2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010-2011 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
48 #include <linux/of_device.h>
49 #include <linux/of_gpio.h>
50 #include <linux/of_net.h>
52 #include <asm/cacheflush.h>
55 #include <asm/coldfire.h>
56 #include <asm/mcfsim.h>
61 #if defined(CONFIG_ARM)
62 #define FEC_ALIGNMENT 0xf
64 #define FEC_ALIGNMENT 0x3
67 #define DRIVER_NAME "fec"
69 /* Controller is ENET-MAC */
70 #define FEC_QUIRK_ENET_MAC (1 << 0)
71 /* Controller needs driver to swap frame */
72 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
73 /* Controller uses gasket */
74 #define FEC_QUIRK_USE_GASKET (1 << 2)
75 /* Controller has GBIT support */
76 #define FEC_QUIRK_HAS_GBIT (1 << 3)
78 static struct platform_device_id fec_devtype
[] = {
80 /* keep it for coldfire */
85 .driver_data
= FEC_QUIRK_USE_GASKET
,
91 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_SWAP_FRAME
,
94 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_HAS_GBIT
,
99 MODULE_DEVICE_TABLE(platform
, fec_devtype
);
102 IMX25_FEC
= 1, /* runs on i.mx25/50/53 */
103 IMX27_FEC
, /* runs on i.mx27/35/51 */
108 static const struct of_device_id fec_dt_ids
[] = {
109 { .compatible
= "fsl,imx25-fec", .data
= &fec_devtype
[IMX25_FEC
], },
110 { .compatible
= "fsl,imx27-fec", .data
= &fec_devtype
[IMX27_FEC
], },
111 { .compatible
= "fsl,imx28-fec", .data
= &fec_devtype
[IMX28_FEC
], },
112 { .compatible
= "fsl,imx6q-fec", .data
= &fec_devtype
[IMX6Q_FEC
], },
115 MODULE_DEVICE_TABLE(of
, fec_dt_ids
);
117 static unsigned char macaddr
[ETH_ALEN
];
118 module_param_array(macaddr
, byte
, NULL
, 0);
119 MODULE_PARM_DESC(macaddr
, "FEC Ethernet MAC address");
121 #if defined(CONFIG_M5272)
123 * Some hardware gets it MAC address out of local flash memory.
124 * if this is non-zero then assume it is the address to get MAC from.
126 #if defined(CONFIG_NETtel)
127 #define FEC_FLASHMAC 0xf0006006
128 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
129 #define FEC_FLASHMAC 0xf0006000
130 #elif defined(CONFIG_CANCam)
131 #define FEC_FLASHMAC 0xf0020000
132 #elif defined (CONFIG_M5272C3)
133 #define FEC_FLASHMAC (0xffe04000 + 4)
134 #elif defined(CONFIG_MOD5272)
135 #define FEC_FLASHMAC 0xffc0406b
137 #define FEC_FLASHMAC 0
139 #endif /* CONFIG_M5272 */
141 /* The number of Tx and Rx buffers. These are allocated from the page
142 * pool. The code may assume these are power of two, so it it best
143 * to keep them that size.
144 * We don't need to allocate pages for the transmitter. We just use
145 * the skbuffer directly.
147 #define FEC_ENET_RX_PAGES 8
148 #define FEC_ENET_RX_FRSIZE 2048
149 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
150 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
151 #define FEC_ENET_TX_FRSIZE 2048
152 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
153 #define TX_RING_SIZE 16 /* Must be power of two */
154 #define TX_RING_MOD_MASK 15 /* for this to work */
156 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
157 #error "FEC: descriptor ring size constants too large"
160 /* Interrupt events/masks. */
161 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
162 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
163 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
164 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
165 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
166 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
167 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
168 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
169 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
170 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
172 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
174 /* The FEC stores dest/src/type, data, and checksum for receive packets.
176 #define PKT_MAXBUF_SIZE 1518
177 #define PKT_MINBUF_SIZE 64
178 #define PKT_MAXBLR_SIZE 1520
180 /* This device has up to three irqs on some platforms */
181 #define FEC_IRQ_NUM 3
184 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
185 * size bits. Other FEC hardware does not, so we need to take that into
186 * account when setting it.
188 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
189 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
190 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
192 #define OPT_FRAME_SIZE 0
195 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
196 * tx_bd_base always point to the base of the buffer descriptors. The
197 * cur_rx and cur_tx point to the currently available buffer.
198 * The dirty_tx tracks the current buffer that is being sent by the
199 * controller. The cur_tx and dirty_tx are equal under both completely
200 * empty and completely full conditions. The empty/ready indicator in
201 * the buffer descriptor determines the actual condition.
203 struct fec_enet_private
{
204 /* Hardware registers of the FEC device */
207 struct net_device
*netdev
;
211 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
212 unsigned char *tx_bounce
[TX_RING_SIZE
];
213 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
214 struct sk_buff
* rx_skbuff
[RX_RING_SIZE
];
218 /* CPM dual port RAM relative addresses */
220 /* Address of Rx and Tx buffers */
221 struct bufdesc
*rx_bd_base
;
222 struct bufdesc
*tx_bd_base
;
223 /* The next free ring entry */
224 struct bufdesc
*cur_rx
, *cur_tx
;
225 /* The ring entries to be free()ed */
226 struct bufdesc
*dirty_tx
;
229 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
232 struct platform_device
*pdev
;
236 /* Phylib and MDIO interface */
237 struct mii_bus
*mii_bus
;
238 struct phy_device
*phy_dev
;
241 phy_interface_t phy_interface
;
244 struct completion mdio_done
;
245 int irq
[FEC_IRQ_NUM
];
248 /* FEC MII MMFR bits definition */
249 #define FEC_MMFR_ST (1 << 30)
250 #define FEC_MMFR_OP_READ (2 << 28)
251 #define FEC_MMFR_OP_WRITE (1 << 28)
252 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
253 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
254 #define FEC_MMFR_TA (2 << 16)
255 #define FEC_MMFR_DATA(v) (v & 0xffff)
257 #define FEC_MII_TIMEOUT 1000 /* us */
259 /* Transmitter timeout */
260 #define TX_TIMEOUT (2 * HZ)
262 static void *swap_buffer(void *bufaddr
, int len
)
265 unsigned int *buf
= bufaddr
;
267 for (i
= 0; i
< (len
+ 3) / 4; i
++, buf
++)
268 *buf
= cpu_to_be32(*buf
);
274 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
276 struct fec_enet_private
*fep
= netdev_priv(ndev
);
277 const struct platform_device_id
*id_entry
=
278 platform_get_device_id(fep
->pdev
);
281 unsigned short status
;
285 /* Link is down or autonegotiation is in progress. */
286 return NETDEV_TX_BUSY
;
289 spin_lock_irqsave(&fep
->hw_lock
, flags
);
290 /* Fill in a Tx ring entry */
293 status
= bdp
->cbd_sc
;
295 if (status
& BD_ENET_TX_READY
) {
296 /* Ooops. All transmit buffers are full. Bail out.
297 * This should not happen, since ndev->tbusy should be set.
299 printk("%s: tx queue full!.\n", ndev
->name
);
300 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
301 return NETDEV_TX_BUSY
;
304 /* Clear all of the status flags */
305 status
&= ~BD_ENET_TX_STATS
;
307 /* Set buffer length and buffer pointer */
309 bdp
->cbd_datlen
= skb
->len
;
312 * On some FEC implementations data must be aligned on
313 * 4-byte boundaries. Use bounce buffers to copy data
314 * and get it aligned. Ugh.
316 if (((unsigned long) bufaddr
) & FEC_ALIGNMENT
) {
318 index
= bdp
- fep
->tx_bd_base
;
319 memcpy(fep
->tx_bounce
[index
], skb
->data
, skb
->len
);
320 bufaddr
= fep
->tx_bounce
[index
];
324 * Some design made an incorrect assumption on endian mode of
325 * the system that it's running on. As the result, driver has to
326 * swap every frame going to and coming from the controller.
328 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
329 swap_buffer(bufaddr
, skb
->len
);
331 /* Save skb pointer */
332 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
334 ndev
->stats
.tx_bytes
+= skb
->len
;
335 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
337 /* Push the data cache so the CPM does not get stale memory
340 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
,
341 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
343 /* Send it on its way. Tell FEC it's ready, interrupt when done,
344 * it's the last BD of the frame, and to put the CRC on the end.
346 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
347 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
348 bdp
->cbd_sc
= status
;
350 /* Trigger transmission start */
351 writel(0, fep
->hwp
+ FEC_X_DES_ACTIVE
);
353 /* If this was the last BD in the ring, start at the beginning again. */
354 if (status
& BD_ENET_TX_WRAP
)
355 bdp
= fep
->tx_bd_base
;
359 if (bdp
== fep
->dirty_tx
) {
361 netif_stop_queue(ndev
);
366 skb_tx_timestamp(skb
);
368 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
373 /* This function is called to start or restart the FEC during a link
374 * change. This only happens when switching between half and full
378 fec_restart(struct net_device
*ndev
, int duplex
)
380 struct fec_enet_private
*fep
= netdev_priv(ndev
);
381 const struct platform_device_id
*id_entry
=
382 platform_get_device_id(fep
->pdev
);
385 u32 rcntl
= OPT_FRAME_SIZE
| 0x04;
386 u32 ecntl
= 0x2; /* ETHEREN */
388 /* Whack a reset. We should wait for this. */
389 writel(1, fep
->hwp
+ FEC_ECNTRL
);
393 * enet-mac reset will reset mac address registers too,
394 * so need to reconfigure it.
396 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
397 memcpy(&temp_mac
, ndev
->dev_addr
, ETH_ALEN
);
398 writel(cpu_to_be32(temp_mac
[0]), fep
->hwp
+ FEC_ADDR_LOW
);
399 writel(cpu_to_be32(temp_mac
[1]), fep
->hwp
+ FEC_ADDR_HIGH
);
402 /* Clear any outstanding interrupt. */
403 writel(0xffc00000, fep
->hwp
+ FEC_IEVENT
);
405 /* Reset all multicast. */
406 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
407 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
409 writel(0, fep
->hwp
+ FEC_HASH_TABLE_HIGH
);
410 writel(0, fep
->hwp
+ FEC_HASH_TABLE_LOW
);
413 /* Set maximum receive buffer size. */
414 writel(PKT_MAXBLR_SIZE
, fep
->hwp
+ FEC_R_BUFF_SIZE
);
416 /* Set receive and transmit descriptor base. */
417 writel(fep
->bd_dma
, fep
->hwp
+ FEC_R_DES_START
);
418 writel((unsigned long)fep
->bd_dma
+ sizeof(struct bufdesc
) * RX_RING_SIZE
,
419 fep
->hwp
+ FEC_X_DES_START
);
421 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
422 fep
->cur_rx
= fep
->rx_bd_base
;
424 /* Reset SKB transmit buffers. */
425 fep
->skb_cur
= fep
->skb_dirty
= 0;
426 for (i
= 0; i
<= TX_RING_MOD_MASK
; i
++) {
427 if (fep
->tx_skbuff
[i
]) {
428 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
429 fep
->tx_skbuff
[i
] = NULL
;
433 /* Enable MII mode */
436 writel(0x04, fep
->hwp
+ FEC_X_CNTRL
);
440 writel(0x0, fep
->hwp
+ FEC_X_CNTRL
);
443 fep
->full_duplex
= duplex
;
446 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
449 * The phy interface and speed need to get configured
450 * differently on enet-mac.
452 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
453 /* Enable flow control and length check */
454 rcntl
|= 0x40000000 | 0x00000020;
456 /* RGMII, RMII or MII */
457 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RGMII
)
459 else if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
464 /* 1G, 100M or 10M */
466 if (fep
->phy_dev
->speed
== SPEED_1000
)
468 else if (fep
->phy_dev
->speed
== SPEED_100
)
474 #ifdef FEC_MIIGSK_ENR
475 if (id_entry
->driver_data
& FEC_QUIRK_USE_GASKET
) {
476 /* disable the gasket and wait */
477 writel(0, fep
->hwp
+ FEC_MIIGSK_ENR
);
478 while (readl(fep
->hwp
+ FEC_MIIGSK_ENR
) & 4)
482 * configure the gasket:
483 * RMII, 50 MHz, no loopback, no echo
484 * MII, 25 MHz, no loopback, no echo
486 writel((fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
) ?
487 1 : 0, fep
->hwp
+ FEC_MIIGSK_CFGR
);
490 /* re-enable the gasket */
491 writel(2, fep
->hwp
+ FEC_MIIGSK_ENR
);
495 writel(rcntl
, fep
->hwp
+ FEC_R_CNTRL
);
497 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
498 /* enable ENET endian swap */
500 /* enable ENET store and forward mode */
501 writel(1 << 8, fep
->hwp
+ FEC_X_WMRK
);
504 /* And last, enable the transmit and receive processing */
505 writel(ecntl
, fep
->hwp
+ FEC_ECNTRL
);
506 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
508 /* Enable interrupts we wish to service */
509 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
513 fec_stop(struct net_device
*ndev
)
515 struct fec_enet_private
*fep
= netdev_priv(ndev
);
516 const struct platform_device_id
*id_entry
=
517 platform_get_device_id(fep
->pdev
);
519 /* We cannot expect a graceful transmit stop without link !!! */
521 writel(1, fep
->hwp
+ FEC_X_CNTRL
); /* Graceful transmit stop */
523 if (!(readl(fep
->hwp
+ FEC_IEVENT
) & FEC_ENET_GRA
))
524 printk("fec_stop : Graceful transmit stop did not complete !\n");
527 /* Whack a reset. We should wait for this. */
528 writel(1, fep
->hwp
+ FEC_ECNTRL
);
530 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
531 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
533 /* We have to keep ENET enabled to have MII interrupt stay working */
534 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
)
535 writel(2, fep
->hwp
+ FEC_ECNTRL
);
540 fec_timeout(struct net_device
*ndev
)
542 struct fec_enet_private
*fep
= netdev_priv(ndev
);
544 ndev
->stats
.tx_errors
++;
546 fec_restart(ndev
, fep
->full_duplex
);
547 netif_wake_queue(ndev
);
551 fec_enet_tx(struct net_device
*ndev
)
553 struct fec_enet_private
*fep
;
555 unsigned short status
;
558 fep
= netdev_priv(ndev
);
559 spin_lock(&fep
->hw_lock
);
562 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
563 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0)
566 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
567 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
568 bdp
->cbd_bufaddr
= 0;
570 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
571 /* Check for errors. */
572 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
573 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
575 ndev
->stats
.tx_errors
++;
576 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
577 ndev
->stats
.tx_heartbeat_errors
++;
578 if (status
& BD_ENET_TX_LC
) /* Late collision */
579 ndev
->stats
.tx_window_errors
++;
580 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
581 ndev
->stats
.tx_aborted_errors
++;
582 if (status
& BD_ENET_TX_UN
) /* Underrun */
583 ndev
->stats
.tx_fifo_errors
++;
584 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
585 ndev
->stats
.tx_carrier_errors
++;
587 ndev
->stats
.tx_packets
++;
590 if (status
& BD_ENET_TX_READY
)
591 printk("HEY! Enet xmit interrupt and TX_READY.\n");
593 /* Deferred means some collisions occurred during transmit,
594 * but we eventually sent the packet OK.
596 if (status
& BD_ENET_TX_DEF
)
597 ndev
->stats
.collisions
++;
599 /* Free the sk buffer associated with this last transmit */
600 dev_kfree_skb_any(skb
);
601 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
602 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
604 /* Update pointer to next buffer descriptor to be transmitted */
605 if (status
& BD_ENET_TX_WRAP
)
606 bdp
= fep
->tx_bd_base
;
610 /* Since we have freed up a buffer, the ring is no longer full
614 if (netif_queue_stopped(ndev
))
615 netif_wake_queue(ndev
);
619 spin_unlock(&fep
->hw_lock
);
623 /* During a receive, the cur_rx points to the current incoming buffer.
624 * When we update through the ring, if the next incoming buffer has
625 * not been given to the system, we just set the empty indicator,
626 * effectively tossing the packet.
629 fec_enet_rx(struct net_device
*ndev
)
631 struct fec_enet_private
*fep
= netdev_priv(ndev
);
632 const struct platform_device_id
*id_entry
=
633 platform_get_device_id(fep
->pdev
);
635 unsigned short status
;
644 spin_lock(&fep
->hw_lock
);
646 /* First, grab all of the stats for the incoming packet.
647 * These get messed up if we get called due to a busy condition.
651 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
653 /* Since we have allocated space to hold a complete frame,
654 * the last indicator should be set.
656 if ((status
& BD_ENET_RX_LAST
) == 0)
657 printk("FEC ENET: rcv is not +last\n");
660 goto rx_processing_done
;
662 /* Check for errors. */
663 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
664 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
665 ndev
->stats
.rx_errors
++;
666 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
667 /* Frame too long or too short. */
668 ndev
->stats
.rx_length_errors
++;
670 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
671 ndev
->stats
.rx_frame_errors
++;
672 if (status
& BD_ENET_RX_CR
) /* CRC Error */
673 ndev
->stats
.rx_crc_errors
++;
674 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
675 ndev
->stats
.rx_fifo_errors
++;
678 /* Report late collisions as a frame error.
679 * On this error, the BD is closed, but we don't know what we
680 * have in the buffer. So, just drop this frame on the floor.
682 if (status
& BD_ENET_RX_CL
) {
683 ndev
->stats
.rx_errors
++;
684 ndev
->stats
.rx_frame_errors
++;
685 goto rx_processing_done
;
688 /* Process the incoming frame. */
689 ndev
->stats
.rx_packets
++;
690 pkt_len
= bdp
->cbd_datlen
;
691 ndev
->stats
.rx_bytes
+= pkt_len
;
692 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
694 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
695 FEC_ENET_TX_FRSIZE
, DMA_FROM_DEVICE
);
697 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
698 swap_buffer(data
, pkt_len
);
700 /* This does 16 byte alignment, exactly what we need.
701 * The packet length includes FCS, but we don't want to
702 * include that when passing upstream as it messes up
703 * bridging applications.
705 skb
= dev_alloc_skb(pkt_len
- 4 + NET_IP_ALIGN
);
707 if (unlikely(!skb
)) {
708 printk("%s: Memory squeeze, dropping packet.\n",
710 ndev
->stats
.rx_dropped
++;
712 skb_reserve(skb
, NET_IP_ALIGN
);
713 skb_put(skb
, pkt_len
- 4); /* Make room */
714 skb_copy_to_linear_data(skb
, data
, pkt_len
- 4);
715 skb
->protocol
= eth_type_trans(skb
, ndev
);
716 if (!skb_defer_rx_timestamp(skb
))
720 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, data
,
721 FEC_ENET_TX_FRSIZE
, DMA_FROM_DEVICE
);
723 /* Clear the status flags for this buffer */
724 status
&= ~BD_ENET_RX_STATS
;
726 /* Mark the buffer empty */
727 status
|= BD_ENET_RX_EMPTY
;
728 bdp
->cbd_sc
= status
;
730 /* Update BD pointer to next entry */
731 if (status
& BD_ENET_RX_WRAP
)
732 bdp
= fep
->rx_bd_base
;
735 /* Doing this here will keep the FEC running while we process
736 * incoming frames. On a heavily loaded network, we should be
737 * able to keep up at the expense of system resources.
739 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
743 spin_unlock(&fep
->hw_lock
);
747 fec_enet_interrupt(int irq
, void *dev_id
)
749 struct net_device
*ndev
= dev_id
;
750 struct fec_enet_private
*fep
= netdev_priv(ndev
);
752 irqreturn_t ret
= IRQ_NONE
;
755 int_events
= readl(fep
->hwp
+ FEC_IEVENT
);
756 writel(int_events
, fep
->hwp
+ FEC_IEVENT
);
758 if (int_events
& FEC_ENET_RXF
) {
763 /* Transmit OK, or non-fatal error. Update the buffer
764 * descriptors. FEC handles all errors, we just discover
765 * them as part of the transmit process.
767 if (int_events
& FEC_ENET_TXF
) {
772 if (int_events
& FEC_ENET_MII
) {
774 complete(&fep
->mdio_done
);
776 } while (int_events
);
783 /* ------------------------------------------------------------------------- */
784 static void __inline__
fec_get_mac(struct net_device
*ndev
)
786 struct fec_enet_private
*fep
= netdev_priv(ndev
);
787 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
788 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
791 * try to get mac address in following order:
793 * 1) module parameter via kernel command line in form
794 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
800 * 2) from device tree data
802 if (!is_valid_ether_addr(iap
)) {
803 struct device_node
*np
= fep
->pdev
->dev
.of_node
;
805 const char *mac
= of_get_mac_address(np
);
807 iap
= (unsigned char *) mac
;
813 * 3) from flash or fuse (via platform data)
815 if (!is_valid_ether_addr(iap
)) {
818 iap
= (unsigned char *)FEC_FLASHMAC
;
821 memcpy(iap
, pdata
->mac
, ETH_ALEN
);
826 * 4) FEC mac registers set by bootloader
828 if (!is_valid_ether_addr(iap
)) {
829 *((unsigned long *) &tmpaddr
[0]) =
830 be32_to_cpu(readl(fep
->hwp
+ FEC_ADDR_LOW
));
831 *((unsigned short *) &tmpaddr
[4]) =
832 be16_to_cpu(readl(fep
->hwp
+ FEC_ADDR_HIGH
) >> 16);
836 memcpy(ndev
->dev_addr
, iap
, ETH_ALEN
);
838 /* Adjust MAC if using macaddr */
840 ndev
->dev_addr
[ETH_ALEN
-1] = macaddr
[ETH_ALEN
-1] + fep
->pdev
->id
;
843 /* ------------------------------------------------------------------------- */
848 static void fec_enet_adjust_link(struct net_device
*ndev
)
850 struct fec_enet_private
*fep
= netdev_priv(ndev
);
851 struct phy_device
*phy_dev
= fep
->phy_dev
;
854 int status_change
= 0;
856 spin_lock_irqsave(&fep
->hw_lock
, flags
);
858 /* Prevent a state halted on mii error */
859 if (fep
->mii_timeout
&& phy_dev
->state
== PHY_HALTED
) {
860 phy_dev
->state
= PHY_RESUMING
;
864 /* Duplex link change */
866 if (fep
->full_duplex
!= phy_dev
->duplex
) {
867 fec_restart(ndev
, phy_dev
->duplex
);
872 /* Link on or off change */
873 if (phy_dev
->link
!= fep
->link
) {
874 fep
->link
= phy_dev
->link
;
876 fec_restart(ndev
, phy_dev
->duplex
);
883 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
886 phy_print_status(phy_dev
);
889 static int fec_enet_mdio_read(struct mii_bus
*bus
, int mii_id
, int regnum
)
891 struct fec_enet_private
*fep
= bus
->priv
;
892 unsigned long time_left
;
894 fep
->mii_timeout
= 0;
895 init_completion(&fep
->mdio_done
);
897 /* start a read op */
898 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
899 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
900 FEC_MMFR_TA
, fep
->hwp
+ FEC_MII_DATA
);
902 /* wait for end of transfer */
903 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
904 usecs_to_jiffies(FEC_MII_TIMEOUT
));
905 if (time_left
== 0) {
906 fep
->mii_timeout
= 1;
907 printk(KERN_ERR
"FEC: MDIO read timeout\n");
912 return FEC_MMFR_DATA(readl(fep
->hwp
+ FEC_MII_DATA
));
915 static int fec_enet_mdio_write(struct mii_bus
*bus
, int mii_id
, int regnum
,
918 struct fec_enet_private
*fep
= bus
->priv
;
919 unsigned long time_left
;
921 fep
->mii_timeout
= 0;
922 init_completion(&fep
->mdio_done
);
924 /* start a write op */
925 writel(FEC_MMFR_ST
| FEC_MMFR_OP_WRITE
|
926 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
927 FEC_MMFR_TA
| FEC_MMFR_DATA(value
),
928 fep
->hwp
+ FEC_MII_DATA
);
930 /* wait for end of transfer */
931 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
932 usecs_to_jiffies(FEC_MII_TIMEOUT
));
933 if (time_left
== 0) {
934 fep
->mii_timeout
= 1;
935 printk(KERN_ERR
"FEC: MDIO write timeout\n");
942 static int fec_enet_mdio_reset(struct mii_bus
*bus
)
947 static int fec_enet_mii_probe(struct net_device
*ndev
)
949 struct fec_enet_private
*fep
= netdev_priv(ndev
);
950 const struct platform_device_id
*id_entry
=
951 platform_get_device_id(fep
->pdev
);
952 struct phy_device
*phy_dev
= NULL
;
953 char mdio_bus_id
[MII_BUS_ID_SIZE
];
954 char phy_name
[MII_BUS_ID_SIZE
+ 3];
956 int dev_id
= fep
->pdev
->id
;
960 /* check for attached phy */
961 for (phy_id
= 0; (phy_id
< PHY_MAX_ADDR
); phy_id
++) {
962 if ((fep
->mii_bus
->phy_mask
& (1 << phy_id
)))
964 if (fep
->mii_bus
->phy_map
[phy_id
] == NULL
)
966 if (fep
->mii_bus
->phy_map
[phy_id
]->phy_id
== 0)
970 strncpy(mdio_bus_id
, fep
->mii_bus
->id
, MII_BUS_ID_SIZE
);
974 if (phy_id
>= PHY_MAX_ADDR
) {
975 printk(KERN_INFO
"%s: no PHY, assuming direct connection "
976 "to switch\n", ndev
->name
);
977 strncpy(mdio_bus_id
, "0", MII_BUS_ID_SIZE
);
981 snprintf(phy_name
, MII_BUS_ID_SIZE
, PHY_ID_FMT
, mdio_bus_id
, phy_id
);
982 phy_dev
= phy_connect(ndev
, phy_name
, &fec_enet_adjust_link
, 0,
984 if (IS_ERR(phy_dev
)) {
985 printk(KERN_ERR
"%s: could not attach to PHY\n", ndev
->name
);
986 return PTR_ERR(phy_dev
);
989 /* mask with MAC supported features */
990 if (id_entry
->driver_data
& FEC_QUIRK_HAS_GBIT
)
991 phy_dev
->supported
&= PHY_GBIT_FEATURES
;
993 phy_dev
->supported
&= PHY_BASIC_FEATURES
;
995 phy_dev
->advertising
= phy_dev
->supported
;
997 fep
->phy_dev
= phy_dev
;
999 fep
->full_duplex
= 0;
1001 printk(KERN_INFO
"%s: Freescale FEC PHY driver [%s] "
1002 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev
->name
,
1003 fep
->phy_dev
->drv
->name
, dev_name(&fep
->phy_dev
->dev
),
1009 static int fec_enet_mii_init(struct platform_device
*pdev
)
1011 static struct mii_bus
*fec0_mii_bus
;
1012 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1013 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1014 const struct platform_device_id
*id_entry
=
1015 platform_get_device_id(fep
->pdev
);
1016 int err
= -ENXIO
, i
;
1019 * The dual fec interfaces are not equivalent with enet-mac.
1020 * Here are the differences:
1022 * - fec0 supports MII & RMII modes while fec1 only supports RMII
1023 * - fec0 acts as the 1588 time master while fec1 is slave
1024 * - external phys can only be configured by fec0
1026 * That is to say fec1 can not work independently. It only works
1027 * when fec0 is working. The reason behind this design is that the
1028 * second interface is added primarily for Switch mode.
1030 * Because of the last point above, both phys are attached on fec0
1031 * mdio interface in board design, and need to be configured by
1034 if ((id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) && pdev
->id
> 0) {
1035 /* fec1 uses fec0 mii_bus */
1036 fep
->mii_bus
= fec0_mii_bus
;
1040 fep
->mii_timeout
= 0;
1043 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
1045 * The formula for FEC MDC is 'ref_freq / (MII_SPEED x 2)' while
1046 * for ENET-MAC is 'ref_freq / ((MII_SPEED + 1) x 2)'. The i.MX28
1047 * Reference Manual has an error on this, and gets fixed on i.MX6Q
1050 fep
->phy_speed
= DIV_ROUND_UP(clk_get_rate(fep
->clk
), 5000000);
1051 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
)
1053 fep
->phy_speed
<<= 1;
1054 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
1056 fep
->mii_bus
= mdiobus_alloc();
1057 if (fep
->mii_bus
== NULL
) {
1062 fep
->mii_bus
->name
= "fec_enet_mii_bus";
1063 fep
->mii_bus
->read
= fec_enet_mdio_read
;
1064 fep
->mii_bus
->write
= fec_enet_mdio_write
;
1065 fep
->mii_bus
->reset
= fec_enet_mdio_reset
;
1066 snprintf(fep
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x", pdev
->id
+ 1);
1067 fep
->mii_bus
->priv
= fep
;
1068 fep
->mii_bus
->parent
= &pdev
->dev
;
1070 fep
->mii_bus
->irq
= kmalloc(sizeof(int) * PHY_MAX_ADDR
, GFP_KERNEL
);
1071 if (!fep
->mii_bus
->irq
) {
1073 goto err_out_free_mdiobus
;
1076 for (i
= 0; i
< PHY_MAX_ADDR
; i
++)
1077 fep
->mii_bus
->irq
[i
] = PHY_POLL
;
1079 if (mdiobus_register(fep
->mii_bus
))
1080 goto err_out_free_mdio_irq
;
1082 /* save fec0 mii_bus */
1083 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
)
1084 fec0_mii_bus
= fep
->mii_bus
;
1088 err_out_free_mdio_irq
:
1089 kfree(fep
->mii_bus
->irq
);
1090 err_out_free_mdiobus
:
1091 mdiobus_free(fep
->mii_bus
);
1096 static void fec_enet_mii_remove(struct fec_enet_private
*fep
)
1099 phy_disconnect(fep
->phy_dev
);
1100 mdiobus_unregister(fep
->mii_bus
);
1101 kfree(fep
->mii_bus
->irq
);
1102 mdiobus_free(fep
->mii_bus
);
1105 static int fec_enet_get_settings(struct net_device
*ndev
,
1106 struct ethtool_cmd
*cmd
)
1108 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1109 struct phy_device
*phydev
= fep
->phy_dev
;
1114 return phy_ethtool_gset(phydev
, cmd
);
1117 static int fec_enet_set_settings(struct net_device
*ndev
,
1118 struct ethtool_cmd
*cmd
)
1120 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1121 struct phy_device
*phydev
= fep
->phy_dev
;
1126 return phy_ethtool_sset(phydev
, cmd
);
1129 static void fec_enet_get_drvinfo(struct net_device
*ndev
,
1130 struct ethtool_drvinfo
*info
)
1132 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1134 strcpy(info
->driver
, fep
->pdev
->dev
.driver
->name
);
1135 strcpy(info
->version
, "Revision: 1.0");
1136 strcpy(info
->bus_info
, dev_name(&ndev
->dev
));
1139 static struct ethtool_ops fec_enet_ethtool_ops
= {
1140 .get_settings
= fec_enet_get_settings
,
1141 .set_settings
= fec_enet_set_settings
,
1142 .get_drvinfo
= fec_enet_get_drvinfo
,
1143 .get_link
= ethtool_op_get_link
,
1146 static int fec_enet_ioctl(struct net_device
*ndev
, struct ifreq
*rq
, int cmd
)
1148 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1149 struct phy_device
*phydev
= fep
->phy_dev
;
1151 if (!netif_running(ndev
))
1157 return phy_mii_ioctl(phydev
, rq
, cmd
);
1160 static void fec_enet_free_buffers(struct net_device
*ndev
)
1162 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1164 struct sk_buff
*skb
;
1165 struct bufdesc
*bdp
;
1167 bdp
= fep
->rx_bd_base
;
1168 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1169 skb
= fep
->rx_skbuff
[i
];
1171 if (bdp
->cbd_bufaddr
)
1172 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
1173 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
1179 bdp
= fep
->tx_bd_base
;
1180 for (i
= 0; i
< TX_RING_SIZE
; i
++)
1181 kfree(fep
->tx_bounce
[i
]);
1184 static int fec_enet_alloc_buffers(struct net_device
*ndev
)
1186 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1188 struct sk_buff
*skb
;
1189 struct bufdesc
*bdp
;
1191 bdp
= fep
->rx_bd_base
;
1192 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1193 skb
= dev_alloc_skb(FEC_ENET_RX_FRSIZE
);
1195 fec_enet_free_buffers(ndev
);
1198 fep
->rx_skbuff
[i
] = skb
;
1200 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, skb
->data
,
1201 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
1202 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
1206 /* Set the last buffer to wrap. */
1208 bdp
->cbd_sc
|= BD_SC_WRAP
;
1210 bdp
= fep
->tx_bd_base
;
1211 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1212 fep
->tx_bounce
[i
] = kmalloc(FEC_ENET_TX_FRSIZE
, GFP_KERNEL
);
1215 bdp
->cbd_bufaddr
= 0;
1219 /* Set the last buffer to wrap. */
1221 bdp
->cbd_sc
|= BD_SC_WRAP
;
1227 fec_enet_open(struct net_device
*ndev
)
1229 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1232 /* I should reset the ring buffers here, but I don't yet know
1233 * a simple way to do that.
1236 ret
= fec_enet_alloc_buffers(ndev
);
1240 /* Probe and connect to PHY when open the interface */
1241 ret
= fec_enet_mii_probe(ndev
);
1243 fec_enet_free_buffers(ndev
);
1246 phy_start(fep
->phy_dev
);
1247 netif_start_queue(ndev
);
1253 fec_enet_close(struct net_device
*ndev
)
1255 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1257 /* Don't know what to do yet. */
1259 netif_stop_queue(ndev
);
1263 phy_stop(fep
->phy_dev
);
1264 phy_disconnect(fep
->phy_dev
);
1267 fec_enet_free_buffers(ndev
);
1272 /* Set or clear the multicast filter for this adaptor.
1273 * Skeleton taken from sunlance driver.
1274 * The CPM Ethernet implementation allows Multicast as well as individual
1275 * MAC address filtering. Some of the drivers check to make sure it is
1276 * a group multicast address, and discard those that are not. I guess I
1277 * will do the same for now, but just remove the test if you want
1278 * individual filtering as well (do the upper net layers want or support
1279 * this kind of feature?).
1282 #define HASH_BITS 6 /* #bits in hash */
1283 #define CRC32_POLY 0xEDB88320
1285 static void set_multicast_list(struct net_device
*ndev
)
1287 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1288 struct netdev_hw_addr
*ha
;
1289 unsigned int i
, bit
, data
, crc
, tmp
;
1292 if (ndev
->flags
& IFF_PROMISC
) {
1293 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1295 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1299 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1301 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1303 if (ndev
->flags
& IFF_ALLMULTI
) {
1304 /* Catch all multicast addresses, so set the
1307 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1308 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1313 /* Clear filter and add the addresses in hash register
1315 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1316 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1318 netdev_for_each_mc_addr(ha
, ndev
) {
1319 /* calculate crc32 value of mac address */
1322 for (i
= 0; i
< ndev
->addr_len
; i
++) {
1324 for (bit
= 0; bit
< 8; bit
++, data
>>= 1) {
1326 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
1330 /* only upper 6 bits (HASH_BITS) are used
1331 * which point to specific bit in he hash registers
1333 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
1336 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1337 tmp
|= 1 << (hash
- 32);
1338 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1340 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1342 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1347 /* Set a MAC change in hardware. */
1349 fec_set_mac_address(struct net_device
*ndev
, void *p
)
1351 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1352 struct sockaddr
*addr
= p
;
1354 if (!is_valid_ether_addr(addr
->sa_data
))
1355 return -EADDRNOTAVAIL
;
1357 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
1359 writel(ndev
->dev_addr
[3] | (ndev
->dev_addr
[2] << 8) |
1360 (ndev
->dev_addr
[1] << 16) | (ndev
->dev_addr
[0] << 24),
1361 fep
->hwp
+ FEC_ADDR_LOW
);
1362 writel((ndev
->dev_addr
[5] << 16) | (ndev
->dev_addr
[4] << 24),
1363 fep
->hwp
+ FEC_ADDR_HIGH
);
1367 #ifdef CONFIG_NET_POLL_CONTROLLER
1369 * fec_poll_controller: FEC Poll controller function
1370 * @dev: The FEC network adapter
1372 * Polled functionality used by netconsole and others in non interrupt mode
1375 void fec_poll_controller(struct net_device
*dev
)
1378 struct fec_enet_private
*fep
= netdev_priv(dev
);
1380 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
1381 if (fep
->irq
[i
] > 0) {
1382 disable_irq(fep
->irq
[i
]);
1383 fec_enet_interrupt(fep
->irq
[i
], dev
);
1384 enable_irq(fep
->irq
[i
]);
1390 static const struct net_device_ops fec_netdev_ops
= {
1391 .ndo_open
= fec_enet_open
,
1392 .ndo_stop
= fec_enet_close
,
1393 .ndo_start_xmit
= fec_enet_start_xmit
,
1394 .ndo_set_rx_mode
= set_multicast_list
,
1395 .ndo_change_mtu
= eth_change_mtu
,
1396 .ndo_validate_addr
= eth_validate_addr
,
1397 .ndo_tx_timeout
= fec_timeout
,
1398 .ndo_set_mac_address
= fec_set_mac_address
,
1399 .ndo_do_ioctl
= fec_enet_ioctl
,
1400 #ifdef CONFIG_NET_POLL_CONTROLLER
1401 .ndo_poll_controller
= fec_poll_controller
,
1406 * XXX: We need to clean up on failure exits here.
1409 static int fec_enet_init(struct net_device
*ndev
)
1411 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1412 struct bufdesc
*cbd_base
;
1413 struct bufdesc
*bdp
;
1416 /* Allocate memory for buffer descriptors. */
1417 cbd_base
= dma_alloc_coherent(NULL
, PAGE_SIZE
, &fep
->bd_dma
,
1420 printk("FEC: allocate descriptor memory failed?\n");
1424 spin_lock_init(&fep
->hw_lock
);
1428 /* Get the Ethernet address */
1431 /* Set receive and transmit descriptor base. */
1432 fep
->rx_bd_base
= cbd_base
;
1433 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
1435 /* The FEC Ethernet specific entries in the device structure */
1436 ndev
->watchdog_timeo
= TX_TIMEOUT
;
1437 ndev
->netdev_ops
= &fec_netdev_ops
;
1438 ndev
->ethtool_ops
= &fec_enet_ethtool_ops
;
1440 /* Initialize the receive buffer descriptors. */
1441 bdp
= fep
->rx_bd_base
;
1442 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1444 /* Initialize the BD for every fragment in the page. */
1449 /* Set the last buffer to wrap */
1451 bdp
->cbd_sc
|= BD_SC_WRAP
;
1453 /* ...and the same for transmit */
1454 bdp
= fep
->tx_bd_base
;
1455 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1457 /* Initialize the BD for every fragment in the page. */
1459 bdp
->cbd_bufaddr
= 0;
1463 /* Set the last buffer to wrap */
1465 bdp
->cbd_sc
|= BD_SC_WRAP
;
1467 fec_restart(ndev
, 0);
1473 static int __devinit
fec_get_phy_mode_dt(struct platform_device
*pdev
)
1475 struct device_node
*np
= pdev
->dev
.of_node
;
1478 return of_get_phy_mode(np
);
1483 static void __devinit
fec_reset_phy(struct platform_device
*pdev
)
1486 struct device_node
*np
= pdev
->dev
.of_node
;
1491 phy_reset
= of_get_named_gpio(np
, "phy-reset-gpios", 0);
1492 err
= gpio_request_one(phy_reset
, GPIOF_OUT_INIT_LOW
, "phy-reset");
1494 pr_debug("FEC: failed to get gpio phy-reset: %d\n", err
);
1498 gpio_set_value(phy_reset
, 1);
1500 #else /* CONFIG_OF */
1501 static inline int fec_get_phy_mode_dt(struct platform_device
*pdev
)
1506 static inline void fec_reset_phy(struct platform_device
*pdev
)
1509 * In case of platform probe, the reset has been done
1513 #endif /* CONFIG_OF */
1515 static int __devinit
1516 fec_probe(struct platform_device
*pdev
)
1518 struct fec_enet_private
*fep
;
1519 struct fec_platform_data
*pdata
;
1520 struct net_device
*ndev
;
1521 int i
, irq
, ret
= 0;
1523 const struct of_device_id
*of_id
;
1525 of_id
= of_match_device(fec_dt_ids
, &pdev
->dev
);
1527 pdev
->id_entry
= of_id
->data
;
1529 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1533 r
= request_mem_region(r
->start
, resource_size(r
), pdev
->name
);
1537 /* Init network device */
1538 ndev
= alloc_etherdev(sizeof(struct fec_enet_private
));
1541 goto failed_alloc_etherdev
;
1544 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1546 /* setup board info structure */
1547 fep
= netdev_priv(ndev
);
1549 fep
->hwp
= ioremap(r
->start
, resource_size(r
));
1554 goto failed_ioremap
;
1557 platform_set_drvdata(pdev
, ndev
);
1559 ret
= fec_get_phy_mode_dt(pdev
);
1561 pdata
= pdev
->dev
.platform_data
;
1563 fep
->phy_interface
= pdata
->phy
;
1565 fep
->phy_interface
= PHY_INTERFACE_MODE_MII
;
1567 fep
->phy_interface
= ret
;
1570 fec_reset_phy(pdev
);
1572 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
1573 irq
= platform_get_irq(pdev
, i
);
1576 ret
= request_irq(irq
, fec_enet_interrupt
, IRQF_DISABLED
, pdev
->name
, ndev
);
1579 irq
= platform_get_irq(pdev
, i
);
1580 free_irq(irq
, ndev
);
1586 fep
->clk
= clk_get(&pdev
->dev
, "fec_clk");
1587 if (IS_ERR(fep
->clk
)) {
1588 ret
= PTR_ERR(fep
->clk
);
1591 clk_enable(fep
->clk
);
1593 ret
= fec_enet_init(ndev
);
1597 ret
= fec_enet_mii_init(pdev
);
1599 goto failed_mii_init
;
1601 /* Carrier starts down, phylib will bring it up */
1602 netif_carrier_off(ndev
);
1604 ret
= register_netdev(ndev
);
1606 goto failed_register
;
1611 fec_enet_mii_remove(fep
);
1614 clk_disable(fep
->clk
);
1617 for (i
= 0; i
< FEC_IRQ_NUM
; i
++) {
1618 irq
= platform_get_irq(pdev
, i
);
1620 free_irq(irq
, ndev
);
1626 failed_alloc_etherdev
:
1627 release_mem_region(r
->start
, resource_size(r
));
1632 static int __devexit
1633 fec_drv_remove(struct platform_device
*pdev
)
1635 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1636 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1640 fec_enet_mii_remove(fep
);
1641 clk_disable(fep
->clk
);
1644 unregister_netdev(ndev
);
1647 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1649 release_mem_region(r
->start
, resource_size(r
));
1651 platform_set_drvdata(pdev
, NULL
);
1658 fec_suspend(struct device
*dev
)
1660 struct net_device
*ndev
= dev_get_drvdata(dev
);
1661 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1663 if (netif_running(ndev
)) {
1665 netif_device_detach(ndev
);
1667 clk_disable(fep
->clk
);
1673 fec_resume(struct device
*dev
)
1675 struct net_device
*ndev
= dev_get_drvdata(dev
);
1676 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1678 clk_enable(fep
->clk
);
1679 if (netif_running(ndev
)) {
1680 fec_restart(ndev
, fep
->full_duplex
);
1681 netif_device_attach(ndev
);
1687 static const struct dev_pm_ops fec_pm_ops
= {
1688 .suspend
= fec_suspend
,
1689 .resume
= fec_resume
,
1690 .freeze
= fec_suspend
,
1692 .poweroff
= fec_suspend
,
1693 .restore
= fec_resume
,
1697 static struct platform_driver fec_driver
= {
1699 .name
= DRIVER_NAME
,
1700 .owner
= THIS_MODULE
,
1704 .of_match_table
= fec_dt_ids
,
1706 .id_table
= fec_devtype
,
1708 .remove
= __devexit_p(fec_drv_remove
),
1712 fec_enet_module_init(void)
1714 printk(KERN_INFO
"FEC Ethernet Driver\n");
1716 return platform_driver_register(&fec_driver
);
1720 fec_enet_cleanup(void)
1722 platform_driver_unregister(&fec_driver
);
1725 module_exit(fec_enet_cleanup
);
1726 module_init(fec_enet_module_init
);
1728 MODULE_LICENSE("GPL");