Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / drivers / net / ethernet / freescale / fec.c
blob1124ce0a15944a36dd119efae6fe47a101264b72
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
10 * small packets.
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
41 #include <linux/io.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
47 #include <linux/of.h>
48 #include <linux/of_device.h>
49 #include <linux/of_gpio.h>
50 #include <linux/of_net.h>
52 #include <asm/cacheflush.h>
54 #ifndef CONFIG_ARM
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
57 #endif
59 #include "fec.h"
61 #if defined(CONFIG_ARM)
62 #define FEC_ALIGNMENT 0xf
63 #else
64 #define FEC_ALIGNMENT 0x3
65 #endif
67 #define DRIVER_NAME "fec"
69 /* Controller is ENET-MAC */
70 #define FEC_QUIRK_ENET_MAC (1 << 0)
71 /* Controller needs driver to swap frame */
72 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
73 /* Controller uses gasket */
74 #define FEC_QUIRK_USE_GASKET (1 << 2)
75 /* Controller has GBIT support */
76 #define FEC_QUIRK_HAS_GBIT (1 << 3)
78 static struct platform_device_id fec_devtype[] = {
80 /* keep it for coldfire */
81 .name = DRIVER_NAME,
82 .driver_data = 0,
83 }, {
84 .name = "imx25-fec",
85 .driver_data = FEC_QUIRK_USE_GASKET,
86 }, {
87 .name = "imx27-fec",
88 .driver_data = 0,
89 }, {
90 .name = "imx28-fec",
91 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_SWAP_FRAME,
92 }, {
93 .name = "imx6q-fec",
94 .driver_data = FEC_QUIRK_ENET_MAC | FEC_QUIRK_HAS_GBIT,
95 }, {
96 /* sentinel */
99 MODULE_DEVICE_TABLE(platform, fec_devtype);
101 enum imx_fec_type {
102 IMX25_FEC = 1, /* runs on i.mx25/50/53 */
103 IMX27_FEC, /* runs on i.mx27/35/51 */
104 IMX28_FEC,
105 IMX6Q_FEC,
108 static const struct of_device_id fec_dt_ids[] = {
109 { .compatible = "fsl,imx25-fec", .data = &fec_devtype[IMX25_FEC], },
110 { .compatible = "fsl,imx27-fec", .data = &fec_devtype[IMX27_FEC], },
111 { .compatible = "fsl,imx28-fec", .data = &fec_devtype[IMX28_FEC], },
112 { .compatible = "fsl,imx6q-fec", .data = &fec_devtype[IMX6Q_FEC], },
113 { /* sentinel */ }
115 MODULE_DEVICE_TABLE(of, fec_dt_ids);
117 static unsigned char macaddr[ETH_ALEN];
118 module_param_array(macaddr, byte, NULL, 0);
119 MODULE_PARM_DESC(macaddr, "FEC Ethernet MAC address");
121 #if defined(CONFIG_M5272)
123 * Some hardware gets it MAC address out of local flash memory.
124 * if this is non-zero then assume it is the address to get MAC from.
126 #if defined(CONFIG_NETtel)
127 #define FEC_FLASHMAC 0xf0006006
128 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
129 #define FEC_FLASHMAC 0xf0006000
130 #elif defined(CONFIG_CANCam)
131 #define FEC_FLASHMAC 0xf0020000
132 #elif defined (CONFIG_M5272C3)
133 #define FEC_FLASHMAC (0xffe04000 + 4)
134 #elif defined(CONFIG_MOD5272)
135 #define FEC_FLASHMAC 0xffc0406b
136 #else
137 #define FEC_FLASHMAC 0
138 #endif
139 #endif /* CONFIG_M5272 */
141 /* The number of Tx and Rx buffers. These are allocated from the page
142 * pool. The code may assume these are power of two, so it it best
143 * to keep them that size.
144 * We don't need to allocate pages for the transmitter. We just use
145 * the skbuffer directly.
147 #define FEC_ENET_RX_PAGES 8
148 #define FEC_ENET_RX_FRSIZE 2048
149 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
150 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
151 #define FEC_ENET_TX_FRSIZE 2048
152 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
153 #define TX_RING_SIZE 16 /* Must be power of two */
154 #define TX_RING_MOD_MASK 15 /* for this to work */
156 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
157 #error "FEC: descriptor ring size constants too large"
158 #endif
160 /* Interrupt events/masks. */
161 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
162 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
163 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
164 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
165 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
166 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
167 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
168 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
169 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
170 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
172 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
174 /* The FEC stores dest/src/type, data, and checksum for receive packets.
176 #define PKT_MAXBUF_SIZE 1518
177 #define PKT_MINBUF_SIZE 64
178 #define PKT_MAXBLR_SIZE 1520
180 /* This device has up to three irqs on some platforms */
181 #define FEC_IRQ_NUM 3
184 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
185 * size bits. Other FEC hardware does not, so we need to take that into
186 * account when setting it.
188 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
189 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
190 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
191 #else
192 #define OPT_FRAME_SIZE 0
193 #endif
195 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
196 * tx_bd_base always point to the base of the buffer descriptors. The
197 * cur_rx and cur_tx point to the currently available buffer.
198 * The dirty_tx tracks the current buffer that is being sent by the
199 * controller. The cur_tx and dirty_tx are equal under both completely
200 * empty and completely full conditions. The empty/ready indicator in
201 * the buffer descriptor determines the actual condition.
203 struct fec_enet_private {
204 /* Hardware registers of the FEC device */
205 void __iomem *hwp;
207 struct net_device *netdev;
209 struct clk *clk;
211 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
212 unsigned char *tx_bounce[TX_RING_SIZE];
213 struct sk_buff* tx_skbuff[TX_RING_SIZE];
214 struct sk_buff* rx_skbuff[RX_RING_SIZE];
215 ushort skb_cur;
216 ushort skb_dirty;
218 /* CPM dual port RAM relative addresses */
219 dma_addr_t bd_dma;
220 /* Address of Rx and Tx buffers */
221 struct bufdesc *rx_bd_base;
222 struct bufdesc *tx_bd_base;
223 /* The next free ring entry */
224 struct bufdesc *cur_rx, *cur_tx;
225 /* The ring entries to be free()ed */
226 struct bufdesc *dirty_tx;
228 uint tx_full;
229 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
230 spinlock_t hw_lock;
232 struct platform_device *pdev;
234 int opened;
236 /* Phylib and MDIO interface */
237 struct mii_bus *mii_bus;
238 struct phy_device *phy_dev;
239 int mii_timeout;
240 uint phy_speed;
241 phy_interface_t phy_interface;
242 int link;
243 int full_duplex;
244 struct completion mdio_done;
245 int irq[FEC_IRQ_NUM];
248 /* FEC MII MMFR bits definition */
249 #define FEC_MMFR_ST (1 << 30)
250 #define FEC_MMFR_OP_READ (2 << 28)
251 #define FEC_MMFR_OP_WRITE (1 << 28)
252 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
253 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
254 #define FEC_MMFR_TA (2 << 16)
255 #define FEC_MMFR_DATA(v) (v & 0xffff)
257 #define FEC_MII_TIMEOUT 1000 /* us */
259 /* Transmitter timeout */
260 #define TX_TIMEOUT (2 * HZ)
262 static void *swap_buffer(void *bufaddr, int len)
264 int i;
265 unsigned int *buf = bufaddr;
267 for (i = 0; i < (len + 3) / 4; i++, buf++)
268 *buf = cpu_to_be32(*buf);
270 return bufaddr;
273 static netdev_tx_t
274 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *ndev)
276 struct fec_enet_private *fep = netdev_priv(ndev);
277 const struct platform_device_id *id_entry =
278 platform_get_device_id(fep->pdev);
279 struct bufdesc *bdp;
280 void *bufaddr;
281 unsigned short status;
282 unsigned long flags;
284 if (!fep->link) {
285 /* Link is down or autonegotiation is in progress. */
286 return NETDEV_TX_BUSY;
289 spin_lock_irqsave(&fep->hw_lock, flags);
290 /* Fill in a Tx ring entry */
291 bdp = fep->cur_tx;
293 status = bdp->cbd_sc;
295 if (status & BD_ENET_TX_READY) {
296 /* Ooops. All transmit buffers are full. Bail out.
297 * This should not happen, since ndev->tbusy should be set.
299 printk("%s: tx queue full!.\n", ndev->name);
300 spin_unlock_irqrestore(&fep->hw_lock, flags);
301 return NETDEV_TX_BUSY;
304 /* Clear all of the status flags */
305 status &= ~BD_ENET_TX_STATS;
307 /* Set buffer length and buffer pointer */
308 bufaddr = skb->data;
309 bdp->cbd_datlen = skb->len;
312 * On some FEC implementations data must be aligned on
313 * 4-byte boundaries. Use bounce buffers to copy data
314 * and get it aligned. Ugh.
316 if (((unsigned long) bufaddr) & FEC_ALIGNMENT) {
317 unsigned int index;
318 index = bdp - fep->tx_bd_base;
319 memcpy(fep->tx_bounce[index], skb->data, skb->len);
320 bufaddr = fep->tx_bounce[index];
324 * Some design made an incorrect assumption on endian mode of
325 * the system that it's running on. As the result, driver has to
326 * swap every frame going to and coming from the controller.
328 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
329 swap_buffer(bufaddr, skb->len);
331 /* Save skb pointer */
332 fep->tx_skbuff[fep->skb_cur] = skb;
334 ndev->stats.tx_bytes += skb->len;
335 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
337 /* Push the data cache so the CPM does not get stale memory
338 * data.
340 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, bufaddr,
341 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
343 /* Send it on its way. Tell FEC it's ready, interrupt when done,
344 * it's the last BD of the frame, and to put the CRC on the end.
346 status |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
347 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
348 bdp->cbd_sc = status;
350 /* Trigger transmission start */
351 writel(0, fep->hwp + FEC_X_DES_ACTIVE);
353 /* If this was the last BD in the ring, start at the beginning again. */
354 if (status & BD_ENET_TX_WRAP)
355 bdp = fep->tx_bd_base;
356 else
357 bdp++;
359 if (bdp == fep->dirty_tx) {
360 fep->tx_full = 1;
361 netif_stop_queue(ndev);
364 fep->cur_tx = bdp;
366 skb_tx_timestamp(skb);
368 spin_unlock_irqrestore(&fep->hw_lock, flags);
370 return NETDEV_TX_OK;
373 /* This function is called to start or restart the FEC during a link
374 * change. This only happens when switching between half and full
375 * duplex.
377 static void
378 fec_restart(struct net_device *ndev, int duplex)
380 struct fec_enet_private *fep = netdev_priv(ndev);
381 const struct platform_device_id *id_entry =
382 platform_get_device_id(fep->pdev);
383 int i;
384 u32 temp_mac[2];
385 u32 rcntl = OPT_FRAME_SIZE | 0x04;
386 u32 ecntl = 0x2; /* ETHEREN */
388 /* Whack a reset. We should wait for this. */
389 writel(1, fep->hwp + FEC_ECNTRL);
390 udelay(10);
393 * enet-mac reset will reset mac address registers too,
394 * so need to reconfigure it.
396 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
397 memcpy(&temp_mac, ndev->dev_addr, ETH_ALEN);
398 writel(cpu_to_be32(temp_mac[0]), fep->hwp + FEC_ADDR_LOW);
399 writel(cpu_to_be32(temp_mac[1]), fep->hwp + FEC_ADDR_HIGH);
402 /* Clear any outstanding interrupt. */
403 writel(0xffc00000, fep->hwp + FEC_IEVENT);
405 /* Reset all multicast. */
406 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
407 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
408 #ifndef CONFIG_M5272
409 writel(0, fep->hwp + FEC_HASH_TABLE_HIGH);
410 writel(0, fep->hwp + FEC_HASH_TABLE_LOW);
411 #endif
413 /* Set maximum receive buffer size. */
414 writel(PKT_MAXBLR_SIZE, fep->hwp + FEC_R_BUFF_SIZE);
416 /* Set receive and transmit descriptor base. */
417 writel(fep->bd_dma, fep->hwp + FEC_R_DES_START);
418 writel((unsigned long)fep->bd_dma + sizeof(struct bufdesc) * RX_RING_SIZE,
419 fep->hwp + FEC_X_DES_START);
421 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
422 fep->cur_rx = fep->rx_bd_base;
424 /* Reset SKB transmit buffers. */
425 fep->skb_cur = fep->skb_dirty = 0;
426 for (i = 0; i <= TX_RING_MOD_MASK; i++) {
427 if (fep->tx_skbuff[i]) {
428 dev_kfree_skb_any(fep->tx_skbuff[i]);
429 fep->tx_skbuff[i] = NULL;
433 /* Enable MII mode */
434 if (duplex) {
435 /* FD enable */
436 writel(0x04, fep->hwp + FEC_X_CNTRL);
437 } else {
438 /* No Rcv on Xmit */
439 rcntl |= 0x02;
440 writel(0x0, fep->hwp + FEC_X_CNTRL);
443 fep->full_duplex = duplex;
445 /* Set MII speed */
446 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
449 * The phy interface and speed need to get configured
450 * differently on enet-mac.
452 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
453 /* Enable flow control and length check */
454 rcntl |= 0x40000000 | 0x00000020;
456 /* RGMII, RMII or MII */
457 if (fep->phy_interface == PHY_INTERFACE_MODE_RGMII)
458 rcntl |= (1 << 6);
459 else if (fep->phy_interface == PHY_INTERFACE_MODE_RMII)
460 rcntl |= (1 << 8);
461 else
462 rcntl &= ~(1 << 8);
464 /* 1G, 100M or 10M */
465 if (fep->phy_dev) {
466 if (fep->phy_dev->speed == SPEED_1000)
467 ecntl |= (1 << 5);
468 else if (fep->phy_dev->speed == SPEED_100)
469 rcntl &= ~(1 << 9);
470 else
471 rcntl |= (1 << 9);
473 } else {
474 #ifdef FEC_MIIGSK_ENR
475 if (id_entry->driver_data & FEC_QUIRK_USE_GASKET) {
476 /* disable the gasket and wait */
477 writel(0, fep->hwp + FEC_MIIGSK_ENR);
478 while (readl(fep->hwp + FEC_MIIGSK_ENR) & 4)
479 udelay(1);
482 * configure the gasket:
483 * RMII, 50 MHz, no loopback, no echo
484 * MII, 25 MHz, no loopback, no echo
486 writel((fep->phy_interface == PHY_INTERFACE_MODE_RMII) ?
487 1 : 0, fep->hwp + FEC_MIIGSK_CFGR);
490 /* re-enable the gasket */
491 writel(2, fep->hwp + FEC_MIIGSK_ENR);
493 #endif
495 writel(rcntl, fep->hwp + FEC_R_CNTRL);
497 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC) {
498 /* enable ENET endian swap */
499 ecntl |= (1 << 8);
500 /* enable ENET store and forward mode */
501 writel(1 << 8, fep->hwp + FEC_X_WMRK);
504 /* And last, enable the transmit and receive processing */
505 writel(ecntl, fep->hwp + FEC_ECNTRL);
506 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
508 /* Enable interrupts we wish to service */
509 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
512 static void
513 fec_stop(struct net_device *ndev)
515 struct fec_enet_private *fep = netdev_priv(ndev);
516 const struct platform_device_id *id_entry =
517 platform_get_device_id(fep->pdev);
519 /* We cannot expect a graceful transmit stop without link !!! */
520 if (fep->link) {
521 writel(1, fep->hwp + FEC_X_CNTRL); /* Graceful transmit stop */
522 udelay(10);
523 if (!(readl(fep->hwp + FEC_IEVENT) & FEC_ENET_GRA))
524 printk("fec_stop : Graceful transmit stop did not complete !\n");
527 /* Whack a reset. We should wait for this. */
528 writel(1, fep->hwp + FEC_ECNTRL);
529 udelay(10);
530 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
531 writel(FEC_DEFAULT_IMASK, fep->hwp + FEC_IMASK);
533 /* We have to keep ENET enabled to have MII interrupt stay working */
534 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
535 writel(2, fep->hwp + FEC_ECNTRL);
539 static void
540 fec_timeout(struct net_device *ndev)
542 struct fec_enet_private *fep = netdev_priv(ndev);
544 ndev->stats.tx_errors++;
546 fec_restart(ndev, fep->full_duplex);
547 netif_wake_queue(ndev);
550 static void
551 fec_enet_tx(struct net_device *ndev)
553 struct fec_enet_private *fep;
554 struct bufdesc *bdp;
555 unsigned short status;
556 struct sk_buff *skb;
558 fep = netdev_priv(ndev);
559 spin_lock(&fep->hw_lock);
560 bdp = fep->dirty_tx;
562 while (((status = bdp->cbd_sc) & BD_ENET_TX_READY) == 0) {
563 if (bdp == fep->cur_tx && fep->tx_full == 0)
564 break;
566 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
567 FEC_ENET_TX_FRSIZE, DMA_TO_DEVICE);
568 bdp->cbd_bufaddr = 0;
570 skb = fep->tx_skbuff[fep->skb_dirty];
571 /* Check for errors. */
572 if (status & (BD_ENET_TX_HB | BD_ENET_TX_LC |
573 BD_ENET_TX_RL | BD_ENET_TX_UN |
574 BD_ENET_TX_CSL)) {
575 ndev->stats.tx_errors++;
576 if (status & BD_ENET_TX_HB) /* No heartbeat */
577 ndev->stats.tx_heartbeat_errors++;
578 if (status & BD_ENET_TX_LC) /* Late collision */
579 ndev->stats.tx_window_errors++;
580 if (status & BD_ENET_TX_RL) /* Retrans limit */
581 ndev->stats.tx_aborted_errors++;
582 if (status & BD_ENET_TX_UN) /* Underrun */
583 ndev->stats.tx_fifo_errors++;
584 if (status & BD_ENET_TX_CSL) /* Carrier lost */
585 ndev->stats.tx_carrier_errors++;
586 } else {
587 ndev->stats.tx_packets++;
590 if (status & BD_ENET_TX_READY)
591 printk("HEY! Enet xmit interrupt and TX_READY.\n");
593 /* Deferred means some collisions occurred during transmit,
594 * but we eventually sent the packet OK.
596 if (status & BD_ENET_TX_DEF)
597 ndev->stats.collisions++;
599 /* Free the sk buffer associated with this last transmit */
600 dev_kfree_skb_any(skb);
601 fep->tx_skbuff[fep->skb_dirty] = NULL;
602 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
604 /* Update pointer to next buffer descriptor to be transmitted */
605 if (status & BD_ENET_TX_WRAP)
606 bdp = fep->tx_bd_base;
607 else
608 bdp++;
610 /* Since we have freed up a buffer, the ring is no longer full
612 if (fep->tx_full) {
613 fep->tx_full = 0;
614 if (netif_queue_stopped(ndev))
615 netif_wake_queue(ndev);
618 fep->dirty_tx = bdp;
619 spin_unlock(&fep->hw_lock);
623 /* During a receive, the cur_rx points to the current incoming buffer.
624 * When we update through the ring, if the next incoming buffer has
625 * not been given to the system, we just set the empty indicator,
626 * effectively tossing the packet.
628 static void
629 fec_enet_rx(struct net_device *ndev)
631 struct fec_enet_private *fep = netdev_priv(ndev);
632 const struct platform_device_id *id_entry =
633 platform_get_device_id(fep->pdev);
634 struct bufdesc *bdp;
635 unsigned short status;
636 struct sk_buff *skb;
637 ushort pkt_len;
638 __u8 *data;
640 #ifdef CONFIG_M532x
641 flush_cache_all();
642 #endif
644 spin_lock(&fep->hw_lock);
646 /* First, grab all of the stats for the incoming packet.
647 * These get messed up if we get called due to a busy condition.
649 bdp = fep->cur_rx;
651 while (!((status = bdp->cbd_sc) & BD_ENET_RX_EMPTY)) {
653 /* Since we have allocated space to hold a complete frame,
654 * the last indicator should be set.
656 if ((status & BD_ENET_RX_LAST) == 0)
657 printk("FEC ENET: rcv is not +last\n");
659 if (!fep->opened)
660 goto rx_processing_done;
662 /* Check for errors. */
663 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
664 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
665 ndev->stats.rx_errors++;
666 if (status & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
667 /* Frame too long or too short. */
668 ndev->stats.rx_length_errors++;
670 if (status & BD_ENET_RX_NO) /* Frame alignment */
671 ndev->stats.rx_frame_errors++;
672 if (status & BD_ENET_RX_CR) /* CRC Error */
673 ndev->stats.rx_crc_errors++;
674 if (status & BD_ENET_RX_OV) /* FIFO overrun */
675 ndev->stats.rx_fifo_errors++;
678 /* Report late collisions as a frame error.
679 * On this error, the BD is closed, but we don't know what we
680 * have in the buffer. So, just drop this frame on the floor.
682 if (status & BD_ENET_RX_CL) {
683 ndev->stats.rx_errors++;
684 ndev->stats.rx_frame_errors++;
685 goto rx_processing_done;
688 /* Process the incoming frame. */
689 ndev->stats.rx_packets++;
690 pkt_len = bdp->cbd_datlen;
691 ndev->stats.rx_bytes += pkt_len;
692 data = (__u8*)__va(bdp->cbd_bufaddr);
694 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
695 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
697 if (id_entry->driver_data & FEC_QUIRK_SWAP_FRAME)
698 swap_buffer(data, pkt_len);
700 /* This does 16 byte alignment, exactly what we need.
701 * The packet length includes FCS, but we don't want to
702 * include that when passing upstream as it messes up
703 * bridging applications.
705 skb = dev_alloc_skb(pkt_len - 4 + NET_IP_ALIGN);
707 if (unlikely(!skb)) {
708 printk("%s: Memory squeeze, dropping packet.\n",
709 ndev->name);
710 ndev->stats.rx_dropped++;
711 } else {
712 skb_reserve(skb, NET_IP_ALIGN);
713 skb_put(skb, pkt_len - 4); /* Make room */
714 skb_copy_to_linear_data(skb, data, pkt_len - 4);
715 skb->protocol = eth_type_trans(skb, ndev);
716 if (!skb_defer_rx_timestamp(skb))
717 netif_rx(skb);
720 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, data,
721 FEC_ENET_TX_FRSIZE, DMA_FROM_DEVICE);
722 rx_processing_done:
723 /* Clear the status flags for this buffer */
724 status &= ~BD_ENET_RX_STATS;
726 /* Mark the buffer empty */
727 status |= BD_ENET_RX_EMPTY;
728 bdp->cbd_sc = status;
730 /* Update BD pointer to next entry */
731 if (status & BD_ENET_RX_WRAP)
732 bdp = fep->rx_bd_base;
733 else
734 bdp++;
735 /* Doing this here will keep the FEC running while we process
736 * incoming frames. On a heavily loaded network, we should be
737 * able to keep up at the expense of system resources.
739 writel(0, fep->hwp + FEC_R_DES_ACTIVE);
741 fep->cur_rx = bdp;
743 spin_unlock(&fep->hw_lock);
746 static irqreturn_t
747 fec_enet_interrupt(int irq, void *dev_id)
749 struct net_device *ndev = dev_id;
750 struct fec_enet_private *fep = netdev_priv(ndev);
751 uint int_events;
752 irqreturn_t ret = IRQ_NONE;
754 do {
755 int_events = readl(fep->hwp + FEC_IEVENT);
756 writel(int_events, fep->hwp + FEC_IEVENT);
758 if (int_events & FEC_ENET_RXF) {
759 ret = IRQ_HANDLED;
760 fec_enet_rx(ndev);
763 /* Transmit OK, or non-fatal error. Update the buffer
764 * descriptors. FEC handles all errors, we just discover
765 * them as part of the transmit process.
767 if (int_events & FEC_ENET_TXF) {
768 ret = IRQ_HANDLED;
769 fec_enet_tx(ndev);
772 if (int_events & FEC_ENET_MII) {
773 ret = IRQ_HANDLED;
774 complete(&fep->mdio_done);
776 } while (int_events);
778 return ret;
783 /* ------------------------------------------------------------------------- */
784 static void __inline__ fec_get_mac(struct net_device *ndev)
786 struct fec_enet_private *fep = netdev_priv(ndev);
787 struct fec_platform_data *pdata = fep->pdev->dev.platform_data;
788 unsigned char *iap, tmpaddr[ETH_ALEN];
791 * try to get mac address in following order:
793 * 1) module parameter via kernel command line in form
794 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
796 iap = macaddr;
798 #ifdef CONFIG_OF
800 * 2) from device tree data
802 if (!is_valid_ether_addr(iap)) {
803 struct device_node *np = fep->pdev->dev.of_node;
804 if (np) {
805 const char *mac = of_get_mac_address(np);
806 if (mac)
807 iap = (unsigned char *) mac;
810 #endif
813 * 3) from flash or fuse (via platform data)
815 if (!is_valid_ether_addr(iap)) {
816 #ifdef CONFIG_M5272
817 if (FEC_FLASHMAC)
818 iap = (unsigned char *)FEC_FLASHMAC;
819 #else
820 if (pdata)
821 memcpy(iap, pdata->mac, ETH_ALEN);
822 #endif
826 * 4) FEC mac registers set by bootloader
828 if (!is_valid_ether_addr(iap)) {
829 *((unsigned long *) &tmpaddr[0]) =
830 be32_to_cpu(readl(fep->hwp + FEC_ADDR_LOW));
831 *((unsigned short *) &tmpaddr[4]) =
832 be16_to_cpu(readl(fep->hwp + FEC_ADDR_HIGH) >> 16);
833 iap = &tmpaddr[0];
836 memcpy(ndev->dev_addr, iap, ETH_ALEN);
838 /* Adjust MAC if using macaddr */
839 if (iap == macaddr)
840 ndev->dev_addr[ETH_ALEN-1] = macaddr[ETH_ALEN-1] + fep->pdev->id;
843 /* ------------------------------------------------------------------------- */
846 * Phy section
848 static void fec_enet_adjust_link(struct net_device *ndev)
850 struct fec_enet_private *fep = netdev_priv(ndev);
851 struct phy_device *phy_dev = fep->phy_dev;
852 unsigned long flags;
854 int status_change = 0;
856 spin_lock_irqsave(&fep->hw_lock, flags);
858 /* Prevent a state halted on mii error */
859 if (fep->mii_timeout && phy_dev->state == PHY_HALTED) {
860 phy_dev->state = PHY_RESUMING;
861 goto spin_unlock;
864 /* Duplex link change */
865 if (phy_dev->link) {
866 if (fep->full_duplex != phy_dev->duplex) {
867 fec_restart(ndev, phy_dev->duplex);
868 status_change = 1;
872 /* Link on or off change */
873 if (phy_dev->link != fep->link) {
874 fep->link = phy_dev->link;
875 if (phy_dev->link)
876 fec_restart(ndev, phy_dev->duplex);
877 else
878 fec_stop(ndev);
879 status_change = 1;
882 spin_unlock:
883 spin_unlock_irqrestore(&fep->hw_lock, flags);
885 if (status_change)
886 phy_print_status(phy_dev);
889 static int fec_enet_mdio_read(struct mii_bus *bus, int mii_id, int regnum)
891 struct fec_enet_private *fep = bus->priv;
892 unsigned long time_left;
894 fep->mii_timeout = 0;
895 init_completion(&fep->mdio_done);
897 /* start a read op */
898 writel(FEC_MMFR_ST | FEC_MMFR_OP_READ |
899 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
900 FEC_MMFR_TA, fep->hwp + FEC_MII_DATA);
902 /* wait for end of transfer */
903 time_left = wait_for_completion_timeout(&fep->mdio_done,
904 usecs_to_jiffies(FEC_MII_TIMEOUT));
905 if (time_left == 0) {
906 fep->mii_timeout = 1;
907 printk(KERN_ERR "FEC: MDIO read timeout\n");
908 return -ETIMEDOUT;
911 /* return value */
912 return FEC_MMFR_DATA(readl(fep->hwp + FEC_MII_DATA));
915 static int fec_enet_mdio_write(struct mii_bus *bus, int mii_id, int regnum,
916 u16 value)
918 struct fec_enet_private *fep = bus->priv;
919 unsigned long time_left;
921 fep->mii_timeout = 0;
922 init_completion(&fep->mdio_done);
924 /* start a write op */
925 writel(FEC_MMFR_ST | FEC_MMFR_OP_WRITE |
926 FEC_MMFR_PA(mii_id) | FEC_MMFR_RA(regnum) |
927 FEC_MMFR_TA | FEC_MMFR_DATA(value),
928 fep->hwp + FEC_MII_DATA);
930 /* wait for end of transfer */
931 time_left = wait_for_completion_timeout(&fep->mdio_done,
932 usecs_to_jiffies(FEC_MII_TIMEOUT));
933 if (time_left == 0) {
934 fep->mii_timeout = 1;
935 printk(KERN_ERR "FEC: MDIO write timeout\n");
936 return -ETIMEDOUT;
939 return 0;
942 static int fec_enet_mdio_reset(struct mii_bus *bus)
944 return 0;
947 static int fec_enet_mii_probe(struct net_device *ndev)
949 struct fec_enet_private *fep = netdev_priv(ndev);
950 const struct platform_device_id *id_entry =
951 platform_get_device_id(fep->pdev);
952 struct phy_device *phy_dev = NULL;
953 char mdio_bus_id[MII_BUS_ID_SIZE];
954 char phy_name[MII_BUS_ID_SIZE + 3];
955 int phy_id;
956 int dev_id = fep->pdev->id;
958 fep->phy_dev = NULL;
960 /* check for attached phy */
961 for (phy_id = 0; (phy_id < PHY_MAX_ADDR); phy_id++) {
962 if ((fep->mii_bus->phy_mask & (1 << phy_id)))
963 continue;
964 if (fep->mii_bus->phy_map[phy_id] == NULL)
965 continue;
966 if (fep->mii_bus->phy_map[phy_id]->phy_id == 0)
967 continue;
968 if (dev_id--)
969 continue;
970 strncpy(mdio_bus_id, fep->mii_bus->id, MII_BUS_ID_SIZE);
971 break;
974 if (phy_id >= PHY_MAX_ADDR) {
975 printk(KERN_INFO "%s: no PHY, assuming direct connection "
976 "to switch\n", ndev->name);
977 strncpy(mdio_bus_id, "0", MII_BUS_ID_SIZE);
978 phy_id = 0;
981 snprintf(phy_name, MII_BUS_ID_SIZE, PHY_ID_FMT, mdio_bus_id, phy_id);
982 phy_dev = phy_connect(ndev, phy_name, &fec_enet_adjust_link, 0,
983 fep->phy_interface);
984 if (IS_ERR(phy_dev)) {
985 printk(KERN_ERR "%s: could not attach to PHY\n", ndev->name);
986 return PTR_ERR(phy_dev);
989 /* mask with MAC supported features */
990 if (id_entry->driver_data & FEC_QUIRK_HAS_GBIT)
991 phy_dev->supported &= PHY_GBIT_FEATURES;
992 else
993 phy_dev->supported &= PHY_BASIC_FEATURES;
995 phy_dev->advertising = phy_dev->supported;
997 fep->phy_dev = phy_dev;
998 fep->link = 0;
999 fep->full_duplex = 0;
1001 printk(KERN_INFO "%s: Freescale FEC PHY driver [%s] "
1002 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev->name,
1003 fep->phy_dev->drv->name, dev_name(&fep->phy_dev->dev),
1004 fep->phy_dev->irq);
1006 return 0;
1009 static int fec_enet_mii_init(struct platform_device *pdev)
1011 static struct mii_bus *fec0_mii_bus;
1012 struct net_device *ndev = platform_get_drvdata(pdev);
1013 struct fec_enet_private *fep = netdev_priv(ndev);
1014 const struct platform_device_id *id_entry =
1015 platform_get_device_id(fep->pdev);
1016 int err = -ENXIO, i;
1019 * The dual fec interfaces are not equivalent with enet-mac.
1020 * Here are the differences:
1022 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1023 * - fec0 acts as the 1588 time master while fec1 is slave
1024 * - external phys can only be configured by fec0
1026 * That is to say fec1 can not work independently. It only works
1027 * when fec0 is working. The reason behind this design is that the
1028 * second interface is added primarily for Switch mode.
1030 * Because of the last point above, both phys are attached on fec0
1031 * mdio interface in board design, and need to be configured by
1032 * fec0 mii_bus.
1034 if ((id_entry->driver_data & FEC_QUIRK_ENET_MAC) && pdev->id > 0) {
1035 /* fec1 uses fec0 mii_bus */
1036 fep->mii_bus = fec0_mii_bus;
1037 return 0;
1040 fep->mii_timeout = 0;
1043 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1045 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1046 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1047 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1048 * document.
1050 fep->phy_speed = DIV_ROUND_UP(clk_get_rate(fep->clk), 5000000);
1051 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1052 fep->phy_speed--;
1053 fep->phy_speed <<= 1;
1054 writel(fep->phy_speed, fep->hwp + FEC_MII_SPEED);
1056 fep->mii_bus = mdiobus_alloc();
1057 if (fep->mii_bus == NULL) {
1058 err = -ENOMEM;
1059 goto err_out;
1062 fep->mii_bus->name = "fec_enet_mii_bus";
1063 fep->mii_bus->read = fec_enet_mdio_read;
1064 fep->mii_bus->write = fec_enet_mdio_write;
1065 fep->mii_bus->reset = fec_enet_mdio_reset;
1066 snprintf(fep->mii_bus->id, MII_BUS_ID_SIZE, "%x", pdev->id + 1);
1067 fep->mii_bus->priv = fep;
1068 fep->mii_bus->parent = &pdev->dev;
1070 fep->mii_bus->irq = kmalloc(sizeof(int) * PHY_MAX_ADDR, GFP_KERNEL);
1071 if (!fep->mii_bus->irq) {
1072 err = -ENOMEM;
1073 goto err_out_free_mdiobus;
1076 for (i = 0; i < PHY_MAX_ADDR; i++)
1077 fep->mii_bus->irq[i] = PHY_POLL;
1079 if (mdiobus_register(fep->mii_bus))
1080 goto err_out_free_mdio_irq;
1082 /* save fec0 mii_bus */
1083 if (id_entry->driver_data & FEC_QUIRK_ENET_MAC)
1084 fec0_mii_bus = fep->mii_bus;
1086 return 0;
1088 err_out_free_mdio_irq:
1089 kfree(fep->mii_bus->irq);
1090 err_out_free_mdiobus:
1091 mdiobus_free(fep->mii_bus);
1092 err_out:
1093 return err;
1096 static void fec_enet_mii_remove(struct fec_enet_private *fep)
1098 if (fep->phy_dev)
1099 phy_disconnect(fep->phy_dev);
1100 mdiobus_unregister(fep->mii_bus);
1101 kfree(fep->mii_bus->irq);
1102 mdiobus_free(fep->mii_bus);
1105 static int fec_enet_get_settings(struct net_device *ndev,
1106 struct ethtool_cmd *cmd)
1108 struct fec_enet_private *fep = netdev_priv(ndev);
1109 struct phy_device *phydev = fep->phy_dev;
1111 if (!phydev)
1112 return -ENODEV;
1114 return phy_ethtool_gset(phydev, cmd);
1117 static int fec_enet_set_settings(struct net_device *ndev,
1118 struct ethtool_cmd *cmd)
1120 struct fec_enet_private *fep = netdev_priv(ndev);
1121 struct phy_device *phydev = fep->phy_dev;
1123 if (!phydev)
1124 return -ENODEV;
1126 return phy_ethtool_sset(phydev, cmd);
1129 static void fec_enet_get_drvinfo(struct net_device *ndev,
1130 struct ethtool_drvinfo *info)
1132 struct fec_enet_private *fep = netdev_priv(ndev);
1134 strcpy(info->driver, fep->pdev->dev.driver->name);
1135 strcpy(info->version, "Revision: 1.0");
1136 strcpy(info->bus_info, dev_name(&ndev->dev));
1139 static struct ethtool_ops fec_enet_ethtool_ops = {
1140 .get_settings = fec_enet_get_settings,
1141 .set_settings = fec_enet_set_settings,
1142 .get_drvinfo = fec_enet_get_drvinfo,
1143 .get_link = ethtool_op_get_link,
1146 static int fec_enet_ioctl(struct net_device *ndev, struct ifreq *rq, int cmd)
1148 struct fec_enet_private *fep = netdev_priv(ndev);
1149 struct phy_device *phydev = fep->phy_dev;
1151 if (!netif_running(ndev))
1152 return -EINVAL;
1154 if (!phydev)
1155 return -ENODEV;
1157 return phy_mii_ioctl(phydev, rq, cmd);
1160 static void fec_enet_free_buffers(struct net_device *ndev)
1162 struct fec_enet_private *fep = netdev_priv(ndev);
1163 int i;
1164 struct sk_buff *skb;
1165 struct bufdesc *bdp;
1167 bdp = fep->rx_bd_base;
1168 for (i = 0; i < RX_RING_SIZE; i++) {
1169 skb = fep->rx_skbuff[i];
1171 if (bdp->cbd_bufaddr)
1172 dma_unmap_single(&fep->pdev->dev, bdp->cbd_bufaddr,
1173 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1174 if (skb)
1175 dev_kfree_skb(skb);
1176 bdp++;
1179 bdp = fep->tx_bd_base;
1180 for (i = 0; i < TX_RING_SIZE; i++)
1181 kfree(fep->tx_bounce[i]);
1184 static int fec_enet_alloc_buffers(struct net_device *ndev)
1186 struct fec_enet_private *fep = netdev_priv(ndev);
1187 int i;
1188 struct sk_buff *skb;
1189 struct bufdesc *bdp;
1191 bdp = fep->rx_bd_base;
1192 for (i = 0; i < RX_RING_SIZE; i++) {
1193 skb = dev_alloc_skb(FEC_ENET_RX_FRSIZE);
1194 if (!skb) {
1195 fec_enet_free_buffers(ndev);
1196 return -ENOMEM;
1198 fep->rx_skbuff[i] = skb;
1200 bdp->cbd_bufaddr = dma_map_single(&fep->pdev->dev, skb->data,
1201 FEC_ENET_RX_FRSIZE, DMA_FROM_DEVICE);
1202 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1203 bdp++;
1206 /* Set the last buffer to wrap. */
1207 bdp--;
1208 bdp->cbd_sc |= BD_SC_WRAP;
1210 bdp = fep->tx_bd_base;
1211 for (i = 0; i < TX_RING_SIZE; i++) {
1212 fep->tx_bounce[i] = kmalloc(FEC_ENET_TX_FRSIZE, GFP_KERNEL);
1214 bdp->cbd_sc = 0;
1215 bdp->cbd_bufaddr = 0;
1216 bdp++;
1219 /* Set the last buffer to wrap. */
1220 bdp--;
1221 bdp->cbd_sc |= BD_SC_WRAP;
1223 return 0;
1226 static int
1227 fec_enet_open(struct net_device *ndev)
1229 struct fec_enet_private *fep = netdev_priv(ndev);
1230 int ret;
1232 /* I should reset the ring buffers here, but I don't yet know
1233 * a simple way to do that.
1236 ret = fec_enet_alloc_buffers(ndev);
1237 if (ret)
1238 return ret;
1240 /* Probe and connect to PHY when open the interface */
1241 ret = fec_enet_mii_probe(ndev);
1242 if (ret) {
1243 fec_enet_free_buffers(ndev);
1244 return ret;
1246 phy_start(fep->phy_dev);
1247 netif_start_queue(ndev);
1248 fep->opened = 1;
1249 return 0;
1252 static int
1253 fec_enet_close(struct net_device *ndev)
1255 struct fec_enet_private *fep = netdev_priv(ndev);
1257 /* Don't know what to do yet. */
1258 fep->opened = 0;
1259 netif_stop_queue(ndev);
1260 fec_stop(ndev);
1262 if (fep->phy_dev) {
1263 phy_stop(fep->phy_dev);
1264 phy_disconnect(fep->phy_dev);
1267 fec_enet_free_buffers(ndev);
1269 return 0;
1272 /* Set or clear the multicast filter for this adaptor.
1273 * Skeleton taken from sunlance driver.
1274 * The CPM Ethernet implementation allows Multicast as well as individual
1275 * MAC address filtering. Some of the drivers check to make sure it is
1276 * a group multicast address, and discard those that are not. I guess I
1277 * will do the same for now, but just remove the test if you want
1278 * individual filtering as well (do the upper net layers want or support
1279 * this kind of feature?).
1282 #define HASH_BITS 6 /* #bits in hash */
1283 #define CRC32_POLY 0xEDB88320
1285 static void set_multicast_list(struct net_device *ndev)
1287 struct fec_enet_private *fep = netdev_priv(ndev);
1288 struct netdev_hw_addr *ha;
1289 unsigned int i, bit, data, crc, tmp;
1290 unsigned char hash;
1292 if (ndev->flags & IFF_PROMISC) {
1293 tmp = readl(fep->hwp + FEC_R_CNTRL);
1294 tmp |= 0x8;
1295 writel(tmp, fep->hwp + FEC_R_CNTRL);
1296 return;
1299 tmp = readl(fep->hwp + FEC_R_CNTRL);
1300 tmp &= ~0x8;
1301 writel(tmp, fep->hwp + FEC_R_CNTRL);
1303 if (ndev->flags & IFF_ALLMULTI) {
1304 /* Catch all multicast addresses, so set the
1305 * filter to all 1's
1307 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1308 writel(0xffffffff, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1310 return;
1313 /* Clear filter and add the addresses in hash register
1315 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1316 writel(0, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1318 netdev_for_each_mc_addr(ha, ndev) {
1319 /* calculate crc32 value of mac address */
1320 crc = 0xffffffff;
1322 for (i = 0; i < ndev->addr_len; i++) {
1323 data = ha->addr[i];
1324 for (bit = 0; bit < 8; bit++, data >>= 1) {
1325 crc = (crc >> 1) ^
1326 (((crc ^ data) & 1) ? CRC32_POLY : 0);
1330 /* only upper 6 bits (HASH_BITS) are used
1331 * which point to specific bit in he hash registers
1333 hash = (crc >> (32 - HASH_BITS)) & 0x3f;
1335 if (hash > 31) {
1336 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1337 tmp |= 1 << (hash - 32);
1338 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_HIGH);
1339 } else {
1340 tmp = readl(fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1341 tmp |= 1 << hash;
1342 writel(tmp, fep->hwp + FEC_GRP_HASH_TABLE_LOW);
1347 /* Set a MAC change in hardware. */
1348 static int
1349 fec_set_mac_address(struct net_device *ndev, void *p)
1351 struct fec_enet_private *fep = netdev_priv(ndev);
1352 struct sockaddr *addr = p;
1354 if (!is_valid_ether_addr(addr->sa_data))
1355 return -EADDRNOTAVAIL;
1357 memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
1359 writel(ndev->dev_addr[3] | (ndev->dev_addr[2] << 8) |
1360 (ndev->dev_addr[1] << 16) | (ndev->dev_addr[0] << 24),
1361 fep->hwp + FEC_ADDR_LOW);
1362 writel((ndev->dev_addr[5] << 16) | (ndev->dev_addr[4] << 24),
1363 fep->hwp + FEC_ADDR_HIGH);
1364 return 0;
1367 #ifdef CONFIG_NET_POLL_CONTROLLER
1369 * fec_poll_controller: FEC Poll controller function
1370 * @dev: The FEC network adapter
1372 * Polled functionality used by netconsole and others in non interrupt mode
1375 void fec_poll_controller(struct net_device *dev)
1377 int i;
1378 struct fec_enet_private *fep = netdev_priv(dev);
1380 for (i = 0; i < FEC_IRQ_NUM; i++) {
1381 if (fep->irq[i] > 0) {
1382 disable_irq(fep->irq[i]);
1383 fec_enet_interrupt(fep->irq[i], dev);
1384 enable_irq(fep->irq[i]);
1388 #endif
1390 static const struct net_device_ops fec_netdev_ops = {
1391 .ndo_open = fec_enet_open,
1392 .ndo_stop = fec_enet_close,
1393 .ndo_start_xmit = fec_enet_start_xmit,
1394 .ndo_set_rx_mode = set_multicast_list,
1395 .ndo_change_mtu = eth_change_mtu,
1396 .ndo_validate_addr = eth_validate_addr,
1397 .ndo_tx_timeout = fec_timeout,
1398 .ndo_set_mac_address = fec_set_mac_address,
1399 .ndo_do_ioctl = fec_enet_ioctl,
1400 #ifdef CONFIG_NET_POLL_CONTROLLER
1401 .ndo_poll_controller = fec_poll_controller,
1402 #endif
1406 * XXX: We need to clean up on failure exits here.
1409 static int fec_enet_init(struct net_device *ndev)
1411 struct fec_enet_private *fep = netdev_priv(ndev);
1412 struct bufdesc *cbd_base;
1413 struct bufdesc *bdp;
1414 int i;
1416 /* Allocate memory for buffer descriptors. */
1417 cbd_base = dma_alloc_coherent(NULL, PAGE_SIZE, &fep->bd_dma,
1418 GFP_KERNEL);
1419 if (!cbd_base) {
1420 printk("FEC: allocate descriptor memory failed?\n");
1421 return -ENOMEM;
1424 spin_lock_init(&fep->hw_lock);
1426 fep->netdev = ndev;
1428 /* Get the Ethernet address */
1429 fec_get_mac(ndev);
1431 /* Set receive and transmit descriptor base. */
1432 fep->rx_bd_base = cbd_base;
1433 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1435 /* The FEC Ethernet specific entries in the device structure */
1436 ndev->watchdog_timeo = TX_TIMEOUT;
1437 ndev->netdev_ops = &fec_netdev_ops;
1438 ndev->ethtool_ops = &fec_enet_ethtool_ops;
1440 /* Initialize the receive buffer descriptors. */
1441 bdp = fep->rx_bd_base;
1442 for (i = 0; i < RX_RING_SIZE; i++) {
1444 /* Initialize the BD for every fragment in the page. */
1445 bdp->cbd_sc = 0;
1446 bdp++;
1449 /* Set the last buffer to wrap */
1450 bdp--;
1451 bdp->cbd_sc |= BD_SC_WRAP;
1453 /* ...and the same for transmit */
1454 bdp = fep->tx_bd_base;
1455 for (i = 0; i < TX_RING_SIZE; i++) {
1457 /* Initialize the BD for every fragment in the page. */
1458 bdp->cbd_sc = 0;
1459 bdp->cbd_bufaddr = 0;
1460 bdp++;
1463 /* Set the last buffer to wrap */
1464 bdp--;
1465 bdp->cbd_sc |= BD_SC_WRAP;
1467 fec_restart(ndev, 0);
1469 return 0;
1472 #ifdef CONFIG_OF
1473 static int __devinit fec_get_phy_mode_dt(struct platform_device *pdev)
1475 struct device_node *np = pdev->dev.of_node;
1477 if (np)
1478 return of_get_phy_mode(np);
1480 return -ENODEV;
1483 static void __devinit fec_reset_phy(struct platform_device *pdev)
1485 int err, phy_reset;
1486 struct device_node *np = pdev->dev.of_node;
1488 if (!np)
1489 return;
1491 phy_reset = of_get_named_gpio(np, "phy-reset-gpios", 0);
1492 err = gpio_request_one(phy_reset, GPIOF_OUT_INIT_LOW, "phy-reset");
1493 if (err) {
1494 pr_debug("FEC: failed to get gpio phy-reset: %d\n", err);
1495 return;
1497 msleep(1);
1498 gpio_set_value(phy_reset, 1);
1500 #else /* CONFIG_OF */
1501 static inline int fec_get_phy_mode_dt(struct platform_device *pdev)
1503 return -ENODEV;
1506 static inline void fec_reset_phy(struct platform_device *pdev)
1509 * In case of platform probe, the reset has been done
1510 * by machine code.
1513 #endif /* CONFIG_OF */
1515 static int __devinit
1516 fec_probe(struct platform_device *pdev)
1518 struct fec_enet_private *fep;
1519 struct fec_platform_data *pdata;
1520 struct net_device *ndev;
1521 int i, irq, ret = 0;
1522 struct resource *r;
1523 const struct of_device_id *of_id;
1525 of_id = of_match_device(fec_dt_ids, &pdev->dev);
1526 if (of_id)
1527 pdev->id_entry = of_id->data;
1529 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1530 if (!r)
1531 return -ENXIO;
1533 r = request_mem_region(r->start, resource_size(r), pdev->name);
1534 if (!r)
1535 return -EBUSY;
1537 /* Init network device */
1538 ndev = alloc_etherdev(sizeof(struct fec_enet_private));
1539 if (!ndev) {
1540 ret = -ENOMEM;
1541 goto failed_alloc_etherdev;
1544 SET_NETDEV_DEV(ndev, &pdev->dev);
1546 /* setup board info structure */
1547 fep = netdev_priv(ndev);
1549 fep->hwp = ioremap(r->start, resource_size(r));
1550 fep->pdev = pdev;
1552 if (!fep->hwp) {
1553 ret = -ENOMEM;
1554 goto failed_ioremap;
1557 platform_set_drvdata(pdev, ndev);
1559 ret = fec_get_phy_mode_dt(pdev);
1560 if (ret < 0) {
1561 pdata = pdev->dev.platform_data;
1562 if (pdata)
1563 fep->phy_interface = pdata->phy;
1564 else
1565 fep->phy_interface = PHY_INTERFACE_MODE_MII;
1566 } else {
1567 fep->phy_interface = ret;
1570 fec_reset_phy(pdev);
1572 for (i = 0; i < FEC_IRQ_NUM; i++) {
1573 irq = platform_get_irq(pdev, i);
1574 if (i && irq < 0)
1575 break;
1576 ret = request_irq(irq, fec_enet_interrupt, IRQF_DISABLED, pdev->name, ndev);
1577 if (ret) {
1578 while (--i >= 0) {
1579 irq = platform_get_irq(pdev, i);
1580 free_irq(irq, ndev);
1582 goto failed_irq;
1586 fep->clk = clk_get(&pdev->dev, "fec_clk");
1587 if (IS_ERR(fep->clk)) {
1588 ret = PTR_ERR(fep->clk);
1589 goto failed_clk;
1591 clk_enable(fep->clk);
1593 ret = fec_enet_init(ndev);
1594 if (ret)
1595 goto failed_init;
1597 ret = fec_enet_mii_init(pdev);
1598 if (ret)
1599 goto failed_mii_init;
1601 /* Carrier starts down, phylib will bring it up */
1602 netif_carrier_off(ndev);
1604 ret = register_netdev(ndev);
1605 if (ret)
1606 goto failed_register;
1608 return 0;
1610 failed_register:
1611 fec_enet_mii_remove(fep);
1612 failed_mii_init:
1613 failed_init:
1614 clk_disable(fep->clk);
1615 clk_put(fep->clk);
1616 failed_clk:
1617 for (i = 0; i < FEC_IRQ_NUM; i++) {
1618 irq = platform_get_irq(pdev, i);
1619 if (irq > 0)
1620 free_irq(irq, ndev);
1622 failed_irq:
1623 iounmap(fep->hwp);
1624 failed_ioremap:
1625 free_netdev(ndev);
1626 failed_alloc_etherdev:
1627 release_mem_region(r->start, resource_size(r));
1629 return ret;
1632 static int __devexit
1633 fec_drv_remove(struct platform_device *pdev)
1635 struct net_device *ndev = platform_get_drvdata(pdev);
1636 struct fec_enet_private *fep = netdev_priv(ndev);
1637 struct resource *r;
1639 fec_stop(ndev);
1640 fec_enet_mii_remove(fep);
1641 clk_disable(fep->clk);
1642 clk_put(fep->clk);
1643 iounmap(fep->hwp);
1644 unregister_netdev(ndev);
1645 free_netdev(ndev);
1647 r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1648 BUG_ON(!r);
1649 release_mem_region(r->start, resource_size(r));
1651 platform_set_drvdata(pdev, NULL);
1653 return 0;
1656 #ifdef CONFIG_PM
1657 static int
1658 fec_suspend(struct device *dev)
1660 struct net_device *ndev = dev_get_drvdata(dev);
1661 struct fec_enet_private *fep = netdev_priv(ndev);
1663 if (netif_running(ndev)) {
1664 fec_stop(ndev);
1665 netif_device_detach(ndev);
1667 clk_disable(fep->clk);
1669 return 0;
1672 static int
1673 fec_resume(struct device *dev)
1675 struct net_device *ndev = dev_get_drvdata(dev);
1676 struct fec_enet_private *fep = netdev_priv(ndev);
1678 clk_enable(fep->clk);
1679 if (netif_running(ndev)) {
1680 fec_restart(ndev, fep->full_duplex);
1681 netif_device_attach(ndev);
1684 return 0;
1687 static const struct dev_pm_ops fec_pm_ops = {
1688 .suspend = fec_suspend,
1689 .resume = fec_resume,
1690 .freeze = fec_suspend,
1691 .thaw = fec_resume,
1692 .poweroff = fec_suspend,
1693 .restore = fec_resume,
1695 #endif
1697 static struct platform_driver fec_driver = {
1698 .driver = {
1699 .name = DRIVER_NAME,
1700 .owner = THIS_MODULE,
1701 #ifdef CONFIG_PM
1702 .pm = &fec_pm_ops,
1703 #endif
1704 .of_match_table = fec_dt_ids,
1706 .id_table = fec_devtype,
1707 .probe = fec_probe,
1708 .remove = __devexit_p(fec_drv_remove),
1711 static int __init
1712 fec_enet_module_init(void)
1714 printk(KERN_INFO "FEC Ethernet Driver\n");
1716 return platform_driver_register(&fec_driver);
1719 static void __exit
1720 fec_enet_cleanup(void)
1722 platform_driver_unregister(&fec_driver);
1725 module_exit(fec_enet_cleanup);
1726 module_init(fec_enet_module_init);
1728 MODULE_LICENSE("GPL");