1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82571EB Gigabit Ethernet Controller
31 * 82571EB Gigabit Ethernet Controller (Copper)
32 * 82571EB Gigabit Ethernet Controller (Fiber)
33 * 82571EB Dual Port Gigabit Mezzanine Adapter
34 * 82571EB Quad Port Gigabit Mezzanine Adapter
35 * 82571PT Gigabit PT Quad Port Server ExpressModule
36 * 82572EI Gigabit Ethernet Controller (Copper)
37 * 82572EI Gigabit Ethernet Controller (Fiber)
38 * 82572EI Gigabit Ethernet Controller
39 * 82573V Gigabit Ethernet Controller (Copper)
40 * 82573E Gigabit Ethernet Controller (Copper)
41 * 82573L Gigabit Ethernet Controller
42 * 82574L Gigabit Network Connection
43 * 82583V Gigabit Network Connection
48 #define ID_LED_RESERVED_F746 0xF746
49 #define ID_LED_DEFAULT_82573 ((ID_LED_DEF1_DEF2 << 12) | \
50 (ID_LED_OFF1_ON2 << 8) | \
51 (ID_LED_DEF1_DEF2 << 4) | \
54 #define E1000_GCR_L1_ACT_WITHOUT_L0S_RX 0x08000000
55 #define AN_RETRY_COUNT 5 /* Autoneg Retry Count value */
56 #define E1000_BASE1000T_STATUS 10
57 #define E1000_IDLE_ERROR_COUNT_MASK 0xFF
58 #define E1000_RECEIVE_ERROR_COUNTER 21
59 #define E1000_RECEIVE_ERROR_MAX 0xFFFF
61 #define E1000_NVM_INIT_CTRL2_MNGM 0x6000 /* Manageability Operation Mode mask */
63 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
);
64 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
);
65 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
);
66 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
);
67 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
68 u16 words
, u16
*data
);
69 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
);
70 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
);
71 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
);
72 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
);
73 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
);
74 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
);
75 static s32
e1000_led_on_82574(struct e1000_hw
*hw
);
76 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
);
77 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
);
78 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
);
79 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
);
80 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
);
81 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
82 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
);
85 * e1000_init_phy_params_82571 - Init PHY func ptrs.
86 * @hw: pointer to the HW structure
88 static s32
e1000_init_phy_params_82571(struct e1000_hw
*hw
)
90 struct e1000_phy_info
*phy
= &hw
->phy
;
93 if (hw
->phy
.media_type
!= e1000_media_type_copper
) {
94 phy
->type
= e1000_phy_none
;
99 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
100 phy
->reset_delay_us
= 100;
102 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
103 phy
->ops
.power_down
= e1000_power_down_phy_copper_82571
;
105 switch (hw
->mac
.type
) {
108 phy
->type
= e1000_phy_igp_2
;
111 phy
->type
= e1000_phy_m88
;
115 phy
->type
= e1000_phy_bm
;
116 phy
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
117 phy
->ops
.release
= e1000_put_hw_semaphore_82574
;
118 phy
->ops
.set_d0_lplu_state
= e1000_set_d0_lplu_state_82574
;
119 phy
->ops
.set_d3_lplu_state
= e1000_set_d3_lplu_state_82574
;
122 return -E1000_ERR_PHY
;
126 /* This can only be done after all function pointers are setup. */
127 ret_val
= e1000_get_phy_id_82571(hw
);
129 e_dbg("Error getting PHY ID\n");
134 switch (hw
->mac
.type
) {
137 if (phy
->id
!= IGP01E1000_I_PHY_ID
)
138 ret_val
= -E1000_ERR_PHY
;
141 if (phy
->id
!= M88E1111_I_PHY_ID
)
142 ret_val
= -E1000_ERR_PHY
;
146 if (phy
->id
!= BME1000_E_PHY_ID_R2
)
147 ret_val
= -E1000_ERR_PHY
;
150 ret_val
= -E1000_ERR_PHY
;
155 e_dbg("PHY ID unknown: type = 0x%08x\n", phy
->id
);
161 * e1000_init_nvm_params_82571 - Init NVM func ptrs.
162 * @hw: pointer to the HW structure
164 static s32
e1000_init_nvm_params_82571(struct e1000_hw
*hw
)
166 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
167 u32 eecd
= er32(EECD
);
170 nvm
->opcode_bits
= 8;
172 switch (nvm
->override
) {
173 case e1000_nvm_override_spi_large
:
175 nvm
->address_bits
= 16;
177 case e1000_nvm_override_spi_small
:
179 nvm
->address_bits
= 8;
182 nvm
->page_size
= eecd
& E1000_EECD_ADDR_BITS
? 32 : 8;
183 nvm
->address_bits
= eecd
& E1000_EECD_ADDR_BITS
? 16 : 8;
187 switch (hw
->mac
.type
) {
191 if (((eecd
>> 15) & 0x3) == 0x3) {
192 nvm
->type
= e1000_nvm_flash_hw
;
193 nvm
->word_size
= 2048;
195 * Autonomous Flash update bit must be cleared due
196 * to Flash update issue.
198 eecd
&= ~E1000_EECD_AUPDEN
;
204 nvm
->type
= e1000_nvm_eeprom_spi
;
205 size
= (u16
)((eecd
& E1000_EECD_SIZE_EX_MASK
) >>
206 E1000_EECD_SIZE_EX_SHIFT
);
208 * Added to a constant, "size" becomes the left-shift value
209 * for setting word_size.
211 size
+= NVM_WORD_SIZE_BASE_SHIFT
;
213 /* EEPROM access above 16k is unsupported */
216 nvm
->word_size
= 1 << size
;
220 /* Function Pointers */
221 switch (hw
->mac
.type
) {
224 nvm
->ops
.acquire
= e1000_get_hw_semaphore_82574
;
225 nvm
->ops
.release
= e1000_put_hw_semaphore_82574
;
235 * e1000_init_mac_params_82571 - Init MAC func ptrs.
236 * @hw: pointer to the HW structure
238 static s32
e1000_init_mac_params_82571(struct e1000_adapter
*adapter
)
240 struct e1000_hw
*hw
= &adapter
->hw
;
241 struct e1000_mac_info
*mac
= &hw
->mac
;
242 struct e1000_mac_operations
*func
= &mac
->ops
;
245 bool force_clear_smbi
= false;
248 switch (adapter
->pdev
->device
) {
249 case E1000_DEV_ID_82571EB_FIBER
:
250 case E1000_DEV_ID_82572EI_FIBER
:
251 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
252 hw
->phy
.media_type
= e1000_media_type_fiber
;
254 case E1000_DEV_ID_82571EB_SERDES
:
255 case E1000_DEV_ID_82572EI_SERDES
:
256 case E1000_DEV_ID_82571EB_SERDES_DUAL
:
257 case E1000_DEV_ID_82571EB_SERDES_QUAD
:
258 hw
->phy
.media_type
= e1000_media_type_internal_serdes
;
261 hw
->phy
.media_type
= e1000_media_type_copper
;
265 /* Set mta register count */
266 mac
->mta_reg_count
= 128;
267 /* Set rar entry count */
268 mac
->rar_entry_count
= E1000_RAR_ENTRIES
;
269 /* Adaptive IFS supported */
270 mac
->adaptive_ifs
= true;
273 switch (hw
->phy
.media_type
) {
274 case e1000_media_type_copper
:
275 func
->setup_physical_interface
= e1000_setup_copper_link_82571
;
276 func
->check_for_link
= e1000e_check_for_copper_link
;
277 func
->get_link_up_info
= e1000e_get_speed_and_duplex_copper
;
279 case e1000_media_type_fiber
:
280 func
->setup_physical_interface
=
281 e1000_setup_fiber_serdes_link_82571
;
282 func
->check_for_link
= e1000e_check_for_fiber_link
;
283 func
->get_link_up_info
=
284 e1000e_get_speed_and_duplex_fiber_serdes
;
286 case e1000_media_type_internal_serdes
:
287 func
->setup_physical_interface
=
288 e1000_setup_fiber_serdes_link_82571
;
289 func
->check_for_link
= e1000_check_for_serdes_link_82571
;
290 func
->get_link_up_info
=
291 e1000e_get_speed_and_duplex_fiber_serdes
;
294 return -E1000_ERR_CONFIG
;
298 switch (hw
->mac
.type
) {
300 func
->set_lan_id
= e1000_set_lan_id_single_port
;
301 func
->check_mng_mode
= e1000e_check_mng_mode_generic
;
302 func
->led_on
= e1000e_led_on_generic
;
303 func
->blink_led
= e1000e_blink_led_generic
;
306 mac
->has_fwsm
= true;
308 * ARC supported; valid only if manageability features are
311 mac
->arc_subsystem_valid
=
312 (er32(FWSM
) & E1000_FWSM_MODE_MASK
)
317 func
->set_lan_id
= e1000_set_lan_id_single_port
;
318 func
->check_mng_mode
= e1000_check_mng_mode_82574
;
319 func
->led_on
= e1000_led_on_82574
;
322 func
->check_mng_mode
= e1000e_check_mng_mode_generic
;
323 func
->led_on
= e1000e_led_on_generic
;
324 func
->blink_led
= e1000e_blink_led_generic
;
327 mac
->has_fwsm
= true;
332 * Ensure that the inter-port SWSM.SMBI lock bit is clear before
333 * first NVM or PHY access. This should be done for single-port
334 * devices, and for one port only on dual-port devices so that
335 * for those devices we can still use the SMBI lock to synchronize
336 * inter-port accesses to the PHY & NVM.
338 switch (hw
->mac
.type
) {
343 if (!(swsm2
& E1000_SWSM2_LOCK
)) {
344 /* Only do this for the first interface on this card */
346 swsm2
| E1000_SWSM2_LOCK
);
347 force_clear_smbi
= true;
349 force_clear_smbi
= false;
352 force_clear_smbi
= true;
356 if (force_clear_smbi
) {
357 /* Make sure SWSM.SMBI is clear */
359 if (swsm
& E1000_SWSM_SMBI
) {
360 /* This bit should not be set on a first interface, and
361 * indicates that the bootagent or EFI code has
362 * improperly left this bit enabled
364 e_dbg("Please update your 82571 Bootagent\n");
366 ew32(SWSM
, swsm
& ~E1000_SWSM_SMBI
);
370 * Initialize device specific counter of SMBI acquisition
373 hw
->dev_spec
.e82571
.smb_counter
= 0;
378 static s32
e1000_get_variants_82571(struct e1000_adapter
*adapter
)
380 struct e1000_hw
*hw
= &adapter
->hw
;
381 static int global_quad_port_a
; /* global port a indication */
382 struct pci_dev
*pdev
= adapter
->pdev
;
383 int is_port_b
= er32(STATUS
) & E1000_STATUS_FUNC_1
;
386 rc
= e1000_init_mac_params_82571(adapter
);
390 rc
= e1000_init_nvm_params_82571(hw
);
394 rc
= e1000_init_phy_params_82571(hw
);
398 /* tag quad port adapters first, it's used below */
399 switch (pdev
->device
) {
400 case E1000_DEV_ID_82571EB_QUAD_COPPER
:
401 case E1000_DEV_ID_82571EB_QUAD_FIBER
:
402 case E1000_DEV_ID_82571EB_QUAD_COPPER_LP
:
403 case E1000_DEV_ID_82571PT_QUAD_COPPER
:
404 adapter
->flags
|= FLAG_IS_QUAD_PORT
;
405 /* mark the first port */
406 if (global_quad_port_a
== 0)
407 adapter
->flags
|= FLAG_IS_QUAD_PORT_A
;
408 /* Reset for multiple quad port adapters */
409 global_quad_port_a
++;
410 if (global_quad_port_a
== 4)
411 global_quad_port_a
= 0;
417 switch (adapter
->hw
.mac
.type
) {
419 /* these dual ports don't have WoL on port B at all */
420 if (((pdev
->device
== E1000_DEV_ID_82571EB_FIBER
) ||
421 (pdev
->device
== E1000_DEV_ID_82571EB_SERDES
) ||
422 (pdev
->device
== E1000_DEV_ID_82571EB_COPPER
)) &&
424 adapter
->flags
&= ~FLAG_HAS_WOL
;
425 /* quad ports only support WoL on port A */
426 if (adapter
->flags
& FLAG_IS_QUAD_PORT
&&
427 (!(adapter
->flags
& FLAG_IS_QUAD_PORT_A
)))
428 adapter
->flags
&= ~FLAG_HAS_WOL
;
429 /* Does not support WoL on any port */
430 if (pdev
->device
== E1000_DEV_ID_82571EB_SERDES_QUAD
)
431 adapter
->flags
&= ~FLAG_HAS_WOL
;
434 if (pdev
->device
== E1000_DEV_ID_82573L
) {
435 adapter
->flags
|= FLAG_HAS_JUMBO_FRAMES
;
436 adapter
->max_hw_frame_size
= DEFAULT_JUMBO
;
447 * e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
448 * @hw: pointer to the HW structure
450 * Reads the PHY registers and stores the PHY ID and possibly the PHY
451 * revision in the hardware structure.
453 static s32
e1000_get_phy_id_82571(struct e1000_hw
*hw
)
455 struct e1000_phy_info
*phy
= &hw
->phy
;
459 switch (hw
->mac
.type
) {
463 * The 82571 firmware may still be configuring the PHY.
464 * In this case, we cannot access the PHY until the
465 * configuration is done. So we explicitly set the
468 phy
->id
= IGP01E1000_I_PHY_ID
;
471 return e1000e_get_phy_id(hw
);
475 ret_val
= e1e_rphy(hw
, PHY_ID1
, &phy_id
);
479 phy
->id
= (u32
)(phy_id
<< 16);
481 ret_val
= e1e_rphy(hw
, PHY_ID2
, &phy_id
);
485 phy
->id
|= (u32
)(phy_id
);
486 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
489 return -E1000_ERR_PHY
;
497 * e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
498 * @hw: pointer to the HW structure
500 * Acquire the HW semaphore to access the PHY or NVM
502 static s32
e1000_get_hw_semaphore_82571(struct e1000_hw
*hw
)
505 s32 sw_timeout
= hw
->nvm
.word_size
+ 1;
506 s32 fw_timeout
= hw
->nvm
.word_size
+ 1;
510 * If we have timedout 3 times on trying to acquire
511 * the inter-port SMBI semaphore, there is old code
512 * operating on the other port, and it is not
513 * releasing SMBI. Modify the number of times that
514 * we try for the semaphore to interwork with this
517 if (hw
->dev_spec
.e82571
.smb_counter
> 2)
520 /* Get the SW semaphore */
521 while (i
< sw_timeout
) {
523 if (!(swsm
& E1000_SWSM_SMBI
))
530 if (i
== sw_timeout
) {
531 e_dbg("Driver can't access device - SMBI bit is set.\n");
532 hw
->dev_spec
.e82571
.smb_counter
++;
534 /* Get the FW semaphore. */
535 for (i
= 0; i
< fw_timeout
; i
++) {
537 ew32(SWSM
, swsm
| E1000_SWSM_SWESMBI
);
539 /* Semaphore acquired if bit latched */
540 if (er32(SWSM
) & E1000_SWSM_SWESMBI
)
546 if (i
== fw_timeout
) {
547 /* Release semaphores */
548 e1000_put_hw_semaphore_82571(hw
);
549 e_dbg("Driver can't access the NVM\n");
550 return -E1000_ERR_NVM
;
557 * e1000_put_hw_semaphore_82571 - Release hardware semaphore
558 * @hw: pointer to the HW structure
560 * Release hardware semaphore used to access the PHY or NVM
562 static void e1000_put_hw_semaphore_82571(struct e1000_hw
*hw
)
567 swsm
&= ~(E1000_SWSM_SMBI
| E1000_SWSM_SWESMBI
);
571 * e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
572 * @hw: pointer to the HW structure
574 * Acquire the HW semaphore during reset.
577 static s32
e1000_get_hw_semaphore_82573(struct e1000_hw
*hw
)
583 extcnf_ctrl
= er32(EXTCNF_CTRL
);
584 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
586 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
587 extcnf_ctrl
= er32(EXTCNF_CTRL
);
589 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
)
592 extcnf_ctrl
|= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
594 usleep_range(2000, 4000);
596 } while (i
< MDIO_OWNERSHIP_TIMEOUT
);
598 if (i
== MDIO_OWNERSHIP_TIMEOUT
) {
599 /* Release semaphores */
600 e1000_put_hw_semaphore_82573(hw
);
601 e_dbg("Driver can't access the PHY\n");
602 ret_val
= -E1000_ERR_PHY
;
611 * e1000_put_hw_semaphore_82573 - Release hardware semaphore
612 * @hw: pointer to the HW structure
614 * Release hardware semaphore used during reset.
617 static void e1000_put_hw_semaphore_82573(struct e1000_hw
*hw
)
621 extcnf_ctrl
= er32(EXTCNF_CTRL
);
622 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP
;
623 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
626 static DEFINE_MUTEX(swflag_mutex
);
629 * e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
630 * @hw: pointer to the HW structure
632 * Acquire the HW semaphore to access the PHY or NVM.
635 static s32
e1000_get_hw_semaphore_82574(struct e1000_hw
*hw
)
639 mutex_lock(&swflag_mutex
);
640 ret_val
= e1000_get_hw_semaphore_82573(hw
);
642 mutex_unlock(&swflag_mutex
);
647 * e1000_put_hw_semaphore_82574 - Release hardware semaphore
648 * @hw: pointer to the HW structure
650 * Release hardware semaphore used to access the PHY or NVM
653 static void e1000_put_hw_semaphore_82574(struct e1000_hw
*hw
)
655 e1000_put_hw_semaphore_82573(hw
);
656 mutex_unlock(&swflag_mutex
);
660 * e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
661 * @hw: pointer to the HW structure
662 * @active: true to enable LPLU, false to disable
664 * Sets the LPLU D0 state according to the active flag.
665 * LPLU will not be activated unless the
666 * device autonegotiation advertisement meets standards of
667 * either 10 or 10/100 or 10/100/1000 at all duplexes.
668 * This is a function pointer entry point only called by
669 * PHY setup routines.
671 static s32
e1000_set_d0_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
673 u16 data
= er32(POEMB
);
676 data
|= E1000_PHY_CTRL_D0A_LPLU
;
678 data
&= ~E1000_PHY_CTRL_D0A_LPLU
;
685 * e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
686 * @hw: pointer to the HW structure
687 * @active: boolean used to enable/disable lplu
689 * The low power link up (lplu) state is set to the power management level D3
690 * when active is true, else clear lplu for D3. LPLU
691 * is used during Dx states where the power conservation is most important.
692 * During driver activity, SmartSpeed should be enabled so performance is
695 static s32
e1000_set_d3_lplu_state_82574(struct e1000_hw
*hw
, bool active
)
697 u16 data
= er32(POEMB
);
700 data
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
701 } else if ((hw
->phy
.autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
702 (hw
->phy
.autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
703 (hw
->phy
.autoneg_advertised
== E1000_ALL_10_SPEED
)) {
704 data
|= E1000_PHY_CTRL_NOND0A_LPLU
;
712 * e1000_acquire_nvm_82571 - Request for access to the EEPROM
713 * @hw: pointer to the HW structure
715 * To gain access to the EEPROM, first we must obtain a hardware semaphore.
716 * Then for non-82573 hardware, set the EEPROM access request bit and wait
717 * for EEPROM access grant bit. If the access grant bit is not set, release
718 * hardware semaphore.
720 static s32
e1000_acquire_nvm_82571(struct e1000_hw
*hw
)
724 ret_val
= e1000_get_hw_semaphore_82571(hw
);
728 switch (hw
->mac
.type
) {
732 ret_val
= e1000e_acquire_nvm(hw
);
737 e1000_put_hw_semaphore_82571(hw
);
743 * e1000_release_nvm_82571 - Release exclusive access to EEPROM
744 * @hw: pointer to the HW structure
746 * Stop any current commands to the EEPROM and clear the EEPROM request bit.
748 static void e1000_release_nvm_82571(struct e1000_hw
*hw
)
750 e1000e_release_nvm(hw
);
751 e1000_put_hw_semaphore_82571(hw
);
755 * e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
756 * @hw: pointer to the HW structure
757 * @offset: offset within the EEPROM to be written to
758 * @words: number of words to write
759 * @data: 16 bit word(s) to be written to the EEPROM
761 * For non-82573 silicon, write data to EEPROM at offset using SPI interface.
763 * If e1000e_update_nvm_checksum is not called after this function, the
764 * EEPROM will most likely contain an invalid checksum.
766 static s32
e1000_write_nvm_82571(struct e1000_hw
*hw
, u16 offset
, u16 words
,
771 switch (hw
->mac
.type
) {
775 ret_val
= e1000_write_nvm_eewr_82571(hw
, offset
, words
, data
);
779 ret_val
= e1000e_write_nvm_spi(hw
, offset
, words
, data
);
782 ret_val
= -E1000_ERR_NVM
;
790 * e1000_update_nvm_checksum_82571 - Update EEPROM checksum
791 * @hw: pointer to the HW structure
793 * Updates the EEPROM checksum by reading/adding each word of the EEPROM
794 * up to the checksum. Then calculates the EEPROM checksum and writes the
795 * value to the EEPROM.
797 static s32
e1000_update_nvm_checksum_82571(struct e1000_hw
*hw
)
803 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
808 * If our nvm is an EEPROM, then we're done
809 * otherwise, commit the checksum to the flash NVM.
811 if (hw
->nvm
.type
!= e1000_nvm_flash_hw
)
814 /* Check for pending operations. */
815 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
816 usleep_range(1000, 2000);
817 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
821 if (i
== E1000_FLASH_UPDATES
)
822 return -E1000_ERR_NVM
;
824 /* Reset the firmware if using STM opcode. */
825 if ((er32(FLOP
) & 0xFF00) == E1000_STM_OPCODE
) {
827 * The enabling of and the actual reset must be done
828 * in two write cycles.
830 ew32(HICR
, E1000_HICR_FW_RESET_ENABLE
);
832 ew32(HICR
, E1000_HICR_FW_RESET
);
835 /* Commit the write to flash */
836 eecd
= er32(EECD
) | E1000_EECD_FLUPD
;
839 for (i
= 0; i
< E1000_FLASH_UPDATES
; i
++) {
840 usleep_range(1000, 2000);
841 if ((er32(EECD
) & E1000_EECD_FLUPD
) == 0)
845 if (i
== E1000_FLASH_UPDATES
)
846 return -E1000_ERR_NVM
;
852 * e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
853 * @hw: pointer to the HW structure
855 * Calculates the EEPROM checksum by reading/adding each word of the EEPROM
856 * and then verifies that the sum of the EEPROM is equal to 0xBABA.
858 static s32
e1000_validate_nvm_checksum_82571(struct e1000_hw
*hw
)
860 if (hw
->nvm
.type
== e1000_nvm_flash_hw
)
861 e1000_fix_nvm_checksum_82571(hw
);
863 return e1000e_validate_nvm_checksum_generic(hw
);
867 * e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
868 * @hw: pointer to the HW structure
869 * @offset: offset within the EEPROM to be written to
870 * @words: number of words to write
871 * @data: 16 bit word(s) to be written to the EEPROM
873 * After checking for invalid values, poll the EEPROM to ensure the previous
874 * command has completed before trying to write the next word. After write
875 * poll for completion.
877 * If e1000e_update_nvm_checksum is not called after this function, the
878 * EEPROM will most likely contain an invalid checksum.
880 static s32
e1000_write_nvm_eewr_82571(struct e1000_hw
*hw
, u16 offset
,
881 u16 words
, u16
*data
)
883 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
888 * A check for invalid values: offset too large, too many words,
889 * and not enough words.
891 if ((offset
>= nvm
->word_size
) || (words
> (nvm
->word_size
- offset
)) ||
893 e_dbg("nvm parameter(s) out of bounds\n");
894 return -E1000_ERR_NVM
;
897 for (i
= 0; i
< words
; i
++) {
898 eewr
= (data
[i
] << E1000_NVM_RW_REG_DATA
) |
899 ((offset
+i
) << E1000_NVM_RW_ADDR_SHIFT
) |
900 E1000_NVM_RW_REG_START
;
902 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
908 ret_val
= e1000e_poll_eerd_eewr_done(hw
, E1000_NVM_POLL_WRITE
);
917 * e1000_get_cfg_done_82571 - Poll for configuration done
918 * @hw: pointer to the HW structure
920 * Reads the management control register for the config done bit to be set.
922 static s32
e1000_get_cfg_done_82571(struct e1000_hw
*hw
)
924 s32 timeout
= PHY_CFG_TIMEOUT
;
928 E1000_NVM_CFG_DONE_PORT_0
)
930 usleep_range(1000, 2000);
934 e_dbg("MNG configuration cycle has not completed.\n");
935 return -E1000_ERR_RESET
;
942 * e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
943 * @hw: pointer to the HW structure
944 * @active: true to enable LPLU, false to disable
946 * Sets the LPLU D0 state according to the active flag. When activating LPLU
947 * this function also disables smart speed and vice versa. LPLU will not be
948 * activated unless the device autonegotiation advertisement meets standards
949 * of either 10 or 10/100 or 10/100/1000 at all duplexes. This is a function
950 * pointer entry point only called by PHY setup routines.
952 static s32
e1000_set_d0_lplu_state_82571(struct e1000_hw
*hw
, bool active
)
954 struct e1000_phy_info
*phy
= &hw
->phy
;
958 ret_val
= e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
963 data
|= IGP02E1000_PM_D0_LPLU
;
964 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
968 /* When LPLU is enabled, we should disable SmartSpeed */
969 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
970 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
971 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
975 data
&= ~IGP02E1000_PM_D0_LPLU
;
976 ret_val
= e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, data
);
978 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
979 * during Dx states where the power conservation is most
980 * important. During driver activity we should enable
981 * SmartSpeed, so performance is maintained.
983 if (phy
->smart_speed
== e1000_smart_speed_on
) {
984 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
989 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
990 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
994 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
995 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1000 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1001 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1012 * e1000_reset_hw_82571 - Reset hardware
1013 * @hw: pointer to the HW structure
1015 * This resets the hardware into a known state.
1017 static s32
e1000_reset_hw_82571(struct e1000_hw
*hw
)
1023 * Prevent the PCI-E bus from sticking if there is no TLP connection
1024 * on the last TLP read/write transaction when MAC is reset.
1026 ret_val
= e1000e_disable_pcie_master(hw
);
1028 e_dbg("PCI-E Master disable polling has failed.\n");
1030 e_dbg("Masking off all interrupts\n");
1031 ew32(IMC
, 0xffffffff);
1034 ew32(TCTL
, E1000_TCTL_PSP
);
1037 usleep_range(10000, 20000);
1040 * Must acquire the MDIO ownership before MAC reset.
1041 * Ownership defaults to firmware after a reset.
1043 switch (hw
->mac
.type
) {
1045 ret_val
= e1000_get_hw_semaphore_82573(hw
);
1049 ret_val
= e1000_get_hw_semaphore_82574(hw
);
1055 e_dbg("Cannot acquire MDIO ownership\n");
1059 e_dbg("Issuing a global reset to MAC\n");
1060 ew32(CTRL
, ctrl
| E1000_CTRL_RST
);
1062 /* Must release MDIO ownership and mutex after MAC reset. */
1063 switch (hw
->mac
.type
) {
1066 e1000_put_hw_semaphore_82574(hw
);
1072 if (hw
->nvm
.type
== e1000_nvm_flash_hw
) {
1074 ctrl_ext
= er32(CTRL_EXT
);
1075 ctrl_ext
|= E1000_CTRL_EXT_EE_RST
;
1076 ew32(CTRL_EXT
, ctrl_ext
);
1080 ret_val
= e1000e_get_auto_rd_done(hw
);
1082 /* We don't want to continue accessing MAC registers. */
1086 * Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1087 * Need to wait for Phy configuration completion before accessing
1091 switch (hw
->mac
.type
) {
1101 /* Clear any pending interrupt events. */
1102 ew32(IMC
, 0xffffffff);
1105 if (hw
->mac
.type
== e1000_82571
) {
1106 /* Install any alternate MAC address into RAR0 */
1107 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1111 e1000e_set_laa_state_82571(hw
, true);
1114 /* Reinitialize the 82571 serdes link state machine */
1115 if (hw
->phy
.media_type
== e1000_media_type_internal_serdes
)
1116 hw
->mac
.serdes_link_state
= e1000_serdes_link_down
;
1122 * e1000_init_hw_82571 - Initialize hardware
1123 * @hw: pointer to the HW structure
1125 * This inits the hardware readying it for operation.
1127 static s32
e1000_init_hw_82571(struct e1000_hw
*hw
)
1129 struct e1000_mac_info
*mac
= &hw
->mac
;
1132 u16 i
, rar_count
= mac
->rar_entry_count
;
1134 e1000_initialize_hw_bits_82571(hw
);
1136 /* Initialize identification LED */
1137 ret_val
= e1000e_id_led_init(hw
);
1139 e_dbg("Error initializing identification LED\n");
1140 /* This is not fatal and we should not stop init due to this */
1142 /* Disabling VLAN filtering */
1143 e_dbg("Initializing the IEEE VLAN\n");
1144 mac
->ops
.clear_vfta(hw
);
1146 /* Setup the receive address. */
1148 * If, however, a locally administered address was assigned to the
1149 * 82571, we must reserve a RAR for it to work around an issue where
1150 * resetting one port will reload the MAC on the other port.
1152 if (e1000e_get_laa_state_82571(hw
))
1154 e1000e_init_rx_addrs(hw
, rar_count
);
1156 /* Zero out the Multicast HASH table */
1157 e_dbg("Zeroing the MTA\n");
1158 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
1159 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
1161 /* Setup link and flow control */
1162 ret_val
= e1000_setup_link_82571(hw
);
1164 /* Set the transmit descriptor write-back policy */
1165 reg_data
= er32(TXDCTL(0));
1166 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1167 E1000_TXDCTL_FULL_TX_DESC_WB
|
1168 E1000_TXDCTL_COUNT_DESC
;
1169 ew32(TXDCTL(0), reg_data
);
1171 /* ...for both queues. */
1172 switch (mac
->type
) {
1174 e1000e_enable_tx_pkt_filtering(hw
);
1178 reg_data
= er32(GCR
);
1179 reg_data
|= E1000_GCR_L1_ACT_WITHOUT_L0S_RX
;
1180 ew32(GCR
, reg_data
);
1183 reg_data
= er32(TXDCTL(1));
1184 reg_data
= (reg_data
& ~E1000_TXDCTL_WTHRESH
) |
1185 E1000_TXDCTL_FULL_TX_DESC_WB
|
1186 E1000_TXDCTL_COUNT_DESC
;
1187 ew32(TXDCTL(1), reg_data
);
1192 * Clear all of the statistics registers (clear on read). It is
1193 * important that we do this after we have tried to establish link
1194 * because the symbol error count will increment wildly if there
1197 e1000_clear_hw_cntrs_82571(hw
);
1203 * e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1204 * @hw: pointer to the HW structure
1206 * Initializes required hardware-dependent bits needed for normal operation.
1208 static void e1000_initialize_hw_bits_82571(struct e1000_hw
*hw
)
1212 /* Transmit Descriptor Control 0 */
1213 reg
= er32(TXDCTL(0));
1215 ew32(TXDCTL(0), reg
);
1217 /* Transmit Descriptor Control 1 */
1218 reg
= er32(TXDCTL(1));
1220 ew32(TXDCTL(1), reg
);
1222 /* Transmit Arbitration Control 0 */
1223 reg
= er32(TARC(0));
1224 reg
&= ~(0xF << 27); /* 30:27 */
1225 switch (hw
->mac
.type
) {
1228 reg
|= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1235 /* Transmit Arbitration Control 1 */
1236 reg
= er32(TARC(1));
1237 switch (hw
->mac
.type
) {
1240 reg
&= ~((1 << 29) | (1 << 30));
1241 reg
|= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1242 if (er32(TCTL
) & E1000_TCTL_MULR
)
1252 /* Device Control */
1253 switch (hw
->mac
.type
) {
1265 /* Extended Device Control */
1266 switch (hw
->mac
.type
) {
1270 reg
= er32(CTRL_EXT
);
1273 ew32(CTRL_EXT
, reg
);
1279 if (hw
->mac
.type
== e1000_82571
) {
1280 reg
= er32(PBA_ECC
);
1281 reg
|= E1000_PBA_ECC_CORR_EN
;
1285 * Workaround for hardware errata.
1286 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1289 if ((hw
->mac
.type
== e1000_82571
) ||
1290 (hw
->mac
.type
== e1000_82572
)) {
1291 reg
= er32(CTRL_EXT
);
1292 reg
&= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN
;
1293 ew32(CTRL_EXT
, reg
);
1297 /* PCI-Ex Control Registers */
1298 switch (hw
->mac
.type
) {
1306 * Workaround for hardware errata.
1307 * apply workaround for hardware errata documented in errata
1308 * docs Fixes issue where some error prone or unreliable PCIe
1309 * completions are occurring, particularly with ASPM enabled.
1310 * Without fix, issue can cause Tx timeouts.
1322 * e1000_clear_vfta_82571 - Clear VLAN filter table
1323 * @hw: pointer to the HW structure
1325 * Clears the register array which contains the VLAN filter table by
1326 * setting all the values to 0.
1328 static void e1000_clear_vfta_82571(struct e1000_hw
*hw
)
1332 u32 vfta_offset
= 0;
1333 u32 vfta_bit_in_reg
= 0;
1335 switch (hw
->mac
.type
) {
1339 if (hw
->mng_cookie
.vlan_id
!= 0) {
1341 * The VFTA is a 4096b bit-field, each identifying
1342 * a single VLAN ID. The following operations
1343 * determine which 32b entry (i.e. offset) into the
1344 * array we want to set the VLAN ID (i.e. bit) of
1345 * the manageability unit.
1347 vfta_offset
= (hw
->mng_cookie
.vlan_id
>>
1348 E1000_VFTA_ENTRY_SHIFT
) &
1349 E1000_VFTA_ENTRY_MASK
;
1350 vfta_bit_in_reg
= 1 << (hw
->mng_cookie
.vlan_id
&
1351 E1000_VFTA_ENTRY_BIT_SHIFT_MASK
);
1357 for (offset
= 0; offset
< E1000_VLAN_FILTER_TBL_SIZE
; offset
++) {
1359 * If the offset we want to clear is the same offset of the
1360 * manageability VLAN ID, then clear all bits except that of
1361 * the manageability unit.
1363 vfta_value
= (offset
== vfta_offset
) ? vfta_bit_in_reg
: 0;
1364 E1000_WRITE_REG_ARRAY(hw
, E1000_VFTA
, offset
, vfta_value
);
1370 * e1000_check_mng_mode_82574 - Check manageability is enabled
1371 * @hw: pointer to the HW structure
1373 * Reads the NVM Initialization Control Word 2 and returns true
1374 * (>0) if any manageability is enabled, else false (0).
1376 static bool e1000_check_mng_mode_82574(struct e1000_hw
*hw
)
1380 e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &data
);
1381 return (data
& E1000_NVM_INIT_CTRL2_MNGM
) != 0;
1385 * e1000_led_on_82574 - Turn LED on
1386 * @hw: pointer to the HW structure
1390 static s32
e1000_led_on_82574(struct e1000_hw
*hw
)
1395 ctrl
= hw
->mac
.ledctl_mode2
;
1396 if (!(E1000_STATUS_LU
& er32(STATUS
))) {
1398 * If no link, then turn LED on by setting the invert bit
1399 * for each LED that's "on" (0x0E) in ledctl_mode2.
1401 for (i
= 0; i
< 4; i
++)
1402 if (((hw
->mac
.ledctl_mode2
>> (i
* 8)) & 0xFF) ==
1403 E1000_LEDCTL_MODE_LED_ON
)
1404 ctrl
|= (E1000_LEDCTL_LED0_IVRT
<< (i
* 8));
1412 * e1000_check_phy_82574 - check 82574 phy hung state
1413 * @hw: pointer to the HW structure
1415 * Returns whether phy is hung or not
1417 bool e1000_check_phy_82574(struct e1000_hw
*hw
)
1419 u16 status_1kbt
= 0;
1420 u16 receive_errors
= 0;
1421 bool phy_hung
= false;
1425 * Read PHY Receive Error counter first, if its is max - all F's then
1426 * read the Base1000T status register If both are max then PHY is hung.
1428 ret_val
= e1e_rphy(hw
, E1000_RECEIVE_ERROR_COUNTER
, &receive_errors
);
1432 if (receive_errors
== E1000_RECEIVE_ERROR_MAX
) {
1433 ret_val
= e1e_rphy(hw
, E1000_BASE1000T_STATUS
, &status_1kbt
);
1436 if ((status_1kbt
& E1000_IDLE_ERROR_COUNT_MASK
) ==
1437 E1000_IDLE_ERROR_COUNT_MASK
)
1445 * e1000_setup_link_82571 - Setup flow control and link settings
1446 * @hw: pointer to the HW structure
1448 * Determines which flow control settings to use, then configures flow
1449 * control. Calls the appropriate media-specific link configuration
1450 * function. Assuming the adapter has a valid link partner, a valid link
1451 * should be established. Assumes the hardware has previously been reset
1452 * and the transmitter and receiver are not enabled.
1454 static s32
e1000_setup_link_82571(struct e1000_hw
*hw
)
1457 * 82573 does not have a word in the NVM to determine
1458 * the default flow control setting, so we explicitly
1461 switch (hw
->mac
.type
) {
1465 if (hw
->fc
.requested_mode
== e1000_fc_default
)
1466 hw
->fc
.requested_mode
= e1000_fc_full
;
1472 return e1000e_setup_link(hw
);
1476 * e1000_setup_copper_link_82571 - Configure copper link settings
1477 * @hw: pointer to the HW structure
1479 * Configures the link for auto-neg or forced speed and duplex. Then we check
1480 * for link, once link is established calls to configure collision distance
1481 * and flow control are called.
1483 static s32
e1000_setup_copper_link_82571(struct e1000_hw
*hw
)
1489 ctrl
|= E1000_CTRL_SLU
;
1490 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1493 switch (hw
->phy
.type
) {
1496 ret_val
= e1000e_copper_link_setup_m88(hw
);
1498 case e1000_phy_igp_2
:
1499 ret_val
= e1000e_copper_link_setup_igp(hw
);
1502 return -E1000_ERR_PHY
;
1509 ret_val
= e1000e_setup_copper_link(hw
);
1515 * e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1516 * @hw: pointer to the HW structure
1518 * Configures collision distance and flow control for fiber and serdes links.
1519 * Upon successful setup, poll for link.
1521 static s32
e1000_setup_fiber_serdes_link_82571(struct e1000_hw
*hw
)
1523 switch (hw
->mac
.type
) {
1527 * If SerDes loopback mode is entered, there is no form
1528 * of reset to take the adapter out of that mode. So we
1529 * have to explicitly take the adapter out of loopback
1530 * mode. This prevents drivers from twiddling their thumbs
1531 * if another tool failed to take it out of loopback mode.
1533 ew32(SCTL
, E1000_SCTL_DISABLE_SERDES_LOOPBACK
);
1539 return e1000e_setup_fiber_serdes_link(hw
);
1543 * e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1544 * @hw: pointer to the HW structure
1546 * Reports the link state as up or down.
1548 * If autonegotiation is supported by the link partner, the link state is
1549 * determined by the result of autonegotiation. This is the most likely case.
1550 * If autonegotiation is not supported by the link partner, and the link
1551 * has a valid signal, force the link up.
1553 * The link state is represented internally here by 4 states:
1556 * 2) autoneg_progress
1557 * 3) autoneg_complete (the link successfully autonegotiated)
1558 * 4) forced_up (the link has been forced up, it did not autonegotiate)
1561 static s32
e1000_check_for_serdes_link_82571(struct e1000_hw
*hw
)
1563 struct e1000_mac_info
*mac
= &hw
->mac
;
1572 status
= er32(STATUS
);
1575 if ((rxcw
& E1000_RXCW_SYNCH
) && !(rxcw
& E1000_RXCW_IV
)) {
1577 /* Receiver is synchronized with no invalid bits. */
1578 switch (mac
->serdes_link_state
) {
1579 case e1000_serdes_link_autoneg_complete
:
1580 if (!(status
& E1000_STATUS_LU
)) {
1582 * We have lost link, retry autoneg before
1583 * reporting link failure
1585 mac
->serdes_link_state
=
1586 e1000_serdes_link_autoneg_progress
;
1587 mac
->serdes_has_link
= false;
1588 e_dbg("AN_UP -> AN_PROG\n");
1590 mac
->serdes_has_link
= true;
1594 case e1000_serdes_link_forced_up
:
1596 * If we are receiving /C/ ordered sets, re-enable
1597 * auto-negotiation in the TXCW register and disable
1598 * forced link in the Device Control register in an
1599 * attempt to auto-negotiate with our link partner.
1600 * If the partner code word is null, stop forcing
1601 * and restart auto negotiation.
1603 if ((rxcw
& E1000_RXCW_C
) || !(rxcw
& E1000_RXCW_CW
)) {
1604 /* Enable autoneg, and unforce link up */
1605 ew32(TXCW
, mac
->txcw
);
1606 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1607 mac
->serdes_link_state
=
1608 e1000_serdes_link_autoneg_progress
;
1609 mac
->serdes_has_link
= false;
1610 e_dbg("FORCED_UP -> AN_PROG\n");
1612 mac
->serdes_has_link
= true;
1616 case e1000_serdes_link_autoneg_progress
:
1617 if (rxcw
& E1000_RXCW_C
) {
1619 * We received /C/ ordered sets, meaning the
1620 * link partner has autonegotiated, and we can
1621 * trust the Link Up (LU) status bit.
1623 if (status
& E1000_STATUS_LU
) {
1624 mac
->serdes_link_state
=
1625 e1000_serdes_link_autoneg_complete
;
1626 e_dbg("AN_PROG -> AN_UP\n");
1627 mac
->serdes_has_link
= true;
1629 /* Autoneg completed, but failed. */
1630 mac
->serdes_link_state
=
1631 e1000_serdes_link_down
;
1632 e_dbg("AN_PROG -> DOWN\n");
1636 * The link partner did not autoneg.
1637 * Force link up and full duplex, and change
1640 ew32(TXCW
, (mac
->txcw
& ~E1000_TXCW_ANE
));
1641 ctrl
|= (E1000_CTRL_SLU
| E1000_CTRL_FD
);
1644 /* Configure Flow Control after link up. */
1645 ret_val
= e1000e_config_fc_after_link_up(hw
);
1647 e_dbg("Error config flow control\n");
1650 mac
->serdes_link_state
=
1651 e1000_serdes_link_forced_up
;
1652 mac
->serdes_has_link
= true;
1653 e_dbg("AN_PROG -> FORCED_UP\n");
1657 case e1000_serdes_link_down
:
1660 * The link was down but the receiver has now gained
1661 * valid sync, so lets see if we can bring the link
1664 ew32(TXCW
, mac
->txcw
);
1665 ew32(CTRL
, (ctrl
& ~E1000_CTRL_SLU
));
1666 mac
->serdes_link_state
=
1667 e1000_serdes_link_autoneg_progress
;
1668 mac
->serdes_has_link
= false;
1669 e_dbg("DOWN -> AN_PROG\n");
1673 if (!(rxcw
& E1000_RXCW_SYNCH
)) {
1674 mac
->serdes_has_link
= false;
1675 mac
->serdes_link_state
= e1000_serdes_link_down
;
1676 e_dbg("ANYSTATE -> DOWN\n");
1679 * Check several times, if Sync and Config
1680 * both are consistently 1 then simply ignore
1681 * the Invalid bit and restart Autoneg
1683 for (i
= 0; i
< AN_RETRY_COUNT
; i
++) {
1686 if ((rxcw
& E1000_RXCW_IV
) &&
1687 !((rxcw
& E1000_RXCW_SYNCH
) &&
1688 (rxcw
& E1000_RXCW_C
))) {
1689 mac
->serdes_has_link
= false;
1690 mac
->serdes_link_state
=
1691 e1000_serdes_link_down
;
1692 e_dbg("ANYSTATE -> DOWN\n");
1697 if (i
== AN_RETRY_COUNT
) {
1699 txcw
|= E1000_TXCW_ANE
;
1701 mac
->serdes_link_state
=
1702 e1000_serdes_link_autoneg_progress
;
1703 mac
->serdes_has_link
= false;
1704 e_dbg("ANYSTATE -> AN_PROG\n");
1713 * e1000_valid_led_default_82571 - Verify a valid default LED config
1714 * @hw: pointer to the HW structure
1715 * @data: pointer to the NVM (EEPROM)
1717 * Read the EEPROM for the current default LED configuration. If the
1718 * LED configuration is not valid, set to a valid LED configuration.
1720 static s32
e1000_valid_led_default_82571(struct e1000_hw
*hw
, u16
*data
)
1724 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
1726 e_dbg("NVM Read Error\n");
1730 switch (hw
->mac
.type
) {
1734 if (*data
== ID_LED_RESERVED_F746
)
1735 *data
= ID_LED_DEFAULT_82573
;
1738 if (*data
== ID_LED_RESERVED_0000
||
1739 *data
== ID_LED_RESERVED_FFFF
)
1740 *data
= ID_LED_DEFAULT
;
1748 * e1000e_get_laa_state_82571 - Get locally administered address state
1749 * @hw: pointer to the HW structure
1751 * Retrieve and return the current locally administered address state.
1753 bool e1000e_get_laa_state_82571(struct e1000_hw
*hw
)
1755 if (hw
->mac
.type
!= e1000_82571
)
1758 return hw
->dev_spec
.e82571
.laa_is_present
;
1762 * e1000e_set_laa_state_82571 - Set locally administered address state
1763 * @hw: pointer to the HW structure
1764 * @state: enable/disable locally administered address
1766 * Enable/Disable the current locally administered address state.
1768 void e1000e_set_laa_state_82571(struct e1000_hw
*hw
, bool state
)
1770 if (hw
->mac
.type
!= e1000_82571
)
1773 hw
->dev_spec
.e82571
.laa_is_present
= state
;
1775 /* If workaround is activated... */
1778 * Hold a copy of the LAA in RAR[14] This is done so that
1779 * between the time RAR[0] gets clobbered and the time it
1780 * gets fixed, the actual LAA is in one of the RARs and no
1781 * incoming packets directed to this port are dropped.
1782 * Eventually the LAA will be in RAR[0] and RAR[14].
1784 e1000e_rar_set(hw
, hw
->mac
.addr
, hw
->mac
.rar_entry_count
- 1);
1788 * e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1789 * @hw: pointer to the HW structure
1791 * Verifies that the EEPROM has completed the update. After updating the
1792 * EEPROM, we need to check bit 15 in work 0x23 for the checksum fix. If
1793 * the checksum fix is not implemented, we need to set the bit and update
1794 * the checksum. Otherwise, if bit 15 is set and the checksum is incorrect,
1795 * we need to return bad checksum.
1797 static s32
e1000_fix_nvm_checksum_82571(struct e1000_hw
*hw
)
1799 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
1803 if (nvm
->type
!= e1000_nvm_flash_hw
)
1807 * Check bit 4 of word 10h. If it is 0, firmware is done updating
1808 * 10h-12h. Checksum may need to be fixed.
1810 ret_val
= e1000_read_nvm(hw
, 0x10, 1, &data
);
1814 if (!(data
& 0x10)) {
1816 * Read 0x23 and check bit 15. This bit is a 1
1817 * when the checksum has already been fixed. If
1818 * the checksum is still wrong and this bit is a
1819 * 1, we need to return bad checksum. Otherwise,
1820 * we need to set this bit to a 1 and update the
1823 ret_val
= e1000_read_nvm(hw
, 0x23, 1, &data
);
1827 if (!(data
& 0x8000)) {
1829 ret_val
= e1000_write_nvm(hw
, 0x23, 1, &data
);
1832 ret_val
= e1000e_update_nvm_checksum(hw
);
1840 * e1000_read_mac_addr_82571 - Read device MAC address
1841 * @hw: pointer to the HW structure
1843 static s32
e1000_read_mac_addr_82571(struct e1000_hw
*hw
)
1847 if (hw
->mac
.type
== e1000_82571
) {
1849 * If there's an alternate MAC address place it in RAR0
1850 * so that it will override the Si installed default perm
1853 ret_val
= e1000_check_alt_mac_addr_generic(hw
);
1858 ret_val
= e1000_read_mac_addr_generic(hw
);
1865 * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1866 * @hw: pointer to the HW structure
1868 * In the case of a PHY power down to save power, or to turn off link during a
1869 * driver unload, or wake on lan is not enabled, remove the link.
1871 static void e1000_power_down_phy_copper_82571(struct e1000_hw
*hw
)
1873 struct e1000_phy_info
*phy
= &hw
->phy
;
1874 struct e1000_mac_info
*mac
= &hw
->mac
;
1876 if (!(phy
->ops
.check_reset_block
))
1879 /* If the management interface is not enabled, then power down */
1880 if (!(mac
->ops
.check_mng_mode(hw
) || phy
->ops
.check_reset_block(hw
)))
1881 e1000_power_down_phy_copper(hw
);
1885 * e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1886 * @hw: pointer to the HW structure
1888 * Clears the hardware counters by reading the counter registers.
1890 static void e1000_clear_hw_cntrs_82571(struct e1000_hw
*hw
)
1892 e1000e_clear_hw_cntrs_base(hw
);
1930 static const struct e1000_mac_operations e82571_mac_ops
= {
1931 /* .check_mng_mode: mac type dependent */
1932 /* .check_for_link: media type dependent */
1933 .id_led_init
= e1000e_id_led_init
,
1934 .cleanup_led
= e1000e_cleanup_led_generic
,
1935 .clear_hw_cntrs
= e1000_clear_hw_cntrs_82571
,
1936 .get_bus_info
= e1000e_get_bus_info_pcie
,
1937 .set_lan_id
= e1000_set_lan_id_multi_port_pcie
,
1938 /* .get_link_up_info: media type dependent */
1939 /* .led_on: mac type dependent */
1940 .led_off
= e1000e_led_off_generic
,
1941 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
1942 .write_vfta
= e1000_write_vfta_generic
,
1943 .clear_vfta
= e1000_clear_vfta_82571
,
1944 .reset_hw
= e1000_reset_hw_82571
,
1945 .init_hw
= e1000_init_hw_82571
,
1946 .setup_link
= e1000_setup_link_82571
,
1947 /* .setup_physical_interface: media type dependent */
1948 .setup_led
= e1000e_setup_led_generic
,
1949 .read_mac_addr
= e1000_read_mac_addr_82571
,
1952 static const struct e1000_phy_operations e82_phy_ops_igp
= {
1953 .acquire
= e1000_get_hw_semaphore_82571
,
1954 .check_polarity
= e1000_check_polarity_igp
,
1955 .check_reset_block
= e1000e_check_reset_block_generic
,
1957 .force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
,
1958 .get_cfg_done
= e1000_get_cfg_done_82571
,
1959 .get_cable_length
= e1000e_get_cable_length_igp_2
,
1960 .get_info
= e1000e_get_phy_info_igp
,
1961 .read_reg
= e1000e_read_phy_reg_igp
,
1962 .release
= e1000_put_hw_semaphore_82571
,
1963 .reset
= e1000e_phy_hw_reset_generic
,
1964 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1965 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1966 .write_reg
= e1000e_write_phy_reg_igp
,
1967 .cfg_on_link_up
= NULL
,
1970 static const struct e1000_phy_operations e82_phy_ops_m88
= {
1971 .acquire
= e1000_get_hw_semaphore_82571
,
1972 .check_polarity
= e1000_check_polarity_m88
,
1973 .check_reset_block
= e1000e_check_reset_block_generic
,
1974 .commit
= e1000e_phy_sw_reset
,
1975 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1976 .get_cfg_done
= e1000e_get_cfg_done
,
1977 .get_cable_length
= e1000e_get_cable_length_m88
,
1978 .get_info
= e1000e_get_phy_info_m88
,
1979 .read_reg
= e1000e_read_phy_reg_m88
,
1980 .release
= e1000_put_hw_semaphore_82571
,
1981 .reset
= e1000e_phy_hw_reset_generic
,
1982 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
1983 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
1984 .write_reg
= e1000e_write_phy_reg_m88
,
1985 .cfg_on_link_up
= NULL
,
1988 static const struct e1000_phy_operations e82_phy_ops_bm
= {
1989 .acquire
= e1000_get_hw_semaphore_82571
,
1990 .check_polarity
= e1000_check_polarity_m88
,
1991 .check_reset_block
= e1000e_check_reset_block_generic
,
1992 .commit
= e1000e_phy_sw_reset
,
1993 .force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
,
1994 .get_cfg_done
= e1000e_get_cfg_done
,
1995 .get_cable_length
= e1000e_get_cable_length_m88
,
1996 .get_info
= e1000e_get_phy_info_m88
,
1997 .read_reg
= e1000e_read_phy_reg_bm2
,
1998 .release
= e1000_put_hw_semaphore_82571
,
1999 .reset
= e1000e_phy_hw_reset_generic
,
2000 .set_d0_lplu_state
= e1000_set_d0_lplu_state_82571
,
2001 .set_d3_lplu_state
= e1000e_set_d3_lplu_state
,
2002 .write_reg
= e1000e_write_phy_reg_bm2
,
2003 .cfg_on_link_up
= NULL
,
2006 static const struct e1000_nvm_operations e82571_nvm_ops
= {
2007 .acquire
= e1000_acquire_nvm_82571
,
2008 .read
= e1000e_read_nvm_eerd
,
2009 .release
= e1000_release_nvm_82571
,
2010 .update
= e1000_update_nvm_checksum_82571
,
2011 .valid_led_default
= e1000_valid_led_default_82571
,
2012 .validate
= e1000_validate_nvm_checksum_82571
,
2013 .write
= e1000_write_nvm_82571
,
2016 const struct e1000_info e1000_82571_info
= {
2018 .flags
= FLAG_HAS_HW_VLAN_FILTER
2019 | FLAG_HAS_JUMBO_FRAMES
2021 | FLAG_APME_IN_CTRL3
2022 | FLAG_HAS_CTRLEXT_ON_LOAD
2023 | FLAG_HAS_SMART_POWER_DOWN
2024 | FLAG_RESET_OVERWRITES_LAA
/* errata */
2025 | FLAG_TARC_SPEED_MODE_BIT
/* errata */
2026 | FLAG_APME_CHECK_PORT_B
,
2027 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
2030 .max_hw_frame_size
= DEFAULT_JUMBO
,
2031 .get_variants
= e1000_get_variants_82571
,
2032 .mac_ops
= &e82571_mac_ops
,
2033 .phy_ops
= &e82_phy_ops_igp
,
2034 .nvm_ops
= &e82571_nvm_ops
,
2037 const struct e1000_info e1000_82572_info
= {
2039 .flags
= FLAG_HAS_HW_VLAN_FILTER
2040 | FLAG_HAS_JUMBO_FRAMES
2042 | FLAG_APME_IN_CTRL3
2043 | FLAG_HAS_CTRLEXT_ON_LOAD
2044 | FLAG_TARC_SPEED_MODE_BIT
, /* errata */
2045 .flags2
= FLAG2_DISABLE_ASPM_L1
/* errata 13 */
2048 .max_hw_frame_size
= DEFAULT_JUMBO
,
2049 .get_variants
= e1000_get_variants_82571
,
2050 .mac_ops
= &e82571_mac_ops
,
2051 .phy_ops
= &e82_phy_ops_igp
,
2052 .nvm_ops
= &e82571_nvm_ops
,
2055 const struct e1000_info e1000_82573_info
= {
2057 .flags
= FLAG_HAS_HW_VLAN_FILTER
2059 | FLAG_APME_IN_CTRL3
2060 | FLAG_HAS_SMART_POWER_DOWN
2062 | FLAG_HAS_SWSM_ON_LOAD
,
2063 .flags2
= FLAG2_DISABLE_ASPM_L1
2064 | FLAG2_DISABLE_ASPM_L0S
,
2066 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
2067 .get_variants
= e1000_get_variants_82571
,
2068 .mac_ops
= &e82571_mac_ops
,
2069 .phy_ops
= &e82_phy_ops_m88
,
2070 .nvm_ops
= &e82571_nvm_ops
,
2073 const struct e1000_info e1000_82574_info
= {
2075 .flags
= FLAG_HAS_HW_VLAN_FILTER
2077 | FLAG_HAS_JUMBO_FRAMES
2079 | FLAG_APME_IN_CTRL3
2080 | FLAG_HAS_SMART_POWER_DOWN
2082 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2083 .flags2
= FLAG2_CHECK_PHY_HANG
2084 | FLAG2_DISABLE_ASPM_L0S
2085 | FLAG2_NO_DISABLE_RX
,
2087 .max_hw_frame_size
= DEFAULT_JUMBO
,
2088 .get_variants
= e1000_get_variants_82571
,
2089 .mac_ops
= &e82571_mac_ops
,
2090 .phy_ops
= &e82_phy_ops_bm
,
2091 .nvm_ops
= &e82571_nvm_ops
,
2094 const struct e1000_info e1000_82583_info
= {
2096 .flags
= FLAG_HAS_HW_VLAN_FILTER
2098 | FLAG_APME_IN_CTRL3
2099 | FLAG_HAS_SMART_POWER_DOWN
2101 | FLAG_HAS_JUMBO_FRAMES
2102 | FLAG_HAS_CTRLEXT_ON_LOAD
,
2103 .flags2
= FLAG2_DISABLE_ASPM_L0S
2104 | FLAG2_NO_DISABLE_RX
,
2106 .max_hw_frame_size
= DEFAULT_JUMBO
,
2107 .get_variants
= e1000_get_variants_82571
,
2108 .mac_ops
= &e82571_mac_ops
,
2109 .phy_ops
= &e82_phy_ops_bm
,
2110 .nvm_ops
= &e82571_nvm_ops
,