1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * 82562G 10/100 Network Connection
31 * 82562G-2 10/100 Network Connection
32 * 82562GT 10/100 Network Connection
33 * 82562GT-2 10/100 Network Connection
34 * 82562V 10/100 Network Connection
35 * 82562V-2 10/100 Network Connection
36 * 82566DC-2 Gigabit Network Connection
37 * 82566DC Gigabit Network Connection
38 * 82566DM-2 Gigabit Network Connection
39 * 82566DM Gigabit Network Connection
40 * 82566MC Gigabit Network Connection
41 * 82566MM Gigabit Network Connection
42 * 82567LM Gigabit Network Connection
43 * 82567LF Gigabit Network Connection
44 * 82567V Gigabit Network Connection
45 * 82567LM-2 Gigabit Network Connection
46 * 82567LF-2 Gigabit Network Connection
47 * 82567V-2 Gigabit Network Connection
48 * 82567LF-3 Gigabit Network Connection
49 * 82567LM-3 Gigabit Network Connection
50 * 82567LM-4 Gigabit Network Connection
51 * 82577LM Gigabit Network Connection
52 * 82577LC Gigabit Network Connection
53 * 82578DM Gigabit Network Connection
54 * 82578DC Gigabit Network Connection
55 * 82579LM Gigabit Network Connection
56 * 82579V Gigabit Network Connection
61 #define ICH_FLASH_GFPREG 0x0000
62 #define ICH_FLASH_HSFSTS 0x0004
63 #define ICH_FLASH_HSFCTL 0x0006
64 #define ICH_FLASH_FADDR 0x0008
65 #define ICH_FLASH_FDATA0 0x0010
66 #define ICH_FLASH_PR0 0x0074
68 #define ICH_FLASH_READ_COMMAND_TIMEOUT 500
69 #define ICH_FLASH_WRITE_COMMAND_TIMEOUT 500
70 #define ICH_FLASH_ERASE_COMMAND_TIMEOUT 3000000
71 #define ICH_FLASH_LINEAR_ADDR_MASK 0x00FFFFFF
72 #define ICH_FLASH_CYCLE_REPEAT_COUNT 10
74 #define ICH_CYCLE_READ 0
75 #define ICH_CYCLE_WRITE 2
76 #define ICH_CYCLE_ERASE 3
78 #define FLASH_GFPREG_BASE_MASK 0x1FFF
79 #define FLASH_SECTOR_ADDR_SHIFT 12
81 #define ICH_FLASH_SEG_SIZE_256 256
82 #define ICH_FLASH_SEG_SIZE_4K 4096
83 #define ICH_FLASH_SEG_SIZE_8K 8192
84 #define ICH_FLASH_SEG_SIZE_64K 65536
87 #define E1000_ICH_FWSM_RSPCIPHY 0x00000040 /* Reset PHY on PCI Reset */
88 /* FW established a valid mode */
89 #define E1000_ICH_FWSM_FW_VALID 0x00008000
91 #define E1000_ICH_MNG_IAMT_MODE 0x2
93 #define ID_LED_DEFAULT_ICH8LAN ((ID_LED_DEF1_DEF2 << 12) | \
94 (ID_LED_DEF1_OFF2 << 8) | \
95 (ID_LED_DEF1_ON2 << 4) | \
98 #define E1000_ICH_NVM_SIG_WORD 0x13
99 #define E1000_ICH_NVM_SIG_MASK 0xC000
100 #define E1000_ICH_NVM_VALID_SIG_MASK 0xC0
101 #define E1000_ICH_NVM_SIG_VALUE 0x80
103 #define E1000_ICH8_LAN_INIT_TIMEOUT 1500
105 #define E1000_FEXTNVM_SW_CONFIG 1
106 #define E1000_FEXTNVM_SW_CONFIG_ICH8M (1 << 27) /* Bit redefined for ICH8M :/ */
108 #define E1000_FEXTNVM4_BEACON_DURATION_MASK 0x7
109 #define E1000_FEXTNVM4_BEACON_DURATION_8USEC 0x7
110 #define E1000_FEXTNVM4_BEACON_DURATION_16USEC 0x3
112 #define PCIE_ICH8_SNOOP_ALL PCIE_NO_SNOOP_ALL
114 #define E1000_ICH_RAR_ENTRIES 7
116 #define PHY_PAGE_SHIFT 5
117 #define PHY_REG(page, reg) (((page) << PHY_PAGE_SHIFT) | \
118 ((reg) & MAX_PHY_REG_ADDRESS))
119 #define IGP3_KMRN_DIAG PHY_REG(770, 19) /* KMRN Diagnostic */
120 #define IGP3_VR_CTRL PHY_REG(776, 18) /* Voltage Regulator Control */
122 #define IGP3_KMRN_DIAG_PCS_LOCK_LOSS 0x0002
123 #define IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK 0x0300
124 #define IGP3_VR_CTRL_MODE_SHUTDOWN 0x0200
126 #define HV_LED_CONFIG PHY_REG(768, 30) /* LED Configuration */
128 #define SW_FLAG_TIMEOUT 1000 /* SW Semaphore flag timeout in milliseconds */
130 /* SMBus Address Phy Register */
131 #define HV_SMB_ADDR PHY_REG(768, 26)
132 #define HV_SMB_ADDR_MASK 0x007F
133 #define HV_SMB_ADDR_PEC_EN 0x0200
134 #define HV_SMB_ADDR_VALID 0x0080
136 /* PHY Power Management Control */
137 #define HV_PM_CTRL PHY_REG(770, 17)
139 /* PHY Low Power Idle Control */
140 #define I82579_LPI_CTRL PHY_REG(772, 20)
141 #define I82579_LPI_CTRL_ENABLE_MASK 0x6000
142 #define I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT 0x80
145 #define I82579_EMI_ADDR 0x10
146 #define I82579_EMI_DATA 0x11
147 #define I82579_LPI_UPDATE_TIMER 0x4805 /* in 40ns units + 40 ns base value */
149 /* Strapping Option Register - RO */
150 #define E1000_STRAP 0x0000C
151 #define E1000_STRAP_SMBUS_ADDRESS_MASK 0x00FE0000
152 #define E1000_STRAP_SMBUS_ADDRESS_SHIFT 17
154 /* OEM Bits Phy Register */
155 #define HV_OEM_BITS PHY_REG(768, 25)
156 #define HV_OEM_BITS_LPLU 0x0004 /* Low Power Link Up */
157 #define HV_OEM_BITS_GBE_DIS 0x0040 /* Gigabit Disable */
158 #define HV_OEM_BITS_RESTART_AN 0x0400 /* Restart Auto-negotiation */
160 #define E1000_NVM_K1_CONFIG 0x1B /* NVM K1 Config Word */
161 #define E1000_NVM_K1_ENABLE 0x1 /* NVM Enable K1 bit */
163 /* KMRN Mode Control */
164 #define HV_KMRN_MODE_CTRL PHY_REG(769, 16)
165 #define HV_KMRN_MDIO_SLOW 0x0400
167 /* KMRN FIFO Control and Status */
168 #define HV_KMRN_FIFO_CTRLSTA PHY_REG(770, 16)
169 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK 0x7000
170 #define HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT 12
172 /* ICH GbE Flash Hardware Sequencing Flash Status Register bit breakdown */
173 /* Offset 04h HSFSTS */
174 union ich8_hws_flash_status
{
176 u16 flcdone
:1; /* bit 0 Flash Cycle Done */
177 u16 flcerr
:1; /* bit 1 Flash Cycle Error */
178 u16 dael
:1; /* bit 2 Direct Access error Log */
179 u16 berasesz
:2; /* bit 4:3 Sector Erase Size */
180 u16 flcinprog
:1; /* bit 5 flash cycle in Progress */
181 u16 reserved1
:2; /* bit 13:6 Reserved */
182 u16 reserved2
:6; /* bit 13:6 Reserved */
183 u16 fldesvalid
:1; /* bit 14 Flash Descriptor Valid */
184 u16 flockdn
:1; /* bit 15 Flash Config Lock-Down */
189 /* ICH GbE Flash Hardware Sequencing Flash control Register bit breakdown */
190 /* Offset 06h FLCTL */
191 union ich8_hws_flash_ctrl
{
192 struct ich8_hsflctl
{
193 u16 flcgo
:1; /* 0 Flash Cycle Go */
194 u16 flcycle
:2; /* 2:1 Flash Cycle */
195 u16 reserved
:5; /* 7:3 Reserved */
196 u16 fldbcount
:2; /* 9:8 Flash Data Byte Count */
197 u16 flockdn
:6; /* 15:10 Reserved */
202 /* ICH Flash Region Access Permissions */
203 union ich8_hws_flash_regacc
{
205 u32 grra
:8; /* 0:7 GbE region Read Access */
206 u32 grwa
:8; /* 8:15 GbE region Write Access */
207 u32 gmrag
:8; /* 23:16 GbE Master Read Access Grant */
208 u32 gmwag
:8; /* 31:24 GbE Master Write Access Grant */
213 /* ICH Flash Protected Region */
214 union ich8_flash_protected_range
{
216 u32 base
:13; /* 0:12 Protected Range Base */
217 u32 reserved1
:2; /* 13:14 Reserved */
218 u32 rpe
:1; /* 15 Read Protection Enable */
219 u32 limit
:13; /* 16:28 Protected Range Limit */
220 u32 reserved2
:2; /* 29:30 Reserved */
221 u32 wpe
:1; /* 31 Write Protection Enable */
226 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
);
227 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
);
228 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
);
229 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
);
230 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
231 u32 offset
, u8 byte
);
232 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
234 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
236 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
238 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
);
239 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
);
240 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
);
241 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
);
242 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
);
243 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
);
244 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
);
245 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
);
246 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
);
247 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
);
248 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
);
249 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
);
250 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
);
251 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
);
252 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
);
253 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
);
254 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
);
255 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
);
256 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
);
257 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
);
259 static inline u16
__er16flash(struct e1000_hw
*hw
, unsigned long reg
)
261 return readw(hw
->flash_address
+ reg
);
264 static inline u32
__er32flash(struct e1000_hw
*hw
, unsigned long reg
)
266 return readl(hw
->flash_address
+ reg
);
269 static inline void __ew16flash(struct e1000_hw
*hw
, unsigned long reg
, u16 val
)
271 writew(val
, hw
->flash_address
+ reg
);
274 static inline void __ew32flash(struct e1000_hw
*hw
, unsigned long reg
, u32 val
)
276 writel(val
, hw
->flash_address
+ reg
);
279 #define er16flash(reg) __er16flash(hw, (reg))
280 #define er32flash(reg) __er32flash(hw, (reg))
281 #define ew16flash(reg,val) __ew16flash(hw, (reg), (val))
282 #define ew32flash(reg,val) __ew32flash(hw, (reg), (val))
284 static void e1000_toggle_lanphypc_value_ich8lan(struct e1000_hw
*hw
)
289 ctrl
|= E1000_CTRL_LANPHYPC_OVERRIDE
;
290 ctrl
&= ~E1000_CTRL_LANPHYPC_VALUE
;
294 ctrl
&= ~E1000_CTRL_LANPHYPC_OVERRIDE
;
299 * e1000_init_phy_params_pchlan - Initialize PHY function pointers
300 * @hw: pointer to the HW structure
302 * Initialize family-specific PHY parameters and function pointers.
304 static s32
e1000_init_phy_params_pchlan(struct e1000_hw
*hw
)
306 struct e1000_phy_info
*phy
= &hw
->phy
;
311 phy
->reset_delay_us
= 100;
313 phy
->ops
.set_page
= e1000_set_page_igp
;
314 phy
->ops
.read_reg
= e1000_read_phy_reg_hv
;
315 phy
->ops
.read_reg_locked
= e1000_read_phy_reg_hv_locked
;
316 phy
->ops
.read_reg_page
= e1000_read_phy_reg_page_hv
;
317 phy
->ops
.set_d0_lplu_state
= e1000_set_lplu_state_pchlan
;
318 phy
->ops
.set_d3_lplu_state
= e1000_set_lplu_state_pchlan
;
319 phy
->ops
.write_reg
= e1000_write_phy_reg_hv
;
320 phy
->ops
.write_reg_locked
= e1000_write_phy_reg_hv_locked
;
321 phy
->ops
.write_reg_page
= e1000_write_phy_reg_page_hv
;
322 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
323 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
324 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
327 * The MAC-PHY interconnect may still be in SMBus mode
328 * after Sx->S0. If the manageability engine (ME) is
329 * disabled, then toggle the LANPHYPC Value bit to force
330 * the interconnect to PCIe mode.
333 if (!(fwsm
& E1000_ICH_FWSM_FW_VALID
) && !e1000_check_reset_block(hw
)) {
334 e1000_toggle_lanphypc_value_ich8lan(hw
);
338 * Gate automatic PHY configuration by hardware on
341 if (hw
->mac
.type
== e1000_pch2lan
)
342 e1000_gate_hw_phy_config_ich8lan(hw
, true);
346 * Reset the PHY before any access to it. Doing so, ensures that
347 * the PHY is in a known good state before we read/write PHY registers.
348 * The generic reset is sufficient here, because we haven't determined
351 ret_val
= e1000e_phy_hw_reset_generic(hw
);
355 /* Ungate automatic PHY configuration on non-managed 82579 */
356 if ((hw
->mac
.type
== e1000_pch2lan
) &&
357 !(fwsm
& E1000_ICH_FWSM_FW_VALID
)) {
358 usleep_range(10000, 20000);
359 e1000_gate_hw_phy_config_ich8lan(hw
, false);
362 phy
->id
= e1000_phy_unknown
;
363 switch (hw
->mac
.type
) {
365 ret_val
= e1000e_get_phy_id(hw
);
368 if ((phy
->id
!= 0) && (phy
->id
!= PHY_REVISION_MASK
))
373 * In case the PHY needs to be in mdio slow mode,
374 * set slow mode and try to get the PHY id again.
376 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
379 ret_val
= e1000e_get_phy_id(hw
);
384 phy
->type
= e1000e_get_phy_type_from_id(phy
->id
);
387 case e1000_phy_82577
:
388 case e1000_phy_82579
:
389 phy
->ops
.check_polarity
= e1000_check_polarity_82577
;
390 phy
->ops
.force_speed_duplex
=
391 e1000_phy_force_speed_duplex_82577
;
392 phy
->ops
.get_cable_length
= e1000_get_cable_length_82577
;
393 phy
->ops
.get_info
= e1000_get_phy_info_82577
;
394 phy
->ops
.commit
= e1000e_phy_sw_reset
;
396 case e1000_phy_82578
:
397 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
398 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
399 phy
->ops
.get_cable_length
= e1000e_get_cable_length_m88
;
400 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
403 ret_val
= -E1000_ERR_PHY
;
412 * e1000_init_phy_params_ich8lan - Initialize PHY function pointers
413 * @hw: pointer to the HW structure
415 * Initialize family-specific PHY parameters and function pointers.
417 static s32
e1000_init_phy_params_ich8lan(struct e1000_hw
*hw
)
419 struct e1000_phy_info
*phy
= &hw
->phy
;
424 phy
->reset_delay_us
= 100;
426 phy
->ops
.power_up
= e1000_power_up_phy_copper
;
427 phy
->ops
.power_down
= e1000_power_down_phy_copper_ich8lan
;
430 * We may need to do this twice - once for IGP and if that fails,
431 * we'll set BM func pointers and try again
433 ret_val
= e1000e_determine_phy_address(hw
);
435 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
436 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
437 ret_val
= e1000e_determine_phy_address(hw
);
439 e_dbg("Cannot determine PHY addr. Erroring out\n");
445 while ((e1000_phy_unknown
== e1000e_get_phy_type_from_id(phy
->id
)) &&
447 usleep_range(1000, 2000);
448 ret_val
= e1000e_get_phy_id(hw
);
455 case IGP03E1000_E_PHY_ID
:
456 phy
->type
= e1000_phy_igp_3
;
457 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
458 phy
->ops
.read_reg_locked
= e1000e_read_phy_reg_igp_locked
;
459 phy
->ops
.write_reg_locked
= e1000e_write_phy_reg_igp_locked
;
460 phy
->ops
.get_info
= e1000e_get_phy_info_igp
;
461 phy
->ops
.check_polarity
= e1000_check_polarity_igp
;
462 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_igp
;
465 case IFE_PLUS_E_PHY_ID
:
467 phy
->type
= e1000_phy_ife
;
468 phy
->autoneg_mask
= E1000_ALL_NOT_GIG
;
469 phy
->ops
.get_info
= e1000_get_phy_info_ife
;
470 phy
->ops
.check_polarity
= e1000_check_polarity_ife
;
471 phy
->ops
.force_speed_duplex
= e1000_phy_force_speed_duplex_ife
;
473 case BME1000_E_PHY_ID
:
474 phy
->type
= e1000_phy_bm
;
475 phy
->autoneg_mask
= AUTONEG_ADVERTISE_SPEED_DEFAULT
;
476 phy
->ops
.read_reg
= e1000e_read_phy_reg_bm
;
477 phy
->ops
.write_reg
= e1000e_write_phy_reg_bm
;
478 phy
->ops
.commit
= e1000e_phy_sw_reset
;
479 phy
->ops
.get_info
= e1000e_get_phy_info_m88
;
480 phy
->ops
.check_polarity
= e1000_check_polarity_m88
;
481 phy
->ops
.force_speed_duplex
= e1000e_phy_force_speed_duplex_m88
;
484 return -E1000_ERR_PHY
;
492 * e1000_init_nvm_params_ich8lan - Initialize NVM function pointers
493 * @hw: pointer to the HW structure
495 * Initialize family-specific NVM parameters and function
498 static s32
e1000_init_nvm_params_ich8lan(struct e1000_hw
*hw
)
500 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
501 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
502 u32 gfpreg
, sector_base_addr
, sector_end_addr
;
505 /* Can't read flash registers if the register set isn't mapped. */
506 if (!hw
->flash_address
) {
507 e_dbg("ERROR: Flash registers not mapped\n");
508 return -E1000_ERR_CONFIG
;
511 nvm
->type
= e1000_nvm_flash_sw
;
513 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
516 * sector_X_addr is a "sector"-aligned address (4096 bytes)
517 * Add 1 to sector_end_addr since this sector is included in
520 sector_base_addr
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
521 sector_end_addr
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
) + 1;
523 /* flash_base_addr is byte-aligned */
524 nvm
->flash_base_addr
= sector_base_addr
<< FLASH_SECTOR_ADDR_SHIFT
;
527 * find total size of the NVM, then cut in half since the total
528 * size represents two separate NVM banks.
530 nvm
->flash_bank_size
= (sector_end_addr
- sector_base_addr
)
531 << FLASH_SECTOR_ADDR_SHIFT
;
532 nvm
->flash_bank_size
/= 2;
533 /* Adjust to word count */
534 nvm
->flash_bank_size
/= sizeof(u16
);
536 nvm
->word_size
= E1000_ICH8_SHADOW_RAM_WORDS
;
538 /* Clear shadow ram */
539 for (i
= 0; i
< nvm
->word_size
; i
++) {
540 dev_spec
->shadow_ram
[i
].modified
= false;
541 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
548 * e1000_init_mac_params_ich8lan - Initialize MAC function pointers
549 * @hw: pointer to the HW structure
551 * Initialize family-specific MAC parameters and function
554 static s32
e1000_init_mac_params_ich8lan(struct e1000_adapter
*adapter
)
556 struct e1000_hw
*hw
= &adapter
->hw
;
557 struct e1000_mac_info
*mac
= &hw
->mac
;
559 /* Set media type function pointer */
560 hw
->phy
.media_type
= e1000_media_type_copper
;
562 /* Set mta register count */
563 mac
->mta_reg_count
= 32;
564 /* Set rar entry count */
565 mac
->rar_entry_count
= E1000_ICH_RAR_ENTRIES
;
566 if (mac
->type
== e1000_ich8lan
)
567 mac
->rar_entry_count
--;
569 mac
->has_fwsm
= true;
570 /* ARC subsystem not supported */
571 mac
->arc_subsystem_valid
= false;
572 /* Adaptive IFS supported */
573 mac
->adaptive_ifs
= true;
580 /* check management mode */
581 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_ich8lan
;
583 mac
->ops
.id_led_init
= e1000e_id_led_init
;
585 mac
->ops
.blink_led
= e1000e_blink_led_generic
;
587 mac
->ops
.setup_led
= e1000e_setup_led_generic
;
589 mac
->ops
.cleanup_led
= e1000_cleanup_led_ich8lan
;
590 /* turn on/off LED */
591 mac
->ops
.led_on
= e1000_led_on_ich8lan
;
592 mac
->ops
.led_off
= e1000_led_off_ich8lan
;
596 /* check management mode */
597 mac
->ops
.check_mng_mode
= e1000_check_mng_mode_pchlan
;
599 mac
->ops
.id_led_init
= e1000_id_led_init_pchlan
;
601 mac
->ops
.setup_led
= e1000_setup_led_pchlan
;
603 mac
->ops
.cleanup_led
= e1000_cleanup_led_pchlan
;
604 /* turn on/off LED */
605 mac
->ops
.led_on
= e1000_led_on_pchlan
;
606 mac
->ops
.led_off
= e1000_led_off_pchlan
;
612 /* Enable PCS Lock-loss workaround for ICH8 */
613 if (mac
->type
== e1000_ich8lan
)
614 e1000e_set_kmrn_lock_loss_workaround_ich8lan(hw
, true);
616 /* Gate automatic PHY configuration by hardware on managed 82579 */
617 if ((mac
->type
== e1000_pch2lan
) &&
618 (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
619 e1000_gate_hw_phy_config_ich8lan(hw
, true);
625 * e1000_set_eee_pchlan - Enable/disable EEE support
626 * @hw: pointer to the HW structure
628 * Enable/disable EEE based on setting in dev_spec structure. The bits in
629 * the LPI Control register will remain set only if/when link is up.
631 static s32
e1000_set_eee_pchlan(struct e1000_hw
*hw
)
636 if (hw
->phy
.type
!= e1000_phy_82579
)
639 ret_val
= e1e_rphy(hw
, I82579_LPI_CTRL
, &phy_reg
);
643 if (hw
->dev_spec
.ich8lan
.eee_disable
)
644 phy_reg
&= ~I82579_LPI_CTRL_ENABLE_MASK
;
646 phy_reg
|= I82579_LPI_CTRL_ENABLE_MASK
;
648 ret_val
= e1e_wphy(hw
, I82579_LPI_CTRL
, phy_reg
);
654 * e1000_check_for_copper_link_ich8lan - Check for link (Copper)
655 * @hw: pointer to the HW structure
657 * Checks to see of the link status of the hardware has changed. If a
658 * change in link status has been detected, then we read the PHY registers
659 * to get the current speed/duplex if link exists.
661 static s32
e1000_check_for_copper_link_ich8lan(struct e1000_hw
*hw
)
663 struct e1000_mac_info
*mac
= &hw
->mac
;
669 * We only want to go out to the PHY registers to see if Auto-Neg
670 * has completed and/or if our link status has changed. The
671 * get_link_status flag is set upon receiving a Link Status
672 * Change or Rx Sequence Error interrupt.
674 if (!mac
->get_link_status
) {
680 * First we want to see if the MII Status Register reports
681 * link. If so, then we want to get the current speed/duplex
684 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
688 if (hw
->mac
.type
== e1000_pchlan
) {
689 ret_val
= e1000_k1_gig_workaround_hv(hw
, link
);
695 goto out
; /* No link detected */
697 mac
->get_link_status
= false;
699 switch (hw
->mac
.type
) {
701 ret_val
= e1000_k1_workaround_lv(hw
);
706 if (hw
->phy
.type
== e1000_phy_82578
) {
707 ret_val
= e1000_link_stall_workaround_hv(hw
);
713 * Workaround for PCHx parts in half-duplex:
714 * Set the number of preambles removed from the packet
715 * when it is passed from the PHY to the MAC to prevent
716 * the MAC from misinterpreting the packet type.
718 e1e_rphy(hw
, HV_KMRN_FIFO_CTRLSTA
, &phy_reg
);
719 phy_reg
&= ~HV_KMRN_FIFO_CTRLSTA_PREAMBLE_MASK
;
721 if ((er32(STATUS
) & E1000_STATUS_FD
) != E1000_STATUS_FD
)
722 phy_reg
|= (1 << HV_KMRN_FIFO_CTRLSTA_PREAMBLE_SHIFT
);
724 e1e_wphy(hw
, HV_KMRN_FIFO_CTRLSTA
, phy_reg
);
731 * Check if there was DownShift, must be checked
732 * immediately after link-up
734 e1000e_check_downshift(hw
);
736 /* Enable/Disable EEE after link up */
737 ret_val
= e1000_set_eee_pchlan(hw
);
742 * If we are forcing speed/duplex, then we simply return since
743 * we have already determined whether we have link or not.
746 ret_val
= -E1000_ERR_CONFIG
;
751 * Auto-Neg is enabled. Auto Speed Detection takes care
752 * of MAC speed/duplex configuration. So we only need to
753 * configure Collision Distance in the MAC.
755 e1000e_config_collision_dist(hw
);
758 * Configure Flow Control now that Auto-Neg has completed.
759 * First, we need to restore the desired flow control
760 * settings because we may have had to re-autoneg with a
761 * different link partner.
763 ret_val
= e1000e_config_fc_after_link_up(hw
);
765 e_dbg("Error configuring flow control\n");
771 static s32
e1000_get_variants_ich8lan(struct e1000_adapter
*adapter
)
773 struct e1000_hw
*hw
= &adapter
->hw
;
776 rc
= e1000_init_mac_params_ich8lan(adapter
);
780 rc
= e1000_init_nvm_params_ich8lan(hw
);
784 switch (hw
->mac
.type
) {
788 rc
= e1000_init_phy_params_ich8lan(hw
);
792 rc
= e1000_init_phy_params_pchlan(hw
);
801 * Disable Jumbo Frame support on parts with Intel 10/100 PHY or
802 * on parts with MACsec enabled in NVM (reflected in CTRL_EXT).
804 if ((adapter
->hw
.phy
.type
== e1000_phy_ife
) ||
805 ((adapter
->hw
.mac
.type
>= e1000_pch2lan
) &&
806 (!(er32(CTRL_EXT
) & E1000_CTRL_EXT_LSECCK
)))) {
807 adapter
->flags
&= ~FLAG_HAS_JUMBO_FRAMES
;
808 adapter
->max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
;
810 hw
->mac
.ops
.blink_led
= NULL
;
813 if ((adapter
->hw
.mac
.type
== e1000_ich8lan
) &&
814 (adapter
->hw
.phy
.type
!= e1000_phy_ife
))
815 adapter
->flags
|= FLAG_LSC_GIG_SPEED_DROP
;
817 /* Enable workaround for 82579 w/ ME enabled */
818 if ((adapter
->hw
.mac
.type
== e1000_pch2lan
) &&
819 (er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
820 adapter
->flags2
|= FLAG2_PCIM2PCI_ARBITER_WA
;
822 /* Disable EEE by default until IEEE802.3az spec is finalized */
823 if (adapter
->flags2
& FLAG2_HAS_EEE
)
824 adapter
->hw
.dev_spec
.ich8lan
.eee_disable
= true;
829 static DEFINE_MUTEX(nvm_mutex
);
832 * e1000_acquire_nvm_ich8lan - Acquire NVM mutex
833 * @hw: pointer to the HW structure
835 * Acquires the mutex for performing NVM operations.
837 static s32
e1000_acquire_nvm_ich8lan(struct e1000_hw
*hw
)
839 mutex_lock(&nvm_mutex
);
845 * e1000_release_nvm_ich8lan - Release NVM mutex
846 * @hw: pointer to the HW structure
848 * Releases the mutex used while performing NVM operations.
850 static void e1000_release_nvm_ich8lan(struct e1000_hw
*hw
)
852 mutex_unlock(&nvm_mutex
);
856 * e1000_acquire_swflag_ich8lan - Acquire software control flag
857 * @hw: pointer to the HW structure
859 * Acquires the software control flag for performing PHY and select
862 static s32
e1000_acquire_swflag_ich8lan(struct e1000_hw
*hw
)
864 u32 extcnf_ctrl
, timeout
= PHY_CFG_TIMEOUT
;
867 if (test_and_set_bit(__E1000_ACCESS_SHARED_RESOURCE
,
868 &hw
->adapter
->state
)) {
869 WARN(1, "e1000e: %s: contention for Phy access\n",
870 hw
->adapter
->netdev
->name
);
871 return -E1000_ERR_PHY
;
875 extcnf_ctrl
= er32(EXTCNF_CTRL
);
876 if (!(extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
))
884 e_dbg("SW has already locked the resource.\n");
885 ret_val
= -E1000_ERR_CONFIG
;
889 timeout
= SW_FLAG_TIMEOUT
;
891 extcnf_ctrl
|= E1000_EXTCNF_CTRL_SWFLAG
;
892 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
895 extcnf_ctrl
= er32(EXTCNF_CTRL
);
896 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
)
904 e_dbg("Failed to acquire the semaphore, FW or HW has it: "
905 "FWSM=0x%8.8x EXTCNF_CTRL=0x%8.8x)\n",
906 er32(FWSM
), extcnf_ctrl
);
907 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
908 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
909 ret_val
= -E1000_ERR_CONFIG
;
915 clear_bit(__E1000_ACCESS_SHARED_RESOURCE
, &hw
->adapter
->state
);
921 * e1000_release_swflag_ich8lan - Release software control flag
922 * @hw: pointer to the HW structure
924 * Releases the software control flag for performing PHY and select
927 static void e1000_release_swflag_ich8lan(struct e1000_hw
*hw
)
931 extcnf_ctrl
= er32(EXTCNF_CTRL
);
933 if (extcnf_ctrl
& E1000_EXTCNF_CTRL_SWFLAG
) {
934 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_SWFLAG
;
935 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
937 e_dbg("Semaphore unexpectedly released by sw/fw/hw\n");
940 clear_bit(__E1000_ACCESS_SHARED_RESOURCE
, &hw
->adapter
->state
);
944 * e1000_check_mng_mode_ich8lan - Checks management mode
945 * @hw: pointer to the HW structure
947 * This checks if the adapter has any manageability enabled.
948 * This is a function pointer entry point only called by read/write
949 * routines for the PHY and NVM parts.
951 static bool e1000_check_mng_mode_ich8lan(struct e1000_hw
*hw
)
956 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
957 ((fwsm
& E1000_FWSM_MODE_MASK
) ==
958 (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
962 * e1000_check_mng_mode_pchlan - Checks management mode
963 * @hw: pointer to the HW structure
965 * This checks if the adapter has iAMT enabled.
966 * This is a function pointer entry point only called by read/write
967 * routines for the PHY and NVM parts.
969 static bool e1000_check_mng_mode_pchlan(struct e1000_hw
*hw
)
974 return (fwsm
& E1000_ICH_FWSM_FW_VALID
) &&
975 (fwsm
& (E1000_ICH_MNG_IAMT_MODE
<< E1000_FWSM_MODE_SHIFT
));
979 * e1000_check_reset_block_ich8lan - Check if PHY reset is blocked
980 * @hw: pointer to the HW structure
982 * Checks if firmware is blocking the reset of the PHY.
983 * This is a function pointer entry point only called by
986 static s32
e1000_check_reset_block_ich8lan(struct e1000_hw
*hw
)
992 return (fwsm
& E1000_ICH_FWSM_RSPCIPHY
) ? 0 : E1000_BLK_PHY_RESET
;
996 * e1000_write_smbus_addr - Write SMBus address to PHY needed during Sx states
997 * @hw: pointer to the HW structure
999 * Assumes semaphore already acquired.
1002 static s32
e1000_write_smbus_addr(struct e1000_hw
*hw
)
1005 u32 strap
= er32(STRAP
);
1008 strap
&= E1000_STRAP_SMBUS_ADDRESS_MASK
;
1010 ret_val
= e1000_read_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, &phy_data
);
1014 phy_data
&= ~HV_SMB_ADDR_MASK
;
1015 phy_data
|= (strap
>> E1000_STRAP_SMBUS_ADDRESS_SHIFT
);
1016 phy_data
|= HV_SMB_ADDR_PEC_EN
| HV_SMB_ADDR_VALID
;
1017 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_SMB_ADDR
, phy_data
);
1024 * e1000_sw_lcd_config_ich8lan - SW-based LCD Configuration
1025 * @hw: pointer to the HW structure
1027 * SW should configure the LCD from the NVM extended configuration region
1028 * as a workaround for certain parts.
1030 static s32
e1000_sw_lcd_config_ich8lan(struct e1000_hw
*hw
)
1032 struct e1000_phy_info
*phy
= &hw
->phy
;
1033 u32 i
, data
, cnf_size
, cnf_base_addr
, sw_cfg_mask
;
1035 u16 word_addr
, reg_data
, reg_addr
, phy_page
= 0;
1038 * Initialize the PHY from the NVM on ICH platforms. This
1039 * is needed due to an issue where the NVM configuration is
1040 * not properly autoloaded after power transitions.
1041 * Therefore, after each PHY reset, we will load the
1042 * configuration data out of the NVM manually.
1044 switch (hw
->mac
.type
) {
1046 if (phy
->type
!= e1000_phy_igp_3
)
1049 if ((hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_AMT
) ||
1050 (hw
->adapter
->pdev
->device
== E1000_DEV_ID_ICH8_IGP_C
)) {
1051 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG
;
1057 sw_cfg_mask
= E1000_FEXTNVM_SW_CONFIG_ICH8M
;
1063 ret_val
= hw
->phy
.ops
.acquire(hw
);
1067 data
= er32(FEXTNVM
);
1068 if (!(data
& sw_cfg_mask
))
1072 * Make sure HW does not configure LCD from PHY
1073 * extended configuration before SW configuration
1075 data
= er32(EXTCNF_CTRL
);
1076 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1077 if (data
& E1000_EXTCNF_CTRL_LCD_WRITE_ENABLE
)
1081 cnf_size
= er32(EXTCNF_SIZE
);
1082 cnf_size
&= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_MASK
;
1083 cnf_size
>>= E1000_EXTCNF_SIZE_EXT_PCIE_LENGTH_SHIFT
;
1087 cnf_base_addr
= data
& E1000_EXTCNF_CTRL_EXT_CNF_POINTER_MASK
;
1088 cnf_base_addr
>>= E1000_EXTCNF_CTRL_EXT_CNF_POINTER_SHIFT
;
1090 if ((!(data
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
) &&
1091 (hw
->mac
.type
== e1000_pchlan
)) ||
1092 (hw
->mac
.type
== e1000_pch2lan
)) {
1094 * HW configures the SMBus address and LEDs when the
1095 * OEM and LCD Write Enable bits are set in the NVM.
1096 * When both NVM bits are cleared, SW will configure
1099 ret_val
= e1000_write_smbus_addr(hw
);
1103 data
= er32(LEDCTL
);
1104 ret_val
= e1000_write_phy_reg_hv_locked(hw
, HV_LED_CONFIG
,
1110 /* Configure LCD from extended configuration region. */
1112 /* cnf_base_addr is in DWORD */
1113 word_addr
= (u16
)(cnf_base_addr
<< 1);
1115 for (i
= 0; i
< cnf_size
; i
++) {
1116 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2), 1,
1121 ret_val
= e1000_read_nvm(hw
, (word_addr
+ i
* 2 + 1),
1126 /* Save off the PHY page for future writes. */
1127 if (reg_addr
== IGP01E1000_PHY_PAGE_SELECT
) {
1128 phy_page
= reg_data
;
1132 reg_addr
&= PHY_REG_MASK
;
1133 reg_addr
|= phy_page
;
1135 ret_val
= phy
->ops
.write_reg_locked(hw
, (u32
)reg_addr
,
1142 hw
->phy
.ops
.release(hw
);
1147 * e1000_k1_gig_workaround_hv - K1 Si workaround
1148 * @hw: pointer to the HW structure
1149 * @link: link up bool flag
1151 * If K1 is enabled for 1Gbps, the MAC might stall when transitioning
1152 * from a lower speed. This workaround disables K1 whenever link is at 1Gig
1153 * If link is down, the function will restore the default K1 setting located
1156 static s32
e1000_k1_gig_workaround_hv(struct e1000_hw
*hw
, bool link
)
1160 bool k1_enable
= hw
->dev_spec
.ich8lan
.nvm_k1_enabled
;
1162 if (hw
->mac
.type
!= e1000_pchlan
)
1165 /* Wrap the whole flow with the sw flag */
1166 ret_val
= hw
->phy
.ops
.acquire(hw
);
1170 /* Disable K1 when link is 1Gbps, otherwise use the NVM setting */
1172 if (hw
->phy
.type
== e1000_phy_82578
) {
1173 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, BM_CS_STATUS
,
1178 status_reg
&= BM_CS_STATUS_LINK_UP
|
1179 BM_CS_STATUS_RESOLVED
|
1180 BM_CS_STATUS_SPEED_MASK
;
1182 if (status_reg
== (BM_CS_STATUS_LINK_UP
|
1183 BM_CS_STATUS_RESOLVED
|
1184 BM_CS_STATUS_SPEED_1000
))
1188 if (hw
->phy
.type
== e1000_phy_82577
) {
1189 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_M_STATUS
,
1194 status_reg
&= HV_M_STATUS_LINK_UP
|
1195 HV_M_STATUS_AUTONEG_COMPLETE
|
1196 HV_M_STATUS_SPEED_MASK
;
1198 if (status_reg
== (HV_M_STATUS_LINK_UP
|
1199 HV_M_STATUS_AUTONEG_COMPLETE
|
1200 HV_M_STATUS_SPEED_1000
))
1204 /* Link stall fix for link up */
1205 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1211 /* Link stall fix for link down */
1212 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, PHY_REG(770, 19),
1218 ret_val
= e1000_configure_k1_ich8lan(hw
, k1_enable
);
1221 hw
->phy
.ops
.release(hw
);
1227 * e1000_configure_k1_ich8lan - Configure K1 power state
1228 * @hw: pointer to the HW structure
1229 * @enable: K1 state to configure
1231 * Configure the K1 power state based on the provided parameter.
1232 * Assumes semaphore already acquired.
1234 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1236 s32
e1000_configure_k1_ich8lan(struct e1000_hw
*hw
, bool k1_enable
)
1244 ret_val
= e1000e_read_kmrn_reg_locked(hw
,
1245 E1000_KMRNCTRLSTA_K1_CONFIG
,
1251 kmrn_reg
|= E1000_KMRNCTRLSTA_K1_ENABLE
;
1253 kmrn_reg
&= ~E1000_KMRNCTRLSTA_K1_ENABLE
;
1255 ret_val
= e1000e_write_kmrn_reg_locked(hw
,
1256 E1000_KMRNCTRLSTA_K1_CONFIG
,
1262 ctrl_ext
= er32(CTRL_EXT
);
1263 ctrl_reg
= er32(CTRL
);
1265 reg
= ctrl_reg
& ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1266 reg
|= E1000_CTRL_FRCSPD
;
1269 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_SPD_BYPS
);
1272 ew32(CTRL
, ctrl_reg
);
1273 ew32(CTRL_EXT
, ctrl_ext
);
1282 * e1000_oem_bits_config_ich8lan - SW-based LCD Configuration
1283 * @hw: pointer to the HW structure
1284 * @d0_state: boolean if entering d0 or d3 device state
1286 * SW will configure Gbe Disable and LPLU based on the NVM. The four bits are
1287 * collectively called OEM bits. The OEM Write Enable bit and SW Config bit
1288 * in NVM determines whether HW should configure LPLU and Gbe Disable.
1290 static s32
e1000_oem_bits_config_ich8lan(struct e1000_hw
*hw
, bool d0_state
)
1296 if ((hw
->mac
.type
!= e1000_pch2lan
) && (hw
->mac
.type
!= e1000_pchlan
))
1299 ret_val
= hw
->phy
.ops
.acquire(hw
);
1303 if (!(hw
->mac
.type
== e1000_pch2lan
)) {
1304 mac_reg
= er32(EXTCNF_CTRL
);
1305 if (mac_reg
& E1000_EXTCNF_CTRL_OEM_WRITE_ENABLE
)
1309 mac_reg
= er32(FEXTNVM
);
1310 if (!(mac_reg
& E1000_FEXTNVM_SW_CONFIG_ICH8M
))
1313 mac_reg
= er32(PHY_CTRL
);
1315 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, HV_OEM_BITS
, &oem_reg
);
1319 oem_reg
&= ~(HV_OEM_BITS_GBE_DIS
| HV_OEM_BITS_LPLU
);
1322 if (mac_reg
& E1000_PHY_CTRL_GBE_DISABLE
)
1323 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1325 if (mac_reg
& E1000_PHY_CTRL_D0A_LPLU
)
1326 oem_reg
|= HV_OEM_BITS_LPLU
;
1328 /* Set Restart auto-neg to activate the bits */
1329 if (!e1000_check_reset_block(hw
))
1330 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1332 if (mac_reg
& (E1000_PHY_CTRL_GBE_DISABLE
|
1333 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
))
1334 oem_reg
|= HV_OEM_BITS_GBE_DIS
;
1336 if (mac_reg
& (E1000_PHY_CTRL_D0A_LPLU
|
1337 E1000_PHY_CTRL_NOND0A_LPLU
))
1338 oem_reg
|= HV_OEM_BITS_LPLU
;
1341 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, HV_OEM_BITS
, oem_reg
);
1344 hw
->phy
.ops
.release(hw
);
1351 * e1000_set_mdio_slow_mode_hv - Set slow MDIO access mode
1352 * @hw: pointer to the HW structure
1354 static s32
e1000_set_mdio_slow_mode_hv(struct e1000_hw
*hw
)
1359 ret_val
= e1e_rphy(hw
, HV_KMRN_MODE_CTRL
, &data
);
1363 data
|= HV_KMRN_MDIO_SLOW
;
1365 ret_val
= e1e_wphy(hw
, HV_KMRN_MODE_CTRL
, data
);
1371 * e1000_hv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1372 * done after every PHY reset.
1374 static s32
e1000_hv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1379 if (hw
->mac
.type
!= e1000_pchlan
)
1382 /* Set MDIO slow mode before any other MDIO access */
1383 if (hw
->phy
.type
== e1000_phy_82577
) {
1384 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1389 if (((hw
->phy
.type
== e1000_phy_82577
) &&
1390 ((hw
->phy
.revision
== 1) || (hw
->phy
.revision
== 2))) ||
1391 ((hw
->phy
.type
== e1000_phy_82578
) && (hw
->phy
.revision
== 1))) {
1392 /* Disable generation of early preamble */
1393 ret_val
= e1e_wphy(hw
, PHY_REG(769, 25), 0x4431);
1397 /* Preamble tuning for SSC */
1398 ret_val
= e1e_wphy(hw
, HV_KMRN_FIFO_CTRLSTA
, 0xA204);
1403 if (hw
->phy
.type
== e1000_phy_82578
) {
1405 * Return registers to default by doing a soft reset then
1406 * writing 0x3140 to the control register.
1408 if (hw
->phy
.revision
< 2) {
1409 e1000e_phy_sw_reset(hw
);
1410 ret_val
= e1e_wphy(hw
, PHY_CONTROL
, 0x3140);
1415 ret_val
= hw
->phy
.ops
.acquire(hw
);
1420 ret_val
= e1000e_write_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
, 0);
1421 hw
->phy
.ops
.release(hw
);
1426 * Configure the K1 Si workaround during phy reset assuming there is
1427 * link so that it disables K1 if link is in 1Gbps.
1429 ret_val
= e1000_k1_gig_workaround_hv(hw
, true);
1433 /* Workaround for link disconnects on a busy hub in half duplex */
1434 ret_val
= hw
->phy
.ops
.acquire(hw
);
1437 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, BM_PORT_GEN_CFG
, &phy_data
);
1440 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, BM_PORT_GEN_CFG
,
1443 hw
->phy
.ops
.release(hw
);
1449 * e1000_copy_rx_addrs_to_phy_ich8lan - Copy Rx addresses from MAC to PHY
1450 * @hw: pointer to the HW structure
1452 void e1000_copy_rx_addrs_to_phy_ich8lan(struct e1000_hw
*hw
)
1458 ret_val
= hw
->phy
.ops
.acquire(hw
);
1461 ret_val
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
1465 /* Copy both RAL/H (rar_entry_count) and SHRAL/H (+4) to PHY */
1466 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1467 mac_reg
= er32(RAL(i
));
1468 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_L(i
),
1469 (u16
)(mac_reg
& 0xFFFF));
1470 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_M(i
),
1471 (u16
)((mac_reg
>> 16) & 0xFFFF));
1473 mac_reg
= er32(RAH(i
));
1474 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_H(i
),
1475 (u16
)(mac_reg
& 0xFFFF));
1476 hw
->phy
.ops
.write_reg_page(hw
, BM_RAR_CTRL(i
),
1477 (u16
)((mac_reg
& E1000_RAH_AV
)
1481 e1000_disable_phy_wakeup_reg_access_bm(hw
, &phy_reg
);
1484 hw
->phy
.ops
.release(hw
);
1488 * e1000_lv_jumbo_workaround_ich8lan - required for jumbo frame operation
1490 * @hw: pointer to the HW structure
1491 * @enable: flag to enable/disable workaround when enabling/disabling jumbos
1493 s32
e1000_lv_jumbo_workaround_ich8lan(struct e1000_hw
*hw
, bool enable
)
1500 if (hw
->mac
.type
!= e1000_pch2lan
)
1503 /* disable Rx path while enabling/disabling workaround */
1504 e1e_rphy(hw
, PHY_REG(769, 20), &phy_reg
);
1505 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
| (1 << 14));
1511 * Write Rx addresses (rar_entry_count for RAL/H, +4 for
1512 * SHRAL/H) and initial CRC values to the MAC
1514 for (i
= 0; i
< (hw
->mac
.rar_entry_count
+ 4); i
++) {
1515 u8 mac_addr
[ETH_ALEN
] = {0};
1516 u32 addr_high
, addr_low
;
1518 addr_high
= er32(RAH(i
));
1519 if (!(addr_high
& E1000_RAH_AV
))
1521 addr_low
= er32(RAL(i
));
1522 mac_addr
[0] = (addr_low
& 0xFF);
1523 mac_addr
[1] = ((addr_low
>> 8) & 0xFF);
1524 mac_addr
[2] = ((addr_low
>> 16) & 0xFF);
1525 mac_addr
[3] = ((addr_low
>> 24) & 0xFF);
1526 mac_addr
[4] = (addr_high
& 0xFF);
1527 mac_addr
[5] = ((addr_high
>> 8) & 0xFF);
1529 ew32(PCH_RAICC(i
), ~ether_crc_le(ETH_ALEN
, mac_addr
));
1532 /* Write Rx addresses to the PHY */
1533 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
1535 /* Enable jumbo frame workaround in the MAC */
1536 mac_reg
= er32(FFLT_DBG
);
1537 mac_reg
&= ~(1 << 14);
1538 mac_reg
|= (7 << 15);
1539 ew32(FFLT_DBG
, mac_reg
);
1541 mac_reg
= er32(RCTL
);
1542 mac_reg
|= E1000_RCTL_SECRC
;
1543 ew32(RCTL
, mac_reg
);
1545 ret_val
= e1000e_read_kmrn_reg(hw
,
1546 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1550 ret_val
= e1000e_write_kmrn_reg(hw
,
1551 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1555 ret_val
= e1000e_read_kmrn_reg(hw
,
1556 E1000_KMRNCTRLSTA_HD_CTRL
,
1560 data
&= ~(0xF << 8);
1562 ret_val
= e1000e_write_kmrn_reg(hw
,
1563 E1000_KMRNCTRLSTA_HD_CTRL
,
1568 /* Enable jumbo frame workaround in the PHY */
1569 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1570 data
&= ~(0x7F << 5);
1571 data
|= (0x37 << 5);
1572 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1575 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1577 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1580 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1581 data
&= ~(0x3FF << 2);
1582 data
|= (0x1A << 2);
1583 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1586 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0xF100);
1589 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1590 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
| (1 << 10));
1594 /* Write MAC register values back to h/w defaults */
1595 mac_reg
= er32(FFLT_DBG
);
1596 mac_reg
&= ~(0xF << 14);
1597 ew32(FFLT_DBG
, mac_reg
);
1599 mac_reg
= er32(RCTL
);
1600 mac_reg
&= ~E1000_RCTL_SECRC
;
1601 ew32(RCTL
, mac_reg
);
1603 ret_val
= e1000e_read_kmrn_reg(hw
,
1604 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1608 ret_val
= e1000e_write_kmrn_reg(hw
,
1609 E1000_KMRNCTRLSTA_CTRL_OFFSET
,
1613 ret_val
= e1000e_read_kmrn_reg(hw
,
1614 E1000_KMRNCTRLSTA_HD_CTRL
,
1618 data
&= ~(0xF << 8);
1620 ret_val
= e1000e_write_kmrn_reg(hw
,
1621 E1000_KMRNCTRLSTA_HD_CTRL
,
1626 /* Write PHY register values back to h/w defaults */
1627 e1e_rphy(hw
, PHY_REG(769, 23), &data
);
1628 data
&= ~(0x7F << 5);
1629 ret_val
= e1e_wphy(hw
, PHY_REG(769, 23), data
);
1632 e1e_rphy(hw
, PHY_REG(769, 16), &data
);
1634 ret_val
= e1e_wphy(hw
, PHY_REG(769, 16), data
);
1637 e1e_rphy(hw
, PHY_REG(776, 20), &data
);
1638 data
&= ~(0x3FF << 2);
1640 ret_val
= e1e_wphy(hw
, PHY_REG(776, 20), data
);
1643 ret_val
= e1e_wphy(hw
, PHY_REG(776, 23), 0x7E00);
1646 e1e_rphy(hw
, HV_PM_CTRL
, &data
);
1647 ret_val
= e1e_wphy(hw
, HV_PM_CTRL
, data
& ~(1 << 10));
1652 /* re-enable Rx path after enabling/disabling workaround */
1653 ret_val
= e1e_wphy(hw
, PHY_REG(769, 20), phy_reg
& ~(1 << 14));
1660 * e1000_lv_phy_workarounds_ich8lan - A series of Phy workarounds to be
1661 * done after every PHY reset.
1663 static s32
e1000_lv_phy_workarounds_ich8lan(struct e1000_hw
*hw
)
1667 if (hw
->mac
.type
!= e1000_pch2lan
)
1670 /* Set MDIO slow mode before any other MDIO access */
1671 ret_val
= e1000_set_mdio_slow_mode_hv(hw
);
1678 * e1000_k1_gig_workaround_lv - K1 Si workaround
1679 * @hw: pointer to the HW structure
1681 * Workaround to set the K1 beacon duration for 82579 parts
1683 static s32
e1000_k1_workaround_lv(struct e1000_hw
*hw
)
1690 if (hw
->mac
.type
!= e1000_pch2lan
)
1693 /* Set K1 beacon duration based on 1Gbps speed or otherwise */
1694 ret_val
= e1e_rphy(hw
, HV_M_STATUS
, &status_reg
);
1698 if ((status_reg
& (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
))
1699 == (HV_M_STATUS_LINK_UP
| HV_M_STATUS_AUTONEG_COMPLETE
)) {
1700 mac_reg
= er32(FEXTNVM4
);
1701 mac_reg
&= ~E1000_FEXTNVM4_BEACON_DURATION_MASK
;
1703 ret_val
= e1e_rphy(hw
, I82579_LPI_CTRL
, &phy_reg
);
1707 if (status_reg
& HV_M_STATUS_SPEED_1000
) {
1708 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_8USEC
;
1709 phy_reg
&= ~I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT
;
1711 mac_reg
|= E1000_FEXTNVM4_BEACON_DURATION_16USEC
;
1712 phy_reg
|= I82579_LPI_CTRL_FORCE_PLL_LOCK_COUNT
;
1714 ew32(FEXTNVM4
, mac_reg
);
1715 ret_val
= e1e_wphy(hw
, I82579_LPI_CTRL
, phy_reg
);
1723 * e1000_gate_hw_phy_config_ich8lan - disable PHY config via hardware
1724 * @hw: pointer to the HW structure
1725 * @gate: boolean set to true to gate, false to ungate
1727 * Gate/ungate the automatic PHY configuration via hardware; perform
1728 * the configuration via software instead.
1730 static void e1000_gate_hw_phy_config_ich8lan(struct e1000_hw
*hw
, bool gate
)
1734 if (hw
->mac
.type
!= e1000_pch2lan
)
1737 extcnf_ctrl
= er32(EXTCNF_CTRL
);
1740 extcnf_ctrl
|= E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
1742 extcnf_ctrl
&= ~E1000_EXTCNF_CTRL_GATE_PHY_CFG
;
1744 ew32(EXTCNF_CTRL
, extcnf_ctrl
);
1749 * e1000_lan_init_done_ich8lan - Check for PHY config completion
1750 * @hw: pointer to the HW structure
1752 * Check the appropriate indication the MAC has finished configuring the
1753 * PHY after a software reset.
1755 static void e1000_lan_init_done_ich8lan(struct e1000_hw
*hw
)
1757 u32 data
, loop
= E1000_ICH8_LAN_INIT_TIMEOUT
;
1759 /* Wait for basic configuration completes before proceeding */
1761 data
= er32(STATUS
);
1762 data
&= E1000_STATUS_LAN_INIT_DONE
;
1764 } while ((!data
) && --loop
);
1767 * If basic configuration is incomplete before the above loop
1768 * count reaches 0, loading the configuration from NVM will
1769 * leave the PHY in a bad state possibly resulting in no link.
1772 e_dbg("LAN_INIT_DONE not set, increase timeout\n");
1774 /* Clear the Init Done bit for the next init event */
1775 data
= er32(STATUS
);
1776 data
&= ~E1000_STATUS_LAN_INIT_DONE
;
1781 * e1000_post_phy_reset_ich8lan - Perform steps required after a PHY reset
1782 * @hw: pointer to the HW structure
1784 static s32
e1000_post_phy_reset_ich8lan(struct e1000_hw
*hw
)
1789 if (e1000_check_reset_block(hw
))
1792 /* Allow time for h/w to get to quiescent state after reset */
1793 usleep_range(10000, 20000);
1795 /* Perform any necessary post-reset workarounds */
1796 switch (hw
->mac
.type
) {
1798 ret_val
= e1000_hv_phy_workarounds_ich8lan(hw
);
1803 ret_val
= e1000_lv_phy_workarounds_ich8lan(hw
);
1811 /* Clear the host wakeup bit after lcd reset */
1812 if (hw
->mac
.type
>= e1000_pchlan
) {
1813 e1e_rphy(hw
, BM_PORT_GEN_CFG
, ®
);
1814 reg
&= ~BM_WUC_HOST_WU_BIT
;
1815 e1e_wphy(hw
, BM_PORT_GEN_CFG
, reg
);
1818 /* Configure the LCD with the extended configuration region in NVM */
1819 ret_val
= e1000_sw_lcd_config_ich8lan(hw
);
1823 /* Configure the LCD with the OEM bits in NVM */
1824 ret_val
= e1000_oem_bits_config_ich8lan(hw
, true);
1826 if (hw
->mac
.type
== e1000_pch2lan
) {
1827 /* Ungate automatic PHY configuration on non-managed 82579 */
1828 if (!(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
)) {
1829 usleep_range(10000, 20000);
1830 e1000_gate_hw_phy_config_ich8lan(hw
, false);
1833 /* Set EEE LPI Update Timer to 200usec */
1834 ret_val
= hw
->phy
.ops
.acquire(hw
);
1837 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, I82579_EMI_ADDR
,
1838 I82579_LPI_UPDATE_TIMER
);
1841 ret_val
= hw
->phy
.ops
.write_reg_locked(hw
, I82579_EMI_DATA
,
1844 hw
->phy
.ops
.release(hw
);
1852 * e1000_phy_hw_reset_ich8lan - Performs a PHY reset
1853 * @hw: pointer to the HW structure
1856 * This is a function pointer entry point called by drivers
1857 * or other shared routines.
1859 static s32
e1000_phy_hw_reset_ich8lan(struct e1000_hw
*hw
)
1863 /* Gate automatic PHY configuration by hardware on non-managed 82579 */
1864 if ((hw
->mac
.type
== e1000_pch2lan
) &&
1865 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
1866 e1000_gate_hw_phy_config_ich8lan(hw
, true);
1868 ret_val
= e1000e_phy_hw_reset_generic(hw
);
1872 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
1879 * e1000_set_lplu_state_pchlan - Set Low Power Link Up state
1880 * @hw: pointer to the HW structure
1881 * @active: true to enable LPLU, false to disable
1883 * Sets the LPLU state according to the active flag. For PCH, if OEM write
1884 * bit are disabled in the NVM, writing the LPLU bits in the MAC will not set
1885 * the phy speed. This function will manually set the LPLU bit and restart
1886 * auto-neg as hw would do. D3 and D0 LPLU will call the same function
1887 * since it configures the same bit.
1889 static s32
e1000_set_lplu_state_pchlan(struct e1000_hw
*hw
, bool active
)
1894 ret_val
= e1e_rphy(hw
, HV_OEM_BITS
, &oem_reg
);
1899 oem_reg
|= HV_OEM_BITS_LPLU
;
1901 oem_reg
&= ~HV_OEM_BITS_LPLU
;
1903 oem_reg
|= HV_OEM_BITS_RESTART_AN
;
1904 ret_val
= e1e_wphy(hw
, HV_OEM_BITS
, oem_reg
);
1911 * e1000_set_d0_lplu_state_ich8lan - Set Low Power Linkup D0 state
1912 * @hw: pointer to the HW structure
1913 * @active: true to enable LPLU, false to disable
1915 * Sets the LPLU D0 state according to the active flag. When
1916 * activating LPLU this function also disables smart speed
1917 * and vice versa. LPLU will not be activated unless the
1918 * device autonegotiation advertisement meets standards of
1919 * either 10 or 10/100 or 10/100/1000 at all duplexes.
1920 * This is a function pointer entry point only called by
1921 * PHY setup routines.
1923 static s32
e1000_set_d0_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
1925 struct e1000_phy_info
*phy
= &hw
->phy
;
1930 if (phy
->type
== e1000_phy_ife
)
1933 phy_ctrl
= er32(PHY_CTRL
);
1936 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
;
1937 ew32(PHY_CTRL
, phy_ctrl
);
1939 if (phy
->type
!= e1000_phy_igp_3
)
1943 * Call gig speed drop workaround on LPLU before accessing
1946 if (hw
->mac
.type
== e1000_ich8lan
)
1947 e1000e_gig_downshift_workaround_ich8lan(hw
);
1949 /* When LPLU is enabled, we should disable SmartSpeed */
1950 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
1951 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1952 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
1956 phy_ctrl
&= ~E1000_PHY_CTRL_D0A_LPLU
;
1957 ew32(PHY_CTRL
, phy_ctrl
);
1959 if (phy
->type
!= e1000_phy_igp_3
)
1963 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1964 * during Dx states where the power conservation is most
1965 * important. During driver activity we should enable
1966 * SmartSpeed, so performance is maintained.
1968 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1969 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1974 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1975 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1979 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1980 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1985 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1986 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1997 * e1000_set_d3_lplu_state_ich8lan - Set Low Power Linkup D3 state
1998 * @hw: pointer to the HW structure
1999 * @active: true to enable LPLU, false to disable
2001 * Sets the LPLU D3 state according to the active flag. When
2002 * activating LPLU this function also disables smart speed
2003 * and vice versa. LPLU will not be activated unless the
2004 * device autonegotiation advertisement meets standards of
2005 * either 10 or 10/100 or 10/100/1000 at all duplexes.
2006 * This is a function pointer entry point only called by
2007 * PHY setup routines.
2009 static s32
e1000_set_d3_lplu_state_ich8lan(struct e1000_hw
*hw
, bool active
)
2011 struct e1000_phy_info
*phy
= &hw
->phy
;
2016 phy_ctrl
= er32(PHY_CTRL
);
2019 phy_ctrl
&= ~E1000_PHY_CTRL_NOND0A_LPLU
;
2020 ew32(PHY_CTRL
, phy_ctrl
);
2022 if (phy
->type
!= e1000_phy_igp_3
)
2026 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
2027 * during Dx states where the power conservation is most
2028 * important. During driver activity we should enable
2029 * SmartSpeed, so performance is maintained.
2031 if (phy
->smart_speed
== e1000_smart_speed_on
) {
2032 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2037 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
2038 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2042 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
2043 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2048 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
2049 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
,
2054 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
2055 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
2056 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
2057 phy_ctrl
|= E1000_PHY_CTRL_NOND0A_LPLU
;
2058 ew32(PHY_CTRL
, phy_ctrl
);
2060 if (phy
->type
!= e1000_phy_igp_3
)
2064 * Call gig speed drop workaround on LPLU before accessing
2067 if (hw
->mac
.type
== e1000_ich8lan
)
2068 e1000e_gig_downshift_workaround_ich8lan(hw
);
2070 /* When LPLU is enabled, we should disable SmartSpeed */
2071 ret_val
= e1e_rphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, &data
);
2075 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
2076 ret_val
= e1e_wphy(hw
, IGP01E1000_PHY_PORT_CONFIG
, data
);
2083 * e1000_valid_nvm_bank_detect_ich8lan - finds out the valid bank 0 or 1
2084 * @hw: pointer to the HW structure
2085 * @bank: pointer to the variable that returns the active bank
2087 * Reads signature byte from the NVM using the flash access registers.
2088 * Word 0x13 bits 15:14 = 10b indicate a valid signature for that bank.
2090 static s32
e1000_valid_nvm_bank_detect_ich8lan(struct e1000_hw
*hw
, u32
*bank
)
2093 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2094 u32 bank1_offset
= nvm
->flash_bank_size
* sizeof(u16
);
2095 u32 act_offset
= E1000_ICH_NVM_SIG_WORD
* 2 + 1;
2099 switch (hw
->mac
.type
) {
2103 if ((eecd
& E1000_EECD_SEC1VAL_VALID_MASK
) ==
2104 E1000_EECD_SEC1VAL_VALID_MASK
) {
2105 if (eecd
& E1000_EECD_SEC1VAL
)
2112 e_dbg("Unable to determine valid NVM bank via EEC - "
2113 "reading flash signature\n");
2116 /* set bank to 0 in case flash read fails */
2120 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
,
2124 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
2125 E1000_ICH_NVM_SIG_VALUE
) {
2131 ret_val
= e1000_read_flash_byte_ich8lan(hw
, act_offset
+
2136 if ((sig_byte
& E1000_ICH_NVM_VALID_SIG_MASK
) ==
2137 E1000_ICH_NVM_SIG_VALUE
) {
2142 e_dbg("ERROR: No valid NVM bank present\n");
2143 return -E1000_ERR_NVM
;
2150 * e1000_read_nvm_ich8lan - Read word(s) from the NVM
2151 * @hw: pointer to the HW structure
2152 * @offset: The offset (in bytes) of the word(s) to read.
2153 * @words: Size of data to read in words
2154 * @data: Pointer to the word(s) to read at offset.
2156 * Reads a word(s) from the NVM using the flash access registers.
2158 static s32
e1000_read_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2161 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2162 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2168 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2170 e_dbg("nvm parameter(s) out of bounds\n");
2171 ret_val
= -E1000_ERR_NVM
;
2175 nvm
->ops
.acquire(hw
);
2177 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2179 e_dbg("Could not detect valid bank, assuming bank 0\n");
2183 act_offset
= (bank
) ? nvm
->flash_bank_size
: 0;
2184 act_offset
+= offset
;
2187 for (i
= 0; i
< words
; i
++) {
2188 if (dev_spec
->shadow_ram
[offset
+i
].modified
) {
2189 data
[i
] = dev_spec
->shadow_ram
[offset
+i
].value
;
2191 ret_val
= e1000_read_flash_word_ich8lan(hw
,
2200 nvm
->ops
.release(hw
);
2204 e_dbg("NVM read error: %d\n", ret_val
);
2210 * e1000_flash_cycle_init_ich8lan - Initialize flash
2211 * @hw: pointer to the HW structure
2213 * This function does initial flash setup so that a new read/write/erase cycle
2216 static s32
e1000_flash_cycle_init_ich8lan(struct e1000_hw
*hw
)
2218 union ich8_hws_flash_status hsfsts
;
2219 s32 ret_val
= -E1000_ERR_NVM
;
2221 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2223 /* Check if the flash descriptor is valid */
2224 if (hsfsts
.hsf_status
.fldesvalid
== 0) {
2225 e_dbg("Flash descriptor invalid. "
2226 "SW Sequencing must be used.\n");
2227 return -E1000_ERR_NVM
;
2230 /* Clear FCERR and DAEL in hw status by writing 1 */
2231 hsfsts
.hsf_status
.flcerr
= 1;
2232 hsfsts
.hsf_status
.dael
= 1;
2234 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2237 * Either we should have a hardware SPI cycle in progress
2238 * bit to check against, in order to start a new cycle or
2239 * FDONE bit should be changed in the hardware so that it
2240 * is 1 after hardware reset, which can then be used as an
2241 * indication whether a cycle is in progress or has been
2245 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2247 * There is no cycle running at present,
2248 * so we can start a cycle.
2249 * Begin by setting Flash Cycle Done.
2251 hsfsts
.hsf_status
.flcdone
= 1;
2252 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2258 * Otherwise poll for sometime so the current
2259 * cycle has a chance to end before giving up.
2261 for (i
= 0; i
< ICH_FLASH_READ_COMMAND_TIMEOUT
; i
++) {
2262 hsfsts
.regval
= __er16flash(hw
, ICH_FLASH_HSFSTS
);
2263 if (hsfsts
.hsf_status
.flcinprog
== 0) {
2271 * Successful in waiting for previous cycle to timeout,
2272 * now set the Flash Cycle Done.
2274 hsfsts
.hsf_status
.flcdone
= 1;
2275 ew16flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2277 e_dbg("Flash controller busy, cannot get access\n");
2285 * e1000_flash_cycle_ich8lan - Starts flash cycle (read/write/erase)
2286 * @hw: pointer to the HW structure
2287 * @timeout: maximum time to wait for completion
2289 * This function starts a flash cycle and waits for its completion.
2291 static s32
e1000_flash_cycle_ich8lan(struct e1000_hw
*hw
, u32 timeout
)
2293 union ich8_hws_flash_ctrl hsflctl
;
2294 union ich8_hws_flash_status hsfsts
;
2295 s32 ret_val
= -E1000_ERR_NVM
;
2298 /* Start a cycle by writing 1 in Flash Cycle Go in Hw Flash Control */
2299 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2300 hsflctl
.hsf_ctrl
.flcgo
= 1;
2301 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2303 /* wait till FDONE bit is set to 1 */
2305 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2306 if (hsfsts
.hsf_status
.flcdone
== 1)
2309 } while (i
++ < timeout
);
2311 if (hsfsts
.hsf_status
.flcdone
== 1 && hsfsts
.hsf_status
.flcerr
== 0)
2318 * e1000_read_flash_word_ich8lan - Read word from flash
2319 * @hw: pointer to the HW structure
2320 * @offset: offset to data location
2321 * @data: pointer to the location for storing the data
2323 * Reads the flash word at offset into data. Offset is converted
2324 * to bytes before read.
2326 static s32
e1000_read_flash_word_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2329 /* Must convert offset into bytes. */
2332 return e1000_read_flash_data_ich8lan(hw
, offset
, 2, data
);
2336 * e1000_read_flash_byte_ich8lan - Read byte from flash
2337 * @hw: pointer to the HW structure
2338 * @offset: The offset of the byte to read.
2339 * @data: Pointer to a byte to store the value read.
2341 * Reads a single byte from the NVM using the flash access registers.
2343 static s32
e1000_read_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2349 ret_val
= e1000_read_flash_data_ich8lan(hw
, offset
, 1, &word
);
2359 * e1000_read_flash_data_ich8lan - Read byte or word from NVM
2360 * @hw: pointer to the HW structure
2361 * @offset: The offset (in bytes) of the byte or word to read.
2362 * @size: Size of data to read, 1=byte 2=word
2363 * @data: Pointer to the word to store the value read.
2365 * Reads a byte or word from the NVM using the flash access registers.
2367 static s32
e1000_read_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2370 union ich8_hws_flash_status hsfsts
;
2371 union ich8_hws_flash_ctrl hsflctl
;
2372 u32 flash_linear_addr
;
2374 s32 ret_val
= -E1000_ERR_NVM
;
2377 if (size
< 1 || size
> 2 || offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2378 return -E1000_ERR_NVM
;
2380 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2381 hw
->nvm
.flash_base_addr
;
2386 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2390 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2391 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2392 hsflctl
.hsf_ctrl
.fldbcount
= size
- 1;
2393 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_READ
;
2394 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2396 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2398 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2399 ICH_FLASH_READ_COMMAND_TIMEOUT
);
2402 * Check if FCERR is set to 1, if set to 1, clear it
2403 * and try the whole sequence a few more times, else
2404 * read in (shift in) the Flash Data0, the order is
2405 * least significant byte first msb to lsb
2408 flash_data
= er32flash(ICH_FLASH_FDATA0
);
2410 *data
= (u8
)(flash_data
& 0x000000FF);
2412 *data
= (u16
)(flash_data
& 0x0000FFFF);
2416 * If we've gotten here, then things are probably
2417 * completely hosed, but if the error condition is
2418 * detected, it won't hurt to give it another try...
2419 * ICH_FLASH_CYCLE_REPEAT_COUNT times.
2421 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2422 if (hsfsts
.hsf_status
.flcerr
== 1) {
2423 /* Repeat for some time before giving up. */
2425 } else if (hsfsts
.hsf_status
.flcdone
== 0) {
2426 e_dbg("Timeout error - flash cycle "
2427 "did not complete.\n");
2431 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2437 * e1000_write_nvm_ich8lan - Write word(s) to the NVM
2438 * @hw: pointer to the HW structure
2439 * @offset: The offset (in bytes) of the word(s) to write.
2440 * @words: Size of data to write in words
2441 * @data: Pointer to the word(s) to write at offset.
2443 * Writes a byte or word to the NVM using the flash access registers.
2445 static s32
e1000_write_nvm_ich8lan(struct e1000_hw
*hw
, u16 offset
, u16 words
,
2448 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2449 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2452 if ((offset
>= nvm
->word_size
) || (words
> nvm
->word_size
- offset
) ||
2454 e_dbg("nvm parameter(s) out of bounds\n");
2455 return -E1000_ERR_NVM
;
2458 nvm
->ops
.acquire(hw
);
2460 for (i
= 0; i
< words
; i
++) {
2461 dev_spec
->shadow_ram
[offset
+i
].modified
= true;
2462 dev_spec
->shadow_ram
[offset
+i
].value
= data
[i
];
2465 nvm
->ops
.release(hw
);
2471 * e1000_update_nvm_checksum_ich8lan - Update the checksum for NVM
2472 * @hw: pointer to the HW structure
2474 * The NVM checksum is updated by calling the generic update_nvm_checksum,
2475 * which writes the checksum to the shadow ram. The changes in the shadow
2476 * ram are then committed to the EEPROM by processing each bank at a time
2477 * checking for the modified bit and writing only the pending changes.
2478 * After a successful commit, the shadow ram is cleared and is ready for
2481 static s32
e1000_update_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2483 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2484 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
2485 u32 i
, act_offset
, new_bank_offset
, old_bank_offset
, bank
;
2489 ret_val
= e1000e_update_nvm_checksum_generic(hw
);
2493 if (nvm
->type
!= e1000_nvm_flash_sw
)
2496 nvm
->ops
.acquire(hw
);
2499 * We're writing to the opposite bank so if we're on bank 1,
2500 * write to bank 0 etc. We also need to erase the segment that
2501 * is going to be written
2503 ret_val
= e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
);
2505 e_dbg("Could not detect valid bank, assuming bank 0\n");
2510 new_bank_offset
= nvm
->flash_bank_size
;
2511 old_bank_offset
= 0;
2512 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 1);
2516 old_bank_offset
= nvm
->flash_bank_size
;
2517 new_bank_offset
= 0;
2518 ret_val
= e1000_erase_flash_bank_ich8lan(hw
, 0);
2523 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2525 * Determine whether to write the value stored
2526 * in the other NVM bank or a modified value stored
2529 if (dev_spec
->shadow_ram
[i
].modified
) {
2530 data
= dev_spec
->shadow_ram
[i
].value
;
2532 ret_val
= e1000_read_flash_word_ich8lan(hw
, i
+
2540 * If the word is 0x13, then make sure the signature bits
2541 * (15:14) are 11b until the commit has completed.
2542 * This will allow us to write 10b which indicates the
2543 * signature is valid. We want to do this after the write
2544 * has completed so that we don't mark the segment valid
2545 * while the write is still in progress
2547 if (i
== E1000_ICH_NVM_SIG_WORD
)
2548 data
|= E1000_ICH_NVM_SIG_MASK
;
2550 /* Convert offset to bytes. */
2551 act_offset
= (i
+ new_bank_offset
) << 1;
2554 /* Write the bytes to the new bank. */
2555 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2562 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2570 * Don't bother writing the segment valid bits if sector
2571 * programming failed.
2574 /* Possibly read-only, see e1000e_write_protect_nvm_ich8lan() */
2575 e_dbg("Flash commit failed.\n");
2580 * Finally validate the new segment by setting bit 15:14
2581 * to 10b in word 0x13 , this can be done without an
2582 * erase as well since these bits are 11 to start with
2583 * and we need to change bit 14 to 0b
2585 act_offset
= new_bank_offset
+ E1000_ICH_NVM_SIG_WORD
;
2586 ret_val
= e1000_read_flash_word_ich8lan(hw
, act_offset
, &data
);
2591 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
,
2598 * And invalidate the previously valid segment by setting
2599 * its signature word (0x13) high_byte to 0b. This can be
2600 * done without an erase because flash erase sets all bits
2601 * to 1's. We can write 1's to 0's without an erase
2603 act_offset
= (old_bank_offset
+ E1000_ICH_NVM_SIG_WORD
) * 2 + 1;
2604 ret_val
= e1000_retry_write_flash_byte_ich8lan(hw
, act_offset
, 0);
2608 /* Great! Everything worked, we can now clear the cached entries. */
2609 for (i
= 0; i
< E1000_ICH8_SHADOW_RAM_WORDS
; i
++) {
2610 dev_spec
->shadow_ram
[i
].modified
= false;
2611 dev_spec
->shadow_ram
[i
].value
= 0xFFFF;
2615 nvm
->ops
.release(hw
);
2618 * Reload the EEPROM, or else modifications will not appear
2619 * until after the next adapter reset.
2622 e1000e_reload_nvm(hw
);
2623 usleep_range(10000, 20000);
2628 e_dbg("NVM update error: %d\n", ret_val
);
2634 * e1000_validate_nvm_checksum_ich8lan - Validate EEPROM checksum
2635 * @hw: pointer to the HW structure
2637 * Check to see if checksum needs to be fixed by reading bit 6 in word 0x19.
2638 * If the bit is 0, that the EEPROM had been modified, but the checksum was not
2639 * calculated, in which case we need to calculate the checksum and set bit 6.
2641 static s32
e1000_validate_nvm_checksum_ich8lan(struct e1000_hw
*hw
)
2647 * Read 0x19 and check bit 6. If this bit is 0, the checksum
2648 * needs to be fixed. This bit is an indication that the NVM
2649 * was prepared by OEM software and did not calculate the
2650 * checksum...a likely scenario.
2652 ret_val
= e1000_read_nvm(hw
, 0x19, 1, &data
);
2656 if ((data
& 0x40) == 0) {
2658 ret_val
= e1000_write_nvm(hw
, 0x19, 1, &data
);
2661 ret_val
= e1000e_update_nvm_checksum(hw
);
2666 return e1000e_validate_nvm_checksum_generic(hw
);
2670 * e1000e_write_protect_nvm_ich8lan - Make the NVM read-only
2671 * @hw: pointer to the HW structure
2673 * To prevent malicious write/erase of the NVM, set it to be read-only
2674 * so that the hardware ignores all write/erase cycles of the NVM via
2675 * the flash control registers. The shadow-ram copy of the NVM will
2676 * still be updated, however any updates to this copy will not stick
2677 * across driver reloads.
2679 void e1000e_write_protect_nvm_ich8lan(struct e1000_hw
*hw
)
2681 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2682 union ich8_flash_protected_range pr0
;
2683 union ich8_hws_flash_status hsfsts
;
2686 nvm
->ops
.acquire(hw
);
2688 gfpreg
= er32flash(ICH_FLASH_GFPREG
);
2690 /* Write-protect GbE Sector of NVM */
2691 pr0
.regval
= er32flash(ICH_FLASH_PR0
);
2692 pr0
.range
.base
= gfpreg
& FLASH_GFPREG_BASE_MASK
;
2693 pr0
.range
.limit
= ((gfpreg
>> 16) & FLASH_GFPREG_BASE_MASK
);
2694 pr0
.range
.wpe
= true;
2695 ew32flash(ICH_FLASH_PR0
, pr0
.regval
);
2698 * Lock down a subset of GbE Flash Control Registers, e.g.
2699 * PR0 to prevent the write-protection from being lifted.
2700 * Once FLOCKDN is set, the registers protected by it cannot
2701 * be written until FLOCKDN is cleared by a hardware reset.
2703 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2704 hsfsts
.hsf_status
.flockdn
= true;
2705 ew32flash(ICH_FLASH_HSFSTS
, hsfsts
.regval
);
2707 nvm
->ops
.release(hw
);
2711 * e1000_write_flash_data_ich8lan - Writes bytes to the NVM
2712 * @hw: pointer to the HW structure
2713 * @offset: The offset (in bytes) of the byte/word to read.
2714 * @size: Size of data to read, 1=byte 2=word
2715 * @data: The byte(s) to write to the NVM.
2717 * Writes one/two bytes to the NVM using the flash access registers.
2719 static s32
e1000_write_flash_data_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2722 union ich8_hws_flash_status hsfsts
;
2723 union ich8_hws_flash_ctrl hsflctl
;
2724 u32 flash_linear_addr
;
2729 if (size
< 1 || size
> 2 || data
> size
* 0xff ||
2730 offset
> ICH_FLASH_LINEAR_ADDR_MASK
)
2731 return -E1000_ERR_NVM
;
2733 flash_linear_addr
= (ICH_FLASH_LINEAR_ADDR_MASK
& offset
) +
2734 hw
->nvm
.flash_base_addr
;
2739 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2743 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2744 /* 0b/1b corresponds to 1 or 2 byte size, respectively. */
2745 hsflctl
.hsf_ctrl
.fldbcount
= size
-1;
2746 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_WRITE
;
2747 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2749 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2752 flash_data
= (u32
)data
& 0x00FF;
2754 flash_data
= (u32
)data
;
2756 ew32flash(ICH_FLASH_FDATA0
, flash_data
);
2759 * check if FCERR is set to 1 , if set to 1, clear it
2760 * and try the whole sequence a few more times else done
2762 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2763 ICH_FLASH_WRITE_COMMAND_TIMEOUT
);
2768 * If we're here, then things are most likely
2769 * completely hosed, but if the error condition
2770 * is detected, it won't hurt to give it another
2771 * try...ICH_FLASH_CYCLE_REPEAT_COUNT times.
2773 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2774 if (hsfsts
.hsf_status
.flcerr
== 1)
2775 /* Repeat for some time before giving up. */
2777 if (hsfsts
.hsf_status
.flcdone
== 0) {
2778 e_dbg("Timeout error - flash cycle "
2779 "did not complete.");
2782 } while (count
++ < ICH_FLASH_CYCLE_REPEAT_COUNT
);
2788 * e1000_write_flash_byte_ich8lan - Write a single byte to NVM
2789 * @hw: pointer to the HW structure
2790 * @offset: The index of the byte to read.
2791 * @data: The byte to write to the NVM.
2793 * Writes a single byte to the NVM using the flash access registers.
2795 static s32
e1000_write_flash_byte_ich8lan(struct e1000_hw
*hw
, u32 offset
,
2798 u16 word
= (u16
)data
;
2800 return e1000_write_flash_data_ich8lan(hw
, offset
, 1, word
);
2804 * e1000_retry_write_flash_byte_ich8lan - Writes a single byte to NVM
2805 * @hw: pointer to the HW structure
2806 * @offset: The offset of the byte to write.
2807 * @byte: The byte to write to the NVM.
2809 * Writes a single byte to the NVM using the flash access registers.
2810 * Goes through a retry algorithm before giving up.
2812 static s32
e1000_retry_write_flash_byte_ich8lan(struct e1000_hw
*hw
,
2813 u32 offset
, u8 byte
)
2816 u16 program_retries
;
2818 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2822 for (program_retries
= 0; program_retries
< 100; program_retries
++) {
2823 e_dbg("Retrying Byte %2.2X at offset %u\n", byte
, offset
);
2825 ret_val
= e1000_write_flash_byte_ich8lan(hw
, offset
, byte
);
2829 if (program_retries
== 100)
2830 return -E1000_ERR_NVM
;
2836 * e1000_erase_flash_bank_ich8lan - Erase a bank (4k) from NVM
2837 * @hw: pointer to the HW structure
2838 * @bank: 0 for first bank, 1 for second bank, etc.
2840 * Erases the bank specified. Each bank is a 4k block. Banks are 0 based.
2841 * bank N is 4096 * N + flash_reg_addr.
2843 static s32
e1000_erase_flash_bank_ich8lan(struct e1000_hw
*hw
, u32 bank
)
2845 struct e1000_nvm_info
*nvm
= &hw
->nvm
;
2846 union ich8_hws_flash_status hsfsts
;
2847 union ich8_hws_flash_ctrl hsflctl
;
2848 u32 flash_linear_addr
;
2849 /* bank size is in 16bit words - adjust to bytes */
2850 u32 flash_bank_size
= nvm
->flash_bank_size
* 2;
2853 s32 j
, iteration
, sector_size
;
2855 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2858 * Determine HW Sector size: Read BERASE bits of hw flash status
2860 * 00: The Hw sector is 256 bytes, hence we need to erase 16
2861 * consecutive sectors. The start index for the nth Hw sector
2862 * can be calculated as = bank * 4096 + n * 256
2863 * 01: The Hw sector is 4K bytes, hence we need to erase 1 sector.
2864 * The start index for the nth Hw sector can be calculated
2866 * 10: The Hw sector is 8K bytes, nth sector = bank * 8192
2867 * (ich9 only, otherwise error condition)
2868 * 11: The Hw sector is 64K bytes, nth sector = bank * 65536
2870 switch (hsfsts
.hsf_status
.berasesz
) {
2872 /* Hw sector size 256 */
2873 sector_size
= ICH_FLASH_SEG_SIZE_256
;
2874 iteration
= flash_bank_size
/ ICH_FLASH_SEG_SIZE_256
;
2877 sector_size
= ICH_FLASH_SEG_SIZE_4K
;
2881 sector_size
= ICH_FLASH_SEG_SIZE_8K
;
2885 sector_size
= ICH_FLASH_SEG_SIZE_64K
;
2889 return -E1000_ERR_NVM
;
2892 /* Start with the base address, then add the sector offset. */
2893 flash_linear_addr
= hw
->nvm
.flash_base_addr
;
2894 flash_linear_addr
+= (bank
) ? flash_bank_size
: 0;
2896 for (j
= 0; j
< iteration
; j
++) {
2899 ret_val
= e1000_flash_cycle_init_ich8lan(hw
);
2904 * Write a value 11 (block Erase) in Flash
2905 * Cycle field in hw flash control
2907 hsflctl
.regval
= er16flash(ICH_FLASH_HSFCTL
);
2908 hsflctl
.hsf_ctrl
.flcycle
= ICH_CYCLE_ERASE
;
2909 ew16flash(ICH_FLASH_HSFCTL
, hsflctl
.regval
);
2912 * Write the last 24 bits of an index within the
2913 * block into Flash Linear address field in Flash
2916 flash_linear_addr
+= (j
* sector_size
);
2917 ew32flash(ICH_FLASH_FADDR
, flash_linear_addr
);
2919 ret_val
= e1000_flash_cycle_ich8lan(hw
,
2920 ICH_FLASH_ERASE_COMMAND_TIMEOUT
);
2925 * Check if FCERR is set to 1. If 1,
2926 * clear it and try the whole sequence
2927 * a few more times else Done
2929 hsfsts
.regval
= er16flash(ICH_FLASH_HSFSTS
);
2930 if (hsfsts
.hsf_status
.flcerr
== 1)
2931 /* repeat for some time before giving up */
2933 else if (hsfsts
.hsf_status
.flcdone
== 0)
2935 } while (++count
< ICH_FLASH_CYCLE_REPEAT_COUNT
);
2942 * e1000_valid_led_default_ich8lan - Set the default LED settings
2943 * @hw: pointer to the HW structure
2944 * @data: Pointer to the LED settings
2946 * Reads the LED default settings from the NVM to data. If the NVM LED
2947 * settings is all 0's or F's, set the LED default to a valid LED default
2950 static s32
e1000_valid_led_default_ich8lan(struct e1000_hw
*hw
, u16
*data
)
2954 ret_val
= e1000_read_nvm(hw
, NVM_ID_LED_SETTINGS
, 1, data
);
2956 e_dbg("NVM Read Error\n");
2960 if (*data
== ID_LED_RESERVED_0000
||
2961 *data
== ID_LED_RESERVED_FFFF
)
2962 *data
= ID_LED_DEFAULT_ICH8LAN
;
2968 * e1000_id_led_init_pchlan - store LED configurations
2969 * @hw: pointer to the HW structure
2971 * PCH does not control LEDs via the LEDCTL register, rather it uses
2972 * the PHY LED configuration register.
2974 * PCH also does not have an "always on" or "always off" mode which
2975 * complicates the ID feature. Instead of using the "on" mode to indicate
2976 * in ledctl_mode2 the LEDs to use for ID (see e1000e_id_led_init()),
2977 * use "link_up" mode. The LEDs will still ID on request if there is no
2978 * link based on logic in e1000_led_[on|off]_pchlan().
2980 static s32
e1000_id_led_init_pchlan(struct e1000_hw
*hw
)
2982 struct e1000_mac_info
*mac
= &hw
->mac
;
2984 const u32 ledctl_on
= E1000_LEDCTL_MODE_LINK_UP
;
2985 const u32 ledctl_off
= E1000_LEDCTL_MODE_LINK_UP
| E1000_PHY_LED0_IVRT
;
2986 u16 data
, i
, temp
, shift
;
2988 /* Get default ID LED modes */
2989 ret_val
= hw
->nvm
.ops
.valid_led_default(hw
, &data
);
2993 mac
->ledctl_default
= er32(LEDCTL
);
2994 mac
->ledctl_mode1
= mac
->ledctl_default
;
2995 mac
->ledctl_mode2
= mac
->ledctl_default
;
2997 for (i
= 0; i
< 4; i
++) {
2998 temp
= (data
>> (i
<< 2)) & E1000_LEDCTL_LED0_MODE_MASK
;
3001 case ID_LED_ON1_DEF2
:
3002 case ID_LED_ON1_ON2
:
3003 case ID_LED_ON1_OFF2
:
3004 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
3005 mac
->ledctl_mode1
|= (ledctl_on
<< shift
);
3007 case ID_LED_OFF1_DEF2
:
3008 case ID_LED_OFF1_ON2
:
3009 case ID_LED_OFF1_OFF2
:
3010 mac
->ledctl_mode1
&= ~(E1000_PHY_LED0_MASK
<< shift
);
3011 mac
->ledctl_mode1
|= (ledctl_off
<< shift
);
3018 case ID_LED_DEF1_ON2
:
3019 case ID_LED_ON1_ON2
:
3020 case ID_LED_OFF1_ON2
:
3021 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
3022 mac
->ledctl_mode2
|= (ledctl_on
<< shift
);
3024 case ID_LED_DEF1_OFF2
:
3025 case ID_LED_ON1_OFF2
:
3026 case ID_LED_OFF1_OFF2
:
3027 mac
->ledctl_mode2
&= ~(E1000_PHY_LED0_MASK
<< shift
);
3028 mac
->ledctl_mode2
|= (ledctl_off
<< shift
);
3041 * e1000_get_bus_info_ich8lan - Get/Set the bus type and width
3042 * @hw: pointer to the HW structure
3044 * ICH8 use the PCI Express bus, but does not contain a PCI Express Capability
3045 * register, so the the bus width is hard coded.
3047 static s32
e1000_get_bus_info_ich8lan(struct e1000_hw
*hw
)
3049 struct e1000_bus_info
*bus
= &hw
->bus
;
3052 ret_val
= e1000e_get_bus_info_pcie(hw
);
3055 * ICH devices are "PCI Express"-ish. They have
3056 * a configuration space, but do not contain
3057 * PCI Express Capability registers, so bus width
3058 * must be hardcoded.
3060 if (bus
->width
== e1000_bus_width_unknown
)
3061 bus
->width
= e1000_bus_width_pcie_x1
;
3067 * e1000_reset_hw_ich8lan - Reset the hardware
3068 * @hw: pointer to the HW structure
3070 * Does a full reset of the hardware which includes a reset of the PHY and
3073 static s32
e1000_reset_hw_ich8lan(struct e1000_hw
*hw
)
3075 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3081 * Prevent the PCI-E bus from sticking if there is no TLP connection
3082 * on the last TLP read/write transaction when MAC is reset.
3084 ret_val
= e1000e_disable_pcie_master(hw
);
3086 e_dbg("PCI-E Master disable polling has failed.\n");
3088 e_dbg("Masking off all interrupts\n");
3089 ew32(IMC
, 0xffffffff);
3092 * Disable the Transmit and Receive units. Then delay to allow
3093 * any pending transactions to complete before we hit the MAC
3094 * with the global reset.
3097 ew32(TCTL
, E1000_TCTL_PSP
);
3100 usleep_range(10000, 20000);
3102 /* Workaround for ICH8 bit corruption issue in FIFO memory */
3103 if (hw
->mac
.type
== e1000_ich8lan
) {
3104 /* Set Tx and Rx buffer allocation to 8k apiece. */
3105 ew32(PBA
, E1000_PBA_8K
);
3106 /* Set Packet Buffer Size to 16k. */
3107 ew32(PBS
, E1000_PBS_16K
);
3110 if (hw
->mac
.type
== e1000_pchlan
) {
3111 /* Save the NVM K1 bit setting*/
3112 ret_val
= e1000_read_nvm(hw
, E1000_NVM_K1_CONFIG
, 1, ®
);
3116 if (reg
& E1000_NVM_K1_ENABLE
)
3117 dev_spec
->nvm_k1_enabled
= true;
3119 dev_spec
->nvm_k1_enabled
= false;
3124 if (!e1000_check_reset_block(hw
)) {
3126 * Full-chip reset requires MAC and PHY reset at the same
3127 * time to make sure the interface between MAC and the
3128 * external PHY is reset.
3130 ctrl
|= E1000_CTRL_PHY_RST
;
3133 * Gate automatic PHY configuration by hardware on
3136 if ((hw
->mac
.type
== e1000_pch2lan
) &&
3137 !(er32(FWSM
) & E1000_ICH_FWSM_FW_VALID
))
3138 e1000_gate_hw_phy_config_ich8lan(hw
, true);
3140 ret_val
= e1000_acquire_swflag_ich8lan(hw
);
3141 e_dbg("Issuing a global reset to ich8lan\n");
3142 ew32(CTRL
, (ctrl
| E1000_CTRL_RST
));
3143 /* cannot issue a flush here because it hangs the hardware */
3147 clear_bit(__E1000_ACCESS_SHARED_RESOURCE
, &hw
->adapter
->state
);
3149 if (ctrl
& E1000_CTRL_PHY_RST
) {
3150 ret_val
= hw
->phy
.ops
.get_cfg_done(hw
);
3154 ret_val
= e1000_post_phy_reset_ich8lan(hw
);
3160 * For PCH, this write will make sure that any noise
3161 * will be detected as a CRC error and be dropped rather than show up
3162 * as a bad packet to the DMA engine.
3164 if (hw
->mac
.type
== e1000_pchlan
)
3165 ew32(CRC_OFFSET
, 0x65656565);
3167 ew32(IMC
, 0xffffffff);
3170 kab
= er32(KABGTXD
);
3171 kab
|= E1000_KABGTXD_BGSQLBIAS
;
3179 * e1000_init_hw_ich8lan - Initialize the hardware
3180 * @hw: pointer to the HW structure
3182 * Prepares the hardware for transmit and receive by doing the following:
3183 * - initialize hardware bits
3184 * - initialize LED identification
3185 * - setup receive address registers
3186 * - setup flow control
3187 * - setup transmit descriptors
3188 * - clear statistics
3190 static s32
e1000_init_hw_ich8lan(struct e1000_hw
*hw
)
3192 struct e1000_mac_info
*mac
= &hw
->mac
;
3193 u32 ctrl_ext
, txdctl
, snoop
;
3197 e1000_initialize_hw_bits_ich8lan(hw
);
3199 /* Initialize identification LED */
3200 ret_val
= mac
->ops
.id_led_init(hw
);
3202 e_dbg("Error initializing identification LED\n");
3203 /* This is not fatal and we should not stop init due to this */
3205 /* Setup the receive address. */
3206 e1000e_init_rx_addrs(hw
, mac
->rar_entry_count
);
3208 /* Zero out the Multicast HASH table */
3209 e_dbg("Zeroing the MTA\n");
3210 for (i
= 0; i
< mac
->mta_reg_count
; i
++)
3211 E1000_WRITE_REG_ARRAY(hw
, E1000_MTA
, i
, 0);
3214 * The 82578 Rx buffer will stall if wakeup is enabled in host and
3215 * the ME. Disable wakeup by clearing the host wakeup bit.
3216 * Reset the phy after disabling host wakeup to reset the Rx buffer.
3218 if (hw
->phy
.type
== e1000_phy_82578
) {
3219 e1e_rphy(hw
, BM_PORT_GEN_CFG
, &i
);
3220 i
&= ~BM_WUC_HOST_WU_BIT
;
3221 e1e_wphy(hw
, BM_PORT_GEN_CFG
, i
);
3222 ret_val
= e1000_phy_hw_reset_ich8lan(hw
);
3227 /* Setup link and flow control */
3228 ret_val
= e1000_setup_link_ich8lan(hw
);
3230 /* Set the transmit descriptor write-back policy for both queues */
3231 txdctl
= er32(TXDCTL(0));
3232 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3233 E1000_TXDCTL_FULL_TX_DESC_WB
;
3234 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3235 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3236 ew32(TXDCTL(0), txdctl
);
3237 txdctl
= er32(TXDCTL(1));
3238 txdctl
= (txdctl
& ~E1000_TXDCTL_WTHRESH
) |
3239 E1000_TXDCTL_FULL_TX_DESC_WB
;
3240 txdctl
= (txdctl
& ~E1000_TXDCTL_PTHRESH
) |
3241 E1000_TXDCTL_MAX_TX_DESC_PREFETCH
;
3242 ew32(TXDCTL(1), txdctl
);
3245 * ICH8 has opposite polarity of no_snoop bits.
3246 * By default, we should use snoop behavior.
3248 if (mac
->type
== e1000_ich8lan
)
3249 snoop
= PCIE_ICH8_SNOOP_ALL
;
3251 snoop
= (u32
) ~(PCIE_NO_SNOOP_ALL
);
3252 e1000e_set_pcie_no_snoop(hw
, snoop
);
3254 ctrl_ext
= er32(CTRL_EXT
);
3255 ctrl_ext
|= E1000_CTRL_EXT_RO_DIS
;
3256 ew32(CTRL_EXT
, ctrl_ext
);
3259 * Clear all of the statistics registers (clear on read). It is
3260 * important that we do this after we have tried to establish link
3261 * because the symbol error count will increment wildly if there
3264 e1000_clear_hw_cntrs_ich8lan(hw
);
3269 * e1000_initialize_hw_bits_ich8lan - Initialize required hardware bits
3270 * @hw: pointer to the HW structure
3272 * Sets/Clears required hardware bits necessary for correctly setting up the
3273 * hardware for transmit and receive.
3275 static void e1000_initialize_hw_bits_ich8lan(struct e1000_hw
*hw
)
3279 /* Extended Device Control */
3280 reg
= er32(CTRL_EXT
);
3282 /* Enable PHY low-power state when MAC is at D3 w/o WoL */
3283 if (hw
->mac
.type
>= e1000_pchlan
)
3284 reg
|= E1000_CTRL_EXT_PHYPDEN
;
3285 ew32(CTRL_EXT
, reg
);
3287 /* Transmit Descriptor Control 0 */
3288 reg
= er32(TXDCTL(0));
3290 ew32(TXDCTL(0), reg
);
3292 /* Transmit Descriptor Control 1 */
3293 reg
= er32(TXDCTL(1));
3295 ew32(TXDCTL(1), reg
);
3297 /* Transmit Arbitration Control 0 */
3298 reg
= er32(TARC(0));
3299 if (hw
->mac
.type
== e1000_ich8lan
)
3300 reg
|= (1 << 28) | (1 << 29);
3301 reg
|= (1 << 23) | (1 << 24) | (1 << 26) | (1 << 27);
3304 /* Transmit Arbitration Control 1 */
3305 reg
= er32(TARC(1));
3306 if (er32(TCTL
) & E1000_TCTL_MULR
)
3310 reg
|= (1 << 24) | (1 << 26) | (1 << 30);
3314 if (hw
->mac
.type
== e1000_ich8lan
) {
3321 * work-around descriptor data corruption issue during nfs v2 udp
3322 * traffic, just disable the nfs filtering capability
3325 reg
|= (E1000_RFCTL_NFSW_DIS
| E1000_RFCTL_NFSR_DIS
);
3330 * e1000_setup_link_ich8lan - Setup flow control and link settings
3331 * @hw: pointer to the HW structure
3333 * Determines which flow control settings to use, then configures flow
3334 * control. Calls the appropriate media-specific link configuration
3335 * function. Assuming the adapter has a valid link partner, a valid link
3336 * should be established. Assumes the hardware has previously been reset
3337 * and the transmitter and receiver are not enabled.
3339 static s32
e1000_setup_link_ich8lan(struct e1000_hw
*hw
)
3343 if (e1000_check_reset_block(hw
))
3347 * ICH parts do not have a word in the NVM to determine
3348 * the default flow control setting, so we explicitly
3351 if (hw
->fc
.requested_mode
== e1000_fc_default
) {
3352 /* Workaround h/w hang when Tx flow control enabled */
3353 if (hw
->mac
.type
== e1000_pchlan
)
3354 hw
->fc
.requested_mode
= e1000_fc_rx_pause
;
3356 hw
->fc
.requested_mode
= e1000_fc_full
;
3360 * Save off the requested flow control mode for use later. Depending
3361 * on the link partner's capabilities, we may or may not use this mode.
3363 hw
->fc
.current_mode
= hw
->fc
.requested_mode
;
3365 e_dbg("After fix-ups FlowControl is now = %x\n",
3366 hw
->fc
.current_mode
);
3368 /* Continue to configure the copper link. */
3369 ret_val
= e1000_setup_copper_link_ich8lan(hw
);
3373 ew32(FCTTV
, hw
->fc
.pause_time
);
3374 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3375 (hw
->phy
.type
== e1000_phy_82579
) ||
3376 (hw
->phy
.type
== e1000_phy_82577
)) {
3377 ew32(FCRTV_PCH
, hw
->fc
.refresh_time
);
3379 ret_val
= e1e_wphy(hw
, PHY_REG(BM_PORT_CTRL_PAGE
, 27),
3385 return e1000e_set_fc_watermarks(hw
);
3389 * e1000_setup_copper_link_ich8lan - Configure MAC/PHY interface
3390 * @hw: pointer to the HW structure
3392 * Configures the kumeran interface to the PHY to wait the appropriate time
3393 * when polling the PHY, then call the generic setup_copper_link to finish
3394 * configuring the copper link.
3396 static s32
e1000_setup_copper_link_ich8lan(struct e1000_hw
*hw
)
3403 ctrl
|= E1000_CTRL_SLU
;
3404 ctrl
&= ~(E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
3408 * Set the mac to wait the maximum time between each iteration
3409 * and increase the max iterations when polling the phy;
3410 * this fixes erroneous timeouts at 10Mbps.
3412 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_TIMEOUTS
, 0xFFFF);
3415 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3420 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_INBAND_PARAM
,
3425 switch (hw
->phy
.type
) {
3426 case e1000_phy_igp_3
:
3427 ret_val
= e1000e_copper_link_setup_igp(hw
);
3432 case e1000_phy_82578
:
3433 ret_val
= e1000e_copper_link_setup_m88(hw
);
3437 case e1000_phy_82577
:
3438 case e1000_phy_82579
:
3439 ret_val
= e1000_copper_link_setup_82577(hw
);
3444 ret_val
= e1e_rphy(hw
, IFE_PHY_MDIX_CONTROL
, ®_data
);
3448 reg_data
&= ~IFE_PMC_AUTO_MDIX
;
3450 switch (hw
->phy
.mdix
) {
3452 reg_data
&= ~IFE_PMC_FORCE_MDIX
;
3455 reg_data
|= IFE_PMC_FORCE_MDIX
;
3459 reg_data
|= IFE_PMC_AUTO_MDIX
;
3462 ret_val
= e1e_wphy(hw
, IFE_PHY_MDIX_CONTROL
, reg_data
);
3469 return e1000e_setup_copper_link(hw
);
3473 * e1000_get_link_up_info_ich8lan - Get current link speed and duplex
3474 * @hw: pointer to the HW structure
3475 * @speed: pointer to store current link speed
3476 * @duplex: pointer to store the current link duplex
3478 * Calls the generic get_speed_and_duplex to retrieve the current link
3479 * information and then calls the Kumeran lock loss workaround for links at
3482 static s32
e1000_get_link_up_info_ich8lan(struct e1000_hw
*hw
, u16
*speed
,
3487 ret_val
= e1000e_get_speed_and_duplex_copper(hw
, speed
, duplex
);
3491 if ((hw
->mac
.type
== e1000_ich8lan
) &&
3492 (hw
->phy
.type
== e1000_phy_igp_3
) &&
3493 (*speed
== SPEED_1000
)) {
3494 ret_val
= e1000_kmrn_lock_loss_workaround_ich8lan(hw
);
3501 * e1000_kmrn_lock_loss_workaround_ich8lan - Kumeran workaround
3502 * @hw: pointer to the HW structure
3504 * Work-around for 82566 Kumeran PCS lock loss:
3505 * On link status change (i.e. PCI reset, speed change) and link is up and
3507 * 0) if workaround is optionally disabled do nothing
3508 * 1) wait 1ms for Kumeran link to come up
3509 * 2) check Kumeran Diagnostic register PCS lock loss bit
3510 * 3) if not set the link is locked (all is good), otherwise...
3512 * 5) repeat up to 10 times
3513 * Note: this is only called for IGP3 copper when speed is 1gb.
3515 static s32
e1000_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
)
3517 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3523 if (!dev_spec
->kmrn_lock_loss_workaround_enabled
)
3527 * Make sure link is up before proceeding. If not just return.
3528 * Attempting this while link is negotiating fouled up link
3531 ret_val
= e1000e_phy_has_link_generic(hw
, 1, 0, &link
);
3535 for (i
= 0; i
< 10; i
++) {
3536 /* read once to clear */
3537 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3540 /* and again to get new status */
3541 ret_val
= e1e_rphy(hw
, IGP3_KMRN_DIAG
, &data
);
3545 /* check for PCS lock */
3546 if (!(data
& IGP3_KMRN_DIAG_PCS_LOCK_LOSS
))
3549 /* Issue PHY reset */
3550 e1000_phy_hw_reset(hw
);
3553 /* Disable GigE link negotiation */
3554 phy_ctrl
= er32(PHY_CTRL
);
3555 phy_ctrl
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3556 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3557 ew32(PHY_CTRL
, phy_ctrl
);
3560 * Call gig speed drop workaround on Gig disable before accessing
3563 e1000e_gig_downshift_workaround_ich8lan(hw
);
3565 /* unable to acquire PCS lock */
3566 return -E1000_ERR_PHY
;
3570 * e1000_set_kmrn_lock_loss_workaround_ich8lan - Set Kumeran workaround state
3571 * @hw: pointer to the HW structure
3572 * @state: boolean value used to set the current Kumeran workaround state
3574 * If ICH8, set the current Kumeran workaround state (enabled - true
3575 * /disabled - false).
3577 void e1000e_set_kmrn_lock_loss_workaround_ich8lan(struct e1000_hw
*hw
,
3580 struct e1000_dev_spec_ich8lan
*dev_spec
= &hw
->dev_spec
.ich8lan
;
3582 if (hw
->mac
.type
!= e1000_ich8lan
) {
3583 e_dbg("Workaround applies to ICH8 only.\n");
3587 dev_spec
->kmrn_lock_loss_workaround_enabled
= state
;
3591 * e1000_ipg3_phy_powerdown_workaround_ich8lan - Power down workaround on D3
3592 * @hw: pointer to the HW structure
3594 * Workaround for 82566 power-down on D3 entry:
3595 * 1) disable gigabit link
3596 * 2) write VR power-down enable
3598 * Continue if successful, else issue LCD reset and repeat
3600 void e1000e_igp3_phy_powerdown_workaround_ich8lan(struct e1000_hw
*hw
)
3606 if (hw
->phy
.type
!= e1000_phy_igp_3
)
3609 /* Try the workaround twice (if needed) */
3612 reg
= er32(PHY_CTRL
);
3613 reg
|= (E1000_PHY_CTRL_GBE_DISABLE
|
3614 E1000_PHY_CTRL_NOND0A_GBE_DISABLE
);
3615 ew32(PHY_CTRL
, reg
);
3618 * Call gig speed drop workaround on Gig disable before
3619 * accessing any PHY registers
3621 if (hw
->mac
.type
== e1000_ich8lan
)
3622 e1000e_gig_downshift_workaround_ich8lan(hw
);
3624 /* Write VR power-down enable */
3625 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3626 data
&= ~IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3627 e1e_wphy(hw
, IGP3_VR_CTRL
, data
| IGP3_VR_CTRL_MODE_SHUTDOWN
);
3629 /* Read it back and test */
3630 e1e_rphy(hw
, IGP3_VR_CTRL
, &data
);
3631 data
&= IGP3_VR_CTRL_DEV_POWERDOWN_MODE_MASK
;
3632 if ((data
== IGP3_VR_CTRL_MODE_SHUTDOWN
) || retry
)
3635 /* Issue PHY reset and repeat at most one more time */
3637 ew32(CTRL
, reg
| E1000_CTRL_PHY_RST
);
3643 * e1000e_gig_downshift_workaround_ich8lan - WoL from S5 stops working
3644 * @hw: pointer to the HW structure
3646 * Steps to take when dropping from 1Gb/s (eg. link cable removal (LSC),
3647 * LPLU, Gig disable, MDIC PHY reset):
3648 * 1) Set Kumeran Near-end loopback
3649 * 2) Clear Kumeran Near-end loopback
3650 * Should only be called for ICH8[m] devices with any 1G Phy.
3652 void e1000e_gig_downshift_workaround_ich8lan(struct e1000_hw
*hw
)
3657 if ((hw
->mac
.type
!= e1000_ich8lan
) || (hw
->phy
.type
== e1000_phy_ife
))
3660 ret_val
= e1000e_read_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3664 reg_data
|= E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3665 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3669 reg_data
&= ~E1000_KMRNCTRLSTA_DIAG_NELPBK
;
3670 ret_val
= e1000e_write_kmrn_reg(hw
, E1000_KMRNCTRLSTA_DIAG_OFFSET
,
3675 * e1000_suspend_workarounds_ich8lan - workarounds needed during S0->Sx
3676 * @hw: pointer to the HW structure
3678 * During S0 to Sx transition, it is possible the link remains at gig
3679 * instead of negotiating to a lower speed. Before going to Sx, set
3680 * 'LPLU Enabled' and 'Gig Disable' to force link speed negotiation
3681 * to a lower speed. For PCH and newer parts, the OEM bits PHY register
3682 * (LED, GbE disable and LPLU configurations) also needs to be written.
3684 void e1000_suspend_workarounds_ich8lan(struct e1000_hw
*hw
)
3689 phy_ctrl
= er32(PHY_CTRL
);
3690 phy_ctrl
|= E1000_PHY_CTRL_D0A_LPLU
| E1000_PHY_CTRL_GBE_DISABLE
;
3691 ew32(PHY_CTRL
, phy_ctrl
);
3693 if (hw
->mac
.type
== e1000_ich8lan
)
3694 e1000e_gig_downshift_workaround_ich8lan(hw
);
3696 if (hw
->mac
.type
>= e1000_pchlan
) {
3697 e1000_oem_bits_config_ich8lan(hw
, false);
3698 e1000_phy_hw_reset_ich8lan(hw
);
3699 ret_val
= hw
->phy
.ops
.acquire(hw
);
3702 e1000_write_smbus_addr(hw
);
3703 hw
->phy
.ops
.release(hw
);
3708 * e1000_resume_workarounds_pchlan - workarounds needed during Sx->S0
3709 * @hw: pointer to the HW structure
3711 * During Sx to S0 transitions on non-managed devices or managed devices
3712 * on which PHY resets are not blocked, if the PHY registers cannot be
3713 * accessed properly by the s/w toggle the LANPHYPC value to power cycle
3716 void e1000_resume_workarounds_pchlan(struct e1000_hw
*hw
)
3720 if (hw
->mac
.type
!= e1000_pch2lan
)
3724 if (!(fwsm
& E1000_ICH_FWSM_FW_VALID
) || !e1000_check_reset_block(hw
)) {
3725 u16 phy_id1
, phy_id2
;
3728 ret_val
= hw
->phy
.ops
.acquire(hw
);
3730 e_dbg("Failed to acquire PHY semaphore in resume\n");
3734 /* Test access to the PHY registers by reading the ID regs */
3735 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, PHY_ID1
, &phy_id1
);
3738 ret_val
= hw
->phy
.ops
.read_reg_locked(hw
, PHY_ID2
, &phy_id2
);
3742 if (hw
->phy
.id
== ((u32
)(phy_id1
<< 16) |
3743 (u32
)(phy_id2
& PHY_REVISION_MASK
)))
3746 e1000_toggle_lanphypc_value_ich8lan(hw
);
3748 hw
->phy
.ops
.release(hw
);
3750 e1000_phy_hw_reset(hw
);
3756 hw
->phy
.ops
.release(hw
);
3762 * e1000_cleanup_led_ich8lan - Restore the default LED operation
3763 * @hw: pointer to the HW structure
3765 * Return the LED back to the default configuration.
3767 static s32
e1000_cleanup_led_ich8lan(struct e1000_hw
*hw
)
3769 if (hw
->phy
.type
== e1000_phy_ife
)
3770 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
, 0);
3772 ew32(LEDCTL
, hw
->mac
.ledctl_default
);
3777 * e1000_led_on_ich8lan - Turn LEDs on
3778 * @hw: pointer to the HW structure
3782 static s32
e1000_led_on_ich8lan(struct e1000_hw
*hw
)
3784 if (hw
->phy
.type
== e1000_phy_ife
)
3785 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3786 (IFE_PSCL_PROBE_MODE
| IFE_PSCL_PROBE_LEDS_ON
));
3788 ew32(LEDCTL
, hw
->mac
.ledctl_mode2
);
3793 * e1000_led_off_ich8lan - Turn LEDs off
3794 * @hw: pointer to the HW structure
3796 * Turn off the LEDs.
3798 static s32
e1000_led_off_ich8lan(struct e1000_hw
*hw
)
3800 if (hw
->phy
.type
== e1000_phy_ife
)
3801 return e1e_wphy(hw
, IFE_PHY_SPECIAL_CONTROL_LED
,
3802 (IFE_PSCL_PROBE_MODE
|
3803 IFE_PSCL_PROBE_LEDS_OFF
));
3805 ew32(LEDCTL
, hw
->mac
.ledctl_mode1
);
3810 * e1000_setup_led_pchlan - Configures SW controllable LED
3811 * @hw: pointer to the HW structure
3813 * This prepares the SW controllable LED for use.
3815 static s32
e1000_setup_led_pchlan(struct e1000_hw
*hw
)
3817 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_mode1
);
3821 * e1000_cleanup_led_pchlan - Restore the default LED operation
3822 * @hw: pointer to the HW structure
3824 * Return the LED back to the default configuration.
3826 static s32
e1000_cleanup_led_pchlan(struct e1000_hw
*hw
)
3828 return e1e_wphy(hw
, HV_LED_CONFIG
, (u16
)hw
->mac
.ledctl_default
);
3832 * e1000_led_on_pchlan - Turn LEDs on
3833 * @hw: pointer to the HW structure
3837 static s32
e1000_led_on_pchlan(struct e1000_hw
*hw
)
3839 u16 data
= (u16
)hw
->mac
.ledctl_mode2
;
3843 * If no link, then turn LED on by setting the invert bit
3844 * for each LED that's mode is "link_up" in ledctl_mode2.
3846 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3847 for (i
= 0; i
< 3; i
++) {
3848 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3849 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3850 E1000_LEDCTL_MODE_LINK_UP
)
3852 if (led
& E1000_PHY_LED0_IVRT
)
3853 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3855 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3859 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
3863 * e1000_led_off_pchlan - Turn LEDs off
3864 * @hw: pointer to the HW structure
3866 * Turn off the LEDs.
3868 static s32
e1000_led_off_pchlan(struct e1000_hw
*hw
)
3870 u16 data
= (u16
)hw
->mac
.ledctl_mode1
;
3874 * If no link, then turn LED off by clearing the invert bit
3875 * for each LED that's mode is "link_up" in ledctl_mode1.
3877 if (!(er32(STATUS
) & E1000_STATUS_LU
)) {
3878 for (i
= 0; i
< 3; i
++) {
3879 led
= (data
>> (i
* 5)) & E1000_PHY_LED0_MASK
;
3880 if ((led
& E1000_PHY_LED0_MODE_MASK
) !=
3881 E1000_LEDCTL_MODE_LINK_UP
)
3883 if (led
& E1000_PHY_LED0_IVRT
)
3884 data
&= ~(E1000_PHY_LED0_IVRT
<< (i
* 5));
3886 data
|= (E1000_PHY_LED0_IVRT
<< (i
* 5));
3890 return e1e_wphy(hw
, HV_LED_CONFIG
, data
);
3894 * e1000_get_cfg_done_ich8lan - Read config done bit after Full or PHY reset
3895 * @hw: pointer to the HW structure
3897 * Read appropriate register for the config done bit for completion status
3898 * and configure the PHY through s/w for EEPROM-less parts.
3900 * NOTE: some silicon which is EEPROM-less will fail trying to read the
3901 * config done bit, so only an error is logged and continues. If we were
3902 * to return with error, EEPROM-less silicon would not be able to be reset
3905 static s32
e1000_get_cfg_done_ich8lan(struct e1000_hw
*hw
)
3911 e1000e_get_cfg_done(hw
);
3913 /* Wait for indication from h/w that it has completed basic config */
3914 if (hw
->mac
.type
>= e1000_ich10lan
) {
3915 e1000_lan_init_done_ich8lan(hw
);
3917 ret_val
= e1000e_get_auto_rd_done(hw
);
3920 * When auto config read does not complete, do not
3921 * return with an error. This can happen in situations
3922 * where there is no eeprom and prevents getting link.
3924 e_dbg("Auto Read Done did not complete\n");
3929 /* Clear PHY Reset Asserted bit */
3930 status
= er32(STATUS
);
3931 if (status
& E1000_STATUS_PHYRA
)
3932 ew32(STATUS
, status
& ~E1000_STATUS_PHYRA
);
3934 e_dbg("PHY Reset Asserted not set - needs delay\n");
3936 /* If EEPROM is not marked present, init the IGP 3 PHY manually */
3937 if (hw
->mac
.type
<= e1000_ich9lan
) {
3938 if (((er32(EECD
) & E1000_EECD_PRES
) == 0) &&
3939 (hw
->phy
.type
== e1000_phy_igp_3
)) {
3940 e1000e_phy_init_script_igp3(hw
);
3943 if (e1000_valid_nvm_bank_detect_ich8lan(hw
, &bank
)) {
3944 /* Maybe we should do a basic PHY config */
3945 e_dbg("EEPROM not present\n");
3946 ret_val
= -E1000_ERR_CONFIG
;
3954 * e1000_power_down_phy_copper_ich8lan - Remove link during PHY power down
3955 * @hw: pointer to the HW structure
3957 * In the case of a PHY power down to save power, or to turn off link during a
3958 * driver unload, or wake on lan is not enabled, remove the link.
3960 static void e1000_power_down_phy_copper_ich8lan(struct e1000_hw
*hw
)
3962 /* If the management interface is not enabled, then power down */
3963 if (!(hw
->mac
.ops
.check_mng_mode(hw
) ||
3964 hw
->phy
.ops
.check_reset_block(hw
)))
3965 e1000_power_down_phy_copper(hw
);
3969 * e1000_clear_hw_cntrs_ich8lan - Clear statistical counters
3970 * @hw: pointer to the HW structure
3972 * Clears hardware counters specific to the silicon family and calls
3973 * clear_hw_cntrs_generic to clear all general purpose counters.
3975 static void e1000_clear_hw_cntrs_ich8lan(struct e1000_hw
*hw
)
3980 e1000e_clear_hw_cntrs_base(hw
);
3996 /* Clear PHY statistics registers */
3997 if ((hw
->phy
.type
== e1000_phy_82578
) ||
3998 (hw
->phy
.type
== e1000_phy_82579
) ||
3999 (hw
->phy
.type
== e1000_phy_82577
)) {
4000 ret_val
= hw
->phy
.ops
.acquire(hw
);
4003 ret_val
= hw
->phy
.ops
.set_page(hw
,
4004 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
4007 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
4008 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
4009 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
4010 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
4011 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
4012 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
4013 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
4014 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
4015 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
4016 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
4017 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
4018 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
4019 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
4020 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
4022 hw
->phy
.ops
.release(hw
);
4026 static const struct e1000_mac_operations ich8_mac_ops
= {
4027 .id_led_init
= e1000e_id_led_init
,
4028 /* check_mng_mode dependent on mac type */
4029 .check_for_link
= e1000_check_for_copper_link_ich8lan
,
4030 /* cleanup_led dependent on mac type */
4031 .clear_hw_cntrs
= e1000_clear_hw_cntrs_ich8lan
,
4032 .get_bus_info
= e1000_get_bus_info_ich8lan
,
4033 .set_lan_id
= e1000_set_lan_id_single_port
,
4034 .get_link_up_info
= e1000_get_link_up_info_ich8lan
,
4035 /* led_on dependent on mac type */
4036 /* led_off dependent on mac type */
4037 .update_mc_addr_list
= e1000e_update_mc_addr_list_generic
,
4038 .reset_hw
= e1000_reset_hw_ich8lan
,
4039 .init_hw
= e1000_init_hw_ich8lan
,
4040 .setup_link
= e1000_setup_link_ich8lan
,
4041 .setup_physical_interface
= e1000_setup_copper_link_ich8lan
,
4042 /* id_led_init dependent on mac type */
4045 static const struct e1000_phy_operations ich8_phy_ops
= {
4046 .acquire
= e1000_acquire_swflag_ich8lan
,
4047 .check_reset_block
= e1000_check_reset_block_ich8lan
,
4049 .get_cfg_done
= e1000_get_cfg_done_ich8lan
,
4050 .get_cable_length
= e1000e_get_cable_length_igp_2
,
4051 .read_reg
= e1000e_read_phy_reg_igp
,
4052 .release
= e1000_release_swflag_ich8lan
,
4053 .reset
= e1000_phy_hw_reset_ich8lan
,
4054 .set_d0_lplu_state
= e1000_set_d0_lplu_state_ich8lan
,
4055 .set_d3_lplu_state
= e1000_set_d3_lplu_state_ich8lan
,
4056 .write_reg
= e1000e_write_phy_reg_igp
,
4059 static const struct e1000_nvm_operations ich8_nvm_ops
= {
4060 .acquire
= e1000_acquire_nvm_ich8lan
,
4061 .read
= e1000_read_nvm_ich8lan
,
4062 .release
= e1000_release_nvm_ich8lan
,
4063 .update
= e1000_update_nvm_checksum_ich8lan
,
4064 .valid_led_default
= e1000_valid_led_default_ich8lan
,
4065 .validate
= e1000_validate_nvm_checksum_ich8lan
,
4066 .write
= e1000_write_nvm_ich8lan
,
4069 const struct e1000_info e1000_ich8_info
= {
4070 .mac
= e1000_ich8lan
,
4071 .flags
= FLAG_HAS_WOL
4073 | FLAG_HAS_CTRLEXT_ON_LOAD
4078 .max_hw_frame_size
= ETH_FRAME_LEN
+ ETH_FCS_LEN
,
4079 .get_variants
= e1000_get_variants_ich8lan
,
4080 .mac_ops
= &ich8_mac_ops
,
4081 .phy_ops
= &ich8_phy_ops
,
4082 .nvm_ops
= &ich8_nvm_ops
,
4085 const struct e1000_info e1000_ich9_info
= {
4086 .mac
= e1000_ich9lan
,
4087 .flags
= FLAG_HAS_JUMBO_FRAMES
4090 | FLAG_HAS_CTRLEXT_ON_LOAD
4096 .max_hw_frame_size
= DEFAULT_JUMBO
,
4097 .get_variants
= e1000_get_variants_ich8lan
,
4098 .mac_ops
= &ich8_mac_ops
,
4099 .phy_ops
= &ich8_phy_ops
,
4100 .nvm_ops
= &ich8_nvm_ops
,
4103 const struct e1000_info e1000_ich10_info
= {
4104 .mac
= e1000_ich10lan
,
4105 .flags
= FLAG_HAS_JUMBO_FRAMES
4108 | FLAG_HAS_CTRLEXT_ON_LOAD
4114 .max_hw_frame_size
= DEFAULT_JUMBO
,
4115 .get_variants
= e1000_get_variants_ich8lan
,
4116 .mac_ops
= &ich8_mac_ops
,
4117 .phy_ops
= &ich8_phy_ops
,
4118 .nvm_ops
= &ich8_nvm_ops
,
4121 const struct e1000_info e1000_pch_info
= {
4122 .mac
= e1000_pchlan
,
4123 .flags
= FLAG_IS_ICH
4125 | FLAG_HAS_CTRLEXT_ON_LOAD
4128 | FLAG_HAS_JUMBO_FRAMES
4129 | FLAG_DISABLE_FC_PAUSE_TIME
/* errata */
4131 .flags2
= FLAG2_HAS_PHY_STATS
,
4133 .max_hw_frame_size
= 4096,
4134 .get_variants
= e1000_get_variants_ich8lan
,
4135 .mac_ops
= &ich8_mac_ops
,
4136 .phy_ops
= &ich8_phy_ops
,
4137 .nvm_ops
= &ich8_nvm_ops
,
4140 const struct e1000_info e1000_pch2_info
= {
4141 .mac
= e1000_pch2lan
,
4142 .flags
= FLAG_IS_ICH
4144 | FLAG_HAS_CTRLEXT_ON_LOAD
4147 | FLAG_HAS_JUMBO_FRAMES
4149 .flags2
= FLAG2_HAS_PHY_STATS
4152 .max_hw_frame_size
= DEFAULT_JUMBO
,
4153 .get_variants
= e1000_get_variants_ich8lan
,
4154 .mac_ops
= &ich8_mac_ops
,
4155 .phy_ops
= &ich8_phy_ops
,
4156 .nvm_ops
= &ich8_nvm_ops
,