
*)rsp
;
1568 csum_ok
= pkt
->csum_calc
&& !pkt
->err_vec
;
1569 if ((pkt
->l2info
& htonl(RXF_TCP
)) &&
1570 (q
->netdev
->features
& NETIF_F_GRO
) && csum_ok
&& !pkt
->ip_frag
) {
1571 do_gro(rxq
, si
, pkt
);
1575 skb
= cxgb4_pktgl_to_skb(si
, RX_PKT_SKB_LEN
, RX_PULL_LEN
);
1576 if (unlikely(!skb
)) {
1578 rxq
->stats
.rx_drops
++;
1582 __skb_pull(skb
, RX_PKT_PAD
); /* remove ethernet header padding */
1583 skb
->protocol
= eth_type_trans(skb
, q
->netdev
);
1584 skb_record_rx_queue(skb
, q
->idx
);
1585 if (skb
->dev
->features
& NETIF_F_RXHASH
)
1586 skb
->rxhash
= (__force u32
)pkt
->rsshdr
.hash_val
;
1590 if (csum_ok
&& (q
->netdev
->features
& NETIF_F_RXCSUM
) &&
1591 (pkt
->l2info
& htonl(RXF_UDP
| RXF_TCP
))) {
1592 if (!pkt
->ip_frag
) {
1593 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
1594 rxq
->stats
.rx_cso
++;
1595 } else if (pkt
->l2info
& htonl(RXF_IP
)) {
1596 __sum16 c
= (__force __sum16
)pkt
->csum
;
1597 skb
->csum
= csum_unfold(c
);
1598 skb
->ip_summed
= CHECKSUM_COMPLETE
;
1599 rxq
->stats
.rx_cso
++;
1602 skb_checksum_none_assert(skb
);
1604 if (unlikely(pkt
->vlan_ex
)) {
1605 __vlan_hwaccel_put_tag(skb
, ntohs(pkt
->vlan
));
1606 rxq
->stats
.vlan_ex
++;
1608 netif_receive_skb(skb
);
1613 * restore_rx_bufs - put back a packet's Rx buffers
1614 * @si: the packet gather list
1615 * @q: the SGE free list
1616 * @frags: number of FL buffers to restore
1618 * Puts back on an FL the Rx buffers associated with @si. The buffers
1619 * have already been unmapped and are left unmapped, we mark them so to
1620 * prevent further unmapping attempts.
1622 * This function undoes a series of @unmap_rx_buf calls when we find out
1623 * that the current packet can't be processed right away afterall and we
1624 * need to come back to it later. This is a very rare event and there's
1625 * no effort to make this particularly efficient.
1627 static void restore_rx_bufs(const struct pkt_gl
*si
, struct sge_fl
*q
,
1630 struct rx_sw_desc
*d
;
1634 q
->cidx
= q
->size
- 1;
1637 d
= &q
->sdesc
[q
->cidx
];
1638 d
->page
= si
->frags
[frags
].page
;
1639 d
->dma_addr
|= RX_UNMAPPED_BUF
;
1645 * is_new_response - check if a response is newly written
1646 * @r: the response descriptor
1647 * @q: the response queue
1649 * Returns true if a response descriptor contains a yet unprocessed
1652 static inline bool is_new_response(const struct rsp_ctrl
*r
,
1653 const struct sge_rspq
*q
)
1655 return RSPD_GEN(r
->type_gen
) == q
->gen
;
1659 * rspq_next - advance to the next entry in a response queue
1662 * Updates the state of a response queue to advance it to the next entry.
1664 static inline void rspq_next(struct sge_rspq
*q
)
1666 q
->cur_desc
= (void *)q
->cur_desc
+ q
->iqe_len
;
1667 if (unlikely(++q
->cidx
== q
->size
)) {
1670 q
->cur_desc
= q
->desc
;
1675 * process_responses - process responses from an SGE response queue
1676 * @q: the ingress queue to process
1677 * @budget: how many responses can be processed in this round
1679 * Process responses from an SGE response queue up to the supplied budget.
1680 * Responses include received packets as well as control messages from FW
1683 * Additionally choose the interrupt holdoff time for the next interrupt
1684 * on this queue. If the system is under memory shortage use a fairly
1685 * long delay to help recovery.
1687 static int process_responses(struct sge_rspq
*q
, int budget
)
1690 int budget_left
= budget
;
1691 const struct rsp_ctrl
*rc
;
1692 struct sge_eth_rxq
*rxq
= container_of(q
, struct sge_eth_rxq
, rspq
);
1694 while (likely(budget_left
)) {
1695 rc
= (void *)q
->cur_desc
+ (q
->iqe_len
- sizeof(*rc
));
1696 if (!is_new_response(rc
, q
))
1700 rsp_type
= RSPD_TYPE(rc
->type_gen
);
1701 if (likely(rsp_type
== RSP_TYPE_FLBUF
)) {
1702 struct page_frag
*fp
;
1704 const struct rx_sw_desc
*rsd
;
1705 u32 len
= ntohl(rc
->pldbuflen_qid
), bufsz
, frags
;
1707 if (len
& RSPD_NEWBUF
) {
1708 if (likely(q
->offset
> 0)) {
1709 free_rx_bufs(q
->adap
, &rxq
->fl
, 1);
1712 len
= RSPD_LEN(len
);
1716 /* gather packet fragments */
1717 for (frags
= 0, fp
= si
.frags
; ; frags
++, fp
++) {
1718 rsd
= &rxq
->fl
.sdesc
[rxq
->fl
.cidx
];
1719 bufsz
= get_buf_size(rsd
);
1720 fp
->page
= rsd
->page
;
1721 fp
->offset
= q
->offset
;
1722 fp
->size
= min(bufsz
, len
);
1726 unmap_rx_buf(q
->adap
, &rxq
->fl
);
1730 * Last buffer remains mapped so explicitly make it
1731 * coherent for CPU access.
1733 dma_sync_single_for_cpu(q
->adap
->pdev_dev
,
1735 fp
->size
, DMA_FROM_DEVICE
);
1737 si
.va
= page_address(si
.frags
[0].page
) +
1741 si
.nfrags
= frags
+ 1;
1742 ret
= q
->handler(q
, q
->cur_desc
, &si
);
1743 if (likely(ret
== 0))
1744 q
->offset
+= ALIGN(fp
->size
, FL_ALIGN
);
1746 restore_rx_bufs(&si
, &rxq
->fl
, frags
);
1747 } else if (likely(rsp_type
== RSP_TYPE_CPL
)) {
1748 ret
= q
->handler(q
, q
->cur_desc
, NULL
);
1750 ret
= q
->handler(q
, (const __be64
*)rc
, CXGB4_MSG_AN
);
1753 if (unlikely(ret
)) {
1754 /* couldn't process descriptor, back off for recovery */
1755 q
->next_intr_params
= QINTR_TIMER_IDX(NOMEM_TMR_IDX
);
1763 if (q
->offset
>= 0 && rxq
->fl
.size
- rxq
->fl
.avail
>= 16)
1764 __refill_fl(q
->adap
, &rxq
->fl
);
1765 return budget
- budget_left
;
1769 * napi_rx_handler - the NAPI handler for Rx processing
1770 * @napi: the napi instance
1771 * @budget: how many packets we can process in this round
1773 * Handler for new data events when using NAPI. This does not need any
1774 * locking or protection from interrupts as data interrupts are off at
1775 * this point and other adapter interrupts do not interfere (the latter
1776 * in not a concern at all with MSI-X as non-data interrupts then have
1777 * a separate handler).
1779 static int napi_rx_handler(struct napi_struct
*napi
, int budget
)
1781 unsigned int params
;
1782 struct sge_rspq
*q
= container_of(napi
, struct sge_rspq
, napi
);
1783 int work_done
= process_responses(q
, budget
);
1785 if (likely(work_done
< budget
)) {
1786 napi_complete(napi
);
1787 params
= q
->next_intr_params
;
1788 q
->next_intr_params
= q
->intr_params
;
1790 params
= QINTR_TIMER_IDX(7);
1792 t4_write_reg(q
->adap
, MYPF_REG(SGE_PF_GTS
), CIDXINC(work_done
) |
1793 INGRESSQID((u32
)q
->cntxt_id
) | SEINTARM(params
));
1798 * The MSI-X interrupt handler for an SGE response queue.
1800 irqreturn_t
t4_sge_intr_msix(int irq
, void *cookie
)
1802 struct sge_rspq
*q
= cookie
;
1804 napi_schedule(&q
->napi
);
1809 * Process the indirect interrupt entries in the interrupt queue and kick off
1810 * NAPI for each queue that has generated an entry.
1812 static unsigned int process_intrq(struct adapter
*adap
)
1814 unsigned int credits
;
1815 const struct rsp_ctrl
*rc
;
1816 struct sge_rspq
*q
= &adap
->sge
.intrq
;
1818 spin_lock(&adap
->sge
.intrq_lock
);
1819 for (credits
= 0; ; credits
++) {
1820 rc
= (void *)q
->cur_desc
+ (q
->iqe_len
- sizeof(*rc
));
1821 if (!is_new_response(rc
, q
))
1825 if (RSPD_TYPE(rc
->type_gen
) == RSP_TYPE_INTR
) {
1826 unsigned int qid
= ntohl(rc
->pldbuflen_qid
);
1828 qid
-= adap
->sge
.ingr_start
;
1829 napi_schedule(&adap
->sge
.ingr_map
[qid
]->napi
);
1835 t4_write_reg(adap
, MYPF_REG(SGE_PF_GTS
), CIDXINC(credits
) |
1836 INGRESSQID(q
->cntxt_id
) | SEINTARM(q
->intr_params
));
1837 spin_unlock(&adap
->sge
.intrq_lock
);
1842 * The MSI interrupt handler, which handles data events from SGE response queues
1843 * as well as error and other async events as they all use the same MSI vector.
1845 static irqreturn_t
t4_intr_msi(int irq
, void *cookie
)
1847 struct adapter
*adap
= cookie
;
1849 t4_slow_intr_handler(adap
);
1850 process_intrq(adap
);
1855 * Interrupt handler for legacy INTx interrupts.
1856 * Handles data events from SGE response queues as well as error and other
1857 * async events as they all use the same interrupt line.
1859 static irqreturn_t
t4_intr_intx(int irq
, void *cookie
)
1861 struct adapter
*adap
= cookie
;
1863 t4_write_reg(adap
, MYPF_REG(PCIE_PF_CLI
), 0);
1864 if (t4_slow_intr_handler(adap
) | process_intrq(adap
))
1866 return IRQ_NONE
; /* probably shared interrupt */
1870 * t4_intr_handler - select the top-level interrupt handler
1871 * @adap: the adapter
1873 * Selects the top-level interrupt handler based on the type of interrupts
1874 * (MSI-X, MSI, or INTx).
1876 irq_handler_t
t4_intr_handler(struct adapter
*adap
)
1878 if (adap
->flags
& USING_MSIX
)
1879 return t4_sge_intr_msix
;
1880 if (adap
->flags
& USING_MSI
)
1882 return t4_intr_intx
;
1885 static void sge_rx_timer_cb(unsigned long data
)
1888 unsigned int i
, cnt
[2];
1889 struct adapter
*adap
= (struct adapter
*)data
;
1890 struct sge
*s
= &adap
->sge
;
1892 for (i
= 0; i
< ARRAY_SIZE(s
->starving_fl
); i
++)
1893 for (m
= s
->starving_fl
[i
]; m
; m
&= m
- 1) {
1894 struct sge_eth_rxq
*rxq
;
1895 unsigned int id
= __ffs(m
) + i
* BITS_PER_LONG
;
1896 struct sge_fl
*fl
= s
->egr_map
[id
];
1898 clear_bit(id
, s
->starving_fl
);
1899 smp_mb__after_clear_bit();
1901 if (fl_starving(fl
)) {
1902 rxq
= container_of(fl
, struct sge_eth_rxq
, fl
);
1903 if (napi_reschedule(&rxq
->rspq
.napi
))
1906 set_bit(id
, s
->starving_fl
);
1910 t4_write_reg(adap
, SGE_DEBUG_INDEX
, 13);
1911 cnt
[0] = t4_read_reg(adap
, SGE_DEBUG_DATA_HIGH
);
1912 cnt
[1] = t4_read_reg(adap
, SGE_DEBUG_DATA_LOW
);
1914 for (i
= 0; i
< 2; i
++)
1915 if (cnt
[i
] >= s
->starve_thres
) {
1916 if (s
->idma_state
[i
] || cnt
[i
] == 0xffffffff)
1918 s
->idma_state
[i
] = 1;
1919 t4_write_reg(adap
, SGE_DEBUG_INDEX
, 11);
1920 m
= t4_read_reg(adap
, SGE_DEBUG_DATA_LOW
) >> (i
* 16);
1921 dev_warn(adap
->pdev_dev
,
1922 "SGE idma%u starvation detected for "
1923 "queue %lu\n", i
, m
& 0xffff);
1924 } else if (s
->idma_state
[i
])
1925 s
->idma_state
[i
] = 0;
1927 mod_timer(&s
->rx_timer
, jiffies
+ RX_QCHECK_PERIOD
);
1930 static void sge_tx_timer_cb(unsigned long data
)
1933 unsigned int i
, budget
;
1934 struct adapter
*adap
= (struct adapter
*)data
;
1935 struct sge
*s
= &adap
->sge
;
1937 for (i
= 0; i
< ARRAY_SIZE(s
->txq_maperr
); i
++)
1938 for (m
= s
->txq_maperr
[i
]; m
; m
&= m
- 1) {
1939 unsigned long id
= __ffs(m
) + i
* BITS_PER_LONG
;
1940 struct sge_ofld_txq
*txq
= s
->egr_map
[id
];
1942 clear_bit(id
, s
->txq_maperr
);
1943 tasklet_schedule(&txq
->qresume_tsk
);
1946 budget
= MAX_TIMER_TX_RECLAIM
;
1947 i
= s
->ethtxq_rover
;
1949 struct sge_eth_txq
*q
= &s
->ethtxq
[i
];
1952 time_after_eq(jiffies
, q
->txq
->trans_start
+ HZ
/ 100) &&
1953 __netif_tx_trylock(q
->txq
)) {
1954 int avail
= reclaimable(&q
->q
);
1960 free_tx_desc(adap
, &q
->q
, avail
, true);
1961 q
->q
.in_use
-= avail
;
1964 __netif_tx_unlock(q
->txq
);
1967 if (++i
>= s
->ethqsets
)
1969 } while (budget
&& i
!= s
->ethtxq_rover
);
1970 s
->ethtxq_rover
= i
;
1971 mod_timer(&s
->tx_timer
, jiffies
+ (budget
? TX_QCHECK_PERIOD
: 2));
1974 int t4_sge_alloc_rxq(struct adapter
*adap
, struct sge_rspq
*iq
, bool fwevtq
,
1975 struct net_device
*dev
, int intr_idx
,
1976 struct sge_fl
*fl
, rspq_handler_t hnd
)
1980 struct port_info
*pi
= netdev_priv(dev
);
1982 /* Size needs to be multiple of 16, including status entry. */
1983 iq
->size
= roundup(iq
->size
, 16);
1985 iq
->desc
= alloc_ring(adap
->pdev_dev
, iq
->size
, iq
->iqe_len
, 0,
1986 &iq
->phys_addr
, NULL
, 0, NUMA_NO_NODE
);
1990 memset(&c
, 0, sizeof(c
));
1991 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_IQ_CMD
) | FW_CMD_REQUEST
|
1992 FW_CMD_WRITE
| FW_CMD_EXEC
|
1993 FW_IQ_CMD_PFN(adap
->fn
) | FW_IQ_CMD_VFN(0));
1994 c
.alloc_to_len16
= htonl(FW_IQ_CMD_ALLOC
| FW_IQ_CMD_IQSTART(1) |
1996 c
.type_to_iqandstindex
= htonl(FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP
) |
1997 FW_IQ_CMD_IQASYNCH(fwevtq
) | FW_IQ_CMD_VIID(pi
->viid
) |
1998 FW_IQ_CMD_IQANDST(intr_idx
< 0) | FW_IQ_CMD_IQANUD(1) |
1999 FW_IQ_CMD_IQANDSTINDEX(intr_idx
>= 0 ? intr_idx
:
2001 c
.iqdroprss_to_iqesize
= htons(FW_IQ_CMD_IQPCIECH(pi
->tx_chan
) |
2002 FW_IQ_CMD_IQGTSMODE
|
2003 FW_IQ_CMD_IQINTCNTTHRESH(iq
->pktcnt_idx
) |
2004 FW_IQ_CMD_IQESIZE(ilog2(iq
->iqe_len
) - 4));
2005 c
.iqsize
= htons(iq
->size
);
2006 c
.iqaddr
= cpu_to_be64(iq
->phys_addr
);
2009 fl
->size
= roundup(fl
->size
, 8);
2010 fl
->desc
= alloc_ring(adap
->pdev_dev
, fl
->size
, sizeof(__be64
),
2011 sizeof(struct rx_sw_desc
), &fl
->addr
,
2012 &fl
->sdesc
, STAT_LEN
, NUMA_NO_NODE
);
2016 flsz
= fl
->size
/ 8 + STAT_LEN
/ sizeof(struct tx_desc
);
2017 c
.iqns_to_fl0congen
= htonl(FW_IQ_CMD_FL0PACKEN
|
2018 FW_IQ_CMD_FL0FETCHRO(1) |
2019 FW_IQ_CMD_FL0DATARO(1) |
2020 FW_IQ_CMD_FL0PADEN
);
2021 c
.fl0dcaen_to_fl0cidxfthresh
= htons(FW_IQ_CMD_FL0FBMIN(2) |
2022 FW_IQ_CMD_FL0FBMAX(3));
2023 c
.fl0size
= htons(flsz
);
2024 c
.fl0addr
= cpu_to_be64(fl
->addr
);
2027 ret
= t4_wr_mbox(adap
, adap
->fn
, &c
, sizeof(c
), &c
);
2031 netif_napi_add(dev
, &iq
->napi
, napi_rx_handler
, 64);
2032 iq
->cur_desc
= iq
->desc
;
2035 iq
->next_intr_params
= iq
->intr_params
;
2036 iq
->cntxt_id
= ntohs(c
.iqid
);
2037 iq
->abs_id
= ntohs(c
.physiqid
);
2038 iq
->size
--; /* subtract status entry */
2043 /* set offset to -1 to distinguish ingress queues without FL */
2044 iq
->offset
= fl
? 0 : -1;
2046 adap
->sge
.ingr_map
[iq
->cntxt_id
- adap
->sge
.ingr_start
] = iq
;
2049 fl
->cntxt_id
= ntohs(c
.fl0id
);
2050 fl
->avail
= fl
->pend_cred
= 0;
2051 fl
->pidx
= fl
->cidx
= 0;
2052 fl
->alloc_failed
= fl
->large_alloc_failed
= fl
->starving
= 0;
2053 adap
->sge
.egr_map
[fl
->cntxt_id
- adap
->sge
.egr_start
] = fl
;
2054 refill_fl(adap
, fl
, fl_cap(fl
), GFP_KERNEL
);
2062 dma_free_coherent(adap
->pdev_dev
, iq
->size
* iq
->iqe_len
,
2063 iq
->desc
, iq
->phys_addr
);
2066 if (fl
&& fl
->desc
) {
2069 dma_free_coherent(adap
->pdev_dev
, flsz
* sizeof(struct tx_desc
),
2070 fl
->desc
, fl
->addr
);
2076 static void init_txq(struct adapter
*adap
, struct sge_txq
*q
, unsigned int id
)
2079 q
->cidx
= q
->pidx
= 0;
2080 q
->stops
= q
->restarts
= 0;
2081 q
->stat
= (void *)&q
->desc
[q
->size
];
2083 adap
->sge
.egr_map
[id
- adap
->sge
.egr_start
] = q
;
2086 int t4_sge_alloc_eth_txq(struct adapter
*adap
, struct sge_eth_txq
*txq
,
2087 struct net_device
*dev
, struct netdev_queue
*netdevq
,
2091 struct fw_eq_eth_cmd c
;
2092 struct port_info
*pi
= netdev_priv(dev
);
2094 /* Add status entries */
2095 nentries
= txq
->q
.size
+ STAT_LEN
/ sizeof(struct tx_desc
);
2097 txq
->q
.desc
= alloc_ring(adap
->pdev_dev
, txq
->q
.size
,
2098 sizeof(struct tx_desc
), sizeof(struct tx_sw_desc
),
2099 &txq
->q
.phys_addr
, &txq
->q
.sdesc
, STAT_LEN
,
2100 netdev_queue_numa_node_read(netdevq
));
2104 memset(&c
, 0, sizeof(c
));
2105 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_EQ_ETH_CMD
) | FW_CMD_REQUEST
|
2106 FW_CMD_WRITE
| FW_CMD_EXEC
|
2107 FW_EQ_ETH_CMD_PFN(adap
->fn
) | FW_EQ_ETH_CMD_VFN(0));
2108 c
.alloc_to_len16
= htonl(FW_EQ_ETH_CMD_ALLOC
|
2109 FW_EQ_ETH_CMD_EQSTART
| FW_LEN16(c
));
2110 c
.viid_pkd
= htonl(FW_EQ_ETH_CMD_VIID(pi
->viid
));
2111 c
.fetchszm_to_iqid
= htonl(FW_EQ_ETH_CMD_HOSTFCMODE(2) |
2112 FW_EQ_ETH_CMD_PCIECHN(pi
->tx_chan
) |
2113 FW_EQ_ETH_CMD_FETCHRO(1) |
2114 FW_EQ_ETH_CMD_IQID(iqid
));
2115 c
.dcaen_to_eqsize
= htonl(FW_EQ_ETH_CMD_FBMIN(2) |
2116 FW_EQ_ETH_CMD_FBMAX(3) |
2117 FW_EQ_ETH_CMD_CIDXFTHRESH(5) |
2118 FW_EQ_ETH_CMD_EQSIZE(nentries
));
2119 c
.eqaddr
= cpu_to_be64(txq
->q
.phys_addr
);
2121 ret
= t4_wr_mbox(adap
, adap
->fn
, &c
, sizeof(c
), &c
);
2123 kfree(txq
->q
.sdesc
);
2124 txq
->q
.sdesc
= NULL
;
2125 dma_free_coherent(adap
->pdev_dev
,
2126 nentries
* sizeof(struct tx_desc
),
2127 txq
->q
.desc
, txq
->q
.phys_addr
);
2132 init_txq(adap
, &txq
->q
, FW_EQ_ETH_CMD_EQID_GET(ntohl(c
.eqid_pkd
)));
2134 txq
->tso
= txq
->tx_cso
= txq
->vlan_ins
= 0;
2135 txq
->mapping_err
= 0;
2139 int t4_sge_alloc_ctrl_txq(struct adapter
*adap
, struct sge_ctrl_txq
*txq
,
2140 struct net_device
*dev
, unsigned int iqid
,
2141 unsigned int cmplqid
)
2144 struct fw_eq_ctrl_cmd c
;
2145 struct port_info
*pi
= netdev_priv(dev
);
2147 /* Add status entries */
2148 nentries
= txq
->q
.size
+ STAT_LEN
/ sizeof(struct tx_desc
);
2150 txq
->q
.desc
= alloc_ring(adap
->pdev_dev
, nentries
,
2151 sizeof(struct tx_desc
), 0, &txq
->q
.phys_addr
,
2152 NULL
, 0, NUMA_NO_NODE
);
2156 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_EQ_CTRL_CMD
) | FW_CMD_REQUEST
|
2157 FW_CMD_WRITE
| FW_CMD_EXEC
|
2158 FW_EQ_CTRL_CMD_PFN(adap
->fn
) |
2159 FW_EQ_CTRL_CMD_VFN(0));
2160 c
.alloc_to_len16
= htonl(FW_EQ_CTRL_CMD_ALLOC
|
2161 FW_EQ_CTRL_CMD_EQSTART
| FW_LEN16(c
));
2162 c
.cmpliqid_eqid
= htonl(FW_EQ_CTRL_CMD_CMPLIQID(cmplqid
));
2163 c
.physeqid_pkd
= htonl(0);
2164 c
.fetchszm_to_iqid
= htonl(FW_EQ_CTRL_CMD_HOSTFCMODE(2) |
2165 FW_EQ_CTRL_CMD_PCIECHN(pi
->tx_chan
) |
2166 FW_EQ_CTRL_CMD_FETCHRO
|
2167 FW_EQ_CTRL_CMD_IQID(iqid
));
2168 c
.dcaen_to_eqsize
= htonl(FW_EQ_CTRL_CMD_FBMIN(2) |
2169 FW_EQ_CTRL_CMD_FBMAX(3) |
2170 FW_EQ_CTRL_CMD_CIDXFTHRESH(5) |
2171 FW_EQ_CTRL_CMD_EQSIZE(nentries
));
2172 c
.eqaddr
= cpu_to_be64(txq
->q
.phys_addr
);
2174 ret
= t4_wr_mbox(adap
, adap
->fn
, &c
, sizeof(c
), &c
);
2176 dma_free_coherent(adap
->pdev_dev
,
2177 nentries
* sizeof(struct tx_desc
),
2178 txq
->q
.desc
, txq
->q
.phys_addr
);
2183 init_txq(adap
, &txq
->q
, FW_EQ_CTRL_CMD_EQID_GET(ntohl(c
.cmpliqid_eqid
)));
2185 skb_queue_head_init(&txq
->sendq
);
2186 tasklet_init(&txq
->qresume_tsk
, restart_ctrlq
, (unsigned long)txq
);
2191 int t4_sge_alloc_ofld_txq(struct adapter
*adap
, struct sge_ofld_txq
*txq
,
2192 struct net_device
*dev
, unsigned int iqid
)
2195 struct fw_eq_ofld_cmd c
;
2196 struct port_info
*pi
= netdev_priv(dev
);
2198 /* Add status entries */
2199 nentries
= txq
->q
.size
+ STAT_LEN
/ sizeof(struct tx_desc
);
2201 txq
->q
.desc
= alloc_ring(adap
->pdev_dev
, txq
->q
.size
,
2202 sizeof(struct tx_desc
), sizeof(struct tx_sw_desc
),
2203 &txq
->q
.phys_addr
, &txq
->q
.sdesc
, STAT_LEN
,
2208 memset(&c
, 0, sizeof(c
));
2209 c
.op_to_vfn
= htonl(FW_CMD_OP(FW_EQ_OFLD_CMD
) | FW_CMD_REQUEST
|
2210 FW_CMD_WRITE
| FW_CMD_EXEC
|
2211 FW_EQ_OFLD_CMD_PFN(adap
->fn
) |
2212 FW_EQ_OFLD_CMD_VFN(0));
2213 c
.alloc_to_len16
= htonl(FW_EQ_OFLD_CMD_ALLOC
|
2214 FW_EQ_OFLD_CMD_EQSTART
| FW_LEN16(c
));
2215 c
.fetchszm_to_iqid
= htonl(FW_EQ_OFLD_CMD_HOSTFCMODE(2) |
2216 FW_EQ_OFLD_CMD_PCIECHN(pi
->tx_chan
) |
2217 FW_EQ_OFLD_CMD_FETCHRO(1) |
2218 FW_EQ_OFLD_CMD_IQID(iqid
));
2219 c
.dcaen_to_eqsize
= htonl(FW_EQ_OFLD_CMD_FBMIN(2) |
2220 FW_EQ_OFLD_CMD_FBMAX(3) |
2221 FW_EQ_OFLD_CMD_CIDXFTHRESH(5) |
2222 FW_EQ_OFLD_CMD_EQSIZE(nentries
));
2223 c
.eqaddr
= cpu_to_be64(txq
->q
.phys_addr
);
2225 ret
= t4_wr_mbox(adap
, adap
->fn
, &c
, sizeof(c
), &c
);
2227 kfree(txq
->q
.sdesc
);
2228 txq
->q
.sdesc
= NULL
;
2229 dma_free_coherent(adap
->pdev_dev
,
2230 nentries
* sizeof(struct tx_desc
),
2231 txq
->q
.desc
, txq
->q
.phys_addr
);
2236 init_txq(adap
, &txq
->q
, FW_EQ_OFLD_CMD_EQID_GET(ntohl(c
.eqid_pkd
)));
2238 skb_queue_head_init(&txq
->sendq
);
2239 tasklet_init(&txq
->qresume_tsk
, restart_ofldq
, (unsigned long)txq
);
2241 txq
->mapping_err
= 0;
2245 static void free_txq(struct adapter
*adap
, struct sge_txq
*q
)
2247 dma_free_coherent(adap
->pdev_dev
,
2248 q
->size
* sizeof(struct tx_desc
) + STAT_LEN
,
2249 q
->desc
, q
->phys_addr
);
2255 static void free_rspq_fl(struct adapter
*adap
, struct sge_rspq
*rq
,
2258 unsigned int fl_id
= fl
? fl
->cntxt_id
: 0xffff;
2260 adap
->sge
.ingr_map
[rq
->cntxt_id
- adap
->sge
.ingr_start
] = NULL
;
2261 t4_iq_free(adap
, adap
->fn
, adap
->fn
, 0, FW_IQ_TYPE_FL_INT_CAP
,
2262 rq
->cntxt_id
, fl_id
, 0xffff);
2263 dma_free_coherent(adap
->pdev_dev
, (rq
->size
+ 1) * rq
->iqe_len
,
2264 rq
->desc
, rq
->phys_addr
);
2265 netif_napi_del(&rq
->napi
);
2267 rq
->cntxt_id
= rq
->abs_id
= 0;
2271 free_rx_bufs(adap
, fl
, fl
->avail
);
2272 dma_free_coherent(adap
->pdev_dev
, fl
->size
* 8 + STAT_LEN
,
2273 fl
->desc
, fl
->addr
);
2282 * t4_free_sge_resources - free SGE resources
2283 * @adap: the adapter
2285 * Frees resources used by the SGE queue sets.
2287 void t4_free_sge_resources(struct adapter
*adap
)
2290 struct sge_eth_rxq
*eq
= adap
->sge
.ethrxq
;
2291 struct sge_eth_txq
*etq
= adap
->sge
.ethtxq
;
2292 struct sge_ofld_rxq
*oq
= adap
->sge
.ofldrxq
;
2294 /* clean up Ethernet Tx/Rx queues */
2295 for (i
= 0; i
< adap
->sge
.ethqsets
; i
++, eq
++, etq
++) {
2297 free_rspq_fl(adap
, &eq
->rspq
, &eq
->fl
);
2299 t4_eth_eq_free(adap
, adap
->fn
, adap
->fn
, 0,
2301 free_tx_desc(adap
, &etq
->q
, etq
->q
.in_use
, true);
2302 kfree(etq
->q
.sdesc
);
2303 free_txq(adap
, &etq
->q
);
2307 /* clean up RDMA and iSCSI Rx queues */
2308 for (i
= 0; i
< adap
->sge
.ofldqsets
; i
++, oq
++) {
2310 free_rspq_fl(adap
, &oq
->rspq
, &oq
->fl
);
2312 for (i
= 0, oq
= adap
->sge
.rdmarxq
; i
< adap
->sge
.rdmaqs
; i
++, oq
++) {
2314 free_rspq_fl(adap
, &oq
->rspq
, &oq
->fl
);
2317 /* clean up offload Tx queues */
2318 for (i
= 0; i
< ARRAY_SIZE(adap
->sge
.ofldtxq
); i
++) {
2319 struct sge_ofld_txq
*q
= &adap
->sge
.ofldtxq
[i
];
2322 tasklet_kill(&q
->qresume_tsk
);
2323 t4_ofld_eq_free(adap
, adap
->fn
, adap
->fn
, 0,
2325 free_tx_desc(adap
, &q
->q
, q
->q
.in_use
, false);
2327 __skb_queue_purge(&q
->sendq
);
2328 free_txq(adap
, &q
->q
);
2332 /* clean up control Tx queues */
2333 for (i
= 0; i
< ARRAY_SIZE(adap
->sge
.ctrlq
); i
++) {
2334 struct sge_ctrl_txq
*cq
= &adap
->sge
.ctrlq
[i
];
2337 tasklet_kill(&cq
->qresume_tsk
);
2338 t4_ctrl_eq_free(adap
, adap
->fn
, adap
->fn
, 0,
2340 __skb_queue_purge(&cq
->sendq
);
2341 free_txq(adap
, &cq
->q
);
2345 if (adap
->sge
.fw_evtq
.desc
)
2346 free_rspq_fl(adap
, &adap
->sge
.fw_evtq
, NULL
);
2348 if (adap
->sge
.intrq
.desc
)
2349 free_rspq_fl(adap
, &adap
->sge
.intrq
, NULL
);
2351 /* clear the reverse egress queue map */
2352 memset(adap
->sge
.egr_map
, 0, sizeof(adap
->sge
.egr_map
));
2355 void t4_sge_start(struct adapter
*adap
)
2357 adap
->sge
.ethtxq_rover
= 0;
2358 mod_timer(&adap
->sge
.rx_timer
, jiffies
+ RX_QCHECK_PERIOD
);
2359 mod_timer(&adap
->sge
.tx_timer
, jiffies
+ TX_QCHECK_PERIOD
);
2363 * t4_sge_stop - disable SGE operation
2364 * @adap: the adapter
2366 * Stop tasklets and timers associated with the DMA engine. Note that
2367 * this is effective only if measures have been taken to disable any HW
2368 * events that may restart them.
2370 void t4_sge_stop(struct adapter
*adap
)
2373 struct sge
*s
= &adap
->sge
;
2375 if (in_interrupt()) /* actions below require waiting */
2378 if (s
->rx_timer
.function
)
2379 del_timer_sync(&s
->rx_timer
);
2380 if (s
->tx_timer
.function
)
2381 del_timer_sync(&s
->tx_timer
);
2383 for (i
= 0; i
< ARRAY_SIZE(s
->ofldtxq
); i
++) {
2384 struct sge_ofld_txq
*q
= &s
->ofldtxq
[i
];
2387 tasklet_kill(&q
->qresume_tsk
);
2389 for (i
= 0; i
< ARRAY_SIZE(s
->ctrlq
); i
++) {
2390 struct sge_ctrl_txq
*cq
= &s
->ctrlq
[i
];
2393 tasklet_kill(&cq
->qresume_tsk
);
2398 * t4_sge_init - initialize SGE
2399 * @adap: the adapter
2401 * Performs SGE initialization needed every time after a chip reset.
2402 * We do not initialize any of the queues here, instead the driver
2403 * top-level must request them individually.
2405 void t4_sge_init(struct adapter
*adap
)
2408 struct sge
*s
= &adap
->sge
;
2409 unsigned int fl_align_log
= ilog2(FL_ALIGN
);
2411 t4_set_reg_field(adap
, SGE_CONTROL
, PKTSHIFT_MASK
|
2412 INGPADBOUNDARY_MASK
| EGRSTATUSPAGESIZE
,
2413 INGPADBOUNDARY(fl_align_log
- 5) | PKTSHIFT(2) |
2415 (STAT_LEN
== 128 ? EGRSTATUSPAGESIZE
: 0));
2417 for (i
= v
= 0; i
< 32; i
+= 4)
2418 v
|= (PAGE_SHIFT
- 10) << i
;
2419 t4_write_reg(adap
, SGE_HOST_PAGE_SIZE
, v
);
2420 t4_write_reg(adap
, SGE_FL_BUFFER_SIZE0
, PAGE_SIZE
);
2422 t4_write_reg(adap
, SGE_FL_BUFFER_SIZE1
, PAGE_SIZE
<< FL_PG_ORDER
);
2424 t4_write_reg(adap
, SGE_INGRESS_RX_THRESHOLD
,
2425 THRESHOLD_0(s
->counter_val
[0]) |
2426 THRESHOLD_1(s
->counter_val
[1]) |
2427 THRESHOLD_2(s
->counter_val
[2]) |
2428 THRESHOLD_3(s
->counter_val
[3]));
2429 t4_write_reg(adap
, SGE_TIMER_VALUE_0_AND_1
,
2430 TIMERVALUE0(us_to_core_ticks(adap
, s
->timer_val
[0])) |
2431 TIMERVALUE1(us_to_core_ticks(adap
, s
->timer_val
[1])));
2432 t4_write_reg(adap
, SGE_TIMER_VALUE_2_AND_3
,
2433 TIMERVALUE0(us_to_core_ticks(adap
, s
->timer_val
[2])) |
2434 TIMERVALUE1(us_to_core_ticks(adap
, s
->timer_val
[3])));
2435 t4_write_reg(adap
, SGE_TIMER_VALUE_4_AND_5
,
2436 TIMERVALUE0(us_to_core_ticks(adap
, s
->timer_val
[4])) |
2437 TIMERVALUE1(us_to_core_ticks(adap
, s
->timer_val
[5])));
2438 setup_timer(&s
->rx_timer
, sge_rx_timer_cb
, (unsigned long)adap
);
2439 setup_timer(&s
->tx_timer
, sge_tx_timer_cb
, (unsigned long)adap
);
2440 s
->starve_thres
= core_ticks_per_usec(adap
) * 1000000; /* 1 s */
2441 s
->idma_state
[0] = s
->idma_state
[1] = 0;
2442 spin_lock_init(&s
->intrq_lock
);