1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 #include <net/ip6_checksum.h>
32 #include <linux/prefetch.h>
33 #include <linux/bitops.h>
34 #include <linux/if_vlan.h>
36 /* Intel Media SOC GbE MDIO physical base address */
37 static unsigned long ce4100_gbe_mdio_base_phy
;
38 /* Intel Media SOC GbE MDIO virtual base address */
39 void __iomem
*ce4100_gbe_mdio_base_virt
;
41 char e1000_driver_name
[] = "e1000";
42 static char e1000_driver_string
[] = "Intel(R) PRO/1000 Network Driver";
43 #define DRV_VERSION "7.3.21-k8-NAPI"
44 const char e1000_driver_version
[] = DRV_VERSION
;
45 static const char e1000_copyright
[] = "Copyright (c) 1999-2006 Intel Corporation.";
47 /* e1000_pci_tbl - PCI Device ID Table
49 * Last entry must be all 0s
52 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
54 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
55 INTEL_E1000_ETHERNET_DEVICE(0x1000),
56 INTEL_E1000_ETHERNET_DEVICE(0x1001),
57 INTEL_E1000_ETHERNET_DEVICE(0x1004),
58 INTEL_E1000_ETHERNET_DEVICE(0x1008),
59 INTEL_E1000_ETHERNET_DEVICE(0x1009),
60 INTEL_E1000_ETHERNET_DEVICE(0x100C),
61 INTEL_E1000_ETHERNET_DEVICE(0x100D),
62 INTEL_E1000_ETHERNET_DEVICE(0x100E),
63 INTEL_E1000_ETHERNET_DEVICE(0x100F),
64 INTEL_E1000_ETHERNET_DEVICE(0x1010),
65 INTEL_E1000_ETHERNET_DEVICE(0x1011),
66 INTEL_E1000_ETHERNET_DEVICE(0x1012),
67 INTEL_E1000_ETHERNET_DEVICE(0x1013),
68 INTEL_E1000_ETHERNET_DEVICE(0x1014),
69 INTEL_E1000_ETHERNET_DEVICE(0x1015),
70 INTEL_E1000_ETHERNET_DEVICE(0x1016),
71 INTEL_E1000_ETHERNET_DEVICE(0x1017),
72 INTEL_E1000_ETHERNET_DEVICE(0x1018),
73 INTEL_E1000_ETHERNET_DEVICE(0x1019),
74 INTEL_E1000_ETHERNET_DEVICE(0x101A),
75 INTEL_E1000_ETHERNET_DEVICE(0x101D),
76 INTEL_E1000_ETHERNET_DEVICE(0x101E),
77 INTEL_E1000_ETHERNET_DEVICE(0x1026),
78 INTEL_E1000_ETHERNET_DEVICE(0x1027),
79 INTEL_E1000_ETHERNET_DEVICE(0x1028),
80 INTEL_E1000_ETHERNET_DEVICE(0x1075),
81 INTEL_E1000_ETHERNET_DEVICE(0x1076),
82 INTEL_E1000_ETHERNET_DEVICE(0x1077),
83 INTEL_E1000_ETHERNET_DEVICE(0x1078),
84 INTEL_E1000_ETHERNET_DEVICE(0x1079),
85 INTEL_E1000_ETHERNET_DEVICE(0x107A),
86 INTEL_E1000_ETHERNET_DEVICE(0x107B),
87 INTEL_E1000_ETHERNET_DEVICE(0x107C),
88 INTEL_E1000_ETHERNET_DEVICE(0x108A),
89 INTEL_E1000_ETHERNET_DEVICE(0x1099),
90 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
91 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
92 /* required last entry */
96 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
98 int e1000_up(struct e1000_adapter
*adapter
);
99 void e1000_down(struct e1000_adapter
*adapter
);
100 void e1000_reinit_locked(struct e1000_adapter
*adapter
);
101 void e1000_reset(struct e1000_adapter
*adapter
);
102 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
);
103 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
);
104 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
);
105 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
);
106 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
107 struct e1000_tx_ring
*txdr
);
108 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
109 struct e1000_rx_ring
*rxdr
);
110 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
111 struct e1000_tx_ring
*tx_ring
);
112 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
113 struct e1000_rx_ring
*rx_ring
);
114 void e1000_update_stats(struct e1000_adapter
*adapter
);
116 static int e1000_init_module(void);
117 static void e1000_exit_module(void);
118 static int e1000_probe(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
119 static void __devexit
e1000_remove(struct pci_dev
*pdev
);
120 static int e1000_alloc_queues(struct e1000_adapter
*adapter
);
121 static int e1000_sw_init(struct e1000_adapter
*adapter
);
122 static int e1000_open(struct net_device
*netdev
);
123 static int e1000_close(struct net_device
*netdev
);
124 static void e1000_configure_tx(struct e1000_adapter
*adapter
);
125 static void e1000_configure_rx(struct e1000_adapter
*adapter
);
126 static void e1000_setup_rctl(struct e1000_adapter
*adapter
);
127 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
);
128 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
);
129 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
130 struct e1000_tx_ring
*tx_ring
);
131 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
132 struct e1000_rx_ring
*rx_ring
);
133 static void e1000_set_rx_mode(struct net_device
*netdev
);
134 static void e1000_update_phy_info_task(struct work_struct
*work
);
135 static void e1000_watchdog(struct work_struct
*work
);
136 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
);
137 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
138 struct net_device
*netdev
);
139 static struct net_device_stats
* e1000_get_stats(struct net_device
*netdev
);
140 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
);
141 static int e1000_set_mac(struct net_device
*netdev
, void *p
);
142 static irqreturn_t
e1000_intr(int irq
, void *data
);
143 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
144 struct e1000_tx_ring
*tx_ring
);
145 static int e1000_clean(struct napi_struct
*napi
, int budget
);
146 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
147 struct e1000_rx_ring
*rx_ring
,
148 int *work_done
, int work_to_do
);
149 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
150 struct e1000_rx_ring
*rx_ring
,
151 int *work_done
, int work_to_do
);
152 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
153 struct e1000_rx_ring
*rx_ring
,
155 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
156 struct e1000_rx_ring
*rx_ring
,
158 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
);
159 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
161 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
);
162 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
);
163 static void e1000_tx_timeout(struct net_device
*dev
);
164 static void e1000_reset_task(struct work_struct
*work
);
165 static void e1000_smartspeed(struct e1000_adapter
*adapter
);
166 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
167 struct sk_buff
*skb
);
169 static bool e1000_vlan_used(struct e1000_adapter
*adapter
);
170 static void e1000_vlan_mode(struct net_device
*netdev
, u32 features
);
171 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
);
172 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
);
173 static void e1000_restore_vlan(struct e1000_adapter
*adapter
);
176 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
);
177 static int e1000_resume(struct pci_dev
*pdev
);
179 static void e1000_shutdown(struct pci_dev
*pdev
);
181 #ifdef CONFIG_NET_POLL_CONTROLLER
182 /* for netdump / net console */
183 static void e1000_netpoll (struct net_device
*netdev
);
186 #define COPYBREAK_DEFAULT 256
187 static unsigned int copybreak __read_mostly
= COPYBREAK_DEFAULT
;
188 module_param(copybreak
, uint
, 0644);
189 MODULE_PARM_DESC(copybreak
,
190 "Maximum size of packet that is copied to a new buffer on receive");
192 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
193 pci_channel_state_t state
);
194 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
);
195 static void e1000_io_resume(struct pci_dev
*pdev
);
197 static struct pci_error_handlers e1000_err_handler
= {
198 .error_detected
= e1000_io_error_detected
,
199 .slot_reset
= e1000_io_slot_reset
,
200 .resume
= e1000_io_resume
,
203 static struct pci_driver e1000_driver
= {
204 .name
= e1000_driver_name
,
205 .id_table
= e1000_pci_tbl
,
206 .probe
= e1000_probe
,
207 .remove
= __devexit_p(e1000_remove
),
209 /* Power Management Hooks */
210 .suspend
= e1000_suspend
,
211 .resume
= e1000_resume
,
213 .shutdown
= e1000_shutdown
,
214 .err_handler
= &e1000_err_handler
217 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
218 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
219 MODULE_LICENSE("GPL");
220 MODULE_VERSION(DRV_VERSION
);
222 static int debug
= NETIF_MSG_DRV
| NETIF_MSG_PROBE
;
223 module_param(debug
, int, 0);
224 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
227 * e1000_get_hw_dev - return device
228 * used by hardware layer to print debugging information
231 struct net_device
*e1000_get_hw_dev(struct e1000_hw
*hw
)
233 struct e1000_adapter
*adapter
= hw
->back
;
234 return adapter
->netdev
;
238 * e1000_init_module - Driver Registration Routine
240 * e1000_init_module is the first routine called when the driver is
241 * loaded. All it does is register with the PCI subsystem.
244 static int __init
e1000_init_module(void)
247 pr_info("%s - version %s\n", e1000_driver_string
, e1000_driver_version
);
249 pr_info("%s\n", e1000_copyright
);
251 ret
= pci_register_driver(&e1000_driver
);
252 if (copybreak
!= COPYBREAK_DEFAULT
) {
254 pr_info("copybreak disabled\n");
256 pr_info("copybreak enabled for "
257 "packets <= %u bytes\n", copybreak
);
262 module_init(e1000_init_module
);
265 * e1000_exit_module - Driver Exit Cleanup Routine
267 * e1000_exit_module is called just before the driver is removed
271 static void __exit
e1000_exit_module(void)
273 pci_unregister_driver(&e1000_driver
);
276 module_exit(e1000_exit_module
);
278 static int e1000_request_irq(struct e1000_adapter
*adapter
)
280 struct net_device
*netdev
= adapter
->netdev
;
281 irq_handler_t handler
= e1000_intr
;
282 int irq_flags
= IRQF_SHARED
;
285 err
= request_irq(adapter
->pdev
->irq
, handler
, irq_flags
, netdev
->name
,
288 e_err(probe
, "Unable to allocate interrupt Error: %d\n", err
);
294 static void e1000_free_irq(struct e1000_adapter
*adapter
)
296 struct net_device
*netdev
= adapter
->netdev
;
298 free_irq(adapter
->pdev
->irq
, netdev
);
302 * e1000_irq_disable - Mask off interrupt generation on the NIC
303 * @adapter: board private structure
306 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
308 struct e1000_hw
*hw
= &adapter
->hw
;
312 synchronize_irq(adapter
->pdev
->irq
);
316 * e1000_irq_enable - Enable default interrupt generation settings
317 * @adapter: board private structure
320 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
322 struct e1000_hw
*hw
= &adapter
->hw
;
324 ew32(IMS
, IMS_ENABLE_MASK
);
328 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
330 struct e1000_hw
*hw
= &adapter
->hw
;
331 struct net_device
*netdev
= adapter
->netdev
;
332 u16 vid
= hw
->mng_cookie
.vlan_id
;
333 u16 old_vid
= adapter
->mng_vlan_id
;
335 if (!e1000_vlan_used(adapter
))
338 if (!test_bit(vid
, adapter
->active_vlans
)) {
339 if (hw
->mng_cookie
.status
&
340 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) {
341 e1000_vlan_rx_add_vid(netdev
, vid
);
342 adapter
->mng_vlan_id
= vid
;
344 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
346 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) &&
348 !test_bit(old_vid
, adapter
->active_vlans
))
349 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
351 adapter
->mng_vlan_id
= vid
;
355 static void e1000_init_manageability(struct e1000_adapter
*adapter
)
357 struct e1000_hw
*hw
= &adapter
->hw
;
359 if (adapter
->en_mng_pt
) {
360 u32 manc
= er32(MANC
);
362 /* disable hardware interception of ARP */
363 manc
&= ~(E1000_MANC_ARP_EN
);
369 static void e1000_release_manageability(struct e1000_adapter
*adapter
)
371 struct e1000_hw
*hw
= &adapter
->hw
;
373 if (adapter
->en_mng_pt
) {
374 u32 manc
= er32(MANC
);
376 /* re-enable hardware interception of ARP */
377 manc
|= E1000_MANC_ARP_EN
;
384 * e1000_configure - configure the hardware for RX and TX
385 * @adapter = private board structure
387 static void e1000_configure(struct e1000_adapter
*adapter
)
389 struct net_device
*netdev
= adapter
->netdev
;
392 e1000_set_rx_mode(netdev
);
394 e1000_restore_vlan(adapter
);
395 e1000_init_manageability(adapter
);
397 e1000_configure_tx(adapter
);
398 e1000_setup_rctl(adapter
);
399 e1000_configure_rx(adapter
);
400 /* call E1000_DESC_UNUSED which always leaves
401 * at least 1 descriptor unused to make sure
402 * next_to_use != next_to_clean */
403 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
404 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[i
];
405 adapter
->alloc_rx_buf(adapter
, ring
,
406 E1000_DESC_UNUSED(ring
));
410 int e1000_up(struct e1000_adapter
*adapter
)
412 struct e1000_hw
*hw
= &adapter
->hw
;
414 /* hardware has been reset, we need to reload some things */
415 e1000_configure(adapter
);
417 clear_bit(__E1000_DOWN
, &adapter
->flags
);
419 napi_enable(&adapter
->napi
);
421 e1000_irq_enable(adapter
);
423 netif_wake_queue(adapter
->netdev
);
425 /* fire a link change interrupt to start the watchdog */
426 ew32(ICS
, E1000_ICS_LSC
);
431 * e1000_power_up_phy - restore link in case the phy was powered down
432 * @adapter: address of board private structure
434 * The phy may be powered down to save power and turn off link when the
435 * driver is unloaded and wake on lan is not enabled (among others)
436 * *** this routine MUST be followed by a call to e1000_reset ***
440 void e1000_power_up_phy(struct e1000_adapter
*adapter
)
442 struct e1000_hw
*hw
= &adapter
->hw
;
445 /* Just clear the power down bit to wake the phy back up */
446 if (hw
->media_type
== e1000_media_type_copper
) {
447 /* according to the manual, the phy will retain its
448 * settings across a power-down/up cycle */
449 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
450 mii_reg
&= ~MII_CR_POWER_DOWN
;
451 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
455 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
457 struct e1000_hw
*hw
= &adapter
->hw
;
459 /* Power down the PHY so no link is implied when interface is down *
460 * The PHY cannot be powered down if any of the following is true *
463 * (c) SoL/IDER session is active */
464 if (!adapter
->wol
&& hw
->mac_type
>= e1000_82540
&&
465 hw
->media_type
== e1000_media_type_copper
) {
468 switch (hw
->mac_type
) {
471 case e1000_82545_rev_3
:
474 case e1000_82546_rev_3
:
476 case e1000_82541_rev_2
:
478 case e1000_82547_rev_2
:
479 if (er32(MANC
) & E1000_MANC_SMBUS_EN
)
485 e1000_read_phy_reg(hw
, PHY_CTRL
, &mii_reg
);
486 mii_reg
|= MII_CR_POWER_DOWN
;
487 e1000_write_phy_reg(hw
, PHY_CTRL
, mii_reg
);
494 static void e1000_down_and_stop(struct e1000_adapter
*adapter
)
496 set_bit(__E1000_DOWN
, &adapter
->flags
);
497 cancel_work_sync(&adapter
->reset_task
);
498 cancel_delayed_work_sync(&adapter
->watchdog_task
);
499 cancel_delayed_work_sync(&adapter
->phy_info_task
);
500 cancel_delayed_work_sync(&adapter
->fifo_stall_task
);
503 void e1000_down(struct e1000_adapter
*adapter
)
505 struct e1000_hw
*hw
= &adapter
->hw
;
506 struct net_device
*netdev
= adapter
->netdev
;
510 /* disable receives in the hardware */
512 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
513 /* flush and sleep below */
515 netif_tx_disable(netdev
);
517 /* disable transmits in the hardware */
519 tctl
&= ~E1000_TCTL_EN
;
521 /* flush both disables and wait for them to finish */
525 napi_disable(&adapter
->napi
);
527 e1000_irq_disable(adapter
);
530 * Setting DOWN must be after irq_disable to prevent
531 * a screaming interrupt. Setting DOWN also prevents
532 * tasks from rescheduling.
534 e1000_down_and_stop(adapter
);
536 adapter
->link_speed
= 0;
537 adapter
->link_duplex
= 0;
538 netif_carrier_off(netdev
);
540 e1000_reset(adapter
);
541 e1000_clean_all_tx_rings(adapter
);
542 e1000_clean_all_rx_rings(adapter
);
545 static void e1000_reinit_safe(struct e1000_adapter
*adapter
)
547 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
549 mutex_lock(&adapter
->mutex
);
552 mutex_unlock(&adapter
->mutex
);
553 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
556 void e1000_reinit_locked(struct e1000_adapter
*adapter
)
558 /* if rtnl_lock is not held the call path is bogus */
560 WARN_ON(in_interrupt());
561 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
565 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
568 void e1000_reset(struct e1000_adapter
*adapter
)
570 struct e1000_hw
*hw
= &adapter
->hw
;
571 u32 pba
= 0, tx_space
, min_tx_space
, min_rx_space
;
572 bool legacy_pba_adjust
= false;
575 /* Repartition Pba for greater than 9k mtu
576 * To take effect CTRL.RST is required.
579 switch (hw
->mac_type
) {
580 case e1000_82542_rev2_0
:
581 case e1000_82542_rev2_1
:
586 case e1000_82541_rev_2
:
587 legacy_pba_adjust
= true;
591 case e1000_82545_rev_3
:
594 case e1000_82546_rev_3
:
598 case e1000_82547_rev_2
:
599 legacy_pba_adjust
= true;
602 case e1000_undefined
:
607 if (legacy_pba_adjust
) {
608 if (hw
->max_frame_size
> E1000_RXBUFFER_8192
)
609 pba
-= 8; /* allocate more FIFO for Tx */
611 if (hw
->mac_type
== e1000_82547
) {
612 adapter
->tx_fifo_head
= 0;
613 adapter
->tx_head_addr
= pba
<< E1000_TX_HEAD_ADDR_SHIFT
;
614 adapter
->tx_fifo_size
=
615 (E1000_PBA_40K
- pba
) << E1000_PBA_BYTES_SHIFT
;
616 atomic_set(&adapter
->tx_fifo_stall
, 0);
618 } else if (hw
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
619 /* adjust PBA for jumbo frames */
622 /* To maintain wire speed transmits, the Tx FIFO should be
623 * large enough to accommodate two full transmit packets,
624 * rounded up to the next 1KB and expressed in KB. Likewise,
625 * the Rx FIFO should be large enough to accommodate at least
626 * one full receive packet and is similarly rounded up and
627 * expressed in KB. */
629 /* upper 16 bits has Tx packet buffer allocation size in KB */
630 tx_space
= pba
>> 16;
631 /* lower 16 bits has Rx packet buffer allocation size in KB */
634 * the tx fifo also stores 16 bytes of information about the tx
635 * but don't include ethernet FCS because hardware appends it
637 min_tx_space
= (hw
->max_frame_size
+
638 sizeof(struct e1000_tx_desc
) -
640 min_tx_space
= ALIGN(min_tx_space
, 1024);
642 /* software strips receive CRC, so leave room for it */
643 min_rx_space
= hw
->max_frame_size
;
644 min_rx_space
= ALIGN(min_rx_space
, 1024);
647 /* If current Tx allocation is less than the min Tx FIFO size,
648 * and the min Tx FIFO size is less than the current Rx FIFO
649 * allocation, take space away from current Rx allocation */
650 if (tx_space
< min_tx_space
&&
651 ((min_tx_space
- tx_space
) < pba
)) {
652 pba
= pba
- (min_tx_space
- tx_space
);
654 /* PCI/PCIx hardware has PBA alignment constraints */
655 switch (hw
->mac_type
) {
656 case e1000_82545
... e1000_82546_rev_3
:
657 pba
&= ~(E1000_PBA_8K
- 1);
663 /* if short on rx space, rx wins and must trump tx
664 * adjustment or use Early Receive if available */
665 if (pba
< min_rx_space
)
673 * flow control settings:
674 * The high water mark must be low enough to fit one full frame
675 * (or the size used for early receive) above it in the Rx FIFO.
676 * Set it to the lower of:
677 * - 90% of the Rx FIFO size, and
678 * - the full Rx FIFO size minus the early receive size (for parts
679 * with ERT support assuming ERT set to E1000_ERT_2048), or
680 * - the full Rx FIFO size minus one full frame
682 hwm
= min(((pba
<< 10) * 9 / 10),
683 ((pba
<< 10) - hw
->max_frame_size
));
685 hw
->fc_high_water
= hwm
& 0xFFF8; /* 8-byte granularity */
686 hw
->fc_low_water
= hw
->fc_high_water
- 8;
687 hw
->fc_pause_time
= E1000_FC_PAUSE_TIME
;
689 hw
->fc
= hw
->original_fc
;
691 /* Allow time for pending master requests to run */
693 if (hw
->mac_type
>= e1000_82544
)
696 if (e1000_init_hw(hw
))
697 e_dev_err("Hardware Error\n");
698 e1000_update_mng_vlan(adapter
);
700 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
701 if (hw
->mac_type
>= e1000_82544
&&
703 hw
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
704 u32 ctrl
= er32(CTRL
);
705 /* clear phy power management bit if we are in gig only mode,
706 * which if enabled will attempt negotiation to 100Mb, which
707 * can cause a loss of link at power off or driver unload */
708 ctrl
&= ~E1000_CTRL_SWDPIN3
;
712 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
713 ew32(VET
, ETHERNET_IEEE_VLAN_TYPE
);
715 e1000_reset_adaptive(hw
);
716 e1000_phy_get_info(hw
, &adapter
->phy_info
);
718 e1000_release_manageability(adapter
);
722 * Dump the eeprom for users having checksum issues
724 static void e1000_dump_eeprom(struct e1000_adapter
*adapter
)
726 struct net_device
*netdev
= adapter
->netdev
;
727 struct ethtool_eeprom eeprom
;
728 const struct ethtool_ops
*ops
= netdev
->ethtool_ops
;
731 u16 csum_old
, csum_new
= 0;
733 eeprom
.len
= ops
->get_eeprom_len(netdev
);
736 data
= kmalloc(eeprom
.len
, GFP_KERNEL
);
738 pr_err("Unable to allocate memory to dump EEPROM data\n");
742 ops
->get_eeprom(netdev
, &eeprom
, data
);
744 csum_old
= (data
[EEPROM_CHECKSUM_REG
* 2]) +
745 (data
[EEPROM_CHECKSUM_REG
* 2 + 1] << 8);
746 for (i
= 0; i
< EEPROM_CHECKSUM_REG
* 2; i
+= 2)
747 csum_new
+= data
[i
] + (data
[i
+ 1] << 8);
748 csum_new
= EEPROM_SUM
- csum_new
;
750 pr_err("/*********************/\n");
751 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old
);
752 pr_err("Calculated : 0x%04x\n", csum_new
);
754 pr_err("Offset Values\n");
755 pr_err("======== ======\n");
756 print_hex_dump(KERN_ERR
, "", DUMP_PREFIX_OFFSET
, 16, 1, data
, 128, 0);
758 pr_err("Include this output when contacting your support provider.\n");
759 pr_err("This is not a software error! Something bad happened to\n");
760 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
761 pr_err("result in further problems, possibly loss of data,\n");
762 pr_err("corruption or system hangs!\n");
763 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
764 pr_err("which is invalid and requires you to set the proper MAC\n");
765 pr_err("address manually before continuing to enable this network\n");
766 pr_err("device. Please inspect the EEPROM dump and report the\n");
767 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
768 pr_err("/*********************/\n");
774 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
775 * @pdev: PCI device information struct
777 * Return true if an adapter needs ioport resources
779 static int e1000_is_need_ioport(struct pci_dev
*pdev
)
781 switch (pdev
->device
) {
782 case E1000_DEV_ID_82540EM
:
783 case E1000_DEV_ID_82540EM_LOM
:
784 case E1000_DEV_ID_82540EP
:
785 case E1000_DEV_ID_82540EP_LOM
:
786 case E1000_DEV_ID_82540EP_LP
:
787 case E1000_DEV_ID_82541EI
:
788 case E1000_DEV_ID_82541EI_MOBILE
:
789 case E1000_DEV_ID_82541ER
:
790 case E1000_DEV_ID_82541ER_LOM
:
791 case E1000_DEV_ID_82541GI
:
792 case E1000_DEV_ID_82541GI_LF
:
793 case E1000_DEV_ID_82541GI_MOBILE
:
794 case E1000_DEV_ID_82544EI_COPPER
:
795 case E1000_DEV_ID_82544EI_FIBER
:
796 case E1000_DEV_ID_82544GC_COPPER
:
797 case E1000_DEV_ID_82544GC_LOM
:
798 case E1000_DEV_ID_82545EM_COPPER
:
799 case E1000_DEV_ID_82545EM_FIBER
:
800 case E1000_DEV_ID_82546EB_COPPER
:
801 case E1000_DEV_ID_82546EB_FIBER
:
802 case E1000_DEV_ID_82546EB_QUAD_COPPER
:
809 static u32
e1000_fix_features(struct net_device
*netdev
, u32 features
)
812 * Since there is no support for separate rx/tx vlan accel
813 * enable/disable make sure tx flag is always in same state as rx.
815 if (features
& NETIF_F_HW_VLAN_RX
)
816 features
|= NETIF_F_HW_VLAN_TX
;
818 features
&= ~NETIF_F_HW_VLAN_TX
;
823 static int e1000_set_features(struct net_device
*netdev
, u32 features
)
825 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
826 u32 changed
= features
^ netdev
->features
;
828 if (changed
& NETIF_F_HW_VLAN_RX
)
829 e1000_vlan_mode(netdev
, features
);
831 if (!(changed
& NETIF_F_RXCSUM
))
834 adapter
->rx_csum
= !!(features
& NETIF_F_RXCSUM
);
836 if (netif_running(netdev
))
837 e1000_reinit_locked(adapter
);
839 e1000_reset(adapter
);
844 static const struct net_device_ops e1000_netdev_ops
= {
845 .ndo_open
= e1000_open
,
846 .ndo_stop
= e1000_close
,
847 .ndo_start_xmit
= e1000_xmit_frame
,
848 .ndo_get_stats
= e1000_get_stats
,
849 .ndo_set_rx_mode
= e1000_set_rx_mode
,
850 .ndo_set_mac_address
= e1000_set_mac
,
851 .ndo_tx_timeout
= e1000_tx_timeout
,
852 .ndo_change_mtu
= e1000_change_mtu
,
853 .ndo_do_ioctl
= e1000_ioctl
,
854 .ndo_validate_addr
= eth_validate_addr
,
855 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
856 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
857 #ifdef CONFIG_NET_POLL_CONTROLLER
858 .ndo_poll_controller
= e1000_netpoll
,
860 .ndo_fix_features
= e1000_fix_features
,
861 .ndo_set_features
= e1000_set_features
,
865 * e1000_init_hw_struct - initialize members of hw struct
866 * @adapter: board private struct
867 * @hw: structure used by e1000_hw.c
869 * Factors out initialization of the e1000_hw struct to its own function
870 * that can be called very early at init (just after struct allocation).
871 * Fields are initialized based on PCI device information and
872 * OS network device settings (MTU size).
873 * Returns negative error codes if MAC type setup fails.
875 static int e1000_init_hw_struct(struct e1000_adapter
*adapter
,
878 struct pci_dev
*pdev
= adapter
->pdev
;
880 /* PCI config space info */
881 hw
->vendor_id
= pdev
->vendor
;
882 hw
->device_id
= pdev
->device
;
883 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
884 hw
->subsystem_id
= pdev
->subsystem_device
;
885 hw
->revision_id
= pdev
->revision
;
887 pci_read_config_word(pdev
, PCI_COMMAND
, &hw
->pci_cmd_word
);
889 hw
->max_frame_size
= adapter
->netdev
->mtu
+
890 ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
891 hw
->min_frame_size
= MINIMUM_ETHERNET_FRAME_SIZE
;
893 /* identify the MAC */
894 if (e1000_set_mac_type(hw
)) {
895 e_err(probe
, "Unknown MAC Type\n");
899 switch (hw
->mac_type
) {
904 case e1000_82541_rev_2
:
905 case e1000_82547_rev_2
:
906 hw
->phy_init_script
= 1;
910 e1000_set_media_type(hw
);
911 e1000_get_bus_info(hw
);
913 hw
->wait_autoneg_complete
= false;
914 hw
->tbi_compatibility_en
= true;
915 hw
->adaptive_ifs
= true;
919 if (hw
->media_type
== e1000_media_type_copper
) {
920 hw
->mdix
= AUTO_ALL_MODES
;
921 hw
->disable_polarity_correction
= false;
922 hw
->master_slave
= E1000_MASTER_SLAVE
;
929 * e1000_probe - Device Initialization Routine
930 * @pdev: PCI device information struct
931 * @ent: entry in e1000_pci_tbl
933 * Returns 0 on success, negative on failure
935 * e1000_probe initializes an adapter identified by a pci_dev structure.
936 * The OS initialization, configuring of the adapter private structure,
937 * and a hardware reset occur.
939 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
940 const struct pci_device_id
*ent
)
942 struct net_device
*netdev
;
943 struct e1000_adapter
*adapter
;
946 static int cards_found
= 0;
947 static int global_quad_port_a
= 0; /* global ksp3 port a indication */
948 int i
, err
, pci_using_dac
;
951 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
952 int bars
, need_ioport
;
954 /* do not allocate ioport bars when not needed */
955 need_ioport
= e1000_is_need_ioport(pdev
);
957 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
| IORESOURCE_IO
);
958 err
= pci_enable_device(pdev
);
960 bars
= pci_select_bars(pdev
, IORESOURCE_MEM
);
961 err
= pci_enable_device_mem(pdev
);
966 err
= pci_request_selected_regions(pdev
, bars
, e1000_driver_name
);
970 pci_set_master(pdev
);
971 err
= pci_save_state(pdev
);
973 goto err_alloc_etherdev
;
976 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
978 goto err_alloc_etherdev
;
980 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
982 pci_set_drvdata(pdev
, netdev
);
983 adapter
= netdev_priv(netdev
);
984 adapter
->netdev
= netdev
;
985 adapter
->pdev
= pdev
;
986 adapter
->msg_enable
= (1 << debug
) - 1;
987 adapter
->bars
= bars
;
988 adapter
->need_ioport
= need_ioport
;
994 hw
->hw_addr
= pci_ioremap_bar(pdev
, BAR_0
);
998 if (adapter
->need_ioport
) {
999 for (i
= BAR_1
; i
<= BAR_5
; i
++) {
1000 if (pci_resource_len(pdev
, i
) == 0)
1002 if (pci_resource_flags(pdev
, i
) & IORESOURCE_IO
) {
1003 hw
->io_base
= pci_resource_start(pdev
, i
);
1009 /* make ready for any if (hw->...) below */
1010 err
= e1000_init_hw_struct(adapter
, hw
);
1015 * there is a workaround being applied below that limits
1016 * 64-bit DMA addresses to 64-bit hardware. There are some
1017 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1020 if ((hw
->bus_type
== e1000_bus_type_pcix
) &&
1021 !dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64))) {
1023 * according to DMA-API-HOWTO, coherent calls will always
1024 * succeed if the set call did
1026 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
1029 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1031 pr_err("No usable DMA config, aborting\n");
1034 dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(32));
1037 netdev
->netdev_ops
= &e1000_netdev_ops
;
1038 e1000_set_ethtool_ops(netdev
);
1039 netdev
->watchdog_timeo
= 5 * HZ
;
1040 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
1042 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
1044 adapter
->bd_number
= cards_found
;
1046 /* setup the private structure */
1048 err
= e1000_sw_init(adapter
);
1053 if (hw
->mac_type
== e1000_ce4100
) {
1054 ce4100_gbe_mdio_base_phy
= pci_resource_start(pdev
, BAR_1
);
1055 ce4100_gbe_mdio_base_virt
= ioremap(ce4100_gbe_mdio_base_phy
,
1056 pci_resource_len(pdev
, BAR_1
));
1058 if (!ce4100_gbe_mdio_base_virt
)
1059 goto err_mdio_ioremap
;
1062 if (hw
->mac_type
>= e1000_82543
) {
1063 netdev
->hw_features
= NETIF_F_SG
|
1066 netdev
->features
= NETIF_F_HW_VLAN_TX
|
1067 NETIF_F_HW_VLAN_FILTER
;
1070 if ((hw
->mac_type
>= e1000_82544
) &&
1071 (hw
->mac_type
!= e1000_82547
))
1072 netdev
->hw_features
|= NETIF_F_TSO
;
1074 netdev
->features
|= netdev
->hw_features
;
1075 netdev
->hw_features
|= NETIF_F_RXCSUM
;
1077 if (pci_using_dac
) {
1078 netdev
->features
|= NETIF_F_HIGHDMA
;
1079 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
1082 netdev
->vlan_features
|= NETIF_F_TSO
;
1083 netdev
->vlan_features
|= NETIF_F_HW_CSUM
;
1084 netdev
->vlan_features
|= NETIF_F_SG
;
1086 netdev
->priv_flags
|= IFF_UNICAST_FLT
;
1088 adapter
->en_mng_pt
= e1000_enable_mng_pass_thru(hw
);
1090 /* initialize eeprom parameters */
1091 if (e1000_init_eeprom_params(hw
)) {
1092 e_err(probe
, "EEPROM initialization failed\n");
1096 /* before reading the EEPROM, reset the controller to
1097 * put the device in a known good starting state */
1101 /* make sure the EEPROM is good */
1102 if (e1000_validate_eeprom_checksum(hw
) < 0) {
1103 e_err(probe
, "The EEPROM Checksum Is Not Valid\n");
1104 e1000_dump_eeprom(adapter
);
1106 * set MAC address to all zeroes to invalidate and temporary
1107 * disable this device for the user. This blocks regular
1108 * traffic while still permitting ethtool ioctls from reaching
1109 * the hardware as well as allowing the user to run the
1110 * interface after manually setting a hw addr using
1113 memset(hw
->mac_addr
, 0, netdev
->addr_len
);
1115 /* copy the MAC address out of the EEPROM */
1116 if (e1000_read_mac_addr(hw
))
1117 e_err(probe
, "EEPROM Read Error\n");
1119 /* don't block initalization here due to bad MAC address */
1120 memcpy(netdev
->dev_addr
, hw
->mac_addr
, netdev
->addr_len
);
1121 memcpy(netdev
->perm_addr
, hw
->mac_addr
, netdev
->addr_len
);
1123 if (!is_valid_ether_addr(netdev
->perm_addr
))
1124 e_err(probe
, "Invalid MAC Address\n");
1127 INIT_DELAYED_WORK(&adapter
->watchdog_task
, e1000_watchdog
);
1128 INIT_DELAYED_WORK(&adapter
->fifo_stall_task
,
1129 e1000_82547_tx_fifo_stall_task
);
1130 INIT_DELAYED_WORK(&adapter
->phy_info_task
, e1000_update_phy_info_task
);
1131 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
1133 e1000_check_options(adapter
);
1135 /* Initial Wake on LAN setting
1136 * If APM wake is enabled in the EEPROM,
1137 * enable the ACPI Magic Packet filter
1140 switch (hw
->mac_type
) {
1141 case e1000_82542_rev2_0
:
1142 case e1000_82542_rev2_1
:
1146 e1000_read_eeprom(hw
,
1147 EEPROM_INIT_CONTROL2_REG
, 1, &eeprom_data
);
1148 eeprom_apme_mask
= E1000_EEPROM_82544_APM
;
1151 case e1000_82546_rev_3
:
1152 if (er32(STATUS
) & E1000_STATUS_FUNC_1
){
1153 e1000_read_eeprom(hw
,
1154 EEPROM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
1159 e1000_read_eeprom(hw
,
1160 EEPROM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
1163 if (eeprom_data
& eeprom_apme_mask
)
1164 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
1166 /* now that we have the eeprom settings, apply the special cases
1167 * where the eeprom may be wrong or the board simply won't support
1168 * wake on lan on a particular port */
1169 switch (pdev
->device
) {
1170 case E1000_DEV_ID_82546GB_PCIE
:
1171 adapter
->eeprom_wol
= 0;
1173 case E1000_DEV_ID_82546EB_FIBER
:
1174 case E1000_DEV_ID_82546GB_FIBER
:
1175 /* Wake events only supported on port A for dual fiber
1176 * regardless of eeprom setting */
1177 if (er32(STATUS
) & E1000_STATUS_FUNC_1
)
1178 adapter
->eeprom_wol
= 0;
1180 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3
:
1181 /* if quad port adapter, disable WoL on all but port A */
1182 if (global_quad_port_a
!= 0)
1183 adapter
->eeprom_wol
= 0;
1185 adapter
->quad_port_a
= 1;
1186 /* Reset for multiple quad port adapters */
1187 if (++global_quad_port_a
== 4)
1188 global_quad_port_a
= 0;
1192 /* initialize the wol settings based on the eeprom settings */
1193 adapter
->wol
= adapter
->eeprom_wol
;
1194 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
1196 /* Auto detect PHY address */
1197 if (hw
->mac_type
== e1000_ce4100
) {
1198 for (i
= 0; i
< 32; i
++) {
1200 e1000_read_phy_reg(hw
, PHY_ID2
, &tmp
);
1201 if (tmp
== 0 || tmp
== 0xFF) {
1210 /* reset the hardware with the new settings */
1211 e1000_reset(adapter
);
1213 strcpy(netdev
->name
, "eth%d");
1214 err
= register_netdev(netdev
);
1218 e1000_vlan_mode(netdev
, netdev
->features
);
1220 /* print bus type/speed/width info */
1221 e_info(probe
, "(PCI%s:%dMHz:%d-bit) %pM\n",
1222 ((hw
->bus_type
== e1000_bus_type_pcix
) ? "-X" : ""),
1223 ((hw
->bus_speed
== e1000_bus_speed_133
) ? 133 :
1224 (hw
->bus_speed
== e1000_bus_speed_120
) ? 120 :
1225 (hw
->bus_speed
== e1000_bus_speed_100
) ? 100 :
1226 (hw
->bus_speed
== e1000_bus_speed_66
) ? 66 : 33),
1227 ((hw
->bus_width
== e1000_bus_width_64
) ? 64 : 32),
1230 /* carrier off reporting is important to ethtool even BEFORE open */
1231 netif_carrier_off(netdev
);
1233 e_info(probe
, "Intel(R) PRO/1000 Network Connection\n");
1240 e1000_phy_hw_reset(hw
);
1242 if (hw
->flash_address
)
1243 iounmap(hw
->flash_address
);
1244 kfree(adapter
->tx_ring
);
1245 kfree(adapter
->rx_ring
);
1249 iounmap(ce4100_gbe_mdio_base_virt
);
1250 iounmap(hw
->hw_addr
);
1252 free_netdev(netdev
);
1254 pci_release_selected_regions(pdev
, bars
);
1256 pci_disable_device(pdev
);
1261 * e1000_remove - Device Removal Routine
1262 * @pdev: PCI device information struct
1264 * e1000_remove is called by the PCI subsystem to alert the driver
1265 * that it should release a PCI device. The could be caused by a
1266 * Hot-Plug event, or because the driver is going to be removed from
1270 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
1272 struct net_device
*netdev
= pci_get_drvdata(pdev
);
1273 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1274 struct e1000_hw
*hw
= &adapter
->hw
;
1276 e1000_down_and_stop(adapter
);
1277 e1000_release_manageability(adapter
);
1279 unregister_netdev(netdev
);
1281 e1000_phy_hw_reset(hw
);
1283 kfree(adapter
->tx_ring
);
1284 kfree(adapter
->rx_ring
);
1286 iounmap(hw
->hw_addr
);
1287 if (hw
->flash_address
)
1288 iounmap(hw
->flash_address
);
1289 pci_release_selected_regions(pdev
, adapter
->bars
);
1291 free_netdev(netdev
);
1293 pci_disable_device(pdev
);
1297 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1298 * @adapter: board private structure to initialize
1300 * e1000_sw_init initializes the Adapter private data structure.
1301 * e1000_init_hw_struct MUST be called before this function
1304 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
1306 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
1308 adapter
->num_tx_queues
= 1;
1309 adapter
->num_rx_queues
= 1;
1311 if (e1000_alloc_queues(adapter
)) {
1312 e_err(probe
, "Unable to allocate memory for queues\n");
1316 /* Explicitly disable IRQ since the NIC can be in any state. */
1317 e1000_irq_disable(adapter
);
1319 spin_lock_init(&adapter
->stats_lock
);
1320 mutex_init(&adapter
->mutex
);
1322 set_bit(__E1000_DOWN
, &adapter
->flags
);
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1331 * We allocate one ring per queue at run-time since we don't know the
1332 * number of queues at compile-time.
1335 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
1337 adapter
->tx_ring
= kcalloc(adapter
->num_tx_queues
,
1338 sizeof(struct e1000_tx_ring
), GFP_KERNEL
);
1339 if (!adapter
->tx_ring
)
1342 adapter
->rx_ring
= kcalloc(adapter
->num_rx_queues
,
1343 sizeof(struct e1000_rx_ring
), GFP_KERNEL
);
1344 if (!adapter
->rx_ring
) {
1345 kfree(adapter
->tx_ring
);
1349 return E1000_SUCCESS
;
1353 * e1000_open - Called when a network interface is made active
1354 * @netdev: network interface device structure
1356 * Returns 0 on success, negative value on failure
1358 * The open entry point is called when a network interface is made
1359 * active by the system (IFF_UP). At this point all resources needed
1360 * for transmit and receive operations are allocated, the interrupt
1361 * handler is registered with the OS, the watchdog task is started,
1362 * and the stack is notified that the interface is ready.
1365 static int e1000_open(struct net_device
*netdev
)
1367 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1368 struct e1000_hw
*hw
= &adapter
->hw
;
1371 /* disallow open during test */
1372 if (test_bit(__E1000_TESTING
, &adapter
->flags
))
1375 netif_carrier_off(netdev
);
1377 /* allocate transmit descriptors */
1378 err
= e1000_setup_all_tx_resources(adapter
);
1382 /* allocate receive descriptors */
1383 err
= e1000_setup_all_rx_resources(adapter
);
1387 e1000_power_up_phy(adapter
);
1389 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
1390 if ((hw
->mng_cookie
.status
&
1391 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
)) {
1392 e1000_update_mng_vlan(adapter
);
1395 /* before we allocate an interrupt, we must be ready to handle it.
1396 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1397 * as soon as we call pci_request_irq, so we have to setup our
1398 * clean_rx handler before we do so. */
1399 e1000_configure(adapter
);
1401 err
= e1000_request_irq(adapter
);
1405 /* From here on the code is the same as e1000_up() */
1406 clear_bit(__E1000_DOWN
, &adapter
->flags
);
1408 napi_enable(&adapter
->napi
);
1410 e1000_irq_enable(adapter
);
1412 netif_start_queue(netdev
);
1414 /* fire a link status change interrupt to start the watchdog */
1415 ew32(ICS
, E1000_ICS_LSC
);
1417 return E1000_SUCCESS
;
1420 e1000_power_down_phy(adapter
);
1421 e1000_free_all_rx_resources(adapter
);
1423 e1000_free_all_tx_resources(adapter
);
1425 e1000_reset(adapter
);
1431 * e1000_close - Disables a network interface
1432 * @netdev: network interface device structure
1434 * Returns 0, this is not allowed to fail
1436 * The close entry point is called when an interface is de-activated
1437 * by the OS. The hardware is still under the drivers control, but
1438 * needs to be disabled. A global MAC reset is issued to stop the
1439 * hardware, and all transmit and receive resources are freed.
1442 static int e1000_close(struct net_device
*netdev
)
1444 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1445 struct e1000_hw
*hw
= &adapter
->hw
;
1447 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
1448 e1000_down(adapter
);
1449 e1000_power_down_phy(adapter
);
1450 e1000_free_irq(adapter
);
1452 e1000_free_all_tx_resources(adapter
);
1453 e1000_free_all_rx_resources(adapter
);
1455 /* kill manageability vlan ID if supported, but not if a vlan with
1456 * the same ID is registered on the host OS (let 8021q kill it) */
1457 if ((hw
->mng_cookie
.status
&
1458 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
1459 !test_bit(adapter
->mng_vlan_id
, adapter
->active_vlans
)) {
1460 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
1467 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1468 * @adapter: address of board private structure
1469 * @start: address of beginning of memory
1470 * @len: length of memory
1472 static bool e1000_check_64k_bound(struct e1000_adapter
*adapter
, void *start
,
1475 struct e1000_hw
*hw
= &adapter
->hw
;
1476 unsigned long begin
= (unsigned long)start
;
1477 unsigned long end
= begin
+ len
;
1479 /* First rev 82545 and 82546 need to not allow any memory
1480 * write location to cross 64k boundary due to errata 23 */
1481 if (hw
->mac_type
== e1000_82545
||
1482 hw
->mac_type
== e1000_ce4100
||
1483 hw
->mac_type
== e1000_82546
) {
1484 return ((begin
^ (end
- 1)) >> 16) != 0 ? false : true;
1491 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1492 * @adapter: board private structure
1493 * @txdr: tx descriptor ring (for a specific queue) to setup
1495 * Return 0 on success, negative on failure
1498 static int e1000_setup_tx_resources(struct e1000_adapter
*adapter
,
1499 struct e1000_tx_ring
*txdr
)
1501 struct pci_dev
*pdev
= adapter
->pdev
;
1504 size
= sizeof(struct e1000_buffer
) * txdr
->count
;
1505 txdr
->buffer_info
= vzalloc(size
);
1506 if (!txdr
->buffer_info
) {
1507 e_err(probe
, "Unable to allocate memory for the Tx descriptor "
1512 /* round up to nearest 4K */
1514 txdr
->size
= txdr
->count
* sizeof(struct e1000_tx_desc
);
1515 txdr
->size
= ALIGN(txdr
->size
, 4096);
1517 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
, &txdr
->dma
,
1521 vfree(txdr
->buffer_info
);
1522 e_err(probe
, "Unable to allocate memory for the Tx descriptor "
1527 /* Fix for errata 23, can't cross 64kB boundary */
1528 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1529 void *olddesc
= txdr
->desc
;
1530 dma_addr_t olddma
= txdr
->dma
;
1531 e_err(tx_err
, "txdr align check failed: %u bytes at %p\n",
1532 txdr
->size
, txdr
->desc
);
1533 /* Try again, without freeing the previous */
1534 txdr
->desc
= dma_alloc_coherent(&pdev
->dev
, txdr
->size
,
1535 &txdr
->dma
, GFP_KERNEL
);
1536 /* Failed allocation, critical failure */
1538 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1540 goto setup_tx_desc_die
;
1543 if (!e1000_check_64k_bound(adapter
, txdr
->desc
, txdr
->size
)) {
1545 dma_free_coherent(&pdev
->dev
, txdr
->size
, txdr
->desc
,
1547 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1549 e_err(probe
, "Unable to allocate aligned memory "
1550 "for the transmit descriptor ring\n");
1551 vfree(txdr
->buffer_info
);
1554 /* Free old allocation, new allocation was successful */
1555 dma_free_coherent(&pdev
->dev
, txdr
->size
, olddesc
,
1559 memset(txdr
->desc
, 0, txdr
->size
);
1561 txdr
->next_to_use
= 0;
1562 txdr
->next_to_clean
= 0;
1568 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1569 * (Descriptors) for all queues
1570 * @adapter: board private structure
1572 * Return 0 on success, negative on failure
1575 int e1000_setup_all_tx_resources(struct e1000_adapter
*adapter
)
1579 for (i
= 0; i
< adapter
->num_tx_queues
; i
++) {
1580 err
= e1000_setup_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1582 e_err(probe
, "Allocation for Tx Queue %u failed\n", i
);
1583 for (i
-- ; i
>= 0; i
--)
1584 e1000_free_tx_resources(adapter
,
1585 &adapter
->tx_ring
[i
]);
1594 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1595 * @adapter: board private structure
1597 * Configure the Tx unit of the MAC after a reset.
1600 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
1603 struct e1000_hw
*hw
= &adapter
->hw
;
1604 u32 tdlen
, tctl
, tipg
;
1607 /* Setup the HW Tx Head and Tail descriptor pointers */
1609 switch (adapter
->num_tx_queues
) {
1612 tdba
= adapter
->tx_ring
[0].dma
;
1613 tdlen
= adapter
->tx_ring
[0].count
*
1614 sizeof(struct e1000_tx_desc
);
1616 ew32(TDBAH
, (tdba
>> 32));
1617 ew32(TDBAL
, (tdba
& 0x00000000ffffffffULL
));
1620 adapter
->tx_ring
[0].tdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDH
: E1000_82542_TDH
);
1621 adapter
->tx_ring
[0].tdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_TDT
: E1000_82542_TDT
);
1625 /* Set the default values for the Tx Inter Packet Gap timer */
1626 if ((hw
->media_type
== e1000_media_type_fiber
||
1627 hw
->media_type
== e1000_media_type_internal_serdes
))
1628 tipg
= DEFAULT_82543_TIPG_IPGT_FIBER
;
1630 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
;
1632 switch (hw
->mac_type
) {
1633 case e1000_82542_rev2_0
:
1634 case e1000_82542_rev2_1
:
1635 tipg
= DEFAULT_82542_TIPG_IPGT
;
1636 ipgr1
= DEFAULT_82542_TIPG_IPGR1
;
1637 ipgr2
= DEFAULT_82542_TIPG_IPGR2
;
1640 ipgr1
= DEFAULT_82543_TIPG_IPGR1
;
1641 ipgr2
= DEFAULT_82543_TIPG_IPGR2
;
1644 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
1645 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
1648 /* Set the Tx Interrupt Delay register */
1650 ew32(TIDV
, adapter
->tx_int_delay
);
1651 if (hw
->mac_type
>= e1000_82540
)
1652 ew32(TADV
, adapter
->tx_abs_int_delay
);
1654 /* Program the Transmit Control Register */
1657 tctl
&= ~E1000_TCTL_CT
;
1658 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
1659 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
1661 e1000_config_collision_dist(hw
);
1663 /* Setup Transmit Descriptor Settings for eop descriptor */
1664 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
1666 /* only set IDE if we are delaying interrupts using the timers */
1667 if (adapter
->tx_int_delay
)
1668 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
1670 if (hw
->mac_type
< e1000_82543
)
1671 adapter
->txd_cmd
|= E1000_TXD_CMD_RPS
;
1673 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
1675 /* Cache if we're 82544 running in PCI-X because we'll
1676 * need this to apply a workaround later in the send path. */
1677 if (hw
->mac_type
== e1000_82544
&&
1678 hw
->bus_type
== e1000_bus_type_pcix
)
1679 adapter
->pcix_82544
= 1;
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
1688 * @rxdr: rx descriptor ring (for a specific queue) to setup
1690 * Returns 0 on success, negative on failure
1693 static int e1000_setup_rx_resources(struct e1000_adapter
*adapter
,
1694 struct e1000_rx_ring
*rxdr
)
1696 struct pci_dev
*pdev
= adapter
->pdev
;
1699 size
= sizeof(struct e1000_buffer
) * rxdr
->count
;
1700 rxdr
->buffer_info
= vzalloc(size
);
1701 if (!rxdr
->buffer_info
) {
1702 e_err(probe
, "Unable to allocate memory for the Rx descriptor "
1707 desc_len
= sizeof(struct e1000_rx_desc
);
1709 /* Round up to nearest 4K */
1711 rxdr
->size
= rxdr
->count
* desc_len
;
1712 rxdr
->size
= ALIGN(rxdr
->size
, 4096);
1714 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
, &rxdr
->dma
,
1718 e_err(probe
, "Unable to allocate memory for the Rx descriptor "
1721 vfree(rxdr
->buffer_info
);
1725 /* Fix for errata 23, can't cross 64kB boundary */
1726 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1727 void *olddesc
= rxdr
->desc
;
1728 dma_addr_t olddma
= rxdr
->dma
;
1729 e_err(rx_err
, "rxdr align check failed: %u bytes at %p\n",
1730 rxdr
->size
, rxdr
->desc
);
1731 /* Try again, without freeing the previous */
1732 rxdr
->desc
= dma_alloc_coherent(&pdev
->dev
, rxdr
->size
,
1733 &rxdr
->dma
, GFP_KERNEL
);
1734 /* Failed allocation, critical failure */
1736 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1738 e_err(probe
, "Unable to allocate memory for the Rx "
1739 "descriptor ring\n");
1740 goto setup_rx_desc_die
;
1743 if (!e1000_check_64k_bound(adapter
, rxdr
->desc
, rxdr
->size
)) {
1745 dma_free_coherent(&pdev
->dev
, rxdr
->size
, rxdr
->desc
,
1747 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1749 e_err(probe
, "Unable to allocate aligned memory for "
1750 "the Rx descriptor ring\n");
1751 goto setup_rx_desc_die
;
1753 /* Free old allocation, new allocation was successful */
1754 dma_free_coherent(&pdev
->dev
, rxdr
->size
, olddesc
,
1758 memset(rxdr
->desc
, 0, rxdr
->size
);
1760 rxdr
->next_to_clean
= 0;
1761 rxdr
->next_to_use
= 0;
1762 rxdr
->rx_skb_top
= NULL
;
1768 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1769 * (Descriptors) for all queues
1770 * @adapter: board private structure
1772 * Return 0 on success, negative on failure
1775 int e1000_setup_all_rx_resources(struct e1000_adapter
*adapter
)
1779 for (i
= 0; i
< adapter
->num_rx_queues
; i
++) {
1780 err
= e1000_setup_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
1782 e_err(probe
, "Allocation for Rx Queue %u failed\n", i
);
1783 for (i
-- ; i
>= 0; i
--)
1784 e1000_free_rx_resources(adapter
,
1785 &adapter
->rx_ring
[i
]);
1794 * e1000_setup_rctl - configure the receive control registers
1795 * @adapter: Board private structure
1797 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
1799 struct e1000_hw
*hw
= &adapter
->hw
;
1804 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
1806 rctl
|= E1000_RCTL_BAM
| E1000_RCTL_LBM_NO
|
1807 E1000_RCTL_RDMTS_HALF
|
1808 (hw
->mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
1810 if (hw
->tbi_compatibility_on
== 1)
1811 rctl
|= E1000_RCTL_SBP
;
1813 rctl
&= ~E1000_RCTL_SBP
;
1815 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
1816 rctl
&= ~E1000_RCTL_LPE
;
1818 rctl
|= E1000_RCTL_LPE
;
1820 /* Setup buffer sizes */
1821 rctl
&= ~E1000_RCTL_SZ_4096
;
1822 rctl
|= E1000_RCTL_BSEX
;
1823 switch (adapter
->rx_buffer_len
) {
1824 case E1000_RXBUFFER_2048
:
1826 rctl
|= E1000_RCTL_SZ_2048
;
1827 rctl
&= ~E1000_RCTL_BSEX
;
1829 case E1000_RXBUFFER_4096
:
1830 rctl
|= E1000_RCTL_SZ_4096
;
1832 case E1000_RXBUFFER_8192
:
1833 rctl
|= E1000_RCTL_SZ_8192
;
1835 case E1000_RXBUFFER_16384
:
1836 rctl
|= E1000_RCTL_SZ_16384
;
1844 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1845 * @adapter: board private structure
1847 * Configure the Rx unit of the MAC after a reset.
1850 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
1853 struct e1000_hw
*hw
= &adapter
->hw
;
1854 u32 rdlen
, rctl
, rxcsum
;
1856 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
1857 rdlen
= adapter
->rx_ring
[0].count
*
1858 sizeof(struct e1000_rx_desc
);
1859 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
1860 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
1862 rdlen
= adapter
->rx_ring
[0].count
*
1863 sizeof(struct e1000_rx_desc
);
1864 adapter
->clean_rx
= e1000_clean_rx_irq
;
1865 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
1868 /* disable receives while setting up the descriptors */
1870 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1872 /* set the Receive Delay Timer Register */
1873 ew32(RDTR
, adapter
->rx_int_delay
);
1875 if (hw
->mac_type
>= e1000_82540
) {
1876 ew32(RADV
, adapter
->rx_abs_int_delay
);
1877 if (adapter
->itr_setting
!= 0)
1878 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
1881 /* Setup the HW Rx Head and Tail Descriptor Pointers and
1882 * the Base and Length of the Rx Descriptor Ring */
1883 switch (adapter
->num_rx_queues
) {
1886 rdba
= adapter
->rx_ring
[0].dma
;
1888 ew32(RDBAH
, (rdba
>> 32));
1889 ew32(RDBAL
, (rdba
& 0x00000000ffffffffULL
));
1892 adapter
->rx_ring
[0].rdh
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDH
: E1000_82542_RDH
);
1893 adapter
->rx_ring
[0].rdt
= ((hw
->mac_type
>= e1000_82543
) ? E1000_RDT
: E1000_82542_RDT
);
1897 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
1898 if (hw
->mac_type
>= e1000_82543
) {
1899 rxcsum
= er32(RXCSUM
);
1900 if (adapter
->rx_csum
)
1901 rxcsum
|= E1000_RXCSUM_TUOFL
;
1903 /* don't need to clear IPPCSE as it defaults to 0 */
1904 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
1905 ew32(RXCSUM
, rxcsum
);
1908 /* Enable Receives */
1909 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
1913 * e1000_free_tx_resources - Free Tx Resources per Queue
1914 * @adapter: board private structure
1915 * @tx_ring: Tx descriptor ring for a specific queue
1917 * Free all transmit software resources
1920 static void e1000_free_tx_resources(struct e1000_adapter
*adapter
,
1921 struct e1000_tx_ring
*tx_ring
)
1923 struct pci_dev
*pdev
= adapter
->pdev
;
1925 e1000_clean_tx_ring(adapter
, tx_ring
);
1927 vfree(tx_ring
->buffer_info
);
1928 tx_ring
->buffer_info
= NULL
;
1930 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
1933 tx_ring
->desc
= NULL
;
1937 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1938 * @adapter: board private structure
1940 * Free all transmit software resources
1943 void e1000_free_all_tx_resources(struct e1000_adapter
*adapter
)
1947 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
1948 e1000_free_tx_resources(adapter
, &adapter
->tx_ring
[i
]);
1951 static void e1000_unmap_and_free_tx_resource(struct e1000_adapter
*adapter
,
1952 struct e1000_buffer
*buffer_info
)
1954 if (buffer_info
->dma
) {
1955 if (buffer_info
->mapped_as_page
)
1956 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1957 buffer_info
->length
, DMA_TO_DEVICE
);
1959 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1960 buffer_info
->length
,
1962 buffer_info
->dma
= 0;
1964 if (buffer_info
->skb
) {
1965 dev_kfree_skb_any(buffer_info
->skb
);
1966 buffer_info
->skb
= NULL
;
1968 buffer_info
->time_stamp
= 0;
1969 /* buffer_info must be completely set up in the transmit path */
1973 * e1000_clean_tx_ring - Free Tx Buffers
1974 * @adapter: board private structure
1975 * @tx_ring: ring to be cleaned
1978 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
,
1979 struct e1000_tx_ring
*tx_ring
)
1981 struct e1000_hw
*hw
= &adapter
->hw
;
1982 struct e1000_buffer
*buffer_info
;
1986 /* Free all the Tx ring sk_buffs */
1988 for (i
= 0; i
< tx_ring
->count
; i
++) {
1989 buffer_info
= &tx_ring
->buffer_info
[i
];
1990 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
1993 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
1994 memset(tx_ring
->buffer_info
, 0, size
);
1996 /* Zero out the descriptor ring */
1998 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2000 tx_ring
->next_to_use
= 0;
2001 tx_ring
->next_to_clean
= 0;
2002 tx_ring
->last_tx_tso
= 0;
2004 writel(0, hw
->hw_addr
+ tx_ring
->tdh
);
2005 writel(0, hw
->hw_addr
+ tx_ring
->tdt
);
2009 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2010 * @adapter: board private structure
2013 static void e1000_clean_all_tx_rings(struct e1000_adapter
*adapter
)
2017 for (i
= 0; i
< adapter
->num_tx_queues
; i
++)
2018 e1000_clean_tx_ring(adapter
, &adapter
->tx_ring
[i
]);
2022 * e1000_free_rx_resources - Free Rx Resources
2023 * @adapter: board private structure
2024 * @rx_ring: ring to clean the resources from
2026 * Free all receive software resources
2029 static void e1000_free_rx_resources(struct e1000_adapter
*adapter
,
2030 struct e1000_rx_ring
*rx_ring
)
2032 struct pci_dev
*pdev
= adapter
->pdev
;
2034 e1000_clean_rx_ring(adapter
, rx_ring
);
2036 vfree(rx_ring
->buffer_info
);
2037 rx_ring
->buffer_info
= NULL
;
2039 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2042 rx_ring
->desc
= NULL
;
2046 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
2047 * @adapter: board private structure
2049 * Free all receive software resources
2052 void e1000_free_all_rx_resources(struct e1000_adapter
*adapter
)
2056 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2057 e1000_free_rx_resources(adapter
, &adapter
->rx_ring
[i
]);
2061 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2062 * @adapter: board private structure
2063 * @rx_ring: ring to free buffers from
2066 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
,
2067 struct e1000_rx_ring
*rx_ring
)
2069 struct e1000_hw
*hw
= &adapter
->hw
;
2070 struct e1000_buffer
*buffer_info
;
2071 struct pci_dev
*pdev
= adapter
->pdev
;
2075 /* Free all the Rx ring sk_buffs */
2076 for (i
= 0; i
< rx_ring
->count
; i
++) {
2077 buffer_info
= &rx_ring
->buffer_info
[i
];
2078 if (buffer_info
->dma
&&
2079 adapter
->clean_rx
== e1000_clean_rx_irq
) {
2080 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
2081 buffer_info
->length
,
2083 } else if (buffer_info
->dma
&&
2084 adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
) {
2085 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
2086 buffer_info
->length
,
2090 buffer_info
->dma
= 0;
2091 if (buffer_info
->page
) {
2092 put_page(buffer_info
->page
);
2093 buffer_info
->page
= NULL
;
2095 if (buffer_info
->skb
) {
2096 dev_kfree_skb(buffer_info
->skb
);
2097 buffer_info
->skb
= NULL
;
2101 /* there also may be some cached data from a chained receive */
2102 if (rx_ring
->rx_skb_top
) {
2103 dev_kfree_skb(rx_ring
->rx_skb_top
);
2104 rx_ring
->rx_skb_top
= NULL
;
2107 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2108 memset(rx_ring
->buffer_info
, 0, size
);
2110 /* Zero out the descriptor ring */
2111 memset(rx_ring
->desc
, 0, rx_ring
->size
);
2113 rx_ring
->next_to_clean
= 0;
2114 rx_ring
->next_to_use
= 0;
2116 writel(0, hw
->hw_addr
+ rx_ring
->rdh
);
2117 writel(0, hw
->hw_addr
+ rx_ring
->rdt
);
2121 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2122 * @adapter: board private structure
2125 static void e1000_clean_all_rx_rings(struct e1000_adapter
*adapter
)
2129 for (i
= 0; i
< adapter
->num_rx_queues
; i
++)
2130 e1000_clean_rx_ring(adapter
, &adapter
->rx_ring
[i
]);
2133 /* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2134 * and memory write and invalidate disabled for certain operations
2136 static void e1000_enter_82542_rst(struct e1000_adapter
*adapter
)
2138 struct e1000_hw
*hw
= &adapter
->hw
;
2139 struct net_device
*netdev
= adapter
->netdev
;
2142 e1000_pci_clear_mwi(hw
);
2145 rctl
|= E1000_RCTL_RST
;
2147 E1000_WRITE_FLUSH();
2150 if (netif_running(netdev
))
2151 e1000_clean_all_rx_rings(adapter
);
2154 static void e1000_leave_82542_rst(struct e1000_adapter
*adapter
)
2156 struct e1000_hw
*hw
= &adapter
->hw
;
2157 struct net_device
*netdev
= adapter
->netdev
;
2161 rctl
&= ~E1000_RCTL_RST
;
2163 E1000_WRITE_FLUSH();
2166 if (hw
->pci_cmd_word
& PCI_COMMAND_INVALIDATE
)
2167 e1000_pci_set_mwi(hw
);
2169 if (netif_running(netdev
)) {
2170 /* No need to loop, because 82542 supports only 1 queue */
2171 struct e1000_rx_ring
*ring
= &adapter
->rx_ring
[0];
2172 e1000_configure_rx(adapter
);
2173 adapter
->alloc_rx_buf(adapter
, ring
, E1000_DESC_UNUSED(ring
));
2178 * e1000_set_mac - Change the Ethernet Address of the NIC
2179 * @netdev: network interface device structure
2180 * @p: pointer to an address structure
2182 * Returns 0 on success, negative on failure
2185 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
2187 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2188 struct e1000_hw
*hw
= &adapter
->hw
;
2189 struct sockaddr
*addr
= p
;
2191 if (!is_valid_ether_addr(addr
->sa_data
))
2192 return -EADDRNOTAVAIL
;
2194 /* 82542 2.0 needs to be in reset to write receive address registers */
2196 if (hw
->mac_type
== e1000_82542_rev2_0
)
2197 e1000_enter_82542_rst(adapter
);
2199 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
2200 memcpy(hw
->mac_addr
, addr
->sa_data
, netdev
->addr_len
);
2202 e1000_rar_set(hw
, hw
->mac_addr
, 0);
2204 if (hw
->mac_type
== e1000_82542_rev2_0
)
2205 e1000_leave_82542_rst(adapter
);
2211 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2212 * @netdev: network interface device structure
2214 * The set_rx_mode entry point is called whenever the unicast or multicast
2215 * address lists or the network interface flags are updated. This routine is
2216 * responsible for configuring the hardware for proper unicast, multicast,
2217 * promiscuous mode, and all-multi behavior.
2220 static void e1000_set_rx_mode(struct net_device
*netdev
)
2222 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2223 struct e1000_hw
*hw
= &adapter
->hw
;
2224 struct netdev_hw_addr
*ha
;
2225 bool use_uc
= false;
2228 int i
, rar_entries
= E1000_RAR_ENTRIES
;
2229 int mta_reg_count
= E1000_NUM_MTA_REGISTERS
;
2230 u32
*mcarray
= kcalloc(mta_reg_count
, sizeof(u32
), GFP_ATOMIC
);
2233 e_err(probe
, "memory allocation failed\n");
2237 /* Check for Promiscuous and All Multicast modes */
2241 if (netdev
->flags
& IFF_PROMISC
) {
2242 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
2243 rctl
&= ~E1000_RCTL_VFE
;
2245 if (netdev
->flags
& IFF_ALLMULTI
)
2246 rctl
|= E1000_RCTL_MPE
;
2248 rctl
&= ~E1000_RCTL_MPE
;
2249 /* Enable VLAN filter if there is a VLAN */
2250 if (e1000_vlan_used(adapter
))
2251 rctl
|= E1000_RCTL_VFE
;
2254 if (netdev_uc_count(netdev
) > rar_entries
- 1) {
2255 rctl
|= E1000_RCTL_UPE
;
2256 } else if (!(netdev
->flags
& IFF_PROMISC
)) {
2257 rctl
&= ~E1000_RCTL_UPE
;
2263 /* 82542 2.0 needs to be in reset to write receive address registers */
2265 if (hw
->mac_type
== e1000_82542_rev2_0
)
2266 e1000_enter_82542_rst(adapter
);
2268 /* load the first 14 addresses into the exact filters 1-14. Unicast
2269 * addresses take precedence to avoid disabling unicast filtering
2272 * RAR 0 is used for the station MAC address
2273 * if there are not 14 addresses, go ahead and clear the filters
2277 netdev_for_each_uc_addr(ha
, netdev
) {
2278 if (i
== rar_entries
)
2280 e1000_rar_set(hw
, ha
->addr
, i
++);
2283 netdev_for_each_mc_addr(ha
, netdev
) {
2284 if (i
== rar_entries
) {
2285 /* load any remaining addresses into the hash table */
2286 u32 hash_reg
, hash_bit
, mta
;
2287 hash_value
= e1000_hash_mc_addr(hw
, ha
->addr
);
2288 hash_reg
= (hash_value
>> 5) & 0x7F;
2289 hash_bit
= hash_value
& 0x1F;
2290 mta
= (1 << hash_bit
);
2291 mcarray
[hash_reg
] |= mta
;
2293 e1000_rar_set(hw
, ha
->addr
, i
++);
2297 for (; i
< rar_entries
; i
++) {
2298 E1000_WRITE_REG_ARRAY(hw
, RA
, i
<< 1, 0);
2299 E1000_WRITE_FLUSH();
2300 E1000_WRITE_REG_ARRAY(hw
, RA
, (i
<< 1) + 1, 0);
2301 E1000_WRITE_FLUSH();
2304 /* write the hash table completely, write from bottom to avoid
2305 * both stupid write combining chipsets, and flushing each write */
2306 for (i
= mta_reg_count
- 1; i
>= 0 ; i
--) {
2308 * If we are on an 82544 has an errata where writing odd
2309 * offsets overwrites the previous even offset, but writing
2310 * backwards over the range solves the issue by always
2311 * writing the odd offset first
2313 E1000_WRITE_REG_ARRAY(hw
, MTA
, i
, mcarray
[i
]);
2315 E1000_WRITE_FLUSH();
2317 if (hw
->mac_type
== e1000_82542_rev2_0
)
2318 e1000_leave_82542_rst(adapter
);
2324 * e1000_update_phy_info_task - get phy info
2325 * @work: work struct contained inside adapter struct
2327 * Need to wait a few seconds after link up to get diagnostic information from
2330 static void e1000_update_phy_info_task(struct work_struct
*work
)
2332 struct e1000_adapter
*adapter
= container_of(work
,
2333 struct e1000_adapter
,
2334 phy_info_task
.work
);
2335 if (test_bit(__E1000_DOWN
, &adapter
->flags
))
2337 mutex_lock(&adapter
->mutex
);
2338 e1000_phy_get_info(&adapter
->hw
, &adapter
->phy_info
);
2339 mutex_unlock(&adapter
->mutex
);
2343 * e1000_82547_tx_fifo_stall_task - task to complete work
2344 * @work: work struct contained inside adapter struct
2346 static void e1000_82547_tx_fifo_stall_task(struct work_struct
*work
)
2348 struct e1000_adapter
*adapter
= container_of(work
,
2349 struct e1000_adapter
,
2350 fifo_stall_task
.work
);
2351 struct e1000_hw
*hw
= &adapter
->hw
;
2352 struct net_device
*netdev
= adapter
->netdev
;
2355 if (test_bit(__E1000_DOWN
, &adapter
->flags
))
2357 mutex_lock(&adapter
->mutex
);
2358 if (atomic_read(&adapter
->tx_fifo_stall
)) {
2359 if ((er32(TDT
) == er32(TDH
)) &&
2360 (er32(TDFT
) == er32(TDFH
)) &&
2361 (er32(TDFTS
) == er32(TDFHS
))) {
2363 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
2364 ew32(TDFT
, adapter
->tx_head_addr
);
2365 ew32(TDFH
, adapter
->tx_head_addr
);
2366 ew32(TDFTS
, adapter
->tx_head_addr
);
2367 ew32(TDFHS
, adapter
->tx_head_addr
);
2369 E1000_WRITE_FLUSH();
2371 adapter
->tx_fifo_head
= 0;
2372 atomic_set(&adapter
->tx_fifo_stall
, 0);
2373 netif_wake_queue(netdev
);
2374 } else if (!test_bit(__E1000_DOWN
, &adapter
->flags
)) {
2375 schedule_delayed_work(&adapter
->fifo_stall_task
, 1);
2378 mutex_unlock(&adapter
->mutex
);
2381 bool e1000_has_link(struct e1000_adapter
*adapter
)
2383 struct e1000_hw
*hw
= &adapter
->hw
;
2384 bool link_active
= false;
2386 /* get_link_status is set on LSC (link status) interrupt or rx
2387 * sequence error interrupt (except on intel ce4100).
2388 * get_link_status will stay false until the
2389 * e1000_check_for_link establishes link for copper adapters
2392 switch (hw
->media_type
) {
2393 case e1000_media_type_copper
:
2394 if (hw
->mac_type
== e1000_ce4100
)
2395 hw
->get_link_status
= 1;
2396 if (hw
->get_link_status
) {
2397 e1000_check_for_link(hw
);
2398 link_active
= !hw
->get_link_status
;
2403 case e1000_media_type_fiber
:
2404 e1000_check_for_link(hw
);
2405 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
2407 case e1000_media_type_internal_serdes
:
2408 e1000_check_for_link(hw
);
2409 link_active
= hw
->serdes_has_link
;
2419 * e1000_watchdog - work function
2420 * @work: work struct contained inside adapter struct
2422 static void e1000_watchdog(struct work_struct
*work
)
2424 struct e1000_adapter
*adapter
= container_of(work
,
2425 struct e1000_adapter
,
2426 watchdog_task
.work
);
2427 struct e1000_hw
*hw
= &adapter
->hw
;
2428 struct net_device
*netdev
= adapter
->netdev
;
2429 struct e1000_tx_ring
*txdr
= adapter
->tx_ring
;
2432 if (test_bit(__E1000_DOWN
, &adapter
->flags
))
2435 mutex_lock(&adapter
->mutex
);
2436 link
= e1000_has_link(adapter
);
2437 if ((netif_carrier_ok(netdev
)) && link
)
2441 if (!netif_carrier_ok(netdev
)) {
2444 /* update snapshot of PHY registers on LSC */
2445 e1000_get_speed_and_duplex(hw
,
2446 &adapter
->link_speed
,
2447 &adapter
->link_duplex
);
2450 pr_info("%s NIC Link is Up %d Mbps %s, "
2451 "Flow Control: %s\n",
2453 adapter
->link_speed
,
2454 adapter
->link_duplex
== FULL_DUPLEX
?
2455 "Full Duplex" : "Half Duplex",
2456 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
&
2457 E1000_CTRL_RFCE
)) ? "RX/TX" : ((ctrl
&
2458 E1000_CTRL_RFCE
) ? "RX" : ((ctrl
&
2459 E1000_CTRL_TFCE
) ? "TX" : "None")));
2461 /* adjust timeout factor according to speed/duplex */
2462 adapter
->tx_timeout_factor
= 1;
2463 switch (adapter
->link_speed
) {
2466 adapter
->tx_timeout_factor
= 16;
2470 /* maybe add some timeout factor ? */
2474 /* enable transmits in the hardware */
2476 tctl
|= E1000_TCTL_EN
;
2479 netif_carrier_on(netdev
);
2480 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2481 schedule_delayed_work(&adapter
->phy_info_task
,
2483 adapter
->smartspeed
= 0;
2486 if (netif_carrier_ok(netdev
)) {
2487 adapter
->link_speed
= 0;
2488 adapter
->link_duplex
= 0;
2489 pr_info("%s NIC Link is Down\n",
2491 netif_carrier_off(netdev
);
2493 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2494 schedule_delayed_work(&adapter
->phy_info_task
,
2498 e1000_smartspeed(adapter
);
2502 e1000_update_stats(adapter
);
2504 hw
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
2505 adapter
->tpt_old
= adapter
->stats
.tpt
;
2506 hw
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
2507 adapter
->colc_old
= adapter
->stats
.colc
;
2509 adapter
->gorcl
= adapter
->stats
.gorcl
- adapter
->gorcl_old
;
2510 adapter
->gorcl_old
= adapter
->stats
.gorcl
;
2511 adapter
->gotcl
= adapter
->stats
.gotcl
- adapter
->gotcl_old
;
2512 adapter
->gotcl_old
= adapter
->stats
.gotcl
;
2514 e1000_update_adaptive(hw
);
2516 if (!netif_carrier_ok(netdev
)) {
2517 if (E1000_DESC_UNUSED(txdr
) + 1 < txdr
->count
) {
2518 /* We've lost link, so the controller stops DMA,
2519 * but we've got queued Tx work that's never going
2520 * to get done, so reset controller to flush Tx.
2521 * (Do the reset outside of interrupt context). */
2522 adapter
->tx_timeout_count
++;
2523 schedule_work(&adapter
->reset_task
);
2524 /* exit immediately since reset is imminent */
2529 /* Simple mode for Interrupt Throttle Rate (ITR) */
2530 if (hw
->mac_type
>= e1000_82540
&& adapter
->itr_setting
== 4) {
2532 * Symmetric Tx/Rx gets a reduced ITR=2000;
2533 * Total asymmetrical Tx or Rx gets ITR=8000;
2534 * everyone else is between 2000-8000.
2536 u32 goc
= (adapter
->gotcl
+ adapter
->gorcl
) / 10000;
2537 u32 dif
= (adapter
->gotcl
> adapter
->gorcl
?
2538 adapter
->gotcl
- adapter
->gorcl
:
2539 adapter
->gorcl
- adapter
->gotcl
) / 10000;
2540 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
2542 ew32(ITR
, 1000000000 / (itr
* 256));
2545 /* Cause software interrupt to ensure rx ring is cleaned */
2546 ew32(ICS
, E1000_ICS_RXDMT0
);
2548 /* Force detection of hung controller every watchdog period */
2549 adapter
->detect_tx_hung
= true;
2551 /* Reschedule the task */
2552 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
2553 schedule_delayed_work(&adapter
->watchdog_task
, 2 * HZ
);
2556 mutex_unlock(&adapter
->mutex
);
2559 enum latency_range
{
2563 latency_invalid
= 255
2567 * e1000_update_itr - update the dynamic ITR value based on statistics
2568 * @adapter: pointer to adapter
2569 * @itr_setting: current adapter->itr
2570 * @packets: the number of packets during this measurement interval
2571 * @bytes: the number of bytes during this measurement interval
2573 * Stores a new ITR value based on packets and byte
2574 * counts during the last interrupt. The advantage of per interrupt
2575 * computation is faster updates and more accurate ITR for the current
2576 * traffic pattern. Constants in this function were computed
2577 * based on theoretical maximum wire speed and thresholds were set based
2578 * on testing data as well as attempting to minimize response time
2579 * while increasing bulk throughput.
2580 * this functionality is controlled by the InterruptThrottleRate module
2581 * parameter (see e1000_param.c)
2583 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2584 u16 itr_setting
, int packets
, int bytes
)
2586 unsigned int retval
= itr_setting
;
2587 struct e1000_hw
*hw
= &adapter
->hw
;
2589 if (unlikely(hw
->mac_type
< e1000_82540
))
2590 goto update_itr_done
;
2593 goto update_itr_done
;
2595 switch (itr_setting
) {
2596 case lowest_latency
:
2597 /* jumbo frames get bulk treatment*/
2598 if (bytes
/packets
> 8000)
2599 retval
= bulk_latency
;
2600 else if ((packets
< 5) && (bytes
> 512))
2601 retval
= low_latency
;
2603 case low_latency
: /* 50 usec aka 20000 ints/s */
2604 if (bytes
> 10000) {
2605 /* jumbo frames need bulk latency setting */
2606 if (bytes
/packets
> 8000)
2607 retval
= bulk_latency
;
2608 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2609 retval
= bulk_latency
;
2610 else if ((packets
> 35))
2611 retval
= lowest_latency
;
2612 } else if (bytes
/packets
> 2000)
2613 retval
= bulk_latency
;
2614 else if (packets
<= 2 && bytes
< 512)
2615 retval
= lowest_latency
;
2617 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2618 if (bytes
> 25000) {
2620 retval
= low_latency
;
2621 } else if (bytes
< 6000) {
2622 retval
= low_latency
;
2631 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2633 struct e1000_hw
*hw
= &adapter
->hw
;
2635 u32 new_itr
= adapter
->itr
;
2637 if (unlikely(hw
->mac_type
< e1000_82540
))
2640 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641 if (unlikely(adapter
->link_speed
!= SPEED_1000
)) {
2647 adapter
->tx_itr
= e1000_update_itr(adapter
,
2649 adapter
->total_tx_packets
,
2650 adapter
->total_tx_bytes
);
2651 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2652 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2653 adapter
->tx_itr
= low_latency
;
2655 adapter
->rx_itr
= e1000_update_itr(adapter
,
2657 adapter
->total_rx_packets
,
2658 adapter
->total_rx_bytes
);
2659 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2660 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2661 adapter
->rx_itr
= low_latency
;
2663 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2665 switch (current_itr
) {
2666 /* counts and packets in update_itr are dependent on these numbers */
2667 case lowest_latency
:
2671 new_itr
= 20000; /* aka hwitr = ~200 */
2681 if (new_itr
!= adapter
->itr
) {
2682 /* this attempts to bias the interrupt rate towards Bulk
2683 * by adding intermediate steps when interrupt rate is
2685 new_itr
= new_itr
> adapter
->itr
?
2686 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2688 adapter
->itr
= new_itr
;
2689 ew32(ITR
, 1000000000 / (new_itr
* 256));
2693 #define E1000_TX_FLAGS_CSUM 0x00000001
2694 #define E1000_TX_FLAGS_VLAN 0x00000002
2695 #define E1000_TX_FLAGS_TSO 0x00000004
2696 #define E1000_TX_FLAGS_IPV4 0x00000008
2697 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2698 #define E1000_TX_FLAGS_VLAN_SHIFT 16
2700 static int e1000_tso(struct e1000_adapter
*adapter
,
2701 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2703 struct e1000_context_desc
*context_desc
;
2704 struct e1000_buffer
*buffer_info
;
2707 u16 ipcse
= 0, tucse
, mss
;
2708 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
2711 if (skb_is_gso(skb
)) {
2712 if (skb_header_cloned(skb
)) {
2713 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
2718 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
2719 mss
= skb_shinfo(skb
)->gso_size
;
2720 if (skb
->protocol
== htons(ETH_P_IP
)) {
2721 struct iphdr
*iph
= ip_hdr(skb
);
2724 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
2728 cmd_length
= E1000_TXD_CMD_IP
;
2729 ipcse
= skb_transport_offset(skb
) - 1;
2730 } else if (skb
->protocol
== htons(ETH_P_IPV6
)) {
2731 ipv6_hdr(skb
)->payload_len
= 0;
2732 tcp_hdr(skb
)->check
=
2733 ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
2734 &ipv6_hdr(skb
)->daddr
,
2738 ipcss
= skb_network_offset(skb
);
2739 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
2740 tucss
= skb_transport_offset(skb
);
2741 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
2744 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
2745 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
2747 i
= tx_ring
->next_to_use
;
2748 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2749 buffer_info
= &tx_ring
->buffer_info
[i
];
2751 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
2752 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
2753 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
2754 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
2755 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
2756 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
2757 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
2758 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
2759 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
2761 buffer_info
->time_stamp
= jiffies
;
2762 buffer_info
->next_to_watch
= i
;
2764 if (++i
== tx_ring
->count
) i
= 0;
2765 tx_ring
->next_to_use
= i
;
2772 static bool e1000_tx_csum(struct e1000_adapter
*adapter
,
2773 struct e1000_tx_ring
*tx_ring
, struct sk_buff
*skb
)
2775 struct e1000_context_desc
*context_desc
;
2776 struct e1000_buffer
*buffer_info
;
2779 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
2781 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
2784 switch (skb
->protocol
) {
2785 case cpu_to_be16(ETH_P_IP
):
2786 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
2787 cmd_len
|= E1000_TXD_CMD_TCP
;
2789 case cpu_to_be16(ETH_P_IPV6
):
2790 /* XXX not handling all IPV6 headers */
2791 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
2792 cmd_len
|= E1000_TXD_CMD_TCP
;
2795 if (unlikely(net_ratelimit()))
2796 e_warn(drv
, "checksum_partial proto=%x!\n",
2801 css
= skb_checksum_start_offset(skb
);
2803 i
= tx_ring
->next_to_use
;
2804 buffer_info
= &tx_ring
->buffer_info
[i
];
2805 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
2807 context_desc
->lower_setup
.ip_config
= 0;
2808 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
2809 context_desc
->upper_setup
.tcp_fields
.tucso
=
2810 css
+ skb
->csum_offset
;
2811 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
2812 context_desc
->tcp_seg_setup
.data
= 0;
2813 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
2815 buffer_info
->time_stamp
= jiffies
;
2816 buffer_info
->next_to_watch
= i
;
2818 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
2819 tx_ring
->next_to_use
= i
;
2824 #define E1000_MAX_TXD_PWR 12
2825 #define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2827 static int e1000_tx_map(struct e1000_adapter
*adapter
,
2828 struct e1000_tx_ring
*tx_ring
,
2829 struct sk_buff
*skb
, unsigned int first
,
2830 unsigned int max_per_txd
, unsigned int nr_frags
,
2833 struct e1000_hw
*hw
= &adapter
->hw
;
2834 struct pci_dev
*pdev
= adapter
->pdev
;
2835 struct e1000_buffer
*buffer_info
;
2836 unsigned int len
= skb_headlen(skb
);
2837 unsigned int offset
= 0, size
, count
= 0, i
;
2838 unsigned int f
, bytecount
, segs
;
2840 i
= tx_ring
->next_to_use
;
2843 buffer_info
= &tx_ring
->buffer_info
[i
];
2844 size
= min(len
, max_per_txd
);
2845 /* Workaround for Controller erratum --
2846 * descriptor for non-tso packet in a linear SKB that follows a
2847 * tso gets written back prematurely before the data is fully
2848 * DMA'd to the controller */
2849 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&&
2851 tx_ring
->last_tx_tso
= 0;
2855 /* Workaround for premature desc write-backs
2856 * in TSO mode. Append 4-byte sentinel desc */
2857 if (unlikely(mss
&& !nr_frags
&& size
== len
&& size
> 8))
2859 /* work-around for errata 10 and it applies
2860 * to all controllers in PCI-X mode
2861 * The fix is to make sure that the first descriptor of a
2862 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2864 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
2865 (size
> 2015) && count
== 0))
2868 /* Workaround for potential 82544 hang in PCI-X. Avoid
2869 * terminating buffers within evenly-aligned dwords. */
2870 if (unlikely(adapter
->pcix_82544
&&
2871 !((unsigned long)(skb
->data
+ offset
+ size
- 1) & 4) &&
2875 buffer_info
->length
= size
;
2876 /* set time_stamp *before* dma to help avoid a possible race */
2877 buffer_info
->time_stamp
= jiffies
;
2878 buffer_info
->mapped_as_page
= false;
2879 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
2881 size
, DMA_TO_DEVICE
);
2882 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2884 buffer_info
->next_to_watch
= i
;
2891 if (unlikely(i
== tx_ring
->count
))
2896 for (f
= 0; f
< nr_frags
; f
++) {
2897 const struct skb_frag_struct
*frag
;
2899 frag
= &skb_shinfo(skb
)->frags
[f
];
2900 len
= skb_frag_size(frag
);
2904 unsigned long bufend
;
2906 if (unlikely(i
== tx_ring
->count
))
2909 buffer_info
= &tx_ring
->buffer_info
[i
];
2910 size
= min(len
, max_per_txd
);
2911 /* Workaround for premature desc write-backs
2912 * in TSO mode. Append 4-byte sentinel desc */
2913 if (unlikely(mss
&& f
== (nr_frags
-1) && size
== len
&& size
> 8))
2915 /* Workaround for potential 82544 hang in PCI-X.
2916 * Avoid terminating buffers within evenly-aligned
2918 bufend
= (unsigned long)
2919 page_to_phys(skb_frag_page(frag
));
2920 bufend
+= offset
+ size
- 1;
2921 if (unlikely(adapter
->pcix_82544
&&
2926 buffer_info
->length
= size
;
2927 buffer_info
->time_stamp
= jiffies
;
2928 buffer_info
->mapped_as_page
= true;
2929 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
2930 offset
, size
, DMA_TO_DEVICE
);
2931 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2933 buffer_info
->next_to_watch
= i
;
2941 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
2942 /* multiply data chunks by size of headers */
2943 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
2945 tx_ring
->buffer_info
[i
].skb
= skb
;
2946 tx_ring
->buffer_info
[i
].segs
= segs
;
2947 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
2948 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2953 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2954 buffer_info
->dma
= 0;
2960 i
+= tx_ring
->count
;
2962 buffer_info
= &tx_ring
->buffer_info
[i
];
2963 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
2969 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
2970 struct e1000_tx_ring
*tx_ring
, int tx_flags
,
2973 struct e1000_hw
*hw
= &adapter
->hw
;
2974 struct e1000_tx_desc
*tx_desc
= NULL
;
2975 struct e1000_buffer
*buffer_info
;
2976 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
2979 if (likely(tx_flags
& E1000_TX_FLAGS_TSO
)) {
2980 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
2982 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2984 if (likely(tx_flags
& E1000_TX_FLAGS_IPV4
))
2985 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
2988 if (likely(tx_flags
& E1000_TX_FLAGS_CSUM
)) {
2989 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
2990 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
2993 if (unlikely(tx_flags
& E1000_TX_FLAGS_VLAN
)) {
2994 txd_lower
|= E1000_TXD_CMD_VLE
;
2995 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
2998 i
= tx_ring
->next_to_use
;
3001 buffer_info
= &tx_ring
->buffer_info
[i
];
3002 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3003 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
3004 tx_desc
->lower
.data
=
3005 cpu_to_le32(txd_lower
| buffer_info
->length
);
3006 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
3007 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3010 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
3012 /* Force memory writes to complete before letting h/w
3013 * know there are new descriptors to fetch. (Only
3014 * applicable for weak-ordered memory model archs,
3015 * such as IA-64). */
3018 tx_ring
->next_to_use
= i
;
3019 writel(i
, hw
->hw_addr
+ tx_ring
->tdt
);
3020 /* we need this if more than one processor can write to our tail
3021 * at a time, it syncronizes IO on IA64/Altix systems */
3026 * 82547 workaround to avoid controller hang in half-duplex environment.
3027 * The workaround is to avoid queuing a large packet that would span
3028 * the internal Tx FIFO ring boundary by notifying the stack to resend
3029 * the packet at a later time. This gives the Tx FIFO an opportunity to
3030 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3031 * to the beginning of the Tx FIFO.
3034 #define E1000_FIFO_HDR 0x10
3035 #define E1000_82547_PAD_LEN 0x3E0
3037 static int e1000_82547_fifo_workaround(struct e1000_adapter
*adapter
,
3038 struct sk_buff
*skb
)
3040 u32 fifo_space
= adapter
->tx_fifo_size
- adapter
->tx_fifo_head
;
3041 u32 skb_fifo_len
= skb
->len
+ E1000_FIFO_HDR
;
3043 skb_fifo_len
= ALIGN(skb_fifo_len
, E1000_FIFO_HDR
);
3045 if (adapter
->link_duplex
!= HALF_DUPLEX
)
3046 goto no_fifo_stall_required
;
3048 if (atomic_read(&adapter
->tx_fifo_stall
))
3051 if (skb_fifo_len
>= (E1000_82547_PAD_LEN
+ fifo_space
)) {
3052 atomic_set(&adapter
->tx_fifo_stall
, 1);
3056 no_fifo_stall_required
:
3057 adapter
->tx_fifo_head
+= skb_fifo_len
;
3058 if (adapter
->tx_fifo_head
>= adapter
->tx_fifo_size
)
3059 adapter
->tx_fifo_head
-= adapter
->tx_fifo_size
;
3063 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
3065 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3066 struct e1000_tx_ring
*tx_ring
= adapter
->tx_ring
;
3068 netif_stop_queue(netdev
);
3069 /* Herbert's original patch had:
3070 * smp_mb__after_netif_stop_queue();
3071 * but since that doesn't exist yet, just open code it. */
3074 /* We need to check again in a case another CPU has just
3075 * made room available. */
3076 if (likely(E1000_DESC_UNUSED(tx_ring
) < size
))
3080 netif_start_queue(netdev
);
3081 ++adapter
->restart_queue
;
3085 static int e1000_maybe_stop_tx(struct net_device
*netdev
,
3086 struct e1000_tx_ring
*tx_ring
, int size
)
3088 if (likely(E1000_DESC_UNUSED(tx_ring
) >= size
))
3090 return __e1000_maybe_stop_tx(netdev
, size
);
3093 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
3094 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
3095 struct net_device
*netdev
)
3097 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3098 struct e1000_hw
*hw
= &adapter
->hw
;
3099 struct e1000_tx_ring
*tx_ring
;
3100 unsigned int first
, max_per_txd
= E1000_MAX_DATA_PER_TXD
;
3101 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
3102 unsigned int tx_flags
= 0;
3103 unsigned int len
= skb_headlen(skb
);
3104 unsigned int nr_frags
;
3110 /* This goes back to the question of how to logically map a tx queue
3111 * to a flow. Right now, performance is impacted slightly negatively
3112 * if using multiple tx queues. If the stack breaks away from a
3113 * single qdisc implementation, we can look at this again. */
3114 tx_ring
= adapter
->tx_ring
;
3116 if (unlikely(skb
->len
<= 0)) {
3117 dev_kfree_skb_any(skb
);
3118 return NETDEV_TX_OK
;
3121 mss
= skb_shinfo(skb
)->gso_size
;
3122 /* The controller does a simple calculation to
3123 * make sure there is enough room in the FIFO before
3124 * initiating the DMA for each buffer. The calc is:
3125 * 4 = ceil(buffer len/mss). To make sure we don't
3126 * overrun the FIFO, adjust the max buffer len if mss
3130 max_per_txd
= min(mss
<< 2, max_per_txd
);
3131 max_txd_pwr
= fls(max_per_txd
) - 1;
3133 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
3134 if (skb
->data_len
&& hdr_len
== len
) {
3135 switch (hw
->mac_type
) {
3136 unsigned int pull_size
;
3138 /* Make sure we have room to chop off 4 bytes,
3139 * and that the end alignment will work out to
3140 * this hardware's requirements
3141 * NOTE: this is a TSO only workaround
3142 * if end byte alignment not correct move us
3143 * into the next dword */
3144 if ((unsigned long)(skb_tail_pointer(skb
) - 1) & 4)
3147 pull_size
= min((unsigned int)4, skb
->data_len
);
3148 if (!__pskb_pull_tail(skb
, pull_size
)) {
3149 e_err(drv
, "__pskb_pull_tail "
3151 dev_kfree_skb_any(skb
);
3152 return NETDEV_TX_OK
;
3154 len
= skb_headlen(skb
);
3163 /* reserve a descriptor for the offload context */
3164 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
3168 /* Controller Erratum workaround */
3169 if (!skb
->data_len
&& tx_ring
->last_tx_tso
&& !skb_is_gso(skb
))
3172 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
3174 if (adapter
->pcix_82544
)
3177 /* work-around for errata 10 and it applies to all controllers
3178 * in PCI-X mode, so add one more descriptor to the count
3180 if (unlikely((hw
->bus_type
== e1000_bus_type_pcix
) &&
3184 nr_frags
= skb_shinfo(skb
)->nr_frags
;
3185 for (f
= 0; f
< nr_frags
; f
++)
3186 count
+= TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
3188 if (adapter
->pcix_82544
)
3191 /* need: count + 2 desc gap to keep tail from touching
3192 * head, otherwise try next time */
3193 if (unlikely(e1000_maybe_stop_tx(netdev
, tx_ring
, count
+ 2)))
3194 return NETDEV_TX_BUSY
;
3196 if (unlikely((hw
->mac_type
== e1000_82547
) &&
3197 (e1000_82547_fifo_workaround(adapter
, skb
)))) {
3198 netif_stop_queue(netdev
);
3199 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3200 schedule_delayed_work(&adapter
->fifo_stall_task
, 1);
3201 return NETDEV_TX_BUSY
;
3204 if (vlan_tx_tag_present(skb
)) {
3205 tx_flags
|= E1000_TX_FLAGS_VLAN
;
3206 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
3209 first
= tx_ring
->next_to_use
;
3211 tso
= e1000_tso(adapter
, tx_ring
, skb
);
3213 dev_kfree_skb_any(skb
);
3214 return NETDEV_TX_OK
;
3218 if (likely(hw
->mac_type
!= e1000_82544
))
3219 tx_ring
->last_tx_tso
= 1;
3220 tx_flags
|= E1000_TX_FLAGS_TSO
;
3221 } else if (likely(e1000_tx_csum(adapter
, tx_ring
, skb
)))
3222 tx_flags
|= E1000_TX_FLAGS_CSUM
;
3224 if (likely(skb
->protocol
== htons(ETH_P_IP
)))
3225 tx_flags
|= E1000_TX_FLAGS_IPV4
;
3227 count
= e1000_tx_map(adapter
, tx_ring
, skb
, first
, max_per_txd
,
3231 e1000_tx_queue(adapter
, tx_ring
, tx_flags
, count
);
3232 /* Make sure there is space in the ring for the next send. */
3233 e1000_maybe_stop_tx(netdev
, tx_ring
, MAX_SKB_FRAGS
+ 2);
3236 dev_kfree_skb_any(skb
);
3237 tx_ring
->buffer_info
[first
].time_stamp
= 0;
3238 tx_ring
->next_to_use
= first
;
3241 return NETDEV_TX_OK
;
3245 * e1000_tx_timeout - Respond to a Tx Hang
3246 * @netdev: network interface device structure
3249 static void e1000_tx_timeout(struct net_device
*netdev
)
3251 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3253 /* Do the reset outside of interrupt context */
3254 adapter
->tx_timeout_count
++;
3255 schedule_work(&adapter
->reset_task
);
3258 static void e1000_reset_task(struct work_struct
*work
)
3260 struct e1000_adapter
*adapter
=
3261 container_of(work
, struct e1000_adapter
, reset_task
);
3263 if (test_bit(__E1000_DOWN
, &adapter
->flags
))
3265 e1000_reinit_safe(adapter
);
3269 * e1000_get_stats - Get System Network Statistics
3270 * @netdev: network interface device structure
3272 * Returns the address of the device statistics structure.
3273 * The statistics are actually updated from the watchdog.
3276 static struct net_device_stats
*e1000_get_stats(struct net_device
*netdev
)
3278 /* only return the current stats */
3279 return &netdev
->stats
;
3283 * e1000_change_mtu - Change the Maximum Transfer Unit
3284 * @netdev: network interface device structure
3285 * @new_mtu: new value for maximum frame size
3287 * Returns 0 on success, negative on failure
3290 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
3292 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3293 struct e1000_hw
*hw
= &adapter
->hw
;
3294 int max_frame
= new_mtu
+ ENET_HEADER_SIZE
+ ETHERNET_FCS_SIZE
;
3296 if ((max_frame
< MINIMUM_ETHERNET_FRAME_SIZE
) ||
3297 (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
3298 e_err(probe
, "Invalid MTU setting\n");
3302 /* Adapter-specific max frame size limits. */
3303 switch (hw
->mac_type
) {
3304 case e1000_undefined
... e1000_82542_rev2_1
:
3305 if (max_frame
> (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
3306 e_err(probe
, "Jumbo Frames not supported.\n");
3311 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3315 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->flags
))
3317 /* e1000_down has a dependency on max_frame_size */
3318 hw
->max_frame_size
= max_frame
;
3319 if (netif_running(netdev
))
3320 e1000_down(adapter
);
3322 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
3323 * means we reserve 2 more, this pushes us to allocate from the next
3325 * i.e. RXBUFFER_2048 --> size-4096 slab
3326 * however with the new *_jumbo_rx* routines, jumbo receives will use
3327 * fragmented skbs */
3329 if (max_frame
<= E1000_RXBUFFER_2048
)
3330 adapter
->rx_buffer_len
= E1000_RXBUFFER_2048
;
3332 #if (PAGE_SIZE >= E1000_RXBUFFER_16384)
3333 adapter
->rx_buffer_len
= E1000_RXBUFFER_16384
;
3334 #elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3335 adapter
->rx_buffer_len
= PAGE_SIZE
;
3338 /* adjust allocation if LPE protects us, and we aren't using SBP */
3339 if (!hw
->tbi_compatibility_on
&&
3340 ((max_frame
== (ETH_FRAME_LEN
+ ETH_FCS_LEN
)) ||
3341 (max_frame
== MAXIMUM_ETHERNET_VLAN_SIZE
)))
3342 adapter
->rx_buffer_len
= MAXIMUM_ETHERNET_VLAN_SIZE
;
3344 pr_info("%s changing MTU from %d to %d\n",
3345 netdev
->name
, netdev
->mtu
, new_mtu
);
3346 netdev
->mtu
= new_mtu
;
3348 if (netif_running(netdev
))
3351 e1000_reset(adapter
);
3353 clear_bit(__E1000_RESETTING
, &adapter
->flags
);
3359 * e1000_update_stats - Update the board statistics counters
3360 * @adapter: board private structure
3363 void e1000_update_stats(struct e1000_adapter
*adapter
)
3365 struct net_device
*netdev
= adapter
->netdev
;
3366 struct e1000_hw
*hw
= &adapter
->hw
;
3367 struct pci_dev
*pdev
= adapter
->pdev
;
3368 unsigned long flags
;
3371 #define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3374 * Prevent stats update while adapter is being reset, or if the pci
3375 * connection is down.
3377 if (adapter
->link_speed
== 0)
3379 if (pci_channel_offline(pdev
))
3382 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
3384 /* these counters are modified from e1000_tbi_adjust_stats,
3385 * called from the interrupt context, so they must only
3386 * be written while holding adapter->stats_lock
3389 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
3390 adapter
->stats
.gprc
+= er32(GPRC
);
3391 adapter
->stats
.gorcl
+= er32(GORCL
);
3392 adapter
->stats
.gorch
+= er32(GORCH
);
3393 adapter
->stats
.bprc
+= er32(BPRC
);
3394 adapter
->stats
.mprc
+= er32(MPRC
);
3395 adapter
->stats
.roc
+= er32(ROC
);
3397 adapter
->stats
.prc64
+= er32(PRC64
);
3398 adapter
->stats
.prc127
+= er32(PRC127
);
3399 adapter
->stats
.prc255
+= er32(PRC255
);
3400 adapter
->stats
.prc511
+= er32(PRC511
);
3401 adapter
->stats
.prc1023
+= er32(PRC1023
);
3402 adapter
->stats
.prc1522
+= er32(PRC1522
);
3404 adapter
->stats
.symerrs
+= er32(SYMERRS
);
3405 adapter
->stats
.mpc
+= er32(MPC
);
3406 adapter
->stats
.scc
+= er32(SCC
);
3407 adapter
->stats
.ecol
+= er32(ECOL
);
3408 adapter
->stats
.mcc
+= er32(MCC
);
3409 adapter
->stats
.latecol
+= er32(LATECOL
);
3410 adapter
->stats
.dc
+= er32(DC
);
3411 adapter
->stats
.sec
+= er32(SEC
);
3412 adapter
->stats
.rlec
+= er32(RLEC
);
3413 adapter
->stats
.xonrxc
+= er32(XONRXC
);
3414 adapter
->stats
.xontxc
+= er32(XONTXC
);
3415 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
3416 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
3417 adapter
->stats
.fcruc
+= er32(FCRUC
);
3418 adapter
->stats
.gptc
+= er32(GPTC
);
3419 adapter
->stats
.gotcl
+= er32(GOTCL
);
3420 adapter
->stats
.gotch
+= er32(GOTCH
);
3421 adapter
->stats
.rnbc
+= er32(RNBC
);
3422 adapter
->stats
.ruc
+= er32(RUC
);
3423 adapter
->stats
.rfc
+= er32(RFC
);
3424 adapter
->stats
.rjc
+= er32(RJC
);
3425 adapter
->stats
.torl
+= er32(TORL
);
3426 adapter
->stats
.torh
+= er32(TORH
);
3427 adapter
->stats
.totl
+= er32(TOTL
);
3428 adapter
->stats
.toth
+= er32(TOTH
);
3429 adapter
->stats
.tpr
+= er32(TPR
);
3431 adapter
->stats
.ptc64
+= er32(PTC64
);
3432 adapter
->stats
.ptc127
+= er32(PTC127
);
3433 adapter
->stats
.ptc255
+= er32(PTC255
);
3434 adapter
->stats
.ptc511
+= er32(PTC511
);
3435 adapter
->stats
.ptc1023
+= er32(PTC1023
);
3436 adapter
->stats
.ptc1522
+= er32(PTC1522
);
3438 adapter
->stats
.mptc
+= er32(MPTC
);
3439 adapter
->stats
.bptc
+= er32(BPTC
);
3441 /* used for adaptive IFS */
3443 hw
->tx_packet_delta
= er32(TPT
);
3444 adapter
->stats
.tpt
+= hw
->tx_packet_delta
;
3445 hw
->collision_delta
= er32(COLC
);
3446 adapter
->stats
.colc
+= hw
->collision_delta
;
3448 if (hw
->mac_type
>= e1000_82543
) {
3449 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
3450 adapter
->stats
.rxerrc
+= er32(RXERRC
);
3451 adapter
->stats
.tncrs
+= er32(TNCRS
);
3452 adapter
->stats
.cexterr
+= er32(CEXTERR
);
3453 adapter
->stats
.tsctc
+= er32(TSCTC
);
3454 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
3457 /* Fill out the OS statistics structure */
3458 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
3459 netdev
->stats
.collisions
= adapter
->stats
.colc
;
3463 /* RLEC on some newer hardware can be incorrect so build
3464 * our own version based on RUC and ROC */
3465 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
3466 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
3467 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
3468 adapter
->stats
.cexterr
;
3469 adapter
->stats
.rlerrc
= adapter
->stats
.ruc
+ adapter
->stats
.roc
;
3470 netdev
->stats
.rx_length_errors
= adapter
->stats
.rlerrc
;
3471 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
3472 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
3473 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
3476 adapter
->stats
.txerrc
= adapter
->stats
.ecol
+ adapter
->stats
.latecol
;
3477 netdev
->stats
.tx_errors
= adapter
->stats
.txerrc
;
3478 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
3479 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
3480 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
3481 if (hw
->bad_tx_carr_stats_fd
&&
3482 adapter
->link_duplex
== FULL_DUPLEX
) {
3483 netdev
->stats
.tx_carrier_errors
= 0;
3484 adapter
->stats
.tncrs
= 0;
3487 /* Tx Dropped needs to be maintained elsewhere */
3490 if (hw
->media_type
== e1000_media_type_copper
) {
3491 if ((adapter
->link_speed
== SPEED_1000
) &&
3492 (!e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_tmp
))) {
3493 phy_tmp
&= PHY_IDLE_ERROR_COUNT_MASK
;
3494 adapter
->phy_stats
.idle_errors
+= phy_tmp
;
3497 if ((hw
->mac_type
<= e1000_82546
) &&
3498 (hw
->phy_type
== e1000_phy_m88
) &&
3499 !e1000_read_phy_reg(hw
, M88E1000_RX_ERR_CNTR
, &phy_tmp
))
3500 adapter
->phy_stats
.receive_errors
+= phy_tmp
;
3503 /* Management Stats */
3504 if (hw
->has_smbus
) {
3505 adapter
->stats
.mgptc
+= er32(MGTPTC
);
3506 adapter
->stats
.mgprc
+= er32(MGTPRC
);
3507 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
3510 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
3514 * e1000_intr - Interrupt Handler
3515 * @irq: interrupt number
3516 * @data: pointer to a network interface device structure
3519 static irqreturn_t
e1000_intr(int irq
, void *data
)
3521 struct net_device
*netdev
= data
;
3522 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3523 struct e1000_hw
*hw
= &adapter
->hw
;
3524 u32 icr
= er32(ICR
);
3526 if (unlikely((!icr
)))
3527 return IRQ_NONE
; /* Not our interrupt */
3530 * we might have caused the interrupt, but the above
3531 * read cleared it, and just in case the driver is
3532 * down there is nothing to do so return handled
3534 if (unlikely(test_bit(__E1000_DOWN
, &adapter
->flags
)))
3537 if (unlikely(icr
& (E1000_ICR_RXSEQ
| E1000_ICR_LSC
))) {
3538 hw
->get_link_status
= 1;
3539 /* guard against interrupt when we're going down */
3540 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3541 schedule_delayed_work(&adapter
->watchdog_task
, 1);
3544 /* disable interrupts, without the synchronize_irq bit */
3546 E1000_WRITE_FLUSH();
3548 if (likely(napi_schedule_prep(&adapter
->napi
))) {
3549 adapter
->total_tx_bytes
= 0;
3550 adapter
->total_tx_packets
= 0;
3551 adapter
->total_rx_bytes
= 0;
3552 adapter
->total_rx_packets
= 0;
3553 __napi_schedule(&adapter
->napi
);
3555 /* this really should not happen! if it does it is basically a
3556 * bug, but not a hard error, so enable ints and continue */
3557 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3558 e1000_irq_enable(adapter
);
3565 * e1000_clean - NAPI Rx polling callback
3566 * @adapter: board private structure
3568 static int e1000_clean(struct napi_struct
*napi
, int budget
)
3570 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
3571 int tx_clean_complete
= 0, work_done
= 0;
3573 tx_clean_complete
= e1000_clean_tx_irq(adapter
, &adapter
->tx_ring
[0]);
3575 adapter
->clean_rx(adapter
, &adapter
->rx_ring
[0], &work_done
, budget
);
3577 if (!tx_clean_complete
)
3580 /* If budget not fully consumed, exit the polling mode */
3581 if (work_done
< budget
) {
3582 if (likely(adapter
->itr_setting
& 3))
3583 e1000_set_itr(adapter
);
3584 napi_complete(napi
);
3585 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
3586 e1000_irq_enable(adapter
);
3593 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3594 * @adapter: board private structure
3596 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
,
3597 struct e1000_tx_ring
*tx_ring
)
3599 struct e1000_hw
*hw
= &adapter
->hw
;
3600 struct net_device
*netdev
= adapter
->netdev
;
3601 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
3602 struct e1000_buffer
*buffer_info
;
3603 unsigned int i
, eop
;
3604 unsigned int count
= 0;
3605 unsigned int total_tx_bytes
=0, total_tx_packets
=0;
3607 i
= tx_ring
->next_to_clean
;
3608 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3609 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3611 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
3612 (count
< tx_ring
->count
)) {
3613 bool cleaned
= false;
3614 rmb(); /* read buffer_info after eop_desc */
3615 for ( ; !cleaned
; count
++) {
3616 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
3617 buffer_info
= &tx_ring
->buffer_info
[i
];
3618 cleaned
= (i
== eop
);
3621 total_tx_packets
+= buffer_info
->segs
;
3622 total_tx_bytes
+= buffer_info
->bytecount
;
3624 e1000_unmap_and_free_tx_resource(adapter
, buffer_info
);
3625 tx_desc
->upper
.data
= 0;
3627 if (unlikely(++i
== tx_ring
->count
)) i
= 0;
3630 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
3631 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
3634 tx_ring
->next_to_clean
= i
;
3636 #define TX_WAKE_THRESHOLD 32
3637 if (unlikely(count
&& netif_carrier_ok(netdev
) &&
3638 E1000_DESC_UNUSED(tx_ring
) >= TX_WAKE_THRESHOLD
)) {
3639 /* Make sure that anybody stopping the queue after this
3640 * sees the new next_to_clean.
3644 if (netif_queue_stopped(netdev
) &&
3645 !(test_bit(__E1000_DOWN
, &adapter
->flags
))) {
3646 netif_wake_queue(netdev
);
3647 ++adapter
->restart_queue
;
3651 if (adapter
->detect_tx_hung
) {
3652 /* Detect a transmit hang in hardware, this serializes the
3653 * check with the clearing of time_stamp and movement of i */
3654 adapter
->detect_tx_hung
= false;
3655 if (tx_ring
->buffer_info
[eop
].time_stamp
&&
3656 time_after(jiffies
, tx_ring
->buffer_info
[eop
].time_stamp
+
3657 (adapter
->tx_timeout_factor
* HZ
)) &&
3658 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
3660 /* detected Tx unit hang */
3661 e_err(drv
, "Detected Tx Unit Hang\n"
3665 " next_to_use <%x>\n"
3666 " next_to_clean <%x>\n"
3667 "buffer_info[next_to_clean]\n"
3668 " time_stamp <%lx>\n"
3669 " next_to_watch <%x>\n"
3671 " next_to_watch.status <%x>\n",
3672 (unsigned long)((tx_ring
- adapter
->tx_ring
) /
3673 sizeof(struct e1000_tx_ring
)),
3674 readl(hw
->hw_addr
+ tx_ring
->tdh
),
3675 readl(hw
->hw_addr
+ tx_ring
->tdt
),
3676 tx_ring
->next_to_use
,
3677 tx_ring
->next_to_clean
,
3678 tx_ring
->buffer_info
[eop
].time_stamp
,
3681 eop_desc
->upper
.fields
.status
);
3682 netif_stop_queue(netdev
);
3685 adapter
->total_tx_bytes
+= total_tx_bytes
;
3686 adapter
->total_tx_packets
+= total_tx_packets
;
3687 netdev
->stats
.tx_bytes
+= total_tx_bytes
;
3688 netdev
->stats
.tx_packets
+= total_tx_packets
;
3689 return count
< tx_ring
->count
;
3693 * e1000_rx_checksum - Receive Checksum Offload for 82543
3694 * @adapter: board private structure
3695 * @status_err: receive descriptor status and error fields
3696 * @csum: receive descriptor csum field
3697 * @sk_buff: socket buffer with received data
3700 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
3701 u32 csum
, struct sk_buff
*skb
)
3703 struct e1000_hw
*hw
= &adapter
->hw
;
3704 u16 status
= (u16
)status_err
;
3705 u8 errors
= (u8
)(status_err
>> 24);
3707 skb_checksum_none_assert(skb
);
3709 /* 82543 or newer only */
3710 if (unlikely(hw
->mac_type
< e1000_82543
)) return;
3711 /* Ignore Checksum bit is set */
3712 if (unlikely(status
& E1000_RXD_STAT_IXSM
)) return;
3713 /* TCP/UDP checksum error bit is set */
3714 if (unlikely(errors
& E1000_RXD_ERR_TCPE
)) {
3715 /* let the stack verify checksum errors */
3716 adapter
->hw_csum_err
++;
3719 /* TCP/UDP Checksum has not been calculated */
3720 if (!(status
& E1000_RXD_STAT_TCPCS
))
3723 /* It must be a TCP or UDP packet with a valid checksum */
3724 if (likely(status
& E1000_RXD_STAT_TCPCS
)) {
3725 /* TCP checksum is good */
3726 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
3728 adapter
->hw_csum_good
++;
3732 * e1000_consume_page - helper function
3734 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
3739 skb
->data_len
+= length
;
3740 skb
->truesize
+= PAGE_SIZE
;
3744 * e1000_receive_skb - helper function to handle rx indications
3745 * @adapter: board private structure
3746 * @status: descriptor status field as written by hardware
3747 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
3748 * @skb: pointer to sk_buff to be indicated to stack
3750 static void e1000_receive_skb(struct e1000_adapter
*adapter
, u8 status
,
3751 __le16 vlan
, struct sk_buff
*skb
)
3753 skb
->protocol
= eth_type_trans(skb
, adapter
->netdev
);
3755 if (status
& E1000_RXD_STAT_VP
) {
3756 u16 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
3758 __vlan_hwaccel_put_tag(skb
, vid
);
3760 napi_gro_receive(&adapter
->napi
, skb
);
3764 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
3765 * @adapter: board private structure
3766 * @rx_ring: ring to clean
3767 * @work_done: amount of napi work completed this call
3768 * @work_to_do: max amount of work allowed for this call to do
3770 * the return value indicates whether actual cleaning was done, there
3771 * is no guarantee that everything was cleaned
3773 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
3774 struct e1000_rx_ring
*rx_ring
,
3775 int *work_done
, int work_to_do
)
3777 struct e1000_hw
*hw
= &adapter
->hw
;
3778 struct net_device
*netdev
= adapter
->netdev
;
3779 struct pci_dev
*pdev
= adapter
->pdev
;
3780 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3781 struct e1000_buffer
*buffer_info
, *next_buffer
;
3782 unsigned long irq_flags
;
3785 int cleaned_count
= 0;
3786 bool cleaned
= false;
3787 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3789 i
= rx_ring
->next_to_clean
;
3790 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3791 buffer_info
= &rx_ring
->buffer_info
[i
];
3793 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3794 struct sk_buff
*skb
;
3797 if (*work_done
>= work_to_do
)
3800 rmb(); /* read descriptor and rx_buffer_info after status DD */
3802 status
= rx_desc
->status
;
3803 skb
= buffer_info
->skb
;
3804 buffer_info
->skb
= NULL
;
3806 if (++i
== rx_ring
->count
) i
= 0;
3807 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
3810 next_buffer
= &rx_ring
->buffer_info
[i
];
3814 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
3815 buffer_info
->length
, DMA_FROM_DEVICE
);
3816 buffer_info
->dma
= 0;
3818 length
= le16_to_cpu(rx_desc
->length
);
3820 /* errors is only valid for DD + EOP descriptors */
3821 if (unlikely((status
& E1000_RXD_STAT_EOP
) &&
3822 (rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
))) {
3823 u8 last_byte
= *(skb
->data
+ length
- 1);
3824 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
3826 spin_lock_irqsave(&adapter
->stats_lock
,
3828 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
3830 spin_unlock_irqrestore(&adapter
->stats_lock
,
3834 /* recycle both page and skb */
3835 buffer_info
->skb
= skb
;
3836 /* an error means any chain goes out the window
3838 if (rx_ring
->rx_skb_top
)
3839 dev_kfree_skb(rx_ring
->rx_skb_top
);
3840 rx_ring
->rx_skb_top
= NULL
;
3845 #define rxtop rx_ring->rx_skb_top
3846 if (!(status
& E1000_RXD_STAT_EOP
)) {
3847 /* this descriptor is only the beginning (or middle) */
3849 /* this is the beginning of a chain */
3851 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
3854 /* this is the middle of a chain */
3855 skb_fill_page_desc(rxtop
,
3856 skb_shinfo(rxtop
)->nr_frags
,
3857 buffer_info
->page
, 0, length
);
3858 /* re-use the skb, only consumed the page */
3859 buffer_info
->skb
= skb
;
3861 e1000_consume_page(buffer_info
, rxtop
, length
);
3865 /* end of the chain */
3866 skb_fill_page_desc(rxtop
,
3867 skb_shinfo(rxtop
)->nr_frags
,
3868 buffer_info
->page
, 0, length
);
3869 /* re-use the current skb, we only consumed the
3871 buffer_info
->skb
= skb
;
3874 e1000_consume_page(buffer_info
, skb
, length
);
3876 /* no chain, got EOP, this buf is the packet
3877 * copybreak to save the put_page/alloc_page */
3878 if (length
<= copybreak
&&
3879 skb_tailroom(skb
) >= length
) {
3881 vaddr
= kmap_atomic(buffer_info
->page
,
3882 KM_SKB_DATA_SOFTIRQ
);
3883 memcpy(skb_tail_pointer(skb
), vaddr
, length
);
3884 kunmap_atomic(vaddr
,
3885 KM_SKB_DATA_SOFTIRQ
);
3886 /* re-use the page, so don't erase
3887 * buffer_info->page */
3888 skb_put(skb
, length
);
3890 skb_fill_page_desc(skb
, 0,
3891 buffer_info
->page
, 0,
3893 e1000_consume_page(buffer_info
, skb
,
3899 /* Receive Checksum Offload XXX recompute due to CRC strip? */
3900 e1000_rx_checksum(adapter
,
3902 ((u32
)(rx_desc
->errors
) << 24),
3903 le16_to_cpu(rx_desc
->csum
), skb
);
3905 pskb_trim(skb
, skb
->len
- 4);
3907 /* probably a little skewed due to removing CRC */
3908 total_rx_bytes
+= skb
->len
;
3911 /* eth type trans needs skb->data to point to something */
3912 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
3913 e_err(drv
, "pskb_may_pull failed.\n");
3918 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
3921 rx_desc
->status
= 0;
3923 /* return some buffers to hardware, one at a time is too slow */
3924 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
3925 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3929 /* use prefetched values */
3931 buffer_info
= next_buffer
;
3933 rx_ring
->next_to_clean
= i
;
3935 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
3937 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
3939 adapter
->total_rx_packets
+= total_rx_packets
;
3940 adapter
->total_rx_bytes
+= total_rx_bytes
;
3941 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
3942 netdev
->stats
.rx_packets
+= total_rx_packets
;
3947 * this should improve performance for small packets with large amounts
3948 * of reassembly being done in the stack
3950 static void e1000_check_copybreak(struct net_device
*netdev
,
3951 struct e1000_buffer
*buffer_info
,
3952 u32 length
, struct sk_buff
**skb
)
3954 struct sk_buff
*new_skb
;
3956 if (length
> copybreak
)
3959 new_skb
= netdev_alloc_skb_ip_align(netdev
, length
);
3963 skb_copy_to_linear_data_offset(new_skb
, -NET_IP_ALIGN
,
3964 (*skb
)->data
- NET_IP_ALIGN
,
3965 length
+ NET_IP_ALIGN
);
3966 /* save the skb in buffer_info as good */
3967 buffer_info
->skb
= *skb
;
3972 * e1000_clean_rx_irq - Send received data up the network stack; legacy
3973 * @adapter: board private structure
3974 * @rx_ring: ring to clean
3975 * @work_done: amount of napi work completed this call
3976 * @work_to_do: max amount of work allowed for this call to do
3978 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
3979 struct e1000_rx_ring
*rx_ring
,
3980 int *work_done
, int work_to_do
)
3982 struct e1000_hw
*hw
= &adapter
->hw
;
3983 struct net_device
*netdev
= adapter
->netdev
;
3984 struct pci_dev
*pdev
= adapter
->pdev
;
3985 struct e1000_rx_desc
*rx_desc
, *next_rxd
;
3986 struct e1000_buffer
*buffer_info
, *next_buffer
;
3987 unsigned long flags
;
3990 int cleaned_count
= 0;
3991 bool cleaned
= false;
3992 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
3994 i
= rx_ring
->next_to_clean
;
3995 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
3996 buffer_info
= &rx_ring
->buffer_info
[i
];
3998 while (rx_desc
->status
& E1000_RXD_STAT_DD
) {
3999 struct sk_buff
*skb
;
4002 if (*work_done
>= work_to_do
)
4005 rmb(); /* read descriptor and rx_buffer_info after status DD */
4007 status
= rx_desc
->status
;
4008 skb
= buffer_info
->skb
;
4009 buffer_info
->skb
= NULL
;
4011 prefetch(skb
->data
- NET_IP_ALIGN
);
4013 if (++i
== rx_ring
->count
) i
= 0;
4014 next_rxd
= E1000_RX_DESC(*rx_ring
, i
);
4017 next_buffer
= &rx_ring
->buffer_info
[i
];
4021 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4022 buffer_info
->length
, DMA_FROM_DEVICE
);
4023 buffer_info
->dma
= 0;
4025 length
= le16_to_cpu(rx_desc
->length
);
4026 /* !EOP means multiple descriptors were used to store a single
4027 * packet, if thats the case we need to toss it. In fact, we
4028 * to toss every packet with the EOP bit clear and the next
4029 * frame that _does_ have the EOP bit set, as it is by
4030 * definition only a frame fragment
4032 if (unlikely(!(status
& E1000_RXD_STAT_EOP
)))
4033 adapter
->discarding
= true;
4035 if (adapter
->discarding
) {
4036 /* All receives must fit into a single buffer */
4037 e_dbg("Receive packet consumed multiple buffers\n");
4039 buffer_info
->skb
= skb
;
4040 if (status
& E1000_RXD_STAT_EOP
)
4041 adapter
->discarding
= false;
4045 if (unlikely(rx_desc
->errors
& E1000_RXD_ERR_FRAME_ERR_MASK
)) {
4046 u8 last_byte
= *(skb
->data
+ length
- 1);
4047 if (TBI_ACCEPT(hw
, status
, rx_desc
->errors
, length
,
4049 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4050 e1000_tbi_adjust_stats(hw
, &adapter
->stats
,
4052 spin_unlock_irqrestore(&adapter
->stats_lock
,
4057 buffer_info
->skb
= skb
;
4062 /* adjust length to remove Ethernet CRC, this must be
4063 * done after the TBI_ACCEPT workaround above */
4066 /* probably a little skewed due to removing CRC */
4067 total_rx_bytes
+= length
;
4070 e1000_check_copybreak(netdev
, buffer_info
, length
, &skb
);
4072 skb_put(skb
, length
);
4074 /* Receive Checksum Offload */
4075 e1000_rx_checksum(adapter
,
4077 ((u32
)(rx_desc
->errors
) << 24),
4078 le16_to_cpu(rx_desc
->csum
), skb
);
4080 e1000_receive_skb(adapter
, status
, rx_desc
->special
, skb
);
4083 rx_desc
->status
= 0;
4085 /* return some buffers to hardware, one at a time is too slow */
4086 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
4087 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4091 /* use prefetched values */
4093 buffer_info
= next_buffer
;
4095 rx_ring
->next_to_clean
= i
;
4097 cleaned_count
= E1000_DESC_UNUSED(rx_ring
);
4099 adapter
->alloc_rx_buf(adapter
, rx_ring
, cleaned_count
);
4101 adapter
->total_rx_packets
+= total_rx_packets
;
4102 adapter
->total_rx_bytes
+= total_rx_bytes
;
4103 netdev
->stats
.rx_bytes
+= total_rx_bytes
;
4104 netdev
->stats
.rx_packets
+= total_rx_packets
;
4109 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4110 * @adapter: address of board private structure
4111 * @rx_ring: pointer to receive ring structure
4112 * @cleaned_count: number of buffers to allocate this pass
4116 e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
4117 struct e1000_rx_ring
*rx_ring
, int cleaned_count
)
4119 struct net_device
*netdev
= adapter
->netdev
;
4120 struct pci_dev
*pdev
= adapter
->pdev
;
4121 struct e1000_rx_desc
*rx_desc
;
4122 struct e1000_buffer
*buffer_info
;
4123 struct sk_buff
*skb
;
4125 unsigned int bufsz
= 256 - 16 /*for skb_reserve */ ;
4127 i
= rx_ring
->next_to_use
;
4128 buffer_info
= &rx_ring
->buffer_info
[i
];
4130 while (cleaned_count
--) {
4131 skb
= buffer_info
->skb
;
4137 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4138 if (unlikely(!skb
)) {
4139 /* Better luck next round */
4140 adapter
->alloc_rx_buff_failed
++;
4144 /* Fix for errata 23, can't cross 64kB boundary */
4145 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4146 struct sk_buff
*oldskb
= skb
;
4147 e_err(rx_err
, "skb align check failed: %u bytes at "
4148 "%p\n", bufsz
, skb
->data
);
4149 /* Try again, without freeing the previous */
4150 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4151 /* Failed allocation, critical failure */
4153 dev_kfree_skb(oldskb
);
4154 adapter
->alloc_rx_buff_failed
++;
4158 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4161 dev_kfree_skb(oldskb
);
4162 break; /* while (cleaned_count--) */
4165 /* Use new allocation */
4166 dev_kfree_skb(oldskb
);
4168 buffer_info
->skb
= skb
;
4169 buffer_info
->length
= adapter
->rx_buffer_len
;
4171 /* allocate a new page if necessary */
4172 if (!buffer_info
->page
) {
4173 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
4174 if (unlikely(!buffer_info
->page
)) {
4175 adapter
->alloc_rx_buff_failed
++;
4180 if (!buffer_info
->dma
) {
4181 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
4182 buffer_info
->page
, 0,
4183 buffer_info
->length
,
4185 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4186 put_page(buffer_info
->page
);
4188 buffer_info
->page
= NULL
;
4189 buffer_info
->skb
= NULL
;
4190 buffer_info
->dma
= 0;
4191 adapter
->alloc_rx_buff_failed
++;
4192 break; /* while !buffer_info->skb */
4196 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4197 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4199 if (unlikely(++i
== rx_ring
->count
))
4201 buffer_info
= &rx_ring
->buffer_info
[i
];
4204 if (likely(rx_ring
->next_to_use
!= i
)) {
4205 rx_ring
->next_to_use
= i
;
4206 if (unlikely(i
-- == 0))
4207 i
= (rx_ring
->count
- 1);
4209 /* Force memory writes to complete before letting h/w
4210 * know there are new descriptors to fetch. (Only
4211 * applicable for weak-ordered memory model archs,
4212 * such as IA-64). */
4214 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->rdt
);
4219 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
4220 * @adapter: address of board private structure
4223 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
4224 struct e1000_rx_ring
*rx_ring
,
4227 struct e1000_hw
*hw
= &adapter
->hw
;
4228 struct net_device
*netdev
= adapter
->netdev
;
4229 struct pci_dev
*pdev
= adapter
->pdev
;
4230 struct e1000_rx_desc
*rx_desc
;
4231 struct e1000_buffer
*buffer_info
;
4232 struct sk_buff
*skb
;
4234 unsigned int bufsz
= adapter
->rx_buffer_len
;
4236 i
= rx_ring
->next_to_use
;
4237 buffer_info
= &rx_ring
->buffer_info
[i
];
4239 while (cleaned_count
--) {
4240 skb
= buffer_info
->skb
;
4246 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4247 if (unlikely(!skb
)) {
4248 /* Better luck next round */
4249 adapter
->alloc_rx_buff_failed
++;
4253 /* Fix for errata 23, can't cross 64kB boundary */
4254 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4255 struct sk_buff
*oldskb
= skb
;
4256 e_err(rx_err
, "skb align check failed: %u bytes at "
4257 "%p\n", bufsz
, skb
->data
);
4258 /* Try again, without freeing the previous */
4259 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
4260 /* Failed allocation, critical failure */
4262 dev_kfree_skb(oldskb
);
4263 adapter
->alloc_rx_buff_failed
++;
4267 if (!e1000_check_64k_bound(adapter
, skb
->data
, bufsz
)) {
4270 dev_kfree_skb(oldskb
);
4271 adapter
->alloc_rx_buff_failed
++;
4272 break; /* while !buffer_info->skb */
4275 /* Use new allocation */
4276 dev_kfree_skb(oldskb
);
4278 buffer_info
->skb
= skb
;
4279 buffer_info
->length
= adapter
->rx_buffer_len
;
4281 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4283 buffer_info
->length
,
4285 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
4287 buffer_info
->skb
= NULL
;
4288 buffer_info
->dma
= 0;
4289 adapter
->alloc_rx_buff_failed
++;
4290 break; /* while !buffer_info->skb */
4294 * XXX if it was allocated cleanly it will never map to a
4298 /* Fix for errata 23, can't cross 64kB boundary */
4299 if (!e1000_check_64k_bound(adapter
,
4300 (void *)(unsigned long)buffer_info
->dma
,
4301 adapter
->rx_buffer_len
)) {
4302 e_err(rx_err
, "dma align check failed: %u bytes at "
4303 "%p\n", adapter
->rx_buffer_len
,
4304 (void *)(unsigned long)buffer_info
->dma
);
4306 buffer_info
->skb
= NULL
;
4308 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
4309 adapter
->rx_buffer_len
,
4311 buffer_info
->dma
= 0;
4313 adapter
->alloc_rx_buff_failed
++;
4314 break; /* while !buffer_info->skb */
4316 rx_desc
= E1000_RX_DESC(*rx_ring
, i
);
4317 rx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4319 if (unlikely(++i
== rx_ring
->count
))
4321 buffer_info
= &rx_ring
->buffer_info
[i
];
4324 if (likely(rx_ring
->next_to_use
!= i
)) {
4325 rx_ring
->next_to_use
= i
;
4326 if (unlikely(i
-- == 0))
4327 i
= (rx_ring
->count
- 1);
4329 /* Force memory writes to complete before letting h/w
4330 * know there are new descriptors to fetch. (Only
4331 * applicable for weak-ordered memory model archs,
4332 * such as IA-64). */
4334 writel(i
, hw
->hw_addr
+ rx_ring
->rdt
);
4339 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4343 static void e1000_smartspeed(struct e1000_adapter
*adapter
)
4345 struct e1000_hw
*hw
= &adapter
->hw
;
4349 if ((hw
->phy_type
!= e1000_phy_igp
) || !hw
->autoneg
||
4350 !(hw
->autoneg_advertised
& ADVERTISE_1000_FULL
))
4353 if (adapter
->smartspeed
== 0) {
4354 /* If Master/Slave config fault is asserted twice,
4355 * we assume back-to-back */
4356 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4357 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4358 e1000_read_phy_reg(hw
, PHY_1000T_STATUS
, &phy_status
);
4359 if (!(phy_status
& SR_1000T_MS_CONFIG_FAULT
)) return;
4360 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4361 if (phy_ctrl
& CR_1000T_MS_ENABLE
) {
4362 phy_ctrl
&= ~CR_1000T_MS_ENABLE
;
4363 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
,
4365 adapter
->smartspeed
++;
4366 if (!e1000_phy_setup_autoneg(hw
) &&
4367 !e1000_read_phy_reg(hw
, PHY_CTRL
,
4369 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4370 MII_CR_RESTART_AUTO_NEG
);
4371 e1000_write_phy_reg(hw
, PHY_CTRL
,
4376 } else if (adapter
->smartspeed
== E1000_SMARTSPEED_DOWNSHIFT
) {
4377 /* If still no link, perhaps using 2/3 pair cable */
4378 e1000_read_phy_reg(hw
, PHY_1000T_CTRL
, &phy_ctrl
);
4379 phy_ctrl
|= CR_1000T_MS_ENABLE
;
4380 e1000_write_phy_reg(hw
, PHY_1000T_CTRL
, phy_ctrl
);
4381 if (!e1000_phy_setup_autoneg(hw
) &&
4382 !e1000_read_phy_reg(hw
, PHY_CTRL
, &phy_ctrl
)) {
4383 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
|
4384 MII_CR_RESTART_AUTO_NEG
);
4385 e1000_write_phy_reg(hw
, PHY_CTRL
, phy_ctrl
);
4388 /* Restart process after E1000_SMARTSPEED_MAX iterations */
4389 if (adapter
->smartspeed
++ == E1000_SMARTSPEED_MAX
)
4390 adapter
->smartspeed
= 0;
4400 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
4406 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
4419 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
4422 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4423 struct e1000_hw
*hw
= &adapter
->hw
;
4424 struct mii_ioctl_data
*data
= if_mii(ifr
);
4427 unsigned long flags
;
4429 if (hw
->media_type
!= e1000_media_type_copper
)
4434 data
->phy_id
= hw
->phy_addr
;
4437 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4438 if (e1000_read_phy_reg(hw
, data
->reg_num
& 0x1F,
4440 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4443 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4446 if (data
->reg_num
& ~(0x1F))
4448 mii_reg
= data
->val_in
;
4449 spin_lock_irqsave(&adapter
->stats_lock
, flags
);
4450 if (e1000_write_phy_reg(hw
, data
->reg_num
,
4452 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4455 spin_unlock_irqrestore(&adapter
->stats_lock
, flags
);
4456 if (hw
->media_type
== e1000_media_type_copper
) {
4457 switch (data
->reg_num
) {
4459 if (mii_reg
& MII_CR_POWER_DOWN
)
4461 if (mii_reg
& MII_CR_AUTO_NEG_EN
) {
4463 hw
->autoneg_advertised
= 0x2F;
4468 else if (mii_reg
& 0x2000)
4472 retval
= e1000_set_spd_dplx(
4480 if (netif_running(adapter
->netdev
))
4481 e1000_reinit_locked(adapter
);
4483 e1000_reset(adapter
);
4485 case M88E1000_PHY_SPEC_CTRL
:
4486 case M88E1000_EXT_PHY_SPEC_CTRL
:
4487 if (e1000_phy_reset(hw
))
4492 switch (data
->reg_num
) {
4494 if (mii_reg
& MII_CR_POWER_DOWN
)
4496 if (netif_running(adapter
->netdev
))
4497 e1000_reinit_locked(adapter
);
4499 e1000_reset(adapter
);
4507 return E1000_SUCCESS
;
4510 void e1000_pci_set_mwi(struct e1000_hw
*hw
)
4512 struct e1000_adapter
*adapter
= hw
->back
;
4513 int ret_val
= pci_set_mwi(adapter
->pdev
);
4516 e_err(probe
, "Error in setting MWI\n");
4519 void e1000_pci_clear_mwi(struct e1000_hw
*hw
)
4521 struct e1000_adapter
*adapter
= hw
->back
;
4523 pci_clear_mwi(adapter
->pdev
);
4526 int e1000_pcix_get_mmrbc(struct e1000_hw
*hw
)
4528 struct e1000_adapter
*adapter
= hw
->back
;
4529 return pcix_get_mmrbc(adapter
->pdev
);
4532 void e1000_pcix_set_mmrbc(struct e1000_hw
*hw
, int mmrbc
)
4534 struct e1000_adapter
*adapter
= hw
->back
;
4535 pcix_set_mmrbc(adapter
->pdev
, mmrbc
);
4538 void e1000_io_write(struct e1000_hw
*hw
, unsigned long port
, u32 value
)
4543 static bool e1000_vlan_used(struct e1000_adapter
*adapter
)
4547 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
4552 static void e1000_vlan_filter_on_off(struct e1000_adapter
*adapter
,
4555 struct e1000_hw
*hw
= &adapter
->hw
;
4558 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4559 e1000_irq_disable(adapter
);
4562 /* enable VLAN receive filtering */
4564 rctl
&= ~E1000_RCTL_CFIEN
;
4565 if (!(adapter
->netdev
->flags
& IFF_PROMISC
))
4566 rctl
|= E1000_RCTL_VFE
;
4568 e1000_update_mng_vlan(adapter
);
4570 /* disable VLAN receive filtering */
4572 rctl
&= ~E1000_RCTL_VFE
;
4576 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4577 e1000_irq_enable(adapter
);
4580 static void e1000_vlan_mode(struct net_device
*netdev
, u32 features
)
4582 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4583 struct e1000_hw
*hw
= &adapter
->hw
;
4586 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4587 e1000_irq_disable(adapter
);
4590 if (features
& NETIF_F_HW_VLAN_RX
) {
4591 /* enable VLAN tag insert/strip */
4592 ctrl
|= E1000_CTRL_VME
;
4594 /* disable VLAN tag insert/strip */
4595 ctrl
&= ~E1000_CTRL_VME
;
4599 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4600 e1000_irq_enable(adapter
);
4603 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
4605 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4606 struct e1000_hw
*hw
= &adapter
->hw
;
4609 if ((hw
->mng_cookie
.status
&
4610 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT
) &&
4611 (vid
== adapter
->mng_vlan_id
))
4614 if (!e1000_vlan_used(adapter
))
4615 e1000_vlan_filter_on_off(adapter
, true);
4617 /* add VID to filter table */
4618 index
= (vid
>> 5) & 0x7F;
4619 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4620 vfta
|= (1 << (vid
& 0x1F));
4621 e1000_write_vfta(hw
, index
, vfta
);
4623 set_bit(vid
, adapter
->active_vlans
);
4626 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
4628 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4629 struct e1000_hw
*hw
= &adapter
->hw
;
4632 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4633 e1000_irq_disable(adapter
);
4634 if (!test_bit(__E1000_DOWN
, &adapter
->flags
))
4635 e1000_irq_enable(adapter
);
4637 /* remove VID from filter table */
4638 index
= (vid
>> 5) & 0x7F;
4639 vfta
= E1000_READ_REG_ARRAY(hw
, VFTA
, index
);
4640 vfta
&= ~(1 << (vid
& 0x1F));
4641 e1000_write_vfta(hw
, index
, vfta
);
4643 clear_bit(vid
, adapter
->active_vlans
);
4645 if (!e1000_vlan_used(adapter
))
4646 e1000_vlan_filter_on_off(adapter
, false);
4649 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
4653 if (!e1000_vlan_used(adapter
))
4656 e1000_vlan_filter_on_off(adapter
, true);
4657 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
4658 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
4661 int e1000_set_spd_dplx(struct e1000_adapter
*adapter
, u32 spd
, u8 dplx
)
4663 struct e1000_hw
*hw
= &adapter
->hw
;
4667 /* Make sure dplx is at most 1 bit and lsb of speed is not set
4668 * for the switch() below to work */
4669 if ((spd
& 1) || (dplx
& ~1))
4672 /* Fiber NICs only allow 1000 gbps Full duplex */
4673 if ((hw
->media_type
== e1000_media_type_fiber
) &&
4674 spd
!= SPEED_1000
&&
4675 dplx
!= DUPLEX_FULL
)
4678 switch (spd
+ dplx
) {
4679 case SPEED_10
+ DUPLEX_HALF
:
4680 hw
->forced_speed_duplex
= e1000_10_half
;
4682 case SPEED_10
+ DUPLEX_FULL
:
4683 hw
->forced_speed_duplex
= e1000_10_full
;
4685 case SPEED_100
+ DUPLEX_HALF
:
4686 hw
->forced_speed_duplex
= e1000_100_half
;
4688 case SPEED_100
+ DUPLEX_FULL
:
4689 hw
->forced_speed_duplex
= e1000_100_full
;
4691 case SPEED_1000
+ DUPLEX_FULL
:
4693 hw
->autoneg_advertised
= ADVERTISE_1000_FULL
;
4695 case SPEED_1000
+ DUPLEX_HALF
: /* not supported */
4702 e_err(probe
, "Unsupported Speed/Duplex configuration\n");
4706 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
)
4708 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4709 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4710 struct e1000_hw
*hw
= &adapter
->hw
;
4711 u32 ctrl
, ctrl_ext
, rctl
, status
;
4712 u32 wufc
= adapter
->wol
;
4717 netif_device_detach(netdev
);
4719 mutex_lock(&adapter
->mutex
);
4721 if (netif_running(netdev
)) {
4722 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->flags
));
4723 e1000_down(adapter
);
4727 retval
= pci_save_state(pdev
);
4729 mutex_unlock(&adapter
->mutex
);
4734 status
= er32(STATUS
);
4735 if (status
& E1000_STATUS_LU
)
4736 wufc
&= ~E1000_WUFC_LNKC
;
4739 e1000_setup_rctl(adapter
);
4740 e1000_set_rx_mode(netdev
);
4742 /* turn on all-multi mode if wake on multicast is enabled */
4743 if (wufc
& E1000_WUFC_MC
) {
4745 rctl
|= E1000_RCTL_MPE
;
4749 if (hw
->mac_type
>= e1000_82540
) {
4751 /* advertise wake from D3Cold */
4752 #define E1000_CTRL_ADVD3WUC 0x00100000
4753 /* phy power management enable */
4754 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
4755 ctrl
|= E1000_CTRL_ADVD3WUC
|
4756 E1000_CTRL_EN_PHY_PWR_MGMT
;
4760 if (hw
->media_type
== e1000_media_type_fiber
||
4761 hw
->media_type
== e1000_media_type_internal_serdes
) {
4762 /* keep the laser running in D3 */
4763 ctrl_ext
= er32(CTRL_EXT
);
4764 ctrl_ext
|= E1000_CTRL_EXT_SDP7_DATA
;
4765 ew32(CTRL_EXT
, ctrl_ext
);
4768 ew32(WUC
, E1000_WUC_PME_EN
);
4775 e1000_release_manageability(adapter
);
4777 *enable_wake
= !!wufc
;
4779 /* make sure adapter isn't asleep if manageability is enabled */
4780 if (adapter
->en_mng_pt
)
4781 *enable_wake
= true;
4783 if (netif_running(netdev
))
4784 e1000_free_irq(adapter
);
4786 mutex_unlock(&adapter
->mutex
);
4788 pci_disable_device(pdev
);
4794 static int e1000_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4799 retval
= __e1000_shutdown(pdev
, &wake
);
4804 pci_prepare_to_sleep(pdev
);
4806 pci_wake_from_d3(pdev
, false);
4807 pci_set_power_state(pdev
, PCI_D3hot
);
4813 static int e1000_resume(struct pci_dev
*pdev
)
4815 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4816 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4817 struct e1000_hw
*hw
= &adapter
->hw
;
4820 pci_set_power_state(pdev
, PCI_D0
);
4821 pci_restore_state(pdev
);
4822 pci_save_state(pdev
);
4824 if (adapter
->need_ioport
)
4825 err
= pci_enable_device(pdev
);
4827 err
= pci_enable_device_mem(pdev
);
4829 pr_err("Cannot enable PCI device from suspend\n");
4832 pci_set_master(pdev
);
4834 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4835 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4837 if (netif_running(netdev
)) {
4838 err
= e1000_request_irq(adapter
);
4843 e1000_power_up_phy(adapter
);
4844 e1000_reset(adapter
);
4847 e1000_init_manageability(adapter
);
4849 if (netif_running(netdev
))
4852 netif_device_attach(netdev
);
4858 static void e1000_shutdown(struct pci_dev
*pdev
)
4862 __e1000_shutdown(pdev
, &wake
);
4864 if (system_state
== SYSTEM_POWER_OFF
) {
4865 pci_wake_from_d3(pdev
, wake
);
4866 pci_set_power_state(pdev
, PCI_D3hot
);
4870 #ifdef CONFIG_NET_POLL_CONTROLLER
4872 * Polling 'interrupt' - used by things like netconsole to send skbs
4873 * without having to re-enable interrupts. It's not called while
4874 * the interrupt routine is executing.
4876 static void e1000_netpoll(struct net_device
*netdev
)
4878 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4880 disable_irq(adapter
->pdev
->irq
);
4881 e1000_intr(adapter
->pdev
->irq
, netdev
);
4882 enable_irq(adapter
->pdev
->irq
);
4887 * e1000_io_error_detected - called when PCI error is detected
4888 * @pdev: Pointer to PCI device
4889 * @state: The current pci connection state
4891 * This function is called after a PCI bus error affecting
4892 * this device has been detected.
4894 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
4895 pci_channel_state_t state
)
4897 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4898 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4900 netif_device_detach(netdev
);
4902 if (state
== pci_channel_io_perm_failure
)
4903 return PCI_ERS_RESULT_DISCONNECT
;
4905 if (netif_running(netdev
))
4906 e1000_down(adapter
);
4907 pci_disable_device(pdev
);
4909 /* Request a slot slot reset. */
4910 return PCI_ERS_RESULT_NEED_RESET
;
4914 * e1000_io_slot_reset - called after the pci bus has been reset.
4915 * @pdev: Pointer to PCI device
4917 * Restart the card from scratch, as if from a cold-boot. Implementation
4918 * resembles the first-half of the e1000_resume routine.
4920 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
4922 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4923 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4924 struct e1000_hw
*hw
= &adapter
->hw
;
4927 if (adapter
->need_ioport
)
4928 err
= pci_enable_device(pdev
);
4930 err
= pci_enable_device_mem(pdev
);
4932 pr_err("Cannot re-enable PCI device after reset.\n");
4933 return PCI_ERS_RESULT_DISCONNECT
;
4935 pci_set_master(pdev
);
4937 pci_enable_wake(pdev
, PCI_D3hot
, 0);
4938 pci_enable_wake(pdev
, PCI_D3cold
, 0);
4940 e1000_reset(adapter
);
4943 return PCI_ERS_RESULT_RECOVERED
;
4947 * e1000_io_resume - called when traffic can start flowing again.
4948 * @pdev: Pointer to PCI device
4950 * This callback is called when the error recovery driver tells us that
4951 * its OK to resume normal operation. Implementation resembles the
4952 * second-half of the e1000_resume routine.
4954 static void e1000_io_resume(struct pci_dev
*pdev
)
4956 struct net_device
*netdev
= pci_get_drvdata(pdev
);
4957 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4959 e1000_init_manageability(adapter
);
4961 if (netif_running(netdev
)) {
4962 if (e1000_up(adapter
)) {
4963 pr_info("can't bring device back up after reset\n");
4968 netif_device_attach(netdev
);