2 * This file is part of the Chelsio T4 PCI-E SR-IOV Virtual Function Ethernet
5 * Copyright (c) 2009-2010 Chelsio Communications, Inc. All rights reserved.
7 * This software is available to you under a choice of one of two
8 * licenses. You may choose to be licensed under the terms of the GNU
9 * General Public License (GPL) Version 2, available from the file
10 * COPYING in the main directory of this source tree, or the
11 * OpenIB.org BSD license below:
13 * Redistribution and use in source and binary forms, with or
14 * without modification, are permitted provided that the following
17 * - Redistributions of source code must retain the above
18 * copyright notice, this list of conditions and the following
21 * - Redistributions in binary form must reproduce the above
22 * copyright notice, this list of conditions and the following
23 * disclaimer in the documentation and/or other materials
24 * provided with the distribution.
26 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 #include <linux/module.h>
37 #include <linux/moduleparam.h>
38 #include <linux/init.h>
39 #include <linux/pci.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/netdevice.h>
42 #include <linux/etherdevice.h>
43 #include <linux/debugfs.h>
44 #include <linux/ethtool.h>
46 #include "t4vf_common.h"
47 #include "t4vf_defs.h"
49 #include "../cxgb4/t4_regs.h"
50 #include "../cxgb4/t4_msg.h"
53 * Generic information about the driver.
55 #define DRV_VERSION "1.0.0"
56 #define DRV_DESC "Chelsio T4 Virtual Function (VF) Network Driver"
64 * Default ethtool "message level" for adapters.
66 #define DFLT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | \
67 NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP |\
68 NETIF_MSG_RX_ERR | NETIF_MSG_TX_ERR)
70 static int dflt_msg_enable
= DFLT_MSG_ENABLE
;
72 module_param(dflt_msg_enable
, int, 0644);
73 MODULE_PARM_DESC(dflt_msg_enable
,
74 "default adapter ethtool message level bitmap");
77 * The driver uses the best interrupt scheme available on a platform in the
78 * order MSI-X then MSI. This parameter determines which of these schemes the
79 * driver may consider as follows:
81 * msi = 2: choose from among MSI-X and MSI
82 * msi = 1: only consider MSI interrupts
84 * Note that unlike the Physical Function driver, this Virtual Function driver
85 * does _not_ support legacy INTx interrupts (this limitation is mandated by
86 * the PCI-E SR-IOV standard).
90 #define MSI_DEFAULT MSI_MSIX
92 static int msi
= MSI_DEFAULT
;
94 module_param(msi
, int, 0644);
95 MODULE_PARM_DESC(msi
, "whether to use MSI-X or MSI");
98 * Fundamental constants.
99 * ======================
103 MAX_TXQ_ENTRIES
= 16384,
104 MAX_RSPQ_ENTRIES
= 16384,
105 MAX_RX_BUFFERS
= 16384,
107 MIN_TXQ_ENTRIES
= 32,
108 MIN_RSPQ_ENTRIES
= 128,
112 * For purposes of manipulating the Free List size we need to
113 * recognize that Free Lists are actually Egress Queues (the host
114 * produces free buffers which the hardware consumes), Egress Queues
115 * indices are all in units of Egress Context Units bytes, and free
116 * list entries are 64-bit PCI DMA addresses. And since the state of
117 * the Producer Index == the Consumer Index implies an EMPTY list, we
118 * always have at least one Egress Unit's worth of Free List entries
119 * unused. See sge.c for more details ...
121 EQ_UNIT
= SGE_EQ_IDXSIZE
,
122 FL_PER_EQ_UNIT
= EQ_UNIT
/ sizeof(__be64
),
123 MIN_FL_RESID
= FL_PER_EQ_UNIT
,
127 * Global driver state.
128 * ====================
131 static struct dentry
*cxgb4vf_debugfs_root
;
134 * OS "Callback" functions.
135 * ========================
139 * The link status has changed on the indicated "port" (Virtual Interface).
141 void t4vf_os_link_changed(struct adapter
*adapter
, int pidx
, int link_ok
)
143 struct net_device
*dev
= adapter
->port
[pidx
];
146 * If the port is disabled or the current recorded "link up"
147 * status matches the new status, just return.
149 if (!netif_running(dev
) || link_ok
== netif_carrier_ok(dev
))
153 * Tell the OS that the link status has changed and print a short
154 * informative message on the console about the event.
159 const struct port_info
*pi
= netdev_priv(dev
);
161 netif_carrier_on(dev
);
163 switch (pi
->link_cfg
.speed
) {
181 switch (pi
->link_cfg
.fc
) {
190 case PAUSE_RX
|PAUSE_TX
:
199 printk(KERN_INFO
"%s: link up, %s, full-duplex, %s PAUSE\n",
202 netif_carrier_off(dev
);
203 printk(KERN_INFO
"%s: link down\n", dev
->name
);
208 * Net device operations.
209 * ======================
216 * Perform the MAC and PHY actions needed to enable a "port" (Virtual
219 static int link_start(struct net_device
*dev
)
222 struct port_info
*pi
= netdev_priv(dev
);
225 * We do not set address filters and promiscuity here, the stack does
226 * that step explicitly. Enable vlan accel.
228 ret
= t4vf_set_rxmode(pi
->adapter
, pi
->viid
, dev
->mtu
, -1, -1, -1, 1,
231 ret
= t4vf_change_mac(pi
->adapter
, pi
->viid
,
232 pi
->xact_addr_filt
, dev
->dev_addr
, true);
234 pi
->xact_addr_filt
= ret
;
240 * We don't need to actually "start the link" itself since the
241 * firmware will do that for us when the first Virtual Interface
242 * is enabled on a port.
245 ret
= t4vf_enable_vi(pi
->adapter
, pi
->viid
, true, true);
250 * Name the MSI-X interrupts.
252 static void name_msix_vecs(struct adapter
*adapter
)
254 int namelen
= sizeof(adapter
->msix_info
[0].desc
) - 1;
260 snprintf(adapter
->msix_info
[MSIX_FW
].desc
, namelen
,
261 "%s-FWeventq", adapter
->name
);
262 adapter
->msix_info
[MSIX_FW
].desc
[namelen
] = 0;
267 for_each_port(adapter
, pidx
) {
268 struct net_device
*dev
= adapter
->port
[pidx
];
269 const struct port_info
*pi
= netdev_priv(dev
);
272 for (qs
= 0, msi
= MSIX_IQFLINT
; qs
< pi
->nqsets
; qs
++, msi
++) {
273 snprintf(adapter
->msix_info
[msi
].desc
, namelen
,
274 "%s-%d", dev
->name
, qs
);
275 adapter
->msix_info
[msi
].desc
[namelen
] = 0;
281 * Request all of our MSI-X resources.
283 static int request_msix_queue_irqs(struct adapter
*adapter
)
285 struct sge
*s
= &adapter
->sge
;
291 err
= request_irq(adapter
->msix_info
[MSIX_FW
].vec
, t4vf_sge_intr_msix
,
292 0, adapter
->msix_info
[MSIX_FW
].desc
, &s
->fw_evtq
);
300 for_each_ethrxq(s
, rxq
) {
301 err
= request_irq(adapter
->msix_info
[msi
].vec
,
302 t4vf_sge_intr_msix
, 0,
303 adapter
->msix_info
[msi
].desc
,
304 &s
->ethrxq
[rxq
].rspq
);
313 free_irq(adapter
->msix_info
[--msi
].vec
, &s
->ethrxq
[rxq
].rspq
);
314 free_irq(adapter
->msix_info
[MSIX_FW
].vec
, &s
->fw_evtq
);
319 * Free our MSI-X resources.
321 static void free_msix_queue_irqs(struct adapter
*adapter
)
323 struct sge
*s
= &adapter
->sge
;
326 free_irq(adapter
->msix_info
[MSIX_FW
].vec
, &s
->fw_evtq
);
328 for_each_ethrxq(s
, rxq
)
329 free_irq(adapter
->msix_info
[msi
++].vec
,
330 &s
->ethrxq
[rxq
].rspq
);
334 * Turn on NAPI and start up interrupts on a response queue.
336 static void qenable(struct sge_rspq
*rspq
)
338 napi_enable(&rspq
->napi
);
341 * 0-increment the Going To Sleep register to start the timer and
344 t4_write_reg(rspq
->adapter
, T4VF_SGE_BASE_ADDR
+ SGE_VF_GTS
,
346 SEINTARM(rspq
->intr_params
) |
347 INGRESSQID(rspq
->cntxt_id
));
351 * Enable NAPI scheduling and interrupt generation for all Receive Queues.
353 static void enable_rx(struct adapter
*adapter
)
356 struct sge
*s
= &adapter
->sge
;
358 for_each_ethrxq(s
, rxq
)
359 qenable(&s
->ethrxq
[rxq
].rspq
);
360 qenable(&s
->fw_evtq
);
363 * The interrupt queue doesn't use NAPI so we do the 0-increment of
364 * its Going To Sleep register here to get it started.
366 if (adapter
->flags
& USING_MSI
)
367 t4_write_reg(adapter
, T4VF_SGE_BASE_ADDR
+ SGE_VF_GTS
,
369 SEINTARM(s
->intrq
.intr_params
) |
370 INGRESSQID(s
->intrq
.cntxt_id
));
375 * Wait until all NAPI handlers are descheduled.
377 static void quiesce_rx(struct adapter
*adapter
)
379 struct sge
*s
= &adapter
->sge
;
382 for_each_ethrxq(s
, rxq
)
383 napi_disable(&s
->ethrxq
[rxq
].rspq
.napi
);
384 napi_disable(&s
->fw_evtq
.napi
);
388 * Response queue handler for the firmware event queue.
390 static int fwevtq_handler(struct sge_rspq
*rspq
, const __be64
*rsp
,
391 const struct pkt_gl
*gl
)
394 * Extract response opcode and get pointer to CPL message body.
396 struct adapter
*adapter
= rspq
->adapter
;
397 u8 opcode
= ((const struct rss_header
*)rsp
)->opcode
;
398 void *cpl
= (void *)(rsp
+ 1);
403 * We've received an asynchronous message from the firmware.
405 const struct cpl_fw6_msg
*fw_msg
= cpl
;
406 if (fw_msg
->type
== FW6_TYPE_CMD_RPL
)
407 t4vf_handle_fw_rpl(adapter
, fw_msg
->data
);
411 case CPL_SGE_EGR_UPDATE
: {
413 * We've received an Egress Queue Status Update message. We
414 * get these, if the SGE is configured to send these when the
415 * firmware passes certain points in processing our TX
416 * Ethernet Queue or if we make an explicit request for one.
417 * We use these updates to determine when we may need to
418 * restart a TX Ethernet Queue which was stopped for lack of
419 * free TX Queue Descriptors ...
421 const struct cpl_sge_egr_update
*p
= (void *)cpl
;
422 unsigned int qid
= EGR_QID(be32_to_cpu(p
->opcode_qid
));
423 struct sge
*s
= &adapter
->sge
;
425 struct sge_eth_txq
*txq
;
429 * Perform sanity checking on the Queue ID to make sure it
430 * really refers to one of our TX Ethernet Egress Queues which
431 * is active and matches the queue's ID. None of these error
432 * conditions should ever happen so we may want to either make
433 * them fatal and/or conditionalized under DEBUG.
435 eq_idx
= EQ_IDX(s
, qid
);
436 if (unlikely(eq_idx
>= MAX_EGRQ
)) {
437 dev_err(adapter
->pdev_dev
,
438 "Egress Update QID %d out of range\n", qid
);
441 tq
= s
->egr_map
[eq_idx
];
442 if (unlikely(tq
== NULL
)) {
443 dev_err(adapter
->pdev_dev
,
444 "Egress Update QID %d TXQ=NULL\n", qid
);
447 txq
= container_of(tq
, struct sge_eth_txq
, q
);
448 if (unlikely(tq
->abs_id
!= qid
)) {
449 dev_err(adapter
->pdev_dev
,
450 "Egress Update QID %d refers to TXQ %d\n",
456 * Restart a stopped TX Queue which has less than half of its
460 netif_tx_wake_queue(txq
->txq
);
465 dev_err(adapter
->pdev_dev
,
466 "unexpected CPL %#x on FW event queue\n", opcode
);
473 * Allocate SGE TX/RX response queues. Determine how many sets of SGE queues
474 * to use and initializes them. We support multiple "Queue Sets" per port if
475 * we have MSI-X, otherwise just one queue set per port.
477 static int setup_sge_queues(struct adapter
*adapter
)
479 struct sge
*s
= &adapter
->sge
;
483 * Clear "Queue Set" Free List Starving and TX Queue Mapping Error
486 bitmap_zero(s
->starving_fl
, MAX_EGRQ
);
489 * If we're using MSI interrupt mode we need to set up a "forwarded
490 * interrupt" queue which we'll set up with our MSI vector. The rest
491 * of the ingress queues will be set up to forward their interrupts to
492 * this queue ... This must be first since t4vf_sge_alloc_rxq() uses
493 * the intrq's queue ID as the interrupt forwarding queue for the
494 * subsequent calls ...
496 if (adapter
->flags
& USING_MSI
) {
497 err
= t4vf_sge_alloc_rxq(adapter
, &s
->intrq
, false,
498 adapter
->port
[0], 0, NULL
, NULL
);
500 goto err_free_queues
;
504 * Allocate our ingress queue for asynchronous firmware messages.
506 err
= t4vf_sge_alloc_rxq(adapter
, &s
->fw_evtq
, true, adapter
->port
[0],
507 MSIX_FW
, NULL
, fwevtq_handler
);
509 goto err_free_queues
;
512 * Allocate each "port"'s initial Queue Sets. These can be changed
513 * later on ... up to the point where any interface on the adapter is
514 * brought up at which point lots of things get nailed down
518 for_each_port(adapter
, pidx
) {
519 struct net_device
*dev
= adapter
->port
[pidx
];
520 struct port_info
*pi
= netdev_priv(dev
);
521 struct sge_eth_rxq
*rxq
= &s
->ethrxq
[pi
->first_qset
];
522 struct sge_eth_txq
*txq
= &s
->ethtxq
[pi
->first_qset
];
525 for (qs
= 0; qs
< pi
->nqsets
; qs
++, rxq
++, txq
++) {
526 err
= t4vf_sge_alloc_rxq(adapter
, &rxq
->rspq
, false,
528 &rxq
->fl
, t4vf_ethrx_handler
);
530 goto err_free_queues
;
532 err
= t4vf_sge_alloc_eth_txq(adapter
, txq
, dev
,
533 netdev_get_tx_queue(dev
, qs
),
534 s
->fw_evtq
.cntxt_id
);
536 goto err_free_queues
;
539 memset(&rxq
->stats
, 0, sizeof(rxq
->stats
));
544 * Create the reverse mappings for the queues.
546 s
->egr_base
= s
->ethtxq
[0].q
.abs_id
- s
->ethtxq
[0].q
.cntxt_id
;
547 s
->ingr_base
= s
->ethrxq
[0].rspq
.abs_id
- s
->ethrxq
[0].rspq
.cntxt_id
;
548 IQ_MAP(s
, s
->fw_evtq
.abs_id
) = &s
->fw_evtq
;
549 for_each_port(adapter
, pidx
) {
550 struct net_device
*dev
= adapter
->port
[pidx
];
551 struct port_info
*pi
= netdev_priv(dev
);
552 struct sge_eth_rxq
*rxq
= &s
->ethrxq
[pi
->first_qset
];
553 struct sge_eth_txq
*txq
= &s
->ethtxq
[pi
->first_qset
];
556 for (qs
= 0; qs
< pi
->nqsets
; qs
++, rxq
++, txq
++) {
557 IQ_MAP(s
, rxq
->rspq
.abs_id
) = &rxq
->rspq
;
558 EQ_MAP(s
, txq
->q
.abs_id
) = &txq
->q
;
561 * The FW_IQ_CMD doesn't return the Absolute Queue IDs
562 * for Free Lists but since all of the Egress Queues
563 * (including Free Lists) have Relative Queue IDs
564 * which are computed as Absolute - Base Queue ID, we
565 * can synthesize the Absolute Queue IDs for the Free
566 * Lists. This is useful for debugging purposes when
567 * we want to dump Queue Contexts via the PF Driver.
569 rxq
->fl
.abs_id
= rxq
->fl
.cntxt_id
+ s
->egr_base
;
570 EQ_MAP(s
, rxq
->fl
.abs_id
) = &rxq
->fl
;
576 t4vf_free_sge_resources(adapter
);
581 * Set up Receive Side Scaling (RSS) to distribute packets to multiple receive
582 * queues. We configure the RSS CPU lookup table to distribute to the number
583 * of HW receive queues, and the response queue lookup table to narrow that
584 * down to the response queues actually configured for each "port" (Virtual
585 * Interface). We always configure the RSS mapping for all ports since the
586 * mapping table has plenty of entries.
588 static int setup_rss(struct adapter
*adapter
)
592 for_each_port(adapter
, pidx
) {
593 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
594 struct sge_eth_rxq
*rxq
= &adapter
->sge
.ethrxq
[pi
->first_qset
];
595 u16 rss
[MAX_PORT_QSETS
];
598 for (qs
= 0; qs
< pi
->nqsets
; qs
++)
599 rss
[qs
] = rxq
[qs
].rspq
.abs_id
;
601 err
= t4vf_config_rss_range(adapter
, pi
->viid
,
602 0, pi
->rss_size
, rss
, pi
->nqsets
);
607 * Perform Global RSS Mode-specific initialization.
609 switch (adapter
->params
.rss
.mode
) {
610 case FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
:
612 * If Tunnel All Lookup isn't specified in the global
613 * RSS Configuration, then we need to specify a
614 * default Ingress Queue for any ingress packets which
615 * aren't hashed. We'll use our first ingress queue
618 if (!adapter
->params
.rss
.u
.basicvirtual
.tnlalllookup
) {
619 union rss_vi_config config
;
620 err
= t4vf_read_rss_vi_config(adapter
,
625 config
.basicvirtual
.defaultq
=
627 err
= t4vf_write_rss_vi_config(adapter
,
641 * Bring the adapter up. Called whenever we go from no "ports" open to having
642 * one open. This function performs the actions necessary to make an adapter
643 * operational, such as completing the initialization of HW modules, and
644 * enabling interrupts. Must be called with the rtnl lock held. (Note that
645 * this is called "cxgb_up" in the PF Driver.)
647 static int adapter_up(struct adapter
*adapter
)
652 * If this is the first time we've been called, perform basic
653 * adapter setup. Once we've done this, many of our adapter
654 * parameters can no longer be changed ...
656 if ((adapter
->flags
& FULL_INIT_DONE
) == 0) {
657 err
= setup_sge_queues(adapter
);
660 err
= setup_rss(adapter
);
662 t4vf_free_sge_resources(adapter
);
666 if (adapter
->flags
& USING_MSIX
)
667 name_msix_vecs(adapter
);
668 adapter
->flags
|= FULL_INIT_DONE
;
672 * Acquire our interrupt resources. We only support MSI-X and MSI.
674 BUG_ON((adapter
->flags
& (USING_MSIX
|USING_MSI
)) == 0);
675 if (adapter
->flags
& USING_MSIX
)
676 err
= request_msix_queue_irqs(adapter
);
678 err
= request_irq(adapter
->pdev
->irq
,
679 t4vf_intr_handler(adapter
), 0,
680 adapter
->name
, adapter
);
682 dev_err(adapter
->pdev_dev
, "request_irq failed, err %d\n",
688 * Enable NAPI ingress processing and return success.
691 t4vf_sge_start(adapter
);
696 * Bring the adapter down. Called whenever the last "port" (Virtual
697 * Interface) closed. (Note that this routine is called "cxgb_down" in the PF
700 static void adapter_down(struct adapter
*adapter
)
703 * Free interrupt resources.
705 if (adapter
->flags
& USING_MSIX
)
706 free_msix_queue_irqs(adapter
);
708 free_irq(adapter
->pdev
->irq
, adapter
);
711 * Wait for NAPI handlers to finish.
717 * Start up a net device.
719 static int cxgb4vf_open(struct net_device
*dev
)
722 struct port_info
*pi
= netdev_priv(dev
);
723 struct adapter
*adapter
= pi
->adapter
;
726 * If this is the first interface that we're opening on the "adapter",
727 * bring the "adapter" up now.
729 if (adapter
->open_device_map
== 0) {
730 err
= adapter_up(adapter
);
736 * Note that this interface is up and start everything up ...
738 netif_set_real_num_tx_queues(dev
, pi
->nqsets
);
739 err
= netif_set_real_num_rx_queues(dev
, pi
->nqsets
);
742 err
= link_start(dev
);
746 netif_tx_start_all_queues(dev
);
747 set_bit(pi
->port_id
, &adapter
->open_device_map
);
751 if (adapter
->open_device_map
== 0)
752 adapter_down(adapter
);
757 * Shut down a net device. This routine is called "cxgb_close" in the PF
760 static int cxgb4vf_stop(struct net_device
*dev
)
762 struct port_info
*pi
= netdev_priv(dev
);
763 struct adapter
*adapter
= pi
->adapter
;
765 netif_tx_stop_all_queues(dev
);
766 netif_carrier_off(dev
);
767 t4vf_enable_vi(adapter
, pi
->viid
, false, false);
768 pi
->link_cfg
.link_ok
= 0;
770 clear_bit(pi
->port_id
, &adapter
->open_device_map
);
771 if (adapter
->open_device_map
== 0)
772 adapter_down(adapter
);
777 * Translate our basic statistics into the standard "ifconfig" statistics.
779 static struct net_device_stats
*cxgb4vf_get_stats(struct net_device
*dev
)
781 struct t4vf_port_stats stats
;
782 struct port_info
*pi
= netdev2pinfo(dev
);
783 struct adapter
*adapter
= pi
->adapter
;
784 struct net_device_stats
*ns
= &dev
->stats
;
787 spin_lock(&adapter
->stats_lock
);
788 err
= t4vf_get_port_stats(adapter
, pi
->pidx
, &stats
);
789 spin_unlock(&adapter
->stats_lock
);
791 memset(ns
, 0, sizeof(*ns
));
795 ns
->tx_bytes
= (stats
.tx_bcast_bytes
+ stats
.tx_mcast_bytes
+
796 stats
.tx_ucast_bytes
+ stats
.tx_offload_bytes
);
797 ns
->tx_packets
= (stats
.tx_bcast_frames
+ stats
.tx_mcast_frames
+
798 stats
.tx_ucast_frames
+ stats
.tx_offload_frames
);
799 ns
->rx_bytes
= (stats
.rx_bcast_bytes
+ stats
.rx_mcast_bytes
+
800 stats
.rx_ucast_bytes
);
801 ns
->rx_packets
= (stats
.rx_bcast_frames
+ stats
.rx_mcast_frames
+
802 stats
.rx_ucast_frames
);
803 ns
->multicast
= stats
.rx_mcast_frames
;
804 ns
->tx_errors
= stats
.tx_drop_frames
;
805 ns
->rx_errors
= stats
.rx_err_frames
;
811 * Collect up to maxaddrs worth of a netdevice's unicast addresses, starting
812 * at a specified offset within the list, into an array of addrss pointers and
813 * return the number collected.
815 static inline unsigned int collect_netdev_uc_list_addrs(const struct net_device
*dev
,
818 unsigned int maxaddrs
)
820 unsigned int index
= 0;
821 unsigned int naddr
= 0;
822 const struct netdev_hw_addr
*ha
;
824 for_each_dev_addr(dev
, ha
)
825 if (index
++ >= offset
) {
826 addr
[naddr
++] = ha
->addr
;
827 if (naddr
>= maxaddrs
)
834 * Collect up to maxaddrs worth of a netdevice's multicast addresses, starting
835 * at a specified offset within the list, into an array of addrss pointers and
836 * return the number collected.
838 static inline unsigned int collect_netdev_mc_list_addrs(const struct net_device
*dev
,
841 unsigned int maxaddrs
)
843 unsigned int index
= 0;
844 unsigned int naddr
= 0;
845 const struct netdev_hw_addr
*ha
;
847 netdev_for_each_mc_addr(ha
, dev
)
848 if (index
++ >= offset
) {
849 addr
[naddr
++] = ha
->addr
;
850 if (naddr
>= maxaddrs
)
857 * Configure the exact and hash address filters to handle a port's multicast
858 * and secondary unicast MAC addresses.
860 static int set_addr_filters(const struct net_device
*dev
, bool sleep
)
865 unsigned int offset
, naddr
;
868 const struct port_info
*pi
= netdev_priv(dev
);
870 /* first do the secondary unicast addresses */
871 for (offset
= 0; ; offset
+= naddr
) {
872 naddr
= collect_netdev_uc_list_addrs(dev
, addr
, offset
,
877 ret
= t4vf_alloc_mac_filt(pi
->adapter
, pi
->viid
, free
,
878 naddr
, addr
, NULL
, &uhash
, sleep
);
885 /* next set up the multicast addresses */
886 for (offset
= 0; ; offset
+= naddr
) {
887 naddr
= collect_netdev_mc_list_addrs(dev
, addr
, offset
,
892 ret
= t4vf_alloc_mac_filt(pi
->adapter
, pi
->viid
, free
,
893 naddr
, addr
, NULL
, &mhash
, sleep
);
899 return t4vf_set_addr_hash(pi
->adapter
, pi
->viid
, uhash
!= 0,
900 uhash
| mhash
, sleep
);
904 * Set RX properties of a port, such as promiscruity, address filters, and MTU.
905 * If @mtu is -1 it is left unchanged.
907 static int set_rxmode(struct net_device
*dev
, int mtu
, bool sleep_ok
)
910 struct port_info
*pi
= netdev_priv(dev
);
912 ret
= set_addr_filters(dev
, sleep_ok
);
914 ret
= t4vf_set_rxmode(pi
->adapter
, pi
->viid
, -1,
915 (dev
->flags
& IFF_PROMISC
) != 0,
916 (dev
->flags
& IFF_ALLMULTI
) != 0,
922 * Set the current receive modes on the device.
924 static void cxgb4vf_set_rxmode(struct net_device
*dev
)
926 /* unfortunately we can't return errors to the stack */
927 set_rxmode(dev
, -1, false);
931 * Find the entry in the interrupt holdoff timer value array which comes
932 * closest to the specified interrupt holdoff value.
934 static int closest_timer(const struct sge
*s
, int us
)
936 int i
, timer_idx
= 0, min_delta
= INT_MAX
;
938 for (i
= 0; i
< ARRAY_SIZE(s
->timer_val
); i
++) {
939 int delta
= us
- s
->timer_val
[i
];
942 if (delta
< min_delta
) {
950 static int closest_thres(const struct sge
*s
, int thres
)
952 int i
, delta
, pktcnt_idx
= 0, min_delta
= INT_MAX
;
954 for (i
= 0; i
< ARRAY_SIZE(s
->counter_val
); i
++) {
955 delta
= thres
- s
->counter_val
[i
];
958 if (delta
< min_delta
) {
967 * Return a queue's interrupt hold-off time in us. 0 means no timer.
969 static unsigned int qtimer_val(const struct adapter
*adapter
,
970 const struct sge_rspq
*rspq
)
972 unsigned int timer_idx
= QINTR_TIMER_IDX_GET(rspq
->intr_params
);
974 return timer_idx
< SGE_NTIMERS
975 ? adapter
->sge
.timer_val
[timer_idx
]
980 * set_rxq_intr_params - set a queue's interrupt holdoff parameters
981 * @adapter: the adapter
982 * @rspq: the RX response queue
983 * @us: the hold-off time in us, or 0 to disable timer
984 * @cnt: the hold-off packet count, or 0 to disable counter
986 * Sets an RX response queue's interrupt hold-off time and packet count.
987 * At least one of the two needs to be enabled for the queue to generate
990 static int set_rxq_intr_params(struct adapter
*adapter
, struct sge_rspq
*rspq
,
991 unsigned int us
, unsigned int cnt
)
993 unsigned int timer_idx
;
996 * If both the interrupt holdoff timer and count are specified as
997 * zero, default to a holdoff count of 1 ...
1003 * If an interrupt holdoff count has been specified, then find the
1004 * closest configured holdoff count and use that. If the response
1005 * queue has already been created, then update its queue context
1012 pktcnt_idx
= closest_thres(&adapter
->sge
, cnt
);
1013 if (rspq
->desc
&& rspq
->pktcnt_idx
!= pktcnt_idx
) {
1014 v
= FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ
) |
1016 FW_PARAMS_PARAM_DMAQ_IQ_INTCNTTHRESH
) |
1017 FW_PARAMS_PARAM_YZ(rspq
->cntxt_id
);
1018 err
= t4vf_set_params(adapter
, 1, &v
, &pktcnt_idx
);
1022 rspq
->pktcnt_idx
= pktcnt_idx
;
1026 * Compute the closest holdoff timer index from the supplied holdoff
1029 timer_idx
= (us
== 0
1030 ? SGE_TIMER_RSTRT_CNTR
1031 : closest_timer(&adapter
->sge
, us
));
1034 * Update the response queue's interrupt coalescing parameters and
1037 rspq
->intr_params
= (QINTR_TIMER_IDX(timer_idx
) |
1038 (cnt
> 0 ? QINTR_CNT_EN
: 0));
1043 * Return a version number to identify the type of adapter. The scheme is:
1044 * - bits 0..9: chip version
1045 * - bits 10..15: chip revision
1047 static inline unsigned int mk_adap_vers(const struct adapter
*adapter
)
1050 * Chip version 4, revision 0x3f (cxgb4vf).
1052 return 4 | (0x3f << 10);
1056 * Execute the specified ioctl command.
1058 static int cxgb4vf_do_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
1064 * The VF Driver doesn't have access to any of the other
1065 * common Ethernet device ioctl()'s (like reading/writing
1066 * PHY registers, etc.
1077 * Change the device's MTU.
1079 static int cxgb4vf_change_mtu(struct net_device
*dev
, int new_mtu
)
1082 struct port_info
*pi
= netdev_priv(dev
);
1084 /* accommodate SACK */
1088 ret
= t4vf_set_rxmode(pi
->adapter
, pi
->viid
, new_mtu
,
1089 -1, -1, -1, -1, true);
1095 static u32
cxgb4vf_fix_features(struct net_device
*dev
, u32 features
)
1098 * Since there is no support for separate rx/tx vlan accel
1099 * enable/disable make sure tx flag is always in same state as rx.
1101 if (features
& NETIF_F_HW_VLAN_RX
)
1102 features
|= NETIF_F_HW_VLAN_TX
;
1104 features
&= ~NETIF_F_HW_VLAN_TX
;
1109 static int cxgb4vf_set_features(struct net_device
*dev
, u32 features
)
1111 struct port_info
*pi
= netdev_priv(dev
);
1112 u32 changed
= dev
->features
^ features
;
1114 if (changed
& NETIF_F_HW_VLAN_RX
)
1115 t4vf_set_rxmode(pi
->adapter
, pi
->viid
, -1, -1, -1, -1,
1116 features
& NETIF_F_HW_VLAN_TX
, 0);
1122 * Change the devices MAC address.
1124 static int cxgb4vf_set_mac_addr(struct net_device
*dev
, void *_addr
)
1127 struct sockaddr
*addr
= _addr
;
1128 struct port_info
*pi
= netdev_priv(dev
);
1130 if (!is_valid_ether_addr(addr
->sa_data
))
1133 ret
= t4vf_change_mac(pi
->adapter
, pi
->viid
, pi
->xact_addr_filt
,
1134 addr
->sa_data
, true);
1138 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
1139 pi
->xact_addr_filt
= ret
;
1143 #ifdef CONFIG_NET_POLL_CONTROLLER
1145 * Poll all of our receive queues. This is called outside of normal interrupt
1148 static void cxgb4vf_poll_controller(struct net_device
*dev
)
1150 struct port_info
*pi
= netdev_priv(dev
);
1151 struct adapter
*adapter
= pi
->adapter
;
1153 if (adapter
->flags
& USING_MSIX
) {
1154 struct sge_eth_rxq
*rxq
;
1157 rxq
= &adapter
->sge
.ethrxq
[pi
->first_qset
];
1158 for (nqsets
= pi
->nqsets
; nqsets
; nqsets
--) {
1159 t4vf_sge_intr_msix(0, &rxq
->rspq
);
1163 t4vf_intr_handler(adapter
)(0, adapter
);
1168 * Ethtool operations.
1169 * ===================
1171 * Note that we don't support any ethtool operations which change the physical
1172 * state of the port to which we're linked.
1176 * Return current port link settings.
1178 static int cxgb4vf_get_settings(struct net_device
*dev
,
1179 struct ethtool_cmd
*cmd
)
1181 const struct port_info
*pi
= netdev_priv(dev
);
1183 cmd
->supported
= pi
->link_cfg
.supported
;
1184 cmd
->advertising
= pi
->link_cfg
.advertising
;
1185 ethtool_cmd_speed_set(cmd
,
1186 netif_carrier_ok(dev
) ? pi
->link_cfg
.speed
: -1);
1187 cmd
->duplex
= DUPLEX_FULL
;
1189 cmd
->port
= (cmd
->supported
& SUPPORTED_TP
) ? PORT_TP
: PORT_FIBRE
;
1190 cmd
->phy_address
= pi
->port_id
;
1191 cmd
->transceiver
= XCVR_EXTERNAL
;
1192 cmd
->autoneg
= pi
->link_cfg
.autoneg
;
1199 * Return our driver information.
1201 static void cxgb4vf_get_drvinfo(struct net_device
*dev
,
1202 struct ethtool_drvinfo
*drvinfo
)
1204 struct adapter
*adapter
= netdev2adap(dev
);
1206 strcpy(drvinfo
->driver
, KBUILD_MODNAME
);
1207 strcpy(drvinfo
->version
, DRV_VERSION
);
1208 strcpy(drvinfo
->bus_info
, pci_name(to_pci_dev(dev
->dev
.parent
)));
1209 snprintf(drvinfo
->fw_version
, sizeof(drvinfo
->fw_version
),
1210 "%u.%u.%u.%u, TP %u.%u.%u.%u",
1211 FW_HDR_FW_VER_MAJOR_GET(adapter
->params
.dev
.fwrev
),
1212 FW_HDR_FW_VER_MINOR_GET(adapter
->params
.dev
.fwrev
),
1213 FW_HDR_FW_VER_MICRO_GET(adapter
->params
.dev
.fwrev
),
1214 FW_HDR_FW_VER_BUILD_GET(adapter
->params
.dev
.fwrev
),
1215 FW_HDR_FW_VER_MAJOR_GET(adapter
->params
.dev
.tprev
),
1216 FW_HDR_FW_VER_MINOR_GET(adapter
->params
.dev
.tprev
),
1217 FW_HDR_FW_VER_MICRO_GET(adapter
->params
.dev
.tprev
),
1218 FW_HDR_FW_VER_BUILD_GET(adapter
->params
.dev
.tprev
));
1222 * Return current adapter message level.
1224 static u32
cxgb4vf_get_msglevel(struct net_device
*dev
)
1226 return netdev2adap(dev
)->msg_enable
;
1230 * Set current adapter message level.
1232 static void cxgb4vf_set_msglevel(struct net_device
*dev
, u32 msglevel
)
1234 netdev2adap(dev
)->msg_enable
= msglevel
;
1238 * Return the device's current Queue Set ring size parameters along with the
1239 * allowed maximum values. Since ethtool doesn't understand the concept of
1240 * multi-queue devices, we just return the current values associated with the
1243 static void cxgb4vf_get_ringparam(struct net_device
*dev
,
1244 struct ethtool_ringparam
*rp
)
1246 const struct port_info
*pi
= netdev_priv(dev
);
1247 const struct sge
*s
= &pi
->adapter
->sge
;
1249 rp
->rx_max_pending
= MAX_RX_BUFFERS
;
1250 rp
->rx_mini_max_pending
= MAX_RSPQ_ENTRIES
;
1251 rp
->rx_jumbo_max_pending
= 0;
1252 rp
->tx_max_pending
= MAX_TXQ_ENTRIES
;
1254 rp
->rx_pending
= s
->ethrxq
[pi
->first_qset
].fl
.size
- MIN_FL_RESID
;
1255 rp
->rx_mini_pending
= s
->ethrxq
[pi
->first_qset
].rspq
.size
;
1256 rp
->rx_jumbo_pending
= 0;
1257 rp
->tx_pending
= s
->ethtxq
[pi
->first_qset
].q
.size
;
1261 * Set the Queue Set ring size parameters for the device. Again, since
1262 * ethtool doesn't allow for the concept of multiple queues per device, we'll
1263 * apply these new values across all of the Queue Sets associated with the
1264 * device -- after vetting them of course!
1266 static int cxgb4vf_set_ringparam(struct net_device
*dev
,
1267 struct ethtool_ringparam
*rp
)
1269 const struct port_info
*pi
= netdev_priv(dev
);
1270 struct adapter
*adapter
= pi
->adapter
;
1271 struct sge
*s
= &adapter
->sge
;
1274 if (rp
->rx_pending
> MAX_RX_BUFFERS
||
1275 rp
->rx_jumbo_pending
||
1276 rp
->tx_pending
> MAX_TXQ_ENTRIES
||
1277 rp
->rx_mini_pending
> MAX_RSPQ_ENTRIES
||
1278 rp
->rx_mini_pending
< MIN_RSPQ_ENTRIES
||
1279 rp
->rx_pending
< MIN_FL_ENTRIES
||
1280 rp
->tx_pending
< MIN_TXQ_ENTRIES
)
1283 if (adapter
->flags
& FULL_INIT_DONE
)
1286 for (qs
= pi
->first_qset
; qs
< pi
->first_qset
+ pi
->nqsets
; qs
++) {
1287 s
->ethrxq
[qs
].fl
.size
= rp
->rx_pending
+ MIN_FL_RESID
;
1288 s
->ethrxq
[qs
].rspq
.size
= rp
->rx_mini_pending
;
1289 s
->ethtxq
[qs
].q
.size
= rp
->tx_pending
;
1295 * Return the interrupt holdoff timer and count for the first Queue Set on the
1296 * device. Our extension ioctl() (the cxgbtool interface) allows the
1297 * interrupt holdoff timer to be read on all of the device's Queue Sets.
1299 static int cxgb4vf_get_coalesce(struct net_device
*dev
,
1300 struct ethtool_coalesce
*coalesce
)
1302 const struct port_info
*pi
= netdev_priv(dev
);
1303 const struct adapter
*adapter
= pi
->adapter
;
1304 const struct sge_rspq
*rspq
= &adapter
->sge
.ethrxq
[pi
->first_qset
].rspq
;
1306 coalesce
->rx_coalesce_usecs
= qtimer_val(adapter
, rspq
);
1307 coalesce
->rx_max_coalesced_frames
=
1308 ((rspq
->intr_params
& QINTR_CNT_EN
)
1309 ? adapter
->sge
.counter_val
[rspq
->pktcnt_idx
]
1315 * Set the RX interrupt holdoff timer and count for the first Queue Set on the
1316 * interface. Our extension ioctl() (the cxgbtool interface) allows us to set
1317 * the interrupt holdoff timer on any of the device's Queue Sets.
1319 static int cxgb4vf_set_coalesce(struct net_device
*dev
,
1320 struct ethtool_coalesce
*coalesce
)
1322 const struct port_info
*pi
= netdev_priv(dev
);
1323 struct adapter
*adapter
= pi
->adapter
;
1325 return set_rxq_intr_params(adapter
,
1326 &adapter
->sge
.ethrxq
[pi
->first_qset
].rspq
,
1327 coalesce
->rx_coalesce_usecs
,
1328 coalesce
->rx_max_coalesced_frames
);
1332 * Report current port link pause parameter settings.
1334 static void cxgb4vf_get_pauseparam(struct net_device
*dev
,
1335 struct ethtool_pauseparam
*pauseparam
)
1337 struct port_info
*pi
= netdev_priv(dev
);
1339 pauseparam
->autoneg
= (pi
->link_cfg
.requested_fc
& PAUSE_AUTONEG
) != 0;
1340 pauseparam
->rx_pause
= (pi
->link_cfg
.fc
& PAUSE_RX
) != 0;
1341 pauseparam
->tx_pause
= (pi
->link_cfg
.fc
& PAUSE_TX
) != 0;
1345 * Identify the port by blinking the port's LED.
1347 static int cxgb4vf_phys_id(struct net_device
*dev
,
1348 enum ethtool_phys_id_state state
)
1351 struct port_info
*pi
= netdev_priv(dev
);
1353 if (state
== ETHTOOL_ID_ACTIVE
)
1355 else if (state
== ETHTOOL_ID_INACTIVE
)
1360 return t4vf_identify_port(pi
->adapter
, pi
->viid
, val
);
1364 * Port stats maintained per queue of the port.
1366 struct queue_port_stats
{
1377 * Strings for the ETH_SS_STATS statistics set ("ethtool -S"). Note that
1378 * these need to match the order of statistics returned by
1379 * t4vf_get_port_stats().
1381 static const char stats_strings
[][ETH_GSTRING_LEN
] = {
1383 * These must match the layout of the t4vf_port_stats structure.
1385 "TxBroadcastBytes ",
1386 "TxBroadcastFrames ",
1387 "TxMulticastBytes ",
1388 "TxMulticastFrames ",
1394 "RxBroadcastBytes ",
1395 "RxBroadcastFrames ",
1396 "RxMulticastBytes ",
1397 "RxMulticastFrames ",
1403 * These are accumulated per-queue statistics and must match the
1404 * order of the fields in the queue_port_stats structure.
1416 * Return the number of statistics in the specified statistics set.
1418 static int cxgb4vf_get_sset_count(struct net_device
*dev
, int sset
)
1422 return ARRAY_SIZE(stats_strings
);
1430 * Return the strings for the specified statistics set.
1432 static void cxgb4vf_get_strings(struct net_device
*dev
,
1438 memcpy(data
, stats_strings
, sizeof(stats_strings
));
1444 * Small utility routine to accumulate queue statistics across the queues of
1447 static void collect_sge_port_stats(const struct adapter
*adapter
,
1448 const struct port_info
*pi
,
1449 struct queue_port_stats
*stats
)
1451 const struct sge_eth_txq
*txq
= &adapter
->sge
.ethtxq
[pi
->first_qset
];
1452 const struct sge_eth_rxq
*rxq
= &adapter
->sge
.ethrxq
[pi
->first_qset
];
1455 memset(stats
, 0, sizeof(*stats
));
1456 for (qs
= 0; qs
< pi
->nqsets
; qs
++, rxq
++, txq
++) {
1457 stats
->tso
+= txq
->tso
;
1458 stats
->tx_csum
+= txq
->tx_cso
;
1459 stats
->rx_csum
+= rxq
->stats
.rx_cso
;
1460 stats
->vlan_ex
+= rxq
->stats
.vlan_ex
;
1461 stats
->vlan_ins
+= txq
->vlan_ins
;
1462 stats
->lro_pkts
+= rxq
->stats
.lro_pkts
;
1463 stats
->lro_merged
+= rxq
->stats
.lro_merged
;
1468 * Return the ETH_SS_STATS statistics set.
1470 static void cxgb4vf_get_ethtool_stats(struct net_device
*dev
,
1471 struct ethtool_stats
*stats
,
1474 struct port_info
*pi
= netdev2pinfo(dev
);
1475 struct adapter
*adapter
= pi
->adapter
;
1476 int err
= t4vf_get_port_stats(adapter
, pi
->pidx
,
1477 (struct t4vf_port_stats
*)data
);
1479 memset(data
, 0, sizeof(struct t4vf_port_stats
));
1481 data
+= sizeof(struct t4vf_port_stats
) / sizeof(u64
);
1482 collect_sge_port_stats(adapter
, pi
, (struct queue_port_stats
*)data
);
1486 * Return the size of our register map.
1488 static int cxgb4vf_get_regs_len(struct net_device
*dev
)
1490 return T4VF_REGMAP_SIZE
;
1494 * Dump a block of registers, start to end inclusive, into a buffer.
1496 static void reg_block_dump(struct adapter
*adapter
, void *regbuf
,
1497 unsigned int start
, unsigned int end
)
1499 u32
*bp
= regbuf
+ start
- T4VF_REGMAP_START
;
1501 for ( ; start
<= end
; start
+= sizeof(u32
)) {
1503 * Avoid reading the Mailbox Control register since that
1504 * can trigger a Mailbox Ownership Arbitration cycle and
1505 * interfere with communication with the firmware.
1507 if (start
== T4VF_CIM_BASE_ADDR
+ CIM_VF_EXT_MAILBOX_CTRL
)
1510 *bp
++ = t4_read_reg(adapter
, start
);
1515 * Copy our entire register map into the provided buffer.
1517 static void cxgb4vf_get_regs(struct net_device
*dev
,
1518 struct ethtool_regs
*regs
,
1521 struct adapter
*adapter
= netdev2adap(dev
);
1523 regs
->version
= mk_adap_vers(adapter
);
1526 * Fill in register buffer with our register map.
1528 memset(regbuf
, 0, T4VF_REGMAP_SIZE
);
1530 reg_block_dump(adapter
, regbuf
,
1531 T4VF_SGE_BASE_ADDR
+ T4VF_MOD_MAP_SGE_FIRST
,
1532 T4VF_SGE_BASE_ADDR
+ T4VF_MOD_MAP_SGE_LAST
);
1533 reg_block_dump(adapter
, regbuf
,
1534 T4VF_MPS_BASE_ADDR
+ T4VF_MOD_MAP_MPS_FIRST
,
1535 T4VF_MPS_BASE_ADDR
+ T4VF_MOD_MAP_MPS_LAST
);
1536 reg_block_dump(adapter
, regbuf
,
1537 T4VF_PL_BASE_ADDR
+ T4VF_MOD_MAP_PL_FIRST
,
1538 T4VF_PL_BASE_ADDR
+ T4VF_MOD_MAP_PL_LAST
);
1539 reg_block_dump(adapter
, regbuf
,
1540 T4VF_CIM_BASE_ADDR
+ T4VF_MOD_MAP_CIM_FIRST
,
1541 T4VF_CIM_BASE_ADDR
+ T4VF_MOD_MAP_CIM_LAST
);
1543 reg_block_dump(adapter
, regbuf
,
1544 T4VF_MBDATA_BASE_ADDR
+ T4VF_MBDATA_FIRST
,
1545 T4VF_MBDATA_BASE_ADDR
+ T4VF_MBDATA_LAST
);
1549 * Report current Wake On LAN settings.
1551 static void cxgb4vf_get_wol(struct net_device
*dev
,
1552 struct ethtool_wolinfo
*wol
)
1556 memset(&wol
->sopass
, 0, sizeof(wol
->sopass
));
1560 * TCP Segmentation Offload flags which we support.
1562 #define TSO_FLAGS (NETIF_F_TSO | NETIF_F_TSO6 | NETIF_F_TSO_ECN)
1564 static struct ethtool_ops cxgb4vf_ethtool_ops
= {
1565 .get_settings
= cxgb4vf_get_settings
,
1566 .get_drvinfo
= cxgb4vf_get_drvinfo
,
1567 .get_msglevel
= cxgb4vf_get_msglevel
,
1568 .set_msglevel
= cxgb4vf_set_msglevel
,
1569 .get_ringparam
= cxgb4vf_get_ringparam
,
1570 .set_ringparam
= cxgb4vf_set_ringparam
,
1571 .get_coalesce
= cxgb4vf_get_coalesce
,
1572 .set_coalesce
= cxgb4vf_set_coalesce
,
1573 .get_pauseparam
= cxgb4vf_get_pauseparam
,
1574 .get_link
= ethtool_op_get_link
,
1575 .get_strings
= cxgb4vf_get_strings
,
1576 .set_phys_id
= cxgb4vf_phys_id
,
1577 .get_sset_count
= cxgb4vf_get_sset_count
,
1578 .get_ethtool_stats
= cxgb4vf_get_ethtool_stats
,
1579 .get_regs_len
= cxgb4vf_get_regs_len
,
1580 .get_regs
= cxgb4vf_get_regs
,
1581 .get_wol
= cxgb4vf_get_wol
,
1585 * /sys/kernel/debug/cxgb4vf support code and data.
1586 * ================================================
1590 * Show SGE Queue Set information. We display QPL Queues Sets per line.
1594 static int sge_qinfo_show(struct seq_file
*seq
, void *v
)
1596 struct adapter
*adapter
= seq
->private;
1597 int eth_entries
= DIV_ROUND_UP(adapter
->sge
.ethqsets
, QPL
);
1598 int qs
, r
= (uintptr_t)v
- 1;
1601 seq_putc(seq
, '\n');
1603 #define S3(fmt_spec, s, v) \
1605 seq_printf(seq, "%-12s", s); \
1606 for (qs = 0; qs < n; ++qs) \
1607 seq_printf(seq, " %16" fmt_spec, v); \
1608 seq_putc(seq, '\n'); \
1610 #define S(s, v) S3("s", s, v)
1611 #define T(s, v) S3("u", s, txq[qs].v)
1612 #define R(s, v) S3("u", s, rxq[qs].v)
1614 if (r
< eth_entries
) {
1615 const struct sge_eth_rxq
*rxq
= &adapter
->sge
.ethrxq
[r
* QPL
];
1616 const struct sge_eth_txq
*txq
= &adapter
->sge
.ethtxq
[r
* QPL
];
1617 int n
= min(QPL
, adapter
->sge
.ethqsets
- QPL
* r
);
1619 S("QType:", "Ethernet");
1621 (rxq
[qs
].rspq
.netdev
1622 ? rxq
[qs
].rspq
.netdev
->name
1625 (rxq
[qs
].rspq
.netdev
1626 ? ((struct port_info
*)
1627 netdev_priv(rxq
[qs
].rspq
.netdev
))->port_id
1629 T("TxQ ID:", q
.abs_id
);
1630 T("TxQ size:", q
.size
);
1631 T("TxQ inuse:", q
.in_use
);
1632 T("TxQ PIdx:", q
.pidx
);
1633 T("TxQ CIdx:", q
.cidx
);
1634 R("RspQ ID:", rspq
.abs_id
);
1635 R("RspQ size:", rspq
.size
);
1636 R("RspQE size:", rspq
.iqe_len
);
1637 S3("u", "Intr delay:", qtimer_val(adapter
, &rxq
[qs
].rspq
));
1638 S3("u", "Intr pktcnt:",
1639 adapter
->sge
.counter_val
[rxq
[qs
].rspq
.pktcnt_idx
]);
1640 R("RspQ CIdx:", rspq
.cidx
);
1641 R("RspQ Gen:", rspq
.gen
);
1642 R("FL ID:", fl
.abs_id
);
1643 R("FL size:", fl
.size
- MIN_FL_RESID
);
1644 R("FL avail:", fl
.avail
);
1645 R("FL PIdx:", fl
.pidx
);
1646 R("FL CIdx:", fl
.cidx
);
1652 const struct sge_rspq
*evtq
= &adapter
->sge
.fw_evtq
;
1654 seq_printf(seq
, "%-12s %16s\n", "QType:", "FW event queue");
1655 seq_printf(seq
, "%-12s %16u\n", "RspQ ID:", evtq
->abs_id
);
1656 seq_printf(seq
, "%-12s %16u\n", "Intr delay:",
1657 qtimer_val(adapter
, evtq
));
1658 seq_printf(seq
, "%-12s %16u\n", "Intr pktcnt:",
1659 adapter
->sge
.counter_val
[evtq
->pktcnt_idx
]);
1660 seq_printf(seq
, "%-12s %16u\n", "RspQ Cidx:", evtq
->cidx
);
1661 seq_printf(seq
, "%-12s %16u\n", "RspQ Gen:", evtq
->gen
);
1662 } else if (r
== 1) {
1663 const struct sge_rspq
*intrq
= &adapter
->sge
.intrq
;
1665 seq_printf(seq
, "%-12s %16s\n", "QType:", "Interrupt Queue");
1666 seq_printf(seq
, "%-12s %16u\n", "RspQ ID:", intrq
->abs_id
);
1667 seq_printf(seq
, "%-12s %16u\n", "Intr delay:",
1668 qtimer_val(adapter
, intrq
));
1669 seq_printf(seq
, "%-12s %16u\n", "Intr pktcnt:",
1670 adapter
->sge
.counter_val
[intrq
->pktcnt_idx
]);
1671 seq_printf(seq
, "%-12s %16u\n", "RspQ Cidx:", intrq
->cidx
);
1672 seq_printf(seq
, "%-12s %16u\n", "RspQ Gen:", intrq
->gen
);
1684 * Return the number of "entries" in our "file". We group the multi-Queue
1685 * sections with QPL Queue Sets per "entry". The sections of the output are:
1687 * Ethernet RX/TX Queue Sets
1688 * Firmware Event Queue
1689 * Forwarded Interrupt Queue (if in MSI mode)
1691 static int sge_queue_entries(const struct adapter
*adapter
)
1693 return DIV_ROUND_UP(adapter
->sge
.ethqsets
, QPL
) + 1 +
1694 ((adapter
->flags
& USING_MSI
) != 0);
1697 static void *sge_queue_start(struct seq_file
*seq
, loff_t
*pos
)
1699 int entries
= sge_queue_entries(seq
->private);
1701 return *pos
< entries
? (void *)((uintptr_t)*pos
+ 1) : NULL
;
1704 static void sge_queue_stop(struct seq_file
*seq
, void *v
)
1708 static void *sge_queue_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1710 int entries
= sge_queue_entries(seq
->private);
1713 return *pos
< entries
? (void *)((uintptr_t)*pos
+ 1) : NULL
;
1716 static const struct seq_operations sge_qinfo_seq_ops
= {
1717 .start
= sge_queue_start
,
1718 .next
= sge_queue_next
,
1719 .stop
= sge_queue_stop
,
1720 .show
= sge_qinfo_show
1723 static int sge_qinfo_open(struct inode
*inode
, struct file
*file
)
1725 int res
= seq_open(file
, &sge_qinfo_seq_ops
);
1728 struct seq_file
*seq
= file
->private_data
;
1729 seq
->private = inode
->i_private
;
1734 static const struct file_operations sge_qinfo_debugfs_fops
= {
1735 .owner
= THIS_MODULE
,
1736 .open
= sge_qinfo_open
,
1738 .llseek
= seq_lseek
,
1739 .release
= seq_release
,
1743 * Show SGE Queue Set statistics. We display QPL Queues Sets per line.
1747 static int sge_qstats_show(struct seq_file
*seq
, void *v
)
1749 struct adapter
*adapter
= seq
->private;
1750 int eth_entries
= DIV_ROUND_UP(adapter
->sge
.ethqsets
, QPL
);
1751 int qs
, r
= (uintptr_t)v
- 1;
1754 seq_putc(seq
, '\n');
1756 #define S3(fmt, s, v) \
1758 seq_printf(seq, "%-16s", s); \
1759 for (qs = 0; qs < n; ++qs) \
1760 seq_printf(seq, " %8" fmt, v); \
1761 seq_putc(seq, '\n'); \
1763 #define S(s, v) S3("s", s, v)
1765 #define T3(fmt, s, v) S3(fmt, s, txq[qs].v)
1766 #define T(s, v) T3("lu", s, v)
1768 #define R3(fmt, s, v) S3(fmt, s, rxq[qs].v)
1769 #define R(s, v) R3("lu", s, v)
1771 if (r
< eth_entries
) {
1772 const struct sge_eth_rxq
*rxq
= &adapter
->sge
.ethrxq
[r
* QPL
];
1773 const struct sge_eth_txq
*txq
= &adapter
->sge
.ethtxq
[r
* QPL
];
1774 int n
= min(QPL
, adapter
->sge
.ethqsets
- QPL
* r
);
1776 S("QType:", "Ethernet");
1778 (rxq
[qs
].rspq
.netdev
1779 ? rxq
[qs
].rspq
.netdev
->name
1781 R3("u", "RspQNullInts:", rspq
.unhandled_irqs
);
1782 R("RxPackets:", stats
.pkts
);
1783 R("RxCSO:", stats
.rx_cso
);
1784 R("VLANxtract:", stats
.vlan_ex
);
1785 R("LROmerged:", stats
.lro_merged
);
1786 R("LROpackets:", stats
.lro_pkts
);
1787 R("RxDrops:", stats
.rx_drops
);
1789 T("TxCSO:", tx_cso
);
1790 T("VLANins:", vlan_ins
);
1791 T("TxQFull:", q
.stops
);
1792 T("TxQRestarts:", q
.restarts
);
1793 T("TxMapErr:", mapping_err
);
1794 R("FLAllocErr:", fl
.alloc_failed
);
1795 R("FLLrgAlcErr:", fl
.large_alloc_failed
);
1796 R("FLStarving:", fl
.starving
);
1802 const struct sge_rspq
*evtq
= &adapter
->sge
.fw_evtq
;
1804 seq_printf(seq
, "%-8s %16s\n", "QType:", "FW event queue");
1805 seq_printf(seq
, "%-16s %8u\n", "RspQNullInts:",
1806 evtq
->unhandled_irqs
);
1807 seq_printf(seq
, "%-16s %8u\n", "RspQ CIdx:", evtq
->cidx
);
1808 seq_printf(seq
, "%-16s %8u\n", "RspQ Gen:", evtq
->gen
);
1809 } else if (r
== 1) {
1810 const struct sge_rspq
*intrq
= &adapter
->sge
.intrq
;
1812 seq_printf(seq
, "%-8s %16s\n", "QType:", "Interrupt Queue");
1813 seq_printf(seq
, "%-16s %8u\n", "RspQNullInts:",
1814 intrq
->unhandled_irqs
);
1815 seq_printf(seq
, "%-16s %8u\n", "RspQ CIdx:", intrq
->cidx
);
1816 seq_printf(seq
, "%-16s %8u\n", "RspQ Gen:", intrq
->gen
);
1830 * Return the number of "entries" in our "file". We group the multi-Queue
1831 * sections with QPL Queue Sets per "entry". The sections of the output are:
1833 * Ethernet RX/TX Queue Sets
1834 * Firmware Event Queue
1835 * Forwarded Interrupt Queue (if in MSI mode)
1837 static int sge_qstats_entries(const struct adapter
*adapter
)
1839 return DIV_ROUND_UP(adapter
->sge
.ethqsets
, QPL
) + 1 +
1840 ((adapter
->flags
& USING_MSI
) != 0);
1843 static void *sge_qstats_start(struct seq_file
*seq
, loff_t
*pos
)
1845 int entries
= sge_qstats_entries(seq
->private);
1847 return *pos
< entries
? (void *)((uintptr_t)*pos
+ 1) : NULL
;
1850 static void sge_qstats_stop(struct seq_file
*seq
, void *v
)
1854 static void *sge_qstats_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1856 int entries
= sge_qstats_entries(seq
->private);
1859 return *pos
< entries
? (void *)((uintptr_t)*pos
+ 1) : NULL
;
1862 static const struct seq_operations sge_qstats_seq_ops
= {
1863 .start
= sge_qstats_start
,
1864 .next
= sge_qstats_next
,
1865 .stop
= sge_qstats_stop
,
1866 .show
= sge_qstats_show
1869 static int sge_qstats_open(struct inode
*inode
, struct file
*file
)
1871 int res
= seq_open(file
, &sge_qstats_seq_ops
);
1874 struct seq_file
*seq
= file
->private_data
;
1875 seq
->private = inode
->i_private
;
1880 static const struct file_operations sge_qstats_proc_fops
= {
1881 .owner
= THIS_MODULE
,
1882 .open
= sge_qstats_open
,
1884 .llseek
= seq_lseek
,
1885 .release
= seq_release
,
1889 * Show PCI-E SR-IOV Virtual Function Resource Limits.
1891 static int resources_show(struct seq_file
*seq
, void *v
)
1893 struct adapter
*adapter
= seq
->private;
1894 struct vf_resources
*vfres
= &adapter
->params
.vfres
;
1896 #define S(desc, fmt, var) \
1897 seq_printf(seq, "%-60s " fmt "\n", \
1898 desc " (" #var "):", vfres->var)
1900 S("Virtual Interfaces", "%d", nvi
);
1901 S("Egress Queues", "%d", neq
);
1902 S("Ethernet Control", "%d", nethctrl
);
1903 S("Ingress Queues/w Free Lists/Interrupts", "%d", niqflint
);
1904 S("Ingress Queues", "%d", niq
);
1905 S("Traffic Class", "%d", tc
);
1906 S("Port Access Rights Mask", "%#x", pmask
);
1907 S("MAC Address Filters", "%d", nexactf
);
1908 S("Firmware Command Read Capabilities", "%#x", r_caps
);
1909 S("Firmware Command Write/Execute Capabilities", "%#x", wx_caps
);
1916 static int resources_open(struct inode
*inode
, struct file
*file
)
1918 return single_open(file
, resources_show
, inode
->i_private
);
1921 static const struct file_operations resources_proc_fops
= {
1922 .owner
= THIS_MODULE
,
1923 .open
= resources_open
,
1925 .llseek
= seq_lseek
,
1926 .release
= single_release
,
1930 * Show Virtual Interfaces.
1932 static int interfaces_show(struct seq_file
*seq
, void *v
)
1934 if (v
== SEQ_START_TOKEN
) {
1935 seq_puts(seq
, "Interface Port VIID\n");
1937 struct adapter
*adapter
= seq
->private;
1938 int pidx
= (uintptr_t)v
- 2;
1939 struct net_device
*dev
= adapter
->port
[pidx
];
1940 struct port_info
*pi
= netdev_priv(dev
);
1942 seq_printf(seq
, "%9s %4d %#5x\n",
1943 dev
->name
, pi
->port_id
, pi
->viid
);
1948 static inline void *interfaces_get_idx(struct adapter
*adapter
, loff_t pos
)
1950 return pos
<= adapter
->params
.nports
1951 ? (void *)(uintptr_t)(pos
+ 1)
1955 static void *interfaces_start(struct seq_file
*seq
, loff_t
*pos
)
1958 ? interfaces_get_idx(seq
->private, *pos
)
1962 static void *interfaces_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1965 return interfaces_get_idx(seq
->private, *pos
);
1968 static void interfaces_stop(struct seq_file
*seq
, void *v
)
1972 static const struct seq_operations interfaces_seq_ops
= {
1973 .start
= interfaces_start
,
1974 .next
= interfaces_next
,
1975 .stop
= interfaces_stop
,
1976 .show
= interfaces_show
1979 static int interfaces_open(struct inode
*inode
, struct file
*file
)
1981 int res
= seq_open(file
, &interfaces_seq_ops
);
1984 struct seq_file
*seq
= file
->private_data
;
1985 seq
->private = inode
->i_private
;
1990 static const struct file_operations interfaces_proc_fops
= {
1991 .owner
= THIS_MODULE
,
1992 .open
= interfaces_open
,
1994 .llseek
= seq_lseek
,
1995 .release
= seq_release
,
1999 * /sys/kernel/debugfs/cxgb4vf/ files list.
2001 struct cxgb4vf_debugfs_entry
{
2002 const char *name
; /* name of debugfs node */
2003 mode_t mode
; /* file system mode */
2004 const struct file_operations
*fops
;
2007 static struct cxgb4vf_debugfs_entry debugfs_files
[] = {
2008 { "sge_qinfo", S_IRUGO
, &sge_qinfo_debugfs_fops
},
2009 { "sge_qstats", S_IRUGO
, &sge_qstats_proc_fops
},
2010 { "resources", S_IRUGO
, &resources_proc_fops
},
2011 { "interfaces", S_IRUGO
, &interfaces_proc_fops
},
2015 * Module and device initialization and cleanup code.
2016 * ==================================================
2020 * Set up out /sys/kernel/debug/cxgb4vf sub-nodes. We assume that the
2021 * directory (debugfs_root) has already been set up.
2023 static int __devinit
setup_debugfs(struct adapter
*adapter
)
2027 BUG_ON(IS_ERR_OR_NULL(adapter
->debugfs_root
));
2030 * Debugfs support is best effort.
2032 for (i
= 0; i
< ARRAY_SIZE(debugfs_files
); i
++)
2033 (void)debugfs_create_file(debugfs_files
[i
].name
,
2034 debugfs_files
[i
].mode
,
2035 adapter
->debugfs_root
,
2037 debugfs_files
[i
].fops
);
2043 * Tear down the /sys/kernel/debug/cxgb4vf sub-nodes created above. We leave
2044 * it to our caller to tear down the directory (debugfs_root).
2046 static void cleanup_debugfs(struct adapter
*adapter
)
2048 BUG_ON(IS_ERR_OR_NULL(adapter
->debugfs_root
));
2051 * Unlike our sister routine cleanup_proc(), we don't need to remove
2052 * individual entries because a call will be made to
2053 * debugfs_remove_recursive(). We just need to clean up any ancillary
2060 * Perform early "adapter" initialization. This is where we discover what
2061 * adapter parameters we're going to be using and initialize basic adapter
2064 static int __devinit
adap_init0(struct adapter
*adapter
)
2066 struct vf_resources
*vfres
= &adapter
->params
.vfres
;
2067 struct sge_params
*sge_params
= &adapter
->params
.sge
;
2068 struct sge
*s
= &adapter
->sge
;
2069 unsigned int ethqsets
;
2073 * Wait for the device to become ready before proceeding ...
2075 err
= t4vf_wait_dev_ready(adapter
);
2077 dev_err(adapter
->pdev_dev
, "device didn't become ready:"
2083 * Some environments do not properly handle PCIE FLRs -- e.g. in Linux
2084 * 2.6.31 and later we can't call pci_reset_function() in order to
2085 * issue an FLR because of a self- deadlock on the device semaphore.
2086 * Meanwhile, the OS infrastructure doesn't issue FLRs in all the
2087 * cases where they're needed -- for instance, some versions of KVM
2088 * fail to reset "Assigned Devices" when the VM reboots. Therefore we
2089 * use the firmware based reset in order to reset any per function
2092 err
= t4vf_fw_reset(adapter
);
2094 dev_err(adapter
->pdev_dev
, "FW reset failed: err=%d\n", err
);
2099 * Grab basic operational parameters. These will predominantly have
2100 * been set up by the Physical Function Driver or will be hard coded
2101 * into the adapter. We just have to live with them ... Note that
2102 * we _must_ get our VPD parameters before our SGE parameters because
2103 * we need to know the adapter's core clock from the VPD in order to
2104 * properly decode the SGE Timer Values.
2106 err
= t4vf_get_dev_params(adapter
);
2108 dev_err(adapter
->pdev_dev
, "unable to retrieve adapter"
2109 " device parameters: err=%d\n", err
);
2112 err
= t4vf_get_vpd_params(adapter
);
2114 dev_err(adapter
->pdev_dev
, "unable to retrieve adapter"
2115 " VPD parameters: err=%d\n", err
);
2118 err
= t4vf_get_sge_params(adapter
);
2120 dev_err(adapter
->pdev_dev
, "unable to retrieve adapter"
2121 " SGE parameters: err=%d\n", err
);
2124 err
= t4vf_get_rss_glb_config(adapter
);
2126 dev_err(adapter
->pdev_dev
, "unable to retrieve adapter"
2127 " RSS parameters: err=%d\n", err
);
2130 if (adapter
->params
.rss
.mode
!=
2131 FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL
) {
2132 dev_err(adapter
->pdev_dev
, "unable to operate with global RSS"
2133 " mode %d\n", adapter
->params
.rss
.mode
);
2136 err
= t4vf_sge_init(adapter
);
2138 dev_err(adapter
->pdev_dev
, "unable to use adapter parameters:"
2144 * Retrieve our RX interrupt holdoff timer values and counter
2145 * threshold values from the SGE parameters.
2147 s
->timer_val
[0] = core_ticks_to_us(adapter
,
2148 TIMERVALUE0_GET(sge_params
->sge_timer_value_0_and_1
));
2149 s
->timer_val
[1] = core_ticks_to_us(adapter
,
2150 TIMERVALUE1_GET(sge_params
->sge_timer_value_0_and_1
));
2151 s
->timer_val
[2] = core_ticks_to_us(adapter
,
2152 TIMERVALUE0_GET(sge_params
->sge_timer_value_2_and_3
));
2153 s
->timer_val
[3] = core_ticks_to_us(adapter
,
2154 TIMERVALUE1_GET(sge_params
->sge_timer_value_2_and_3
));
2155 s
->timer_val
[4] = core_ticks_to_us(adapter
,
2156 TIMERVALUE0_GET(sge_params
->sge_timer_value_4_and_5
));
2157 s
->timer_val
[5] = core_ticks_to_us(adapter
,
2158 TIMERVALUE1_GET(sge_params
->sge_timer_value_4_and_5
));
2161 THRESHOLD_0_GET(sge_params
->sge_ingress_rx_threshold
);
2163 THRESHOLD_1_GET(sge_params
->sge_ingress_rx_threshold
);
2165 THRESHOLD_2_GET(sge_params
->sge_ingress_rx_threshold
);
2167 THRESHOLD_3_GET(sge_params
->sge_ingress_rx_threshold
);
2170 * Grab our Virtual Interface resource allocation, extract the
2171 * features that we're interested in and do a bit of sanity testing on
2174 err
= t4vf_get_vfres(adapter
);
2176 dev_err(adapter
->pdev_dev
, "unable to get virtual interface"
2177 " resources: err=%d\n", err
);
2182 * The number of "ports" which we support is equal to the number of
2183 * Virtual Interfaces with which we've been provisioned.
2185 adapter
->params
.nports
= vfres
->nvi
;
2186 if (adapter
->params
.nports
> MAX_NPORTS
) {
2187 dev_warn(adapter
->pdev_dev
, "only using %d of %d allowed"
2188 " virtual interfaces\n", MAX_NPORTS
,
2189 adapter
->params
.nports
);
2190 adapter
->params
.nports
= MAX_NPORTS
;
2194 * We need to reserve a number of the ingress queues with Free List
2195 * and Interrupt capabilities for special interrupt purposes (like
2196 * asynchronous firmware messages, or forwarded interrupts if we're
2197 * using MSI). The rest of the FL/Intr-capable ingress queues will be
2198 * matched up one-for-one with Ethernet/Control egress queues in order
2199 * to form "Queue Sets" which will be aportioned between the "ports".
2200 * For each Queue Set, we'll need the ability to allocate two Egress
2201 * Contexts -- one for the Ingress Queue Free List and one for the TX
2204 ethqsets
= vfres
->niqflint
- INGQ_EXTRAS
;
2205 if (vfres
->nethctrl
!= ethqsets
) {
2206 dev_warn(adapter
->pdev_dev
, "unequal number of [available]"
2207 " ingress/egress queues (%d/%d); using minimum for"
2208 " number of Queue Sets\n", ethqsets
, vfres
->nethctrl
);
2209 ethqsets
= min(vfres
->nethctrl
, ethqsets
);
2211 if (vfres
->neq
< ethqsets
*2) {
2212 dev_warn(adapter
->pdev_dev
, "Not enough Egress Contexts (%d)"
2213 " to support Queue Sets (%d); reducing allowed Queue"
2214 " Sets\n", vfres
->neq
, ethqsets
);
2215 ethqsets
= vfres
->neq
/2;
2217 if (ethqsets
> MAX_ETH_QSETS
) {
2218 dev_warn(adapter
->pdev_dev
, "only using %d of %d allowed Queue"
2219 " Sets\n", MAX_ETH_QSETS
, adapter
->sge
.max_ethqsets
);
2220 ethqsets
= MAX_ETH_QSETS
;
2222 if (vfres
->niq
!= 0 || vfres
->neq
> ethqsets
*2) {
2223 dev_warn(adapter
->pdev_dev
, "unused resources niq/neq (%d/%d)"
2224 " ignored\n", vfres
->niq
, vfres
->neq
- ethqsets
*2);
2226 adapter
->sge
.max_ethqsets
= ethqsets
;
2229 * Check for various parameter sanity issues. Most checks simply
2230 * result in us using fewer resources than our provissioning but we
2231 * do need at least one "port" with which to work ...
2233 if (adapter
->sge
.max_ethqsets
< adapter
->params
.nports
) {
2234 dev_warn(adapter
->pdev_dev
, "only using %d of %d available"
2235 " virtual interfaces (too few Queue Sets)\n",
2236 adapter
->sge
.max_ethqsets
, adapter
->params
.nports
);
2237 adapter
->params
.nports
= adapter
->sge
.max_ethqsets
;
2239 if (adapter
->params
.nports
== 0) {
2240 dev_err(adapter
->pdev_dev
, "no virtual interfaces configured/"
2247 static inline void init_rspq(struct sge_rspq
*rspq
, u8 timer_idx
,
2248 u8 pkt_cnt_idx
, unsigned int size
,
2249 unsigned int iqe_size
)
2251 rspq
->intr_params
= (QINTR_TIMER_IDX(timer_idx
) |
2252 (pkt_cnt_idx
< SGE_NCOUNTERS
? QINTR_CNT_EN
: 0));
2253 rspq
->pktcnt_idx
= (pkt_cnt_idx
< SGE_NCOUNTERS
2256 rspq
->iqe_len
= iqe_size
;
2261 * Perform default configuration of DMA queues depending on the number and
2262 * type of ports we found and the number of available CPUs. Most settings can
2263 * be modified by the admin via ethtool and cxgbtool prior to the adapter
2264 * being brought up for the first time.
2266 static void __devinit
cfg_queues(struct adapter
*adapter
)
2268 struct sge
*s
= &adapter
->sge
;
2269 int q10g
, n10g
, qidx
, pidx
, qs
;
2273 * We should not be called till we know how many Queue Sets we can
2274 * support. In particular, this means that we need to know what kind
2275 * of interrupts we'll be using ...
2277 BUG_ON((adapter
->flags
& (USING_MSIX
|USING_MSI
)) == 0);
2280 * Count the number of 10GbE Virtual Interfaces that we have.
2283 for_each_port(adapter
, pidx
)
2284 n10g
+= is_10g_port(&adap2pinfo(adapter
, pidx
)->link_cfg
);
2287 * We default to 1 queue per non-10G port and up to # of cores queues
2293 int n1g
= (adapter
->params
.nports
- n10g
);
2294 q10g
= (adapter
->sge
.max_ethqsets
- n1g
) / n10g
;
2295 if (q10g
> num_online_cpus())
2296 q10g
= num_online_cpus();
2300 * Allocate the "Queue Sets" to the various Virtual Interfaces.
2301 * The layout will be established in setup_sge_queues() when the
2302 * adapter is brough up for the first time.
2305 for_each_port(adapter
, pidx
) {
2306 struct port_info
*pi
= adap2pinfo(adapter
, pidx
);
2308 pi
->first_qset
= qidx
;
2309 pi
->nqsets
= is_10g_port(&pi
->link_cfg
) ? q10g
: 1;
2315 * The Ingress Queue Entry Size for our various Response Queues needs
2316 * to be big enough to accommodate the largest message we can receive
2317 * from the chip/firmware; which is 64 bytes ...
2322 * Set up default Queue Set parameters ... Start off with the
2323 * shortest interrupt holdoff timer.
2325 for (qs
= 0; qs
< s
->max_ethqsets
; qs
++) {
2326 struct sge_eth_rxq
*rxq
= &s
->ethrxq
[qs
];
2327 struct sge_eth_txq
*txq
= &s
->ethtxq
[qs
];
2329 init_rspq(&rxq
->rspq
, 0, 0, 1024, iqe_size
);
2335 * The firmware event queue is used for link state changes and
2336 * notifications of TX DMA completions.
2338 init_rspq(&s
->fw_evtq
, SGE_TIMER_RSTRT_CNTR
, 0, 512, iqe_size
);
2341 * The forwarded interrupt queue is used when we're in MSI interrupt
2342 * mode. In this mode all interrupts associated with RX queues will
2343 * be forwarded to a single queue which we'll associate with our MSI
2344 * interrupt vector. The messages dropped in the forwarded interrupt
2345 * queue will indicate which ingress queue needs servicing ... This
2346 * queue needs to be large enough to accommodate all of the ingress
2347 * queues which are forwarding their interrupt (+1 to prevent the PIDX
2348 * from equalling the CIDX if every ingress queue has an outstanding
2349 * interrupt). The queue doesn't need to be any larger because no
2350 * ingress queue will ever have more than one outstanding interrupt at
2353 init_rspq(&s
->intrq
, SGE_TIMER_RSTRT_CNTR
, 0, MSIX_ENTRIES
+ 1,
2358 * Reduce the number of Ethernet queues across all ports to at most n.
2359 * n provides at least one queue per port.
2361 static void __devinit
reduce_ethqs(struct adapter
*adapter
, int n
)
2364 struct port_info
*pi
;
2367 * While we have too many active Ether Queue Sets, interate across the
2368 * "ports" and reduce their individual Queue Set allocations.
2370 BUG_ON(n
< adapter
->params
.nports
);
2371 while (n
< adapter
->sge
.ethqsets
)
2372 for_each_port(adapter
, i
) {
2373 pi
= adap2pinfo(adapter
, i
);
2374 if (pi
->nqsets
> 1) {
2376 adapter
->sge
.ethqsets
--;
2377 if (adapter
->sge
.ethqsets
<= n
)
2383 * Reassign the starting Queue Sets for each of the "ports" ...
2386 for_each_port(adapter
, i
) {
2387 pi
= adap2pinfo(adapter
, i
);
2394 * We need to grab enough MSI-X vectors to cover our interrupt needs. Ideally
2395 * we get a separate MSI-X vector for every "Queue Set" plus any extras we
2396 * need. Minimally we need one for every Virtual Interface plus those needed
2397 * for our "extras". Note that this process may lower the maximum number of
2398 * allowed Queue Sets ...
2400 static int __devinit
enable_msix(struct adapter
*adapter
)
2402 int i
, err
, want
, need
;
2403 struct msix_entry entries
[MSIX_ENTRIES
];
2404 struct sge
*s
= &adapter
->sge
;
2406 for (i
= 0; i
< MSIX_ENTRIES
; ++i
)
2407 entries
[i
].entry
= i
;
2410 * We _want_ enough MSI-X interrupts to cover all of our "Queue Sets"
2411 * plus those needed for our "extras" (for example, the firmware
2412 * message queue). We _need_ at least one "Queue Set" per Virtual
2413 * Interface plus those needed for our "extras". So now we get to see
2414 * if the song is right ...
2416 want
= s
->max_ethqsets
+ MSIX_EXTRAS
;
2417 need
= adapter
->params
.nports
+ MSIX_EXTRAS
;
2418 while ((err
= pci_enable_msix(adapter
->pdev
, entries
, want
)) >= need
)
2422 int nqsets
= want
- MSIX_EXTRAS
;
2423 if (nqsets
< s
->max_ethqsets
) {
2424 dev_warn(adapter
->pdev_dev
, "only enough MSI-X vectors"
2425 " for %d Queue Sets\n", nqsets
);
2426 s
->max_ethqsets
= nqsets
;
2427 if (nqsets
< s
->ethqsets
)
2428 reduce_ethqs(adapter
, nqsets
);
2430 for (i
= 0; i
< want
; ++i
)
2431 adapter
->msix_info
[i
].vec
= entries
[i
].vector
;
2432 } else if (err
> 0) {
2433 pci_disable_msix(adapter
->pdev
);
2434 dev_info(adapter
->pdev_dev
, "only %d MSI-X vectors left,"
2435 " not using MSI-X\n", err
);
2440 static const struct net_device_ops cxgb4vf_netdev_ops
= {
2441 .ndo_open
= cxgb4vf_open
,
2442 .ndo_stop
= cxgb4vf_stop
,
2443 .ndo_start_xmit
= t4vf_eth_xmit
,
2444 .ndo_get_stats
= cxgb4vf_get_stats
,
2445 .ndo_set_rx_mode
= cxgb4vf_set_rxmode
,
2446 .ndo_set_mac_address
= cxgb4vf_set_mac_addr
,
2447 .ndo_validate_addr
= eth_validate_addr
,
2448 .ndo_do_ioctl
= cxgb4vf_do_ioctl
,
2449 .ndo_change_mtu
= cxgb4vf_change_mtu
,
2450 .ndo_fix_features
= cxgb4vf_fix_features
,
2451 .ndo_set_features
= cxgb4vf_set_features
,
2452 #ifdef CONFIG_NET_POLL_CONTROLLER
2453 .ndo_poll_controller
= cxgb4vf_poll_controller
,
2458 * "Probe" a device: initialize a device and construct all kernel and driver
2459 * state needed to manage the device. This routine is called "init_one" in
2462 static int __devinit
cxgb4vf_pci_probe(struct pci_dev
*pdev
,
2463 const struct pci_device_id
*ent
)
2465 static int version_printed
;
2470 struct adapter
*adapter
;
2471 struct port_info
*pi
;
2472 struct net_device
*netdev
;
2475 * Print our driver banner the first time we're called to initialize a
2478 if (version_printed
== 0) {
2479 printk(KERN_INFO
"%s - version %s\n", DRV_DESC
, DRV_VERSION
);
2480 version_printed
= 1;
2484 * Initialize generic PCI device state.
2486 err
= pci_enable_device(pdev
);
2488 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
2493 * Reserve PCI resources for the device. If we can't get them some
2494 * other driver may have already claimed the device ...
2496 err
= pci_request_regions(pdev
, KBUILD_MODNAME
);
2498 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
2499 goto err_disable_device
;
2503 * Set up our DMA mask: try for 64-bit address masking first and
2504 * fall back to 32-bit if we can't get 64 bits ...
2506 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(64));
2508 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
2510 dev_err(&pdev
->dev
, "unable to obtain 64-bit DMA for"
2511 " coherent allocations\n");
2512 goto err_release_regions
;
2516 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
2518 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
2519 goto err_release_regions
;
2525 * Enable bus mastering for the device ...
2527 pci_set_master(pdev
);
2530 * Allocate our adapter data structure and attach it to the device.
2532 adapter
= kzalloc(sizeof(*adapter
), GFP_KERNEL
);
2535 goto err_release_regions
;
2537 pci_set_drvdata(pdev
, adapter
);
2538 adapter
->pdev
= pdev
;
2539 adapter
->pdev_dev
= &pdev
->dev
;
2542 * Initialize SMP data synchronization resources.
2544 spin_lock_init(&adapter
->stats_lock
);
2547 * Map our I/O registers in BAR0.
2549 adapter
->regs
= pci_ioremap_bar(pdev
, 0);
2550 if (!adapter
->regs
) {
2551 dev_err(&pdev
->dev
, "cannot map device registers\n");
2553 goto err_free_adapter
;
2557 * Initialize adapter level features.
2559 adapter
->name
= pci_name(pdev
);
2560 adapter
->msg_enable
= dflt_msg_enable
;
2561 err
= adap_init0(adapter
);
2566 * Allocate our "adapter ports" and stitch everything together.
2568 pmask
= adapter
->params
.vfres
.pmask
;
2569 for_each_port(adapter
, pidx
) {
2573 * We simplistically allocate our virtual interfaces
2574 * sequentially across the port numbers to which we have
2575 * access rights. This should be configurable in some manner
2580 port_id
= ffs(pmask
) - 1;
2581 pmask
&= ~(1 << port_id
);
2582 viid
= t4vf_alloc_vi(adapter
, port_id
);
2584 dev_err(&pdev
->dev
, "cannot allocate VI for port %d:"
2585 " err=%d\n", port_id
, viid
);
2591 * Allocate our network device and stitch things together.
2593 netdev
= alloc_etherdev_mq(sizeof(struct port_info
),
2595 if (netdev
== NULL
) {
2596 dev_err(&pdev
->dev
, "cannot allocate netdev for"
2597 " port %d\n", port_id
);
2598 t4vf_free_vi(adapter
, viid
);
2602 adapter
->port
[pidx
] = netdev
;
2603 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2604 pi
= netdev_priv(netdev
);
2605 pi
->adapter
= adapter
;
2607 pi
->port_id
= port_id
;
2611 * Initialize the starting state of our "port" and register
2614 pi
->xact_addr_filt
= -1;
2615 netif_carrier_off(netdev
);
2616 netdev
->irq
= pdev
->irq
;
2618 netdev
->hw_features
= NETIF_F_SG
| TSO_FLAGS
|
2619 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
2620 NETIF_F_HW_VLAN_RX
| NETIF_F_RXCSUM
;
2621 netdev
->vlan_features
= NETIF_F_SG
| TSO_FLAGS
|
2622 NETIF_F_IP_CSUM
| NETIF_F_IPV6_CSUM
|
2624 netdev
->features
= netdev
->hw_features
| NETIF_F_HW_VLAN_TX
;
2626 netdev
->features
|= NETIF_F_HIGHDMA
;
2628 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
2630 netdev
->netdev_ops
= &cxgb4vf_netdev_ops
;
2631 SET_ETHTOOL_OPS(netdev
, &cxgb4vf_ethtool_ops
);
2634 * Initialize the hardware/software state for the port.
2636 err
= t4vf_port_init(adapter
, pidx
);
2638 dev_err(&pdev
->dev
, "cannot initialize port %d\n",
2645 * The "card" is now ready to go. If any errors occur during device
2646 * registration we do not fail the whole "card" but rather proceed
2647 * only with the ports we manage to register successfully. However we
2648 * must register at least one net device.
2650 for_each_port(adapter
, pidx
) {
2651 netdev
= adapter
->port
[pidx
];
2655 err
= register_netdev(netdev
);
2657 dev_warn(&pdev
->dev
, "cannot register net device %s,"
2658 " skipping\n", netdev
->name
);
2662 set_bit(pidx
, &adapter
->registered_device_map
);
2664 if (adapter
->registered_device_map
== 0) {
2665 dev_err(&pdev
->dev
, "could not register any net devices\n");
2670 * Set up our debugfs entries.
2672 if (!IS_ERR_OR_NULL(cxgb4vf_debugfs_root
)) {
2673 adapter
->debugfs_root
=
2674 debugfs_create_dir(pci_name(pdev
),
2675 cxgb4vf_debugfs_root
);
2676 if (IS_ERR_OR_NULL(adapter
->debugfs_root
))
2677 dev_warn(&pdev
->dev
, "could not create debugfs"
2680 setup_debugfs(adapter
);
2684 * See what interrupts we'll be using. If we've been configured to
2685 * use MSI-X interrupts, try to enable them but fall back to using
2686 * MSI interrupts if we can't enable MSI-X interrupts. If we can't
2687 * get MSI interrupts we bail with the error.
2689 if (msi
== MSI_MSIX
&& enable_msix(adapter
) == 0)
2690 adapter
->flags
|= USING_MSIX
;
2692 err
= pci_enable_msi(pdev
);
2694 dev_err(&pdev
->dev
, "Unable to allocate %s interrupts;"
2696 msi
== MSI_MSIX
? "MSI-X or MSI" : "MSI", err
);
2697 goto err_free_debugfs
;
2699 adapter
->flags
|= USING_MSI
;
2703 * Now that we know how many "ports" we have and what their types are,
2704 * and how many Queue Sets we can support, we can configure our queue
2707 cfg_queues(adapter
);
2710 * Print a short notice on the existence and configuration of the new
2711 * VF network device ...
2713 for_each_port(adapter
, pidx
) {
2714 dev_info(adapter
->pdev_dev
, "%s: Chelsio VF NIC PCIe %s\n",
2715 adapter
->port
[pidx
]->name
,
2716 (adapter
->flags
& USING_MSIX
) ? "MSI-X" :
2717 (adapter
->flags
& USING_MSI
) ? "MSI" : "");
2726 * Error recovery and exit code. Unwind state that's been created
2727 * so far and return the error.
2731 if (!IS_ERR_OR_NULL(adapter
->debugfs_root
)) {
2732 cleanup_debugfs(adapter
);
2733 debugfs_remove_recursive(adapter
->debugfs_root
);
2737 for_each_port(adapter
, pidx
) {
2738 netdev
= adapter
->port
[pidx
];
2741 pi
= netdev_priv(netdev
);
2742 t4vf_free_vi(adapter
, pi
->viid
);
2743 if (test_bit(pidx
, &adapter
->registered_device_map
))
2744 unregister_netdev(netdev
);
2745 free_netdev(netdev
);
2749 iounmap(adapter
->regs
);
2753 pci_set_drvdata(pdev
, NULL
);
2755 err_release_regions
:
2756 pci_release_regions(pdev
);
2757 pci_set_drvdata(pdev
, NULL
);
2758 pci_clear_master(pdev
);
2761 pci_disable_device(pdev
);
2767 * "Remove" a device: tear down all kernel and driver state created in the
2768 * "probe" routine and quiesce the device (disable interrupts, etc.). (Note
2769 * that this is called "remove_one" in the PF Driver.)
2771 static void __devexit
cxgb4vf_pci_remove(struct pci_dev
*pdev
)
2773 struct adapter
*adapter
= pci_get_drvdata(pdev
);
2776 * Tear down driver state associated with device.
2782 * Stop all of our activity. Unregister network port,
2783 * disable interrupts, etc.
2785 for_each_port(adapter
, pidx
)
2786 if (test_bit(pidx
, &adapter
->registered_device_map
))
2787 unregister_netdev(adapter
->port
[pidx
]);
2788 t4vf_sge_stop(adapter
);
2789 if (adapter
->flags
& USING_MSIX
) {
2790 pci_disable_msix(adapter
->pdev
);
2791 adapter
->flags
&= ~USING_MSIX
;
2792 } else if (adapter
->flags
& USING_MSI
) {
2793 pci_disable_msi(adapter
->pdev
);
2794 adapter
->flags
&= ~USING_MSI
;
2798 * Tear down our debugfs entries.
2800 if (!IS_ERR_OR_NULL(adapter
->debugfs_root
)) {
2801 cleanup_debugfs(adapter
);
2802 debugfs_remove_recursive(adapter
->debugfs_root
);
2806 * Free all of the various resources which we've acquired ...
2808 t4vf_free_sge_resources(adapter
);
2809 for_each_port(adapter
, pidx
) {
2810 struct net_device
*netdev
= adapter
->port
[pidx
];
2811 struct port_info
*pi
;
2816 pi
= netdev_priv(netdev
);
2817 t4vf_free_vi(adapter
, pi
->viid
);
2818 free_netdev(netdev
);
2820 iounmap(adapter
->regs
);
2822 pci_set_drvdata(pdev
, NULL
);
2826 * Disable the device and release its PCI resources.
2828 pci_disable_device(pdev
);
2829 pci_clear_master(pdev
);
2830 pci_release_regions(pdev
);
2834 * "Shutdown" quiesce the device, stopping Ingress Packet and Interrupt
2837 static void __devexit
cxgb4vf_pci_shutdown(struct pci_dev
*pdev
)
2839 struct adapter
*adapter
;
2842 adapter
= pci_get_drvdata(pdev
);
2847 * Disable all Virtual Interfaces. This will shut down the
2848 * delivery of all ingress packets into the chip for these
2849 * Virtual Interfaces.
2851 for_each_port(adapter
, pidx
) {
2852 struct net_device
*netdev
;
2853 struct port_info
*pi
;
2855 if (!test_bit(pidx
, &adapter
->registered_device_map
))
2858 netdev
= adapter
->port
[pidx
];
2862 pi
= netdev_priv(netdev
);
2863 t4vf_enable_vi(adapter
, pi
->viid
, false, false);
2867 * Free up all Queues which will prevent further DMA and
2868 * Interrupts allowing various internal pathways to drain.
2870 t4vf_free_sge_resources(adapter
);
2874 * PCI Device registration data structures.
2876 #define CH_DEVICE(devid, idx) \
2877 { PCI_VENDOR_ID_CHELSIO, devid, PCI_ANY_ID, PCI_ANY_ID, 0, 0, idx }
2879 static struct pci_device_id cxgb4vf_pci_tbl
[] = {
2880 CH_DEVICE(0xb000, 0), /* PE10K FPGA */
2881 CH_DEVICE(0x4800, 0), /* T440-dbg */
2882 CH_DEVICE(0x4801, 0), /* T420-cr */
2883 CH_DEVICE(0x4802, 0), /* T422-cr */
2884 CH_DEVICE(0x4803, 0), /* T440-cr */
2885 CH_DEVICE(0x4804, 0), /* T420-bch */
2886 CH_DEVICE(0x4805, 0), /* T440-bch */
2887 CH_DEVICE(0x4806, 0), /* T460-ch */
2888 CH_DEVICE(0x4807, 0), /* T420-so */
2889 CH_DEVICE(0x4808, 0), /* T420-cx */
2890 CH_DEVICE(0x4809, 0), /* T420-bt */
2891 CH_DEVICE(0x480a, 0), /* T404-bt */
2895 MODULE_DESCRIPTION(DRV_DESC
);
2896 MODULE_AUTHOR("Chelsio Communications");
2897 MODULE_LICENSE("Dual BSD/GPL");
2898 MODULE_VERSION(DRV_VERSION
);
2899 MODULE_DEVICE_TABLE(pci
, cxgb4vf_pci_tbl
);
2901 static struct pci_driver cxgb4vf_driver
= {
2902 .name
= KBUILD_MODNAME
,
2903 .id_table
= cxgb4vf_pci_tbl
,
2904 .probe
= cxgb4vf_pci_probe
,
2905 .remove
= __devexit_p(cxgb4vf_pci_remove
),
2906 .shutdown
= __devexit_p(cxgb4vf_pci_shutdown
),
2910 * Initialize global driver state.
2912 static int __init
cxgb4vf_module_init(void)
2917 * Vet our module parameters.
2919 if (msi
!= MSI_MSIX
&& msi
!= MSI_MSI
) {
2920 printk(KERN_WARNING KBUILD_MODNAME
2921 ": bad module parameter msi=%d; must be %d"
2922 " (MSI-X or MSI) or %d (MSI)\n",
2923 msi
, MSI_MSIX
, MSI_MSI
);
2927 /* Debugfs support is optional, just warn if this fails */
2928 cxgb4vf_debugfs_root
= debugfs_create_dir(KBUILD_MODNAME
, NULL
);
2929 if (IS_ERR_OR_NULL(cxgb4vf_debugfs_root
))
2930 printk(KERN_WARNING KBUILD_MODNAME
": could not create"
2931 " debugfs entry, continuing\n");
2933 ret
= pci_register_driver(&cxgb4vf_driver
);
2934 if (ret
< 0 && !IS_ERR_OR_NULL(cxgb4vf_debugfs_root
))
2935 debugfs_remove(cxgb4vf_debugfs_root
);
2940 * Tear down global driver state.
2942 static void __exit
cxgb4vf_module_exit(void)
2944 pci_unregister_driver(&cxgb4vf_driver
);
2945 debugfs_remove(cxgb4vf_debugfs_root
);
2948 module_init(cxgb4vf_module_init
);
2949 module_exit(cxgb4vf_module_exit
);