Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / drivers / net / ethernet / intel / e1000 / e1000_ethtool.c
blob2b223ac99c421c9a6413e06f996ca4efc2f45a7a
1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 /* ethtool support for e1000 */
31 #include "e1000.h"
32 #include <asm/uaccess.h>
34 enum {NETDEV_STATS, E1000_STATS};
36 struct e1000_stats {
37 char stat_string[ETH_GSTRING_LEN];
38 int type;
39 int sizeof_stat;
40 int stat_offset;
43 #define E1000_STAT(m) E1000_STATS, \
44 sizeof(((struct e1000_adapter *)0)->m), \
45 offsetof(struct e1000_adapter, m)
46 #define E1000_NETDEV_STAT(m) NETDEV_STATS, \
47 sizeof(((struct net_device *)0)->m), \
48 offsetof(struct net_device, m)
50 static const struct e1000_stats e1000_gstrings_stats[] = {
51 { "rx_packets", E1000_STAT(stats.gprc) },
52 { "tx_packets", E1000_STAT(stats.gptc) },
53 { "rx_bytes", E1000_STAT(stats.gorcl) },
54 { "tx_bytes", E1000_STAT(stats.gotcl) },
55 { "rx_broadcast", E1000_STAT(stats.bprc) },
56 { "tx_broadcast", E1000_STAT(stats.bptc) },
57 { "rx_multicast", E1000_STAT(stats.mprc) },
58 { "tx_multicast", E1000_STAT(stats.mptc) },
59 { "rx_errors", E1000_STAT(stats.rxerrc) },
60 { "tx_errors", E1000_STAT(stats.txerrc) },
61 { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
62 { "multicast", E1000_STAT(stats.mprc) },
63 { "collisions", E1000_STAT(stats.colc) },
64 { "rx_length_errors", E1000_STAT(stats.rlerrc) },
65 { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
66 { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
67 { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
68 { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
69 { "rx_missed_errors", E1000_STAT(stats.mpc) },
70 { "tx_aborted_errors", E1000_STAT(stats.ecol) },
71 { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
72 { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
73 { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
74 { "tx_window_errors", E1000_STAT(stats.latecol) },
75 { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
76 { "tx_deferred_ok", E1000_STAT(stats.dc) },
77 { "tx_single_coll_ok", E1000_STAT(stats.scc) },
78 { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
79 { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
80 { "tx_restart_queue", E1000_STAT(restart_queue) },
81 { "rx_long_length_errors", E1000_STAT(stats.roc) },
82 { "rx_short_length_errors", E1000_STAT(stats.ruc) },
83 { "rx_align_errors", E1000_STAT(stats.algnerrc) },
84 { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
85 { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
86 { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
87 { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
88 { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
89 { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
90 { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
91 { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
92 { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
93 { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
94 { "tx_smbus", E1000_STAT(stats.mgptc) },
95 { "rx_smbus", E1000_STAT(stats.mgprc) },
96 { "dropped_smbus", E1000_STAT(stats.mgpdc) },
99 #define E1000_QUEUE_STATS_LEN 0
100 #define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
101 #define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
102 static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
103 "Register test (offline)", "Eeprom test (offline)",
104 "Interrupt test (offline)", "Loopback test (offline)",
105 "Link test (on/offline)"
107 #define E1000_TEST_LEN ARRAY_SIZE(e1000_gstrings_test)
109 static int e1000_get_settings(struct net_device *netdev,
110 struct ethtool_cmd *ecmd)
112 struct e1000_adapter *adapter = netdev_priv(netdev);
113 struct e1000_hw *hw = &adapter->hw;
115 if (hw->media_type == e1000_media_type_copper) {
117 ecmd->supported = (SUPPORTED_10baseT_Half |
118 SUPPORTED_10baseT_Full |
119 SUPPORTED_100baseT_Half |
120 SUPPORTED_100baseT_Full |
121 SUPPORTED_1000baseT_Full|
122 SUPPORTED_Autoneg |
123 SUPPORTED_TP);
124 ecmd->advertising = ADVERTISED_TP;
126 if (hw->autoneg == 1) {
127 ecmd->advertising |= ADVERTISED_Autoneg;
128 /* the e1000 autoneg seems to match ethtool nicely */
129 ecmd->advertising |= hw->autoneg_advertised;
132 ecmd->port = PORT_TP;
133 ecmd->phy_address = hw->phy_addr;
135 if (hw->mac_type == e1000_82543)
136 ecmd->transceiver = XCVR_EXTERNAL;
137 else
138 ecmd->transceiver = XCVR_INTERNAL;
140 } else {
141 ecmd->supported = (SUPPORTED_1000baseT_Full |
142 SUPPORTED_FIBRE |
143 SUPPORTED_Autoneg);
145 ecmd->advertising = (ADVERTISED_1000baseT_Full |
146 ADVERTISED_FIBRE |
147 ADVERTISED_Autoneg);
149 ecmd->port = PORT_FIBRE;
151 if (hw->mac_type >= e1000_82545)
152 ecmd->transceiver = XCVR_INTERNAL;
153 else
154 ecmd->transceiver = XCVR_EXTERNAL;
157 if (er32(STATUS) & E1000_STATUS_LU) {
159 e1000_get_speed_and_duplex(hw, &adapter->link_speed,
160 &adapter->link_duplex);
161 ethtool_cmd_speed_set(ecmd, adapter->link_speed);
163 /* unfortunately FULL_DUPLEX != DUPLEX_FULL
164 * and HALF_DUPLEX != DUPLEX_HALF */
166 if (adapter->link_duplex == FULL_DUPLEX)
167 ecmd->duplex = DUPLEX_FULL;
168 else
169 ecmd->duplex = DUPLEX_HALF;
170 } else {
171 ethtool_cmd_speed_set(ecmd, -1);
172 ecmd->duplex = -1;
175 ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
176 hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
177 return 0;
180 static int e1000_set_settings(struct net_device *netdev,
181 struct ethtool_cmd *ecmd)
183 struct e1000_adapter *adapter = netdev_priv(netdev);
184 struct e1000_hw *hw = &adapter->hw;
186 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
187 msleep(1);
189 if (ecmd->autoneg == AUTONEG_ENABLE) {
190 hw->autoneg = 1;
191 if (hw->media_type == e1000_media_type_fiber)
192 hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
193 ADVERTISED_FIBRE |
194 ADVERTISED_Autoneg;
195 else
196 hw->autoneg_advertised = ecmd->advertising |
197 ADVERTISED_TP |
198 ADVERTISED_Autoneg;
199 ecmd->advertising = hw->autoneg_advertised;
200 } else {
201 u32 speed = ethtool_cmd_speed(ecmd);
202 if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
203 clear_bit(__E1000_RESETTING, &adapter->flags);
204 return -EINVAL;
208 /* reset the link */
210 if (netif_running(adapter->netdev)) {
211 e1000_down(adapter);
212 e1000_up(adapter);
213 } else
214 e1000_reset(adapter);
216 clear_bit(__E1000_RESETTING, &adapter->flags);
217 return 0;
220 static u32 e1000_get_link(struct net_device *netdev)
222 struct e1000_adapter *adapter = netdev_priv(netdev);
225 * If the link is not reported up to netdev, interrupts are disabled,
226 * and so the physical link state may have changed since we last
227 * looked. Set get_link_status to make sure that the true link
228 * state is interrogated, rather than pulling a cached and possibly
229 * stale link state from the driver.
231 if (!netif_carrier_ok(netdev))
232 adapter->hw.get_link_status = 1;
234 return e1000_has_link(adapter);
237 static void e1000_get_pauseparam(struct net_device *netdev,
238 struct ethtool_pauseparam *pause)
240 struct e1000_adapter *adapter = netdev_priv(netdev);
241 struct e1000_hw *hw = &adapter->hw;
243 pause->autoneg =
244 (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
246 if (hw->fc == E1000_FC_RX_PAUSE)
247 pause->rx_pause = 1;
248 else if (hw->fc == E1000_FC_TX_PAUSE)
249 pause->tx_pause = 1;
250 else if (hw->fc == E1000_FC_FULL) {
251 pause->rx_pause = 1;
252 pause->tx_pause = 1;
256 static int e1000_set_pauseparam(struct net_device *netdev,
257 struct ethtool_pauseparam *pause)
259 struct e1000_adapter *adapter = netdev_priv(netdev);
260 struct e1000_hw *hw = &adapter->hw;
261 int retval = 0;
263 adapter->fc_autoneg = pause->autoneg;
265 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
266 msleep(1);
268 if (pause->rx_pause && pause->tx_pause)
269 hw->fc = E1000_FC_FULL;
270 else if (pause->rx_pause && !pause->tx_pause)
271 hw->fc = E1000_FC_RX_PAUSE;
272 else if (!pause->rx_pause && pause->tx_pause)
273 hw->fc = E1000_FC_TX_PAUSE;
274 else if (!pause->rx_pause && !pause->tx_pause)
275 hw->fc = E1000_FC_NONE;
277 hw->original_fc = hw->fc;
279 if (adapter->fc_autoneg == AUTONEG_ENABLE) {
280 if (netif_running(adapter->netdev)) {
281 e1000_down(adapter);
282 e1000_up(adapter);
283 } else
284 e1000_reset(adapter);
285 } else
286 retval = ((hw->media_type == e1000_media_type_fiber) ?
287 e1000_setup_link(hw) : e1000_force_mac_fc(hw));
289 clear_bit(__E1000_RESETTING, &adapter->flags);
290 return retval;
293 static u32 e1000_get_msglevel(struct net_device *netdev)
295 struct e1000_adapter *adapter = netdev_priv(netdev);
296 return adapter->msg_enable;
299 static void e1000_set_msglevel(struct net_device *netdev, u32 data)
301 struct e1000_adapter *adapter = netdev_priv(netdev);
302 adapter->msg_enable = data;
305 static int e1000_get_regs_len(struct net_device *netdev)
307 #define E1000_REGS_LEN 32
308 return E1000_REGS_LEN * sizeof(u32);
311 static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
312 void *p)
314 struct e1000_adapter *adapter = netdev_priv(netdev);
315 struct e1000_hw *hw = &adapter->hw;
316 u32 *regs_buff = p;
317 u16 phy_data;
319 memset(p, 0, E1000_REGS_LEN * sizeof(u32));
321 regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
323 regs_buff[0] = er32(CTRL);
324 regs_buff[1] = er32(STATUS);
326 regs_buff[2] = er32(RCTL);
327 regs_buff[3] = er32(RDLEN);
328 regs_buff[4] = er32(RDH);
329 regs_buff[5] = er32(RDT);
330 regs_buff[6] = er32(RDTR);
332 regs_buff[7] = er32(TCTL);
333 regs_buff[8] = er32(TDLEN);
334 regs_buff[9] = er32(TDH);
335 regs_buff[10] = er32(TDT);
336 regs_buff[11] = er32(TIDV);
338 regs_buff[12] = hw->phy_type; /* PHY type (IGP=1, M88=0) */
339 if (hw->phy_type == e1000_phy_igp) {
340 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
341 IGP01E1000_PHY_AGC_A);
342 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
343 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
344 regs_buff[13] = (u32)phy_data; /* cable length */
345 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
346 IGP01E1000_PHY_AGC_B);
347 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
348 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
349 regs_buff[14] = (u32)phy_data; /* cable length */
350 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
351 IGP01E1000_PHY_AGC_C);
352 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
353 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
354 regs_buff[15] = (u32)phy_data; /* cable length */
355 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
356 IGP01E1000_PHY_AGC_D);
357 e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
358 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
359 regs_buff[16] = (u32)phy_data; /* cable length */
360 regs_buff[17] = 0; /* extended 10bt distance (not needed) */
361 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
362 e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
363 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
364 regs_buff[18] = (u32)phy_data; /* cable polarity */
365 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
366 IGP01E1000_PHY_PCS_INIT_REG);
367 e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
368 IGP01E1000_PHY_PAGE_SELECT, &phy_data);
369 regs_buff[19] = (u32)phy_data; /* cable polarity */
370 regs_buff[20] = 0; /* polarity correction enabled (always) */
371 regs_buff[22] = 0; /* phy receive errors (unavailable) */
372 regs_buff[23] = regs_buff[18]; /* mdix mode */
373 e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
374 } else {
375 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
376 regs_buff[13] = (u32)phy_data; /* cable length */
377 regs_buff[14] = 0; /* Dummy (to align w/ IGP phy reg dump) */
378 regs_buff[15] = 0; /* Dummy (to align w/ IGP phy reg dump) */
379 regs_buff[16] = 0; /* Dummy (to align w/ IGP phy reg dump) */
380 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
381 regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
382 regs_buff[18] = regs_buff[13]; /* cable polarity */
383 regs_buff[19] = 0; /* Dummy (to align w/ IGP phy reg dump) */
384 regs_buff[20] = regs_buff[17]; /* polarity correction */
385 /* phy receive errors */
386 regs_buff[22] = adapter->phy_stats.receive_errors;
387 regs_buff[23] = regs_buff[13]; /* mdix mode */
389 regs_buff[21] = adapter->phy_stats.idle_errors; /* phy idle errors */
390 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
391 regs_buff[24] = (u32)phy_data; /* phy local receiver status */
392 regs_buff[25] = regs_buff[24]; /* phy remote receiver status */
393 if (hw->mac_type >= e1000_82540 &&
394 hw->media_type == e1000_media_type_copper) {
395 regs_buff[26] = er32(MANC);
399 static int e1000_get_eeprom_len(struct net_device *netdev)
401 struct e1000_adapter *adapter = netdev_priv(netdev);
402 struct e1000_hw *hw = &adapter->hw;
404 return hw->eeprom.word_size * 2;
407 static int e1000_get_eeprom(struct net_device *netdev,
408 struct ethtool_eeprom *eeprom, u8 *bytes)
410 struct e1000_adapter *adapter = netdev_priv(netdev);
411 struct e1000_hw *hw = &adapter->hw;
412 u16 *eeprom_buff;
413 int first_word, last_word;
414 int ret_val = 0;
415 u16 i;
417 if (eeprom->len == 0)
418 return -EINVAL;
420 eeprom->magic = hw->vendor_id | (hw->device_id << 16);
422 first_word = eeprom->offset >> 1;
423 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
425 eeprom_buff = kmalloc(sizeof(u16) *
426 (last_word - first_word + 1), GFP_KERNEL);
427 if (!eeprom_buff)
428 return -ENOMEM;
430 if (hw->eeprom.type == e1000_eeprom_spi)
431 ret_val = e1000_read_eeprom(hw, first_word,
432 last_word - first_word + 1,
433 eeprom_buff);
434 else {
435 for (i = 0; i < last_word - first_word + 1; i++) {
436 ret_val = e1000_read_eeprom(hw, first_word + i, 1,
437 &eeprom_buff[i]);
438 if (ret_val)
439 break;
443 /* Device's eeprom is always little-endian, word addressable */
444 for (i = 0; i < last_word - first_word + 1; i++)
445 le16_to_cpus(&eeprom_buff[i]);
447 memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
448 eeprom->len);
449 kfree(eeprom_buff);
451 return ret_val;
454 static int e1000_set_eeprom(struct net_device *netdev,
455 struct ethtool_eeprom *eeprom, u8 *bytes)
457 struct e1000_adapter *adapter = netdev_priv(netdev);
458 struct e1000_hw *hw = &adapter->hw;
459 u16 *eeprom_buff;
460 void *ptr;
461 int max_len, first_word, last_word, ret_val = 0;
462 u16 i;
464 if (eeprom->len == 0)
465 return -EOPNOTSUPP;
467 if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
468 return -EFAULT;
470 max_len = hw->eeprom.word_size * 2;
472 first_word = eeprom->offset >> 1;
473 last_word = (eeprom->offset + eeprom->len - 1) >> 1;
474 eeprom_buff = kmalloc(max_len, GFP_KERNEL);
475 if (!eeprom_buff)
476 return -ENOMEM;
478 ptr = (void *)eeprom_buff;
480 if (eeprom->offset & 1) {
481 /* need read/modify/write of first changed EEPROM word */
482 /* only the second byte of the word is being modified */
483 ret_val = e1000_read_eeprom(hw, first_word, 1,
484 &eeprom_buff[0]);
485 ptr++;
487 if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
488 /* need read/modify/write of last changed EEPROM word */
489 /* only the first byte of the word is being modified */
490 ret_val = e1000_read_eeprom(hw, last_word, 1,
491 &eeprom_buff[last_word - first_word]);
494 /* Device's eeprom is always little-endian, word addressable */
495 for (i = 0; i < last_word - first_word + 1; i++)
496 le16_to_cpus(&eeprom_buff[i]);
498 memcpy(ptr, bytes, eeprom->len);
500 for (i = 0; i < last_word - first_word + 1; i++)
501 eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
503 ret_val = e1000_write_eeprom(hw, first_word,
504 last_word - first_word + 1, eeprom_buff);
506 /* Update the checksum over the first part of the EEPROM if needed */
507 if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
508 e1000_update_eeprom_checksum(hw);
510 kfree(eeprom_buff);
511 return ret_val;
514 static void e1000_get_drvinfo(struct net_device *netdev,
515 struct ethtool_drvinfo *drvinfo)
517 struct e1000_adapter *adapter = netdev_priv(netdev);
518 char firmware_version[32];
520 strncpy(drvinfo->driver, e1000_driver_name, 32);
521 strncpy(drvinfo->version, e1000_driver_version, 32);
523 sprintf(firmware_version, "N/A");
524 strncpy(drvinfo->fw_version, firmware_version, 32);
525 strncpy(drvinfo->bus_info, pci_name(adapter->pdev), 32);
526 drvinfo->regdump_len = e1000_get_regs_len(netdev);
527 drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
530 static void e1000_get_ringparam(struct net_device *netdev,
531 struct ethtool_ringparam *ring)
533 struct e1000_adapter *adapter = netdev_priv(netdev);
534 struct e1000_hw *hw = &adapter->hw;
535 e1000_mac_type mac_type = hw->mac_type;
536 struct e1000_tx_ring *txdr = adapter->tx_ring;
537 struct e1000_rx_ring *rxdr = adapter->rx_ring;
539 ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
540 E1000_MAX_82544_RXD;
541 ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
542 E1000_MAX_82544_TXD;
543 ring->rx_pending = rxdr->count;
544 ring->tx_pending = txdr->count;
547 static int e1000_set_ringparam(struct net_device *netdev,
548 struct ethtool_ringparam *ring)
550 struct e1000_adapter *adapter = netdev_priv(netdev);
551 struct e1000_hw *hw = &adapter->hw;
552 e1000_mac_type mac_type = hw->mac_type;
553 struct e1000_tx_ring *txdr, *tx_old;
554 struct e1000_rx_ring *rxdr, *rx_old;
555 int i, err;
557 if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
558 return -EINVAL;
560 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
561 msleep(1);
563 if (netif_running(adapter->netdev))
564 e1000_down(adapter);
566 tx_old = adapter->tx_ring;
567 rx_old = adapter->rx_ring;
569 err = -ENOMEM;
570 txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring), GFP_KERNEL);
571 if (!txdr)
572 goto err_alloc_tx;
574 rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring), GFP_KERNEL);
575 if (!rxdr)
576 goto err_alloc_rx;
578 adapter->tx_ring = txdr;
579 adapter->rx_ring = rxdr;
581 rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
582 rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
583 E1000_MAX_RXD : E1000_MAX_82544_RXD));
584 rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
586 txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
587 txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
588 E1000_MAX_TXD : E1000_MAX_82544_TXD));
589 txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
591 for (i = 0; i < adapter->num_tx_queues; i++)
592 txdr[i].count = txdr->count;
593 for (i = 0; i < adapter->num_rx_queues; i++)
594 rxdr[i].count = rxdr->count;
596 if (netif_running(adapter->netdev)) {
597 /* Try to get new resources before deleting old */
598 err = e1000_setup_all_rx_resources(adapter);
599 if (err)
600 goto err_setup_rx;
601 err = e1000_setup_all_tx_resources(adapter);
602 if (err)
603 goto err_setup_tx;
605 /* save the new, restore the old in order to free it,
606 * then restore the new back again */
608 adapter->rx_ring = rx_old;
609 adapter->tx_ring = tx_old;
610 e1000_free_all_rx_resources(adapter);
611 e1000_free_all_tx_resources(adapter);
612 kfree(tx_old);
613 kfree(rx_old);
614 adapter->rx_ring = rxdr;
615 adapter->tx_ring = txdr;
616 err = e1000_up(adapter);
617 if (err)
618 goto err_setup;
621 clear_bit(__E1000_RESETTING, &adapter->flags);
622 return 0;
623 err_setup_tx:
624 e1000_free_all_rx_resources(adapter);
625 err_setup_rx:
626 adapter->rx_ring = rx_old;
627 adapter->tx_ring = tx_old;
628 kfree(rxdr);
629 err_alloc_rx:
630 kfree(txdr);
631 err_alloc_tx:
632 e1000_up(adapter);
633 err_setup:
634 clear_bit(__E1000_RESETTING, &adapter->flags);
635 return err;
638 static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
639 u32 mask, u32 write)
641 struct e1000_hw *hw = &adapter->hw;
642 static const u32 test[] =
643 {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
644 u8 __iomem *address = hw->hw_addr + reg;
645 u32 read;
646 int i;
648 for (i = 0; i < ARRAY_SIZE(test); i++) {
649 writel(write & test[i], address);
650 read = readl(address);
651 if (read != (write & test[i] & mask)) {
652 e_err(drv, "pattern test reg %04X failed: "
653 "got 0x%08X expected 0x%08X\n",
654 reg, read, (write & test[i] & mask));
655 *data = reg;
656 return true;
659 return false;
662 static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
663 u32 mask, u32 write)
665 struct e1000_hw *hw = &adapter->hw;
666 u8 __iomem *address = hw->hw_addr + reg;
667 u32 read;
669 writel(write & mask, address);
670 read = readl(address);
671 if ((read & mask) != (write & mask)) {
672 e_err(drv, "set/check reg %04X test failed: "
673 "got 0x%08X expected 0x%08X\n",
674 reg, (read & mask), (write & mask));
675 *data = reg;
676 return true;
678 return false;
681 #define REG_PATTERN_TEST(reg, mask, write) \
682 do { \
683 if (reg_pattern_test(adapter, data, \
684 (hw->mac_type >= e1000_82543) \
685 ? E1000_##reg : E1000_82542_##reg, \
686 mask, write)) \
687 return 1; \
688 } while (0)
690 #define REG_SET_AND_CHECK(reg, mask, write) \
691 do { \
692 if (reg_set_and_check(adapter, data, \
693 (hw->mac_type >= e1000_82543) \
694 ? E1000_##reg : E1000_82542_##reg, \
695 mask, write)) \
696 return 1; \
697 } while (0)
699 static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
701 u32 value, before, after;
702 u32 i, toggle;
703 struct e1000_hw *hw = &adapter->hw;
705 /* The status register is Read Only, so a write should fail.
706 * Some bits that get toggled are ignored.
709 /* there are several bits on newer hardware that are r/w */
710 toggle = 0xFFFFF833;
712 before = er32(STATUS);
713 value = (er32(STATUS) & toggle);
714 ew32(STATUS, toggle);
715 after = er32(STATUS) & toggle;
716 if (value != after) {
717 e_err(drv, "failed STATUS register test got: "
718 "0x%08X expected: 0x%08X\n", after, value);
719 *data = 1;
720 return 1;
722 /* restore previous status */
723 ew32(STATUS, before);
725 REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
726 REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
727 REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
728 REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
730 REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
731 REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
732 REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
733 REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
734 REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
735 REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
736 REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
737 REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
738 REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
739 REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
741 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
743 before = 0x06DFB3FE;
744 REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
745 REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
747 if (hw->mac_type >= e1000_82543) {
749 REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
750 REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
751 REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
752 REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
753 REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
754 value = E1000_RAR_ENTRIES;
755 for (i = 0; i < value; i++) {
756 REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
757 0xFFFFFFFF);
760 } else {
762 REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
763 REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
764 REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
765 REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
769 value = E1000_MC_TBL_SIZE;
770 for (i = 0; i < value; i++)
771 REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
773 *data = 0;
774 return 0;
777 static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
779 struct e1000_hw *hw = &adapter->hw;
780 u16 temp;
781 u16 checksum = 0;
782 u16 i;
784 *data = 0;
785 /* Read and add up the contents of the EEPROM */
786 for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
787 if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
788 *data = 1;
789 break;
791 checksum += temp;
794 /* If Checksum is not Correct return error else test passed */
795 if ((checksum != (u16)EEPROM_SUM) && !(*data))
796 *data = 2;
798 return *data;
801 static irqreturn_t e1000_test_intr(int irq, void *data)
803 struct net_device *netdev = (struct net_device *)data;
804 struct e1000_adapter *adapter = netdev_priv(netdev);
805 struct e1000_hw *hw = &adapter->hw;
807 adapter->test_icr |= er32(ICR);
809 return IRQ_HANDLED;
812 static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
814 struct net_device *netdev = adapter->netdev;
815 u32 mask, i = 0;
816 bool shared_int = true;
817 u32 irq = adapter->pdev->irq;
818 struct e1000_hw *hw = &adapter->hw;
820 *data = 0;
822 /* NOTE: we don't test MSI interrupts here, yet */
823 /* Hook up test interrupt handler just for this test */
824 if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
825 netdev))
826 shared_int = false;
827 else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
828 netdev->name, netdev)) {
829 *data = 1;
830 return -1;
832 e_info(hw, "testing %s interrupt\n", (shared_int ?
833 "shared" : "unshared"));
835 /* Disable all the interrupts */
836 ew32(IMC, 0xFFFFFFFF);
837 E1000_WRITE_FLUSH();
838 msleep(10);
840 /* Test each interrupt */
841 for (; i < 10; i++) {
843 /* Interrupt to test */
844 mask = 1 << i;
846 if (!shared_int) {
847 /* Disable the interrupt to be reported in
848 * the cause register and then force the same
849 * interrupt and see if one gets posted. If
850 * an interrupt was posted to the bus, the
851 * test failed.
853 adapter->test_icr = 0;
854 ew32(IMC, mask);
855 ew32(ICS, mask);
856 E1000_WRITE_FLUSH();
857 msleep(10);
859 if (adapter->test_icr & mask) {
860 *data = 3;
861 break;
865 /* Enable the interrupt to be reported in
866 * the cause register and then force the same
867 * interrupt and see if one gets posted. If
868 * an interrupt was not posted to the bus, the
869 * test failed.
871 adapter->test_icr = 0;
872 ew32(IMS, mask);
873 ew32(ICS, mask);
874 E1000_WRITE_FLUSH();
875 msleep(10);
877 if (!(adapter->test_icr & mask)) {
878 *data = 4;
879 break;
882 if (!shared_int) {
883 /* Disable the other interrupts to be reported in
884 * the cause register and then force the other
885 * interrupts and see if any get posted. If
886 * an interrupt was posted to the bus, the
887 * test failed.
889 adapter->test_icr = 0;
890 ew32(IMC, ~mask & 0x00007FFF);
891 ew32(ICS, ~mask & 0x00007FFF);
892 E1000_WRITE_FLUSH();
893 msleep(10);
895 if (adapter->test_icr) {
896 *data = 5;
897 break;
902 /* Disable all the interrupts */
903 ew32(IMC, 0xFFFFFFFF);
904 E1000_WRITE_FLUSH();
905 msleep(10);
907 /* Unhook test interrupt handler */
908 free_irq(irq, netdev);
910 return *data;
913 static void e1000_free_desc_rings(struct e1000_adapter *adapter)
915 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
916 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
917 struct pci_dev *pdev = adapter->pdev;
918 int i;
920 if (txdr->desc && txdr->buffer_info) {
921 for (i = 0; i < txdr->count; i++) {
922 if (txdr->buffer_info[i].dma)
923 dma_unmap_single(&pdev->dev,
924 txdr->buffer_info[i].dma,
925 txdr->buffer_info[i].length,
926 DMA_TO_DEVICE);
927 if (txdr->buffer_info[i].skb)
928 dev_kfree_skb(txdr->buffer_info[i].skb);
932 if (rxdr->desc && rxdr->buffer_info) {
933 for (i = 0; i < rxdr->count; i++) {
934 if (rxdr->buffer_info[i].dma)
935 dma_unmap_single(&pdev->dev,
936 rxdr->buffer_info[i].dma,
937 rxdr->buffer_info[i].length,
938 DMA_FROM_DEVICE);
939 if (rxdr->buffer_info[i].skb)
940 dev_kfree_skb(rxdr->buffer_info[i].skb);
944 if (txdr->desc) {
945 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
946 txdr->dma);
947 txdr->desc = NULL;
949 if (rxdr->desc) {
950 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
951 rxdr->dma);
952 rxdr->desc = NULL;
955 kfree(txdr->buffer_info);
956 txdr->buffer_info = NULL;
957 kfree(rxdr->buffer_info);
958 rxdr->buffer_info = NULL;
961 static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
963 struct e1000_hw *hw = &adapter->hw;
964 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
965 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
966 struct pci_dev *pdev = adapter->pdev;
967 u32 rctl;
968 int i, ret_val;
970 /* Setup Tx descriptor ring and Tx buffers */
972 if (!txdr->count)
973 txdr->count = E1000_DEFAULT_TXD;
975 txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
976 GFP_KERNEL);
977 if (!txdr->buffer_info) {
978 ret_val = 1;
979 goto err_nomem;
982 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
983 txdr->size = ALIGN(txdr->size, 4096);
984 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
985 GFP_KERNEL);
986 if (!txdr->desc) {
987 ret_val = 2;
988 goto err_nomem;
990 memset(txdr->desc, 0, txdr->size);
991 txdr->next_to_use = txdr->next_to_clean = 0;
993 ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
994 ew32(TDBAH, ((u64)txdr->dma >> 32));
995 ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
996 ew32(TDH, 0);
997 ew32(TDT, 0);
998 ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
999 E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1000 E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1002 for (i = 0; i < txdr->count; i++) {
1003 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1004 struct sk_buff *skb;
1005 unsigned int size = 1024;
1007 skb = alloc_skb(size, GFP_KERNEL);
1008 if (!skb) {
1009 ret_val = 3;
1010 goto err_nomem;
1012 skb_put(skb, size);
1013 txdr->buffer_info[i].skb = skb;
1014 txdr->buffer_info[i].length = skb->len;
1015 txdr->buffer_info[i].dma =
1016 dma_map_single(&pdev->dev, skb->data, skb->len,
1017 DMA_TO_DEVICE);
1018 tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1019 tx_desc->lower.data = cpu_to_le32(skb->len);
1020 tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1021 E1000_TXD_CMD_IFCS |
1022 E1000_TXD_CMD_RPS);
1023 tx_desc->upper.data = 0;
1026 /* Setup Rx descriptor ring and Rx buffers */
1028 if (!rxdr->count)
1029 rxdr->count = E1000_DEFAULT_RXD;
1031 rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1032 GFP_KERNEL);
1033 if (!rxdr->buffer_info) {
1034 ret_val = 4;
1035 goto err_nomem;
1038 rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1039 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1040 GFP_KERNEL);
1041 if (!rxdr->desc) {
1042 ret_val = 5;
1043 goto err_nomem;
1045 memset(rxdr->desc, 0, rxdr->size);
1046 rxdr->next_to_use = rxdr->next_to_clean = 0;
1048 rctl = er32(RCTL);
1049 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1050 ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1051 ew32(RDBAH, ((u64)rxdr->dma >> 32));
1052 ew32(RDLEN, rxdr->size);
1053 ew32(RDH, 0);
1054 ew32(RDT, 0);
1055 rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1056 E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1057 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1058 ew32(RCTL, rctl);
1060 for (i = 0; i < rxdr->count; i++) {
1061 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1062 struct sk_buff *skb;
1064 skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1065 if (!skb) {
1066 ret_val = 6;
1067 goto err_nomem;
1069 skb_reserve(skb, NET_IP_ALIGN);
1070 rxdr->buffer_info[i].skb = skb;
1071 rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1072 rxdr->buffer_info[i].dma =
1073 dma_map_single(&pdev->dev, skb->data,
1074 E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1075 rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1076 memset(skb->data, 0x00, skb->len);
1079 return 0;
1081 err_nomem:
1082 e1000_free_desc_rings(adapter);
1083 return ret_val;
1086 static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1088 struct e1000_hw *hw = &adapter->hw;
1090 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1091 e1000_write_phy_reg(hw, 29, 0x001F);
1092 e1000_write_phy_reg(hw, 30, 0x8FFC);
1093 e1000_write_phy_reg(hw, 29, 0x001A);
1094 e1000_write_phy_reg(hw, 30, 0x8FF0);
1097 static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1099 struct e1000_hw *hw = &adapter->hw;
1100 u16 phy_reg;
1102 /* Because we reset the PHY above, we need to re-force TX_CLK in the
1103 * Extended PHY Specific Control Register to 25MHz clock. This
1104 * value defaults back to a 2.5MHz clock when the PHY is reset.
1106 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1107 phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1108 e1000_write_phy_reg(hw,
1109 M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1111 /* In addition, because of the s/w reset above, we need to enable
1112 * CRS on TX. This must be set for both full and half duplex
1113 * operation.
1115 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1116 phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1117 e1000_write_phy_reg(hw,
1118 M88E1000_PHY_SPEC_CTRL, phy_reg);
1121 static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1123 struct e1000_hw *hw = &adapter->hw;
1124 u32 ctrl_reg;
1125 u16 phy_reg;
1127 /* Setup the Device Control Register for PHY loopback test. */
1129 ctrl_reg = er32(CTRL);
1130 ctrl_reg |= (E1000_CTRL_ILOS | /* Invert Loss-Of-Signal */
1131 E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1132 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1133 E1000_CTRL_SPD_1000 | /* Force Speed to 1000 */
1134 E1000_CTRL_FD); /* Force Duplex to FULL */
1136 ew32(CTRL, ctrl_reg);
1138 /* Read the PHY Specific Control Register (0x10) */
1139 e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1141 /* Clear Auto-Crossover bits in PHY Specific Control Register
1142 * (bits 6:5).
1144 phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1145 e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1147 /* Perform software reset on the PHY */
1148 e1000_phy_reset(hw);
1150 /* Have to setup TX_CLK and TX_CRS after software reset */
1151 e1000_phy_reset_clk_and_crs(adapter);
1153 e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1155 /* Wait for reset to complete. */
1156 udelay(500);
1158 /* Have to setup TX_CLK and TX_CRS after software reset */
1159 e1000_phy_reset_clk_and_crs(adapter);
1161 /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1162 e1000_phy_disable_receiver(adapter);
1164 /* Set the loopback bit in the PHY control register. */
1165 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1166 phy_reg |= MII_CR_LOOPBACK;
1167 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1169 /* Setup TX_CLK and TX_CRS one more time. */
1170 e1000_phy_reset_clk_and_crs(adapter);
1172 /* Check Phy Configuration */
1173 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1174 if (phy_reg != 0x4100)
1175 return 9;
1177 e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1178 if (phy_reg != 0x0070)
1179 return 10;
1181 e1000_read_phy_reg(hw, 29, &phy_reg);
1182 if (phy_reg != 0x001A)
1183 return 11;
1185 return 0;
1188 static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1190 struct e1000_hw *hw = &adapter->hw;
1191 u32 ctrl_reg = 0;
1192 u32 stat_reg = 0;
1194 hw->autoneg = false;
1196 if (hw->phy_type == e1000_phy_m88) {
1197 /* Auto-MDI/MDIX Off */
1198 e1000_write_phy_reg(hw,
1199 M88E1000_PHY_SPEC_CTRL, 0x0808);
1200 /* reset to update Auto-MDI/MDIX */
1201 e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1202 /* autoneg off */
1203 e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1206 ctrl_reg = er32(CTRL);
1208 /* force 1000, set loopback */
1209 e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1211 /* Now set up the MAC to the same speed/duplex as the PHY. */
1212 ctrl_reg = er32(CTRL);
1213 ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1214 ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1215 E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1216 E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1217 E1000_CTRL_FD); /* Force Duplex to FULL */
1219 if (hw->media_type == e1000_media_type_copper &&
1220 hw->phy_type == e1000_phy_m88)
1221 ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1222 else {
1223 /* Set the ILOS bit on the fiber Nic is half
1224 * duplex link is detected. */
1225 stat_reg = er32(STATUS);
1226 if ((stat_reg & E1000_STATUS_FD) == 0)
1227 ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1230 ew32(CTRL, ctrl_reg);
1232 /* Disable the receiver on the PHY so when a cable is plugged in, the
1233 * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1235 if (hw->phy_type == e1000_phy_m88)
1236 e1000_phy_disable_receiver(adapter);
1238 udelay(500);
1240 return 0;
1243 static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1245 struct e1000_hw *hw = &adapter->hw;
1246 u16 phy_reg = 0;
1247 u16 count = 0;
1249 switch (hw->mac_type) {
1250 case e1000_82543:
1251 if (hw->media_type == e1000_media_type_copper) {
1252 /* Attempt to setup Loopback mode on Non-integrated PHY.
1253 * Some PHY registers get corrupted at random, so
1254 * attempt this 10 times.
1256 while (e1000_nonintegrated_phy_loopback(adapter) &&
1257 count++ < 10);
1258 if (count < 11)
1259 return 0;
1261 break;
1263 case e1000_82544:
1264 case e1000_82540:
1265 case e1000_82545:
1266 case e1000_82545_rev_3:
1267 case e1000_82546:
1268 case e1000_82546_rev_3:
1269 case e1000_82541:
1270 case e1000_82541_rev_2:
1271 case e1000_82547:
1272 case e1000_82547_rev_2:
1273 return e1000_integrated_phy_loopback(adapter);
1274 break;
1275 default:
1276 /* Default PHY loopback work is to read the MII
1277 * control register and assert bit 14 (loopback mode).
1279 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1280 phy_reg |= MII_CR_LOOPBACK;
1281 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1282 return 0;
1283 break;
1286 return 8;
1289 static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1291 struct e1000_hw *hw = &adapter->hw;
1292 u32 rctl;
1294 if (hw->media_type == e1000_media_type_fiber ||
1295 hw->media_type == e1000_media_type_internal_serdes) {
1296 switch (hw->mac_type) {
1297 case e1000_82545:
1298 case e1000_82546:
1299 case e1000_82545_rev_3:
1300 case e1000_82546_rev_3:
1301 return e1000_set_phy_loopback(adapter);
1302 break;
1303 default:
1304 rctl = er32(RCTL);
1305 rctl |= E1000_RCTL_LBM_TCVR;
1306 ew32(RCTL, rctl);
1307 return 0;
1309 } else if (hw->media_type == e1000_media_type_copper)
1310 return e1000_set_phy_loopback(adapter);
1312 return 7;
1315 static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1317 struct e1000_hw *hw = &adapter->hw;
1318 u32 rctl;
1319 u16 phy_reg;
1321 rctl = er32(RCTL);
1322 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1323 ew32(RCTL, rctl);
1325 switch (hw->mac_type) {
1326 case e1000_82545:
1327 case e1000_82546:
1328 case e1000_82545_rev_3:
1329 case e1000_82546_rev_3:
1330 default:
1331 hw->autoneg = true;
1332 e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1333 if (phy_reg & MII_CR_LOOPBACK) {
1334 phy_reg &= ~MII_CR_LOOPBACK;
1335 e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1336 e1000_phy_reset(hw);
1338 break;
1342 static void e1000_create_lbtest_frame(struct sk_buff *skb,
1343 unsigned int frame_size)
1345 memset(skb->data, 0xFF, frame_size);
1346 frame_size &= ~1;
1347 memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1348 memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1349 memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1352 static int e1000_check_lbtest_frame(struct sk_buff *skb,
1353 unsigned int frame_size)
1355 frame_size &= ~1;
1356 if (*(skb->data + 3) == 0xFF) {
1357 if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1358 (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1359 return 0;
1362 return 13;
1365 static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1367 struct e1000_hw *hw = &adapter->hw;
1368 struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1369 struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1370 struct pci_dev *pdev = adapter->pdev;
1371 int i, j, k, l, lc, good_cnt, ret_val=0;
1372 unsigned long time;
1374 ew32(RDT, rxdr->count - 1);
1376 /* Calculate the loop count based on the largest descriptor ring
1377 * The idea is to wrap the largest ring a number of times using 64
1378 * send/receive pairs during each loop
1381 if (rxdr->count <= txdr->count)
1382 lc = ((txdr->count / 64) * 2) + 1;
1383 else
1384 lc = ((rxdr->count / 64) * 2) + 1;
1386 k = l = 0;
1387 for (j = 0; j <= lc; j++) { /* loop count loop */
1388 for (i = 0; i < 64; i++) { /* send the packets */
1389 e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1390 1024);
1391 dma_sync_single_for_device(&pdev->dev,
1392 txdr->buffer_info[k].dma,
1393 txdr->buffer_info[k].length,
1394 DMA_TO_DEVICE);
1395 if (unlikely(++k == txdr->count)) k = 0;
1397 ew32(TDT, k);
1398 E1000_WRITE_FLUSH();
1399 msleep(200);
1400 time = jiffies; /* set the start time for the receive */
1401 good_cnt = 0;
1402 do { /* receive the sent packets */
1403 dma_sync_single_for_cpu(&pdev->dev,
1404 rxdr->buffer_info[l].dma,
1405 rxdr->buffer_info[l].length,
1406 DMA_FROM_DEVICE);
1408 ret_val = e1000_check_lbtest_frame(
1409 rxdr->buffer_info[l].skb,
1410 1024);
1411 if (!ret_val)
1412 good_cnt++;
1413 if (unlikely(++l == rxdr->count)) l = 0;
1414 /* time + 20 msecs (200 msecs on 2.4) is more than
1415 * enough time to complete the receives, if it's
1416 * exceeded, break and error off
1418 } while (good_cnt < 64 && jiffies < (time + 20));
1419 if (good_cnt != 64) {
1420 ret_val = 13; /* ret_val is the same as mis-compare */
1421 break;
1423 if (jiffies >= (time + 2)) {
1424 ret_val = 14; /* error code for time out error */
1425 break;
1427 } /* end loop count loop */
1428 return ret_val;
1431 static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1433 *data = e1000_setup_desc_rings(adapter);
1434 if (*data)
1435 goto out;
1436 *data = e1000_setup_loopback_test(adapter);
1437 if (*data)
1438 goto err_loopback;
1439 *data = e1000_run_loopback_test(adapter);
1440 e1000_loopback_cleanup(adapter);
1442 err_loopback:
1443 e1000_free_desc_rings(adapter);
1444 out:
1445 return *data;
1448 static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1450 struct e1000_hw *hw = &adapter->hw;
1451 *data = 0;
1452 if (hw->media_type == e1000_media_type_internal_serdes) {
1453 int i = 0;
1454 hw->serdes_has_link = false;
1456 /* On some blade server designs, link establishment
1457 * could take as long as 2-3 minutes */
1458 do {
1459 e1000_check_for_link(hw);
1460 if (hw->serdes_has_link)
1461 return *data;
1462 msleep(20);
1463 } while (i++ < 3750);
1465 *data = 1;
1466 } else {
1467 e1000_check_for_link(hw);
1468 if (hw->autoneg) /* if auto_neg is set wait for it */
1469 msleep(4000);
1471 if (!(er32(STATUS) & E1000_STATUS_LU)) {
1472 *data = 1;
1475 return *data;
1478 static int e1000_get_sset_count(struct net_device *netdev, int sset)
1480 switch (sset) {
1481 case ETH_SS_TEST:
1482 return E1000_TEST_LEN;
1483 case ETH_SS_STATS:
1484 return E1000_STATS_LEN;
1485 default:
1486 return -EOPNOTSUPP;
1490 static void e1000_diag_test(struct net_device *netdev,
1491 struct ethtool_test *eth_test, u64 *data)
1493 struct e1000_adapter *adapter = netdev_priv(netdev);
1494 struct e1000_hw *hw = &adapter->hw;
1495 bool if_running = netif_running(netdev);
1497 set_bit(__E1000_TESTING, &adapter->flags);
1498 if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1499 /* Offline tests */
1501 /* save speed, duplex, autoneg settings */
1502 u16 autoneg_advertised = hw->autoneg_advertised;
1503 u8 forced_speed_duplex = hw->forced_speed_duplex;
1504 u8 autoneg = hw->autoneg;
1506 e_info(hw, "offline testing starting\n");
1508 /* Link test performed before hardware reset so autoneg doesn't
1509 * interfere with test result */
1510 if (e1000_link_test(adapter, &data[4]))
1511 eth_test->flags |= ETH_TEST_FL_FAILED;
1513 if (if_running)
1514 /* indicate we're in test mode */
1515 dev_close(netdev);
1516 else
1517 e1000_reset(adapter);
1519 if (e1000_reg_test(adapter, &data[0]))
1520 eth_test->flags |= ETH_TEST_FL_FAILED;
1522 e1000_reset(adapter);
1523 if (e1000_eeprom_test(adapter, &data[1]))
1524 eth_test->flags |= ETH_TEST_FL_FAILED;
1526 e1000_reset(adapter);
1527 if (e1000_intr_test(adapter, &data[2]))
1528 eth_test->flags |= ETH_TEST_FL_FAILED;
1530 e1000_reset(adapter);
1531 /* make sure the phy is powered up */
1532 e1000_power_up_phy(adapter);
1533 if (e1000_loopback_test(adapter, &data[3]))
1534 eth_test->flags |= ETH_TEST_FL_FAILED;
1536 /* restore speed, duplex, autoneg settings */
1537 hw->autoneg_advertised = autoneg_advertised;
1538 hw->forced_speed_duplex = forced_speed_duplex;
1539 hw->autoneg = autoneg;
1541 e1000_reset(adapter);
1542 clear_bit(__E1000_TESTING, &adapter->flags);
1543 if (if_running)
1544 dev_open(netdev);
1545 } else {
1546 e_info(hw, "online testing starting\n");
1547 /* Online tests */
1548 if (e1000_link_test(adapter, &data[4]))
1549 eth_test->flags |= ETH_TEST_FL_FAILED;
1551 /* Online tests aren't run; pass by default */
1552 data[0] = 0;
1553 data[1] = 0;
1554 data[2] = 0;
1555 data[3] = 0;
1557 clear_bit(__E1000_TESTING, &adapter->flags);
1559 msleep_interruptible(4 * 1000);
1562 static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1563 struct ethtool_wolinfo *wol)
1565 struct e1000_hw *hw = &adapter->hw;
1566 int retval = 1; /* fail by default */
1568 switch (hw->device_id) {
1569 case E1000_DEV_ID_82542:
1570 case E1000_DEV_ID_82543GC_FIBER:
1571 case E1000_DEV_ID_82543GC_COPPER:
1572 case E1000_DEV_ID_82544EI_FIBER:
1573 case E1000_DEV_ID_82546EB_QUAD_COPPER:
1574 case E1000_DEV_ID_82545EM_FIBER:
1575 case E1000_DEV_ID_82545EM_COPPER:
1576 case E1000_DEV_ID_82546GB_QUAD_COPPER:
1577 case E1000_DEV_ID_82546GB_PCIE:
1578 /* these don't support WoL at all */
1579 wol->supported = 0;
1580 break;
1581 case E1000_DEV_ID_82546EB_FIBER:
1582 case E1000_DEV_ID_82546GB_FIBER:
1583 /* Wake events not supported on port B */
1584 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1585 wol->supported = 0;
1586 break;
1588 /* return success for non excluded adapter ports */
1589 retval = 0;
1590 break;
1591 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1592 /* quad port adapters only support WoL on port A */
1593 if (!adapter->quad_port_a) {
1594 wol->supported = 0;
1595 break;
1597 /* return success for non excluded adapter ports */
1598 retval = 0;
1599 break;
1600 default:
1601 /* dual port cards only support WoL on port A from now on
1602 * unless it was enabled in the eeprom for port B
1603 * so exclude FUNC_1 ports from having WoL enabled */
1604 if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1605 !adapter->eeprom_wol) {
1606 wol->supported = 0;
1607 break;
1610 retval = 0;
1613 return retval;
1616 static void e1000_get_wol(struct net_device *netdev,
1617 struct ethtool_wolinfo *wol)
1619 struct e1000_adapter *adapter = netdev_priv(netdev);
1620 struct e1000_hw *hw = &adapter->hw;
1622 wol->supported = WAKE_UCAST | WAKE_MCAST |
1623 WAKE_BCAST | WAKE_MAGIC;
1624 wol->wolopts = 0;
1626 /* this function will set ->supported = 0 and return 1 if wol is not
1627 * supported by this hardware */
1628 if (e1000_wol_exclusion(adapter, wol) ||
1629 !device_can_wakeup(&adapter->pdev->dev))
1630 return;
1632 /* apply any specific unsupported masks here */
1633 switch (hw->device_id) {
1634 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1635 /* KSP3 does not suppport UCAST wake-ups */
1636 wol->supported &= ~WAKE_UCAST;
1638 if (adapter->wol & E1000_WUFC_EX)
1639 e_err(drv, "Interface does not support directed "
1640 "(unicast) frame wake-up packets\n");
1641 break;
1642 default:
1643 break;
1646 if (adapter->wol & E1000_WUFC_EX)
1647 wol->wolopts |= WAKE_UCAST;
1648 if (adapter->wol & E1000_WUFC_MC)
1649 wol->wolopts |= WAKE_MCAST;
1650 if (adapter->wol & E1000_WUFC_BC)
1651 wol->wolopts |= WAKE_BCAST;
1652 if (adapter->wol & E1000_WUFC_MAG)
1653 wol->wolopts |= WAKE_MAGIC;
1656 static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1658 struct e1000_adapter *adapter = netdev_priv(netdev);
1659 struct e1000_hw *hw = &adapter->hw;
1661 if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1662 return -EOPNOTSUPP;
1664 if (e1000_wol_exclusion(adapter, wol) ||
1665 !device_can_wakeup(&adapter->pdev->dev))
1666 return wol->wolopts ? -EOPNOTSUPP : 0;
1668 switch (hw->device_id) {
1669 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1670 if (wol->wolopts & WAKE_UCAST) {
1671 e_err(drv, "Interface does not support directed "
1672 "(unicast) frame wake-up packets\n");
1673 return -EOPNOTSUPP;
1675 break;
1676 default:
1677 break;
1680 /* these settings will always override what we currently have */
1681 adapter->wol = 0;
1683 if (wol->wolopts & WAKE_UCAST)
1684 adapter->wol |= E1000_WUFC_EX;
1685 if (wol->wolopts & WAKE_MCAST)
1686 adapter->wol |= E1000_WUFC_MC;
1687 if (wol->wolopts & WAKE_BCAST)
1688 adapter->wol |= E1000_WUFC_BC;
1689 if (wol->wolopts & WAKE_MAGIC)
1690 adapter->wol |= E1000_WUFC_MAG;
1692 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1694 return 0;
1697 static int e1000_set_phys_id(struct net_device *netdev,
1698 enum ethtool_phys_id_state state)
1700 struct e1000_adapter *adapter = netdev_priv(netdev);
1701 struct e1000_hw *hw = &adapter->hw;
1703 switch (state) {
1704 case ETHTOOL_ID_ACTIVE:
1705 e1000_setup_led(hw);
1706 return 2;
1708 case ETHTOOL_ID_ON:
1709 e1000_led_on(hw);
1710 break;
1712 case ETHTOOL_ID_OFF:
1713 e1000_led_off(hw);
1714 break;
1716 case ETHTOOL_ID_INACTIVE:
1717 e1000_cleanup_led(hw);
1720 return 0;
1723 static int e1000_get_coalesce(struct net_device *netdev,
1724 struct ethtool_coalesce *ec)
1726 struct e1000_adapter *adapter = netdev_priv(netdev);
1728 if (adapter->hw.mac_type < e1000_82545)
1729 return -EOPNOTSUPP;
1731 if (adapter->itr_setting <= 4)
1732 ec->rx_coalesce_usecs = adapter->itr_setting;
1733 else
1734 ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1736 return 0;
1739 static int e1000_set_coalesce(struct net_device *netdev,
1740 struct ethtool_coalesce *ec)
1742 struct e1000_adapter *adapter = netdev_priv(netdev);
1743 struct e1000_hw *hw = &adapter->hw;
1745 if (hw->mac_type < e1000_82545)
1746 return -EOPNOTSUPP;
1748 if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1749 ((ec->rx_coalesce_usecs > 4) &&
1750 (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1751 (ec->rx_coalesce_usecs == 2))
1752 return -EINVAL;
1754 if (ec->rx_coalesce_usecs == 4) {
1755 adapter->itr = adapter->itr_setting = 4;
1756 } else if (ec->rx_coalesce_usecs <= 3) {
1757 adapter->itr = 20000;
1758 adapter->itr_setting = ec->rx_coalesce_usecs;
1759 } else {
1760 adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1761 adapter->itr_setting = adapter->itr & ~3;
1764 if (adapter->itr_setting != 0)
1765 ew32(ITR, 1000000000 / (adapter->itr * 256));
1766 else
1767 ew32(ITR, 0);
1769 return 0;
1772 static int e1000_nway_reset(struct net_device *netdev)
1774 struct e1000_adapter *adapter = netdev_priv(netdev);
1775 if (netif_running(netdev))
1776 e1000_reinit_locked(adapter);
1777 return 0;
1780 static void e1000_get_ethtool_stats(struct net_device *netdev,
1781 struct ethtool_stats *stats, u64 *data)
1783 struct e1000_adapter *adapter = netdev_priv(netdev);
1784 int i;
1785 char *p = NULL;
1787 e1000_update_stats(adapter);
1788 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1789 switch (e1000_gstrings_stats[i].type) {
1790 case NETDEV_STATS:
1791 p = (char *) netdev +
1792 e1000_gstrings_stats[i].stat_offset;
1793 break;
1794 case E1000_STATS:
1795 p = (char *) adapter +
1796 e1000_gstrings_stats[i].stat_offset;
1797 break;
1800 data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1801 sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1803 /* BUG_ON(i != E1000_STATS_LEN); */
1806 static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1807 u8 *data)
1809 u8 *p = data;
1810 int i;
1812 switch (stringset) {
1813 case ETH_SS_TEST:
1814 memcpy(data, *e1000_gstrings_test,
1815 sizeof(e1000_gstrings_test));
1816 break;
1817 case ETH_SS_STATS:
1818 for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1819 memcpy(p, e1000_gstrings_stats[i].stat_string,
1820 ETH_GSTRING_LEN);
1821 p += ETH_GSTRING_LEN;
1823 /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1824 break;
1828 static const struct ethtool_ops e1000_ethtool_ops = {
1829 .get_settings = e1000_get_settings,
1830 .set_settings = e1000_set_settings,
1831 .get_drvinfo = e1000_get_drvinfo,
1832 .get_regs_len = e1000_get_regs_len,
1833 .get_regs = e1000_get_regs,
1834 .get_wol = e1000_get_wol,
1835 .set_wol = e1000_set_wol,
1836 .get_msglevel = e1000_get_msglevel,
1837 .set_msglevel = e1000_set_msglevel,
1838 .nway_reset = e1000_nway_reset,
1839 .get_link = e1000_get_link,
1840 .get_eeprom_len = e1000_get_eeprom_len,
1841 .get_eeprom = e1000_get_eeprom,
1842 .set_eeprom = e1000_set_eeprom,
1843 .get_ringparam = e1000_get_ringparam,
1844 .set_ringparam = e1000_set_ringparam,
1845 .get_pauseparam = e1000_get_pauseparam,
1846 .set_pauseparam = e1000_set_pauseparam,
1847 .self_test = e1000_diag_test,
1848 .get_strings = e1000_get_strings,
1849 .set_phys_id = e1000_set_phys_id,
1850 .get_ethtool_stats = e1000_get_ethtool_stats,
1851 .get_sset_count = e1000_get_sset_count,
1852 .get_coalesce = e1000_get_coalesce,
1853 .set_coalesce = e1000_set_coalesce,
1856 void e1000_set_ethtool_ops(struct net_device *netdev)
1858 SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);