1 /*******************************************************************************
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include <linux/module.h>
32 #include <linux/types.h>
33 #include <linux/init.h>
34 #include <linux/pci.h>
35 #include <linux/vmalloc.h>
36 #include <linux/pagemap.h>
37 #include <linux/delay.h>
38 #include <linux/netdevice.h>
39 #include <linux/interrupt.h>
40 #include <linux/tcp.h>
41 #include <linux/ipv6.h>
42 #include <linux/slab.h>
43 #include <net/checksum.h>
44 #include <net/ip6_checksum.h>
45 #include <linux/mii.h>
46 #include <linux/ethtool.h>
47 #include <linux/if_vlan.h>
48 #include <linux/cpu.h>
49 #include <linux/smp.h>
50 #include <linux/pm_qos.h>
51 #include <linux/pm_runtime.h>
52 #include <linux/aer.h>
53 #include <linux/prefetch.h>
57 #define DRV_EXTRAVERSION "-k"
59 #define DRV_VERSION "1.5.1" DRV_EXTRAVERSION
60 char e1000e_driver_name
[] = "e1000e";
61 const char e1000e_driver_version
[] = DRV_VERSION
;
63 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
);
65 static const struct e1000_info
*e1000_info_tbl
[] = {
66 [board_82571
] = &e1000_82571_info
,
67 [board_82572
] = &e1000_82572_info
,
68 [board_82573
] = &e1000_82573_info
,
69 [board_82574
] = &e1000_82574_info
,
70 [board_82583
] = &e1000_82583_info
,
71 [board_80003es2lan
] = &e1000_es2_info
,
72 [board_ich8lan
] = &e1000_ich8_info
,
73 [board_ich9lan
] = &e1000_ich9_info
,
74 [board_ich10lan
] = &e1000_ich10_info
,
75 [board_pchlan
] = &e1000_pch_info
,
76 [board_pch2lan
] = &e1000_pch2_info
,
79 struct e1000_reg_info
{
84 #define E1000_RDFH 0x02410 /* Rx Data FIFO Head - RW */
85 #define E1000_RDFT 0x02418 /* Rx Data FIFO Tail - RW */
86 #define E1000_RDFHS 0x02420 /* Rx Data FIFO Head Saved - RW */
87 #define E1000_RDFTS 0x02428 /* Rx Data FIFO Tail Saved - RW */
88 #define E1000_RDFPC 0x02430 /* Rx Data FIFO Packet Count - RW */
90 #define E1000_TDFH 0x03410 /* Tx Data FIFO Head - RW */
91 #define E1000_TDFT 0x03418 /* Tx Data FIFO Tail - RW */
92 #define E1000_TDFHS 0x03420 /* Tx Data FIFO Head Saved - RW */
93 #define E1000_TDFTS 0x03428 /* Tx Data FIFO Tail Saved - RW */
94 #define E1000_TDFPC 0x03430 /* Tx Data FIFO Packet Count - RW */
96 static const struct e1000_reg_info e1000_reg_info_tbl
[] = {
98 /* General Registers */
100 {E1000_STATUS
, "STATUS"},
101 {E1000_CTRL_EXT
, "CTRL_EXT"},
103 /* Interrupt Registers */
107 {E1000_RCTL
, "RCTL"},
108 {E1000_RDLEN
, "RDLEN"},
111 {E1000_RDTR
, "RDTR"},
112 {E1000_RXDCTL(0), "RXDCTL"},
114 {E1000_RDBAL
, "RDBAL"},
115 {E1000_RDBAH
, "RDBAH"},
116 {E1000_RDFH
, "RDFH"},
117 {E1000_RDFT
, "RDFT"},
118 {E1000_RDFHS
, "RDFHS"},
119 {E1000_RDFTS
, "RDFTS"},
120 {E1000_RDFPC
, "RDFPC"},
123 {E1000_TCTL
, "TCTL"},
124 {E1000_TDBAL
, "TDBAL"},
125 {E1000_TDBAH
, "TDBAH"},
126 {E1000_TDLEN
, "TDLEN"},
129 {E1000_TIDV
, "TIDV"},
130 {E1000_TXDCTL(0), "TXDCTL"},
131 {E1000_TADV
, "TADV"},
132 {E1000_TARC(0), "TARC"},
133 {E1000_TDFH
, "TDFH"},
134 {E1000_TDFT
, "TDFT"},
135 {E1000_TDFHS
, "TDFHS"},
136 {E1000_TDFTS
, "TDFTS"},
137 {E1000_TDFPC
, "TDFPC"},
139 /* List Terminator */
144 * e1000_regdump - register printout routine
146 static void e1000_regdump(struct e1000_hw
*hw
, struct e1000_reg_info
*reginfo
)
152 switch (reginfo
->ofs
) {
153 case E1000_RXDCTL(0):
154 for (n
= 0; n
< 2; n
++)
155 regs
[n
] = __er32(hw
, E1000_RXDCTL(n
));
157 case E1000_TXDCTL(0):
158 for (n
= 0; n
< 2; n
++)
159 regs
[n
] = __er32(hw
, E1000_TXDCTL(n
));
162 for (n
= 0; n
< 2; n
++)
163 regs
[n
] = __er32(hw
, E1000_TARC(n
));
166 printk(KERN_INFO
"%-15s %08x\n",
167 reginfo
->name
, __er32(hw
, reginfo
->ofs
));
171 snprintf(rname
, 16, "%s%s", reginfo
->name
, "[0-1]");
172 printk(KERN_INFO
"%-15s ", rname
);
173 for (n
= 0; n
< 2; n
++)
174 printk(KERN_CONT
"%08x ", regs
[n
]);
175 printk(KERN_CONT
"\n");
179 * e1000e_dump - Print registers, Tx-ring and Rx-ring
181 static void e1000e_dump(struct e1000_adapter
*adapter
)
183 struct net_device
*netdev
= adapter
->netdev
;
184 struct e1000_hw
*hw
= &adapter
->hw
;
185 struct e1000_reg_info
*reginfo
;
186 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
187 struct e1000_tx_desc
*tx_desc
;
192 struct e1000_buffer
*buffer_info
;
193 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
194 union e1000_rx_desc_packet_split
*rx_desc_ps
;
195 union e1000_rx_desc_extended
*rx_desc
;
205 if (!netif_msg_hw(adapter
))
208 /* Print netdevice Info */
210 dev_info(&adapter
->pdev
->dev
, "Net device Info\n");
211 printk(KERN_INFO
"Device Name state "
212 "trans_start last_rx\n");
213 printk(KERN_INFO
"%-15s %016lX %016lX %016lX\n",
214 netdev
->name
, netdev
->state
, netdev
->trans_start
,
218 /* Print Registers */
219 dev_info(&adapter
->pdev
->dev
, "Register Dump\n");
220 printk(KERN_INFO
" Register Name Value\n");
221 for (reginfo
= (struct e1000_reg_info
*)e1000_reg_info_tbl
;
222 reginfo
->name
; reginfo
++) {
223 e1000_regdump(hw
, reginfo
);
226 /* Print Tx Ring Summary */
227 if (!netdev
|| !netif_running(netdev
))
230 dev_info(&adapter
->pdev
->dev
, "Tx Ring Summary\n");
231 printk(KERN_INFO
"Queue [NTU] [NTC] [bi(ntc)->dma ]"
232 " leng ntw timestamp\n");
233 buffer_info
= &tx_ring
->buffer_info
[tx_ring
->next_to_clean
];
234 printk(KERN_INFO
" %5d %5X %5X %016llX %04X %3X %016llX\n",
235 0, tx_ring
->next_to_use
, tx_ring
->next_to_clean
,
236 (unsigned long long)buffer_info
->dma
,
238 buffer_info
->next_to_watch
,
239 (unsigned long long)buffer_info
->time_stamp
);
242 if (!netif_msg_tx_done(adapter
))
243 goto rx_ring_summary
;
245 dev_info(&adapter
->pdev
->dev
, "Tx Ring Dump\n");
247 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
249 * Legacy Transmit Descriptor
250 * +--------------------------------------------------------------+
251 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
252 * +--------------------------------------------------------------+
253 * 8 | Special | CSS | Status | CMD | CSO | Length |
254 * +--------------------------------------------------------------+
255 * 63 48 47 36 35 32 31 24 23 16 15 0
257 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
258 * 63 48 47 40 39 32 31 16 15 8 7 0
259 * +----------------------------------------------------------------+
260 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
261 * +----------------------------------------------------------------+
262 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
263 * +----------------------------------------------------------------+
264 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
266 * Extended Data Descriptor (DTYP=0x1)
267 * +----------------------------------------------------------------+
268 * 0 | Buffer Address [63:0] |
269 * +----------------------------------------------------------------+
270 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
271 * +----------------------------------------------------------------+
272 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
274 printk(KERN_INFO
"Tl[desc] [address 63:0 ] [SpeCssSCmCsLen]"
275 " [bi->dma ] leng ntw timestamp bi->skb "
276 "<-- Legacy format\n");
277 printk(KERN_INFO
"Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen]"
278 " [bi->dma ] leng ntw timestamp bi->skb "
279 "<-- Ext Context format\n");
280 printk(KERN_INFO
"Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen]"
281 " [bi->dma ] leng ntw timestamp bi->skb "
282 "<-- Ext Data format\n");
283 for (i
= 0; tx_ring
->desc
&& (i
< tx_ring
->count
); i
++) {
284 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
285 buffer_info
= &tx_ring
->buffer_info
[i
];
286 u0
= (struct my_u0
*)tx_desc
;
287 printk(KERN_INFO
"T%c[0x%03X] %016llX %016llX %016llX "
288 "%04X %3X %016llX %p",
289 (!(le64_to_cpu(u0
->b
) & (1 << 29)) ? 'l' :
290 ((le64_to_cpu(u0
->b
) & (1 << 20)) ? 'd' : 'c')), i
,
291 (unsigned long long)le64_to_cpu(u0
->a
),
292 (unsigned long long)le64_to_cpu(u0
->b
),
293 (unsigned long long)buffer_info
->dma
,
294 buffer_info
->length
, buffer_info
->next_to_watch
,
295 (unsigned long long)buffer_info
->time_stamp
,
297 if (i
== tx_ring
->next_to_use
&& i
== tx_ring
->next_to_clean
)
298 printk(KERN_CONT
" NTC/U\n");
299 else if (i
== tx_ring
->next_to_use
)
300 printk(KERN_CONT
" NTU\n");
301 else if (i
== tx_ring
->next_to_clean
)
302 printk(KERN_CONT
" NTC\n");
304 printk(KERN_CONT
"\n");
306 if (netif_msg_pktdata(adapter
) && buffer_info
->dma
!= 0)
307 print_hex_dump(KERN_INFO
, "", DUMP_PREFIX_ADDRESS
,
308 16, 1, phys_to_virt(buffer_info
->dma
),
309 buffer_info
->length
, true);
312 /* Print Rx Ring Summary */
314 dev_info(&adapter
->pdev
->dev
, "Rx Ring Summary\n");
315 printk(KERN_INFO
"Queue [NTU] [NTC]\n");
316 printk(KERN_INFO
" %5d %5X %5X\n", 0,
317 rx_ring
->next_to_use
, rx_ring
->next_to_clean
);
320 if (!netif_msg_rx_status(adapter
))
323 dev_info(&adapter
->pdev
->dev
, "Rx Ring Dump\n");
324 switch (adapter
->rx_ps_pages
) {
328 /* [Extended] Packet Split Receive Descriptor Format
330 * +-----------------------------------------------------+
331 * 0 | Buffer Address 0 [63:0] |
332 * +-----------------------------------------------------+
333 * 8 | Buffer Address 1 [63:0] |
334 * +-----------------------------------------------------+
335 * 16 | Buffer Address 2 [63:0] |
336 * +-----------------------------------------------------+
337 * 24 | Buffer Address 3 [63:0] |
338 * +-----------------------------------------------------+
340 printk(KERN_INFO
"R [desc] [buffer 0 63:0 ] "
342 "[buffer 2 63:0 ] [buffer 3 63:0 ] [bi->dma ] "
343 "[bi->skb] <-- Ext Pkt Split format\n");
344 /* [Extended] Receive Descriptor (Write-Back) Format
346 * 63 48 47 32 31 13 12 8 7 4 3 0
347 * +------------------------------------------------------+
348 * 0 | Packet | IP | Rsvd | MRQ | Rsvd | MRQ RSS |
349 * | Checksum | Ident | | Queue | | Type |
350 * +------------------------------------------------------+
351 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
352 * +------------------------------------------------------+
353 * 63 48 47 32 31 20 19 0
355 printk(KERN_INFO
"RWB[desc] [ck ipid mrqhsh] "
357 "[ l3 l2 l1 hs] [reserved ] ---------------- "
358 "[bi->skb] <-- Ext Rx Write-Back format\n");
359 for (i
= 0; i
< rx_ring
->count
; i
++) {
360 buffer_info
= &rx_ring
->buffer_info
[i
];
361 rx_desc_ps
= E1000_RX_DESC_PS(*rx_ring
, i
);
362 u1
= (struct my_u1
*)rx_desc_ps
;
364 le32_to_cpu(rx_desc_ps
->wb
.middle
.status_error
);
365 if (staterr
& E1000_RXD_STAT_DD
) {
366 /* Descriptor Done */
367 printk(KERN_INFO
"RWB[0x%03X] %016llX "
368 "%016llX %016llX %016llX "
369 "---------------- %p", i
,
370 (unsigned long long)le64_to_cpu(u1
->a
),
371 (unsigned long long)le64_to_cpu(u1
->b
),
372 (unsigned long long)le64_to_cpu(u1
->c
),
373 (unsigned long long)le64_to_cpu(u1
->d
),
376 printk(KERN_INFO
"R [0x%03X] %016llX "
377 "%016llX %016llX %016llX %016llX %p", i
,
378 (unsigned long long)le64_to_cpu(u1
->a
),
379 (unsigned long long)le64_to_cpu(u1
->b
),
380 (unsigned long long)le64_to_cpu(u1
->c
),
381 (unsigned long long)le64_to_cpu(u1
->d
),
382 (unsigned long long)buffer_info
->dma
,
385 if (netif_msg_pktdata(adapter
))
386 print_hex_dump(KERN_INFO
, "",
387 DUMP_PREFIX_ADDRESS
, 16, 1,
388 phys_to_virt(buffer_info
->dma
),
389 adapter
->rx_ps_bsize0
, true);
392 if (i
== rx_ring
->next_to_use
)
393 printk(KERN_CONT
" NTU\n");
394 else if (i
== rx_ring
->next_to_clean
)
395 printk(KERN_CONT
" NTC\n");
397 printk(KERN_CONT
"\n");
402 /* Extended Receive Descriptor (Read) Format
404 * +-----------------------------------------------------+
405 * 0 | Buffer Address [63:0] |
406 * +-----------------------------------------------------+
408 * +-----------------------------------------------------+
410 printk(KERN_INFO
"R [desc] [buf addr 63:0 ] "
411 "[reserved 63:0 ] [bi->dma ] "
412 "[bi->skb] <-- Ext (Read) format\n");
413 /* Extended Receive Descriptor (Write-Back) Format
415 * 63 48 47 32 31 24 23 4 3 0
416 * +------------------------------------------------------+
418 * 0 +-------------------+ Rsvd | Reserved | MRQ RSS |
419 * | Packet | IP | | | Type |
420 * | Checksum | Ident | | | |
421 * +------------------------------------------------------+
422 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
423 * +------------------------------------------------------+
424 * 63 48 47 32 31 20 19 0
426 printk(KERN_INFO
"RWB[desc] [cs ipid mrq] "
428 "[bi->skb] <-- Ext (Write-Back) format\n");
430 for (i
= 0; i
< rx_ring
->count
; i
++) {
431 buffer_info
= &rx_ring
->buffer_info
[i
];
432 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
433 u1
= (struct my_u1
*)rx_desc
;
434 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
435 if (staterr
& E1000_RXD_STAT_DD
) {
436 /* Descriptor Done */
437 printk(KERN_INFO
"RWB[0x%03X] %016llX "
438 "%016llX ---------------- %p", i
,
439 (unsigned long long)le64_to_cpu(u1
->a
),
440 (unsigned long long)le64_to_cpu(u1
->b
),
443 printk(KERN_INFO
"R [0x%03X] %016llX "
444 "%016llX %016llX %p", i
,
445 (unsigned long long)le64_to_cpu(u1
->a
),
446 (unsigned long long)le64_to_cpu(u1
->b
),
447 (unsigned long long)buffer_info
->dma
,
450 if (netif_msg_pktdata(adapter
))
451 print_hex_dump(KERN_INFO
, "",
452 DUMP_PREFIX_ADDRESS
, 16,
456 adapter
->rx_buffer_len
,
460 if (i
== rx_ring
->next_to_use
)
461 printk(KERN_CONT
" NTU\n");
462 else if (i
== rx_ring
->next_to_clean
)
463 printk(KERN_CONT
" NTC\n");
465 printk(KERN_CONT
"\n");
474 * e1000_desc_unused - calculate if we have unused descriptors
476 static int e1000_desc_unused(struct e1000_ring
*ring
)
478 if (ring
->next_to_clean
> ring
->next_to_use
)
479 return ring
->next_to_clean
- ring
->next_to_use
- 1;
481 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
485 * e1000_receive_skb - helper function to handle Rx indications
486 * @adapter: board private structure
487 * @status: descriptor status field as written by hardware
488 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
489 * @skb: pointer to sk_buff to be indicated to stack
491 static void e1000_receive_skb(struct e1000_adapter
*adapter
,
492 struct net_device
*netdev
, struct sk_buff
*skb
,
493 u8 status
, __le16 vlan
)
495 u16 tag
= le16_to_cpu(vlan
);
496 skb
->protocol
= eth_type_trans(skb
, netdev
);
498 if (status
& E1000_RXD_STAT_VP
)
499 __vlan_hwaccel_put_tag(skb
, tag
);
501 napi_gro_receive(&adapter
->napi
, skb
);
505 * e1000_rx_checksum - Receive Checksum Offload
506 * @adapter: board private structure
507 * @status_err: receive descriptor status and error fields
508 * @csum: receive descriptor csum field
509 * @sk_buff: socket buffer with received data
511 static void e1000_rx_checksum(struct e1000_adapter
*adapter
, u32 status_err
,
512 u32 csum
, struct sk_buff
*skb
)
514 u16 status
= (u16
)status_err
;
515 u8 errors
= (u8
)(status_err
>> 24);
517 skb_checksum_none_assert(skb
);
519 /* Ignore Checksum bit is set */
520 if (status
& E1000_RXD_STAT_IXSM
)
522 /* TCP/UDP checksum error bit is set */
523 if (errors
& E1000_RXD_ERR_TCPE
) {
524 /* let the stack verify checksum errors */
525 adapter
->hw_csum_err
++;
529 /* TCP/UDP Checksum has not been calculated */
530 if (!(status
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
)))
533 /* It must be a TCP or UDP packet with a valid checksum */
534 if (status
& E1000_RXD_STAT_TCPCS
) {
535 /* TCP checksum is good */
536 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
539 * IP fragment with UDP payload
540 * Hardware complements the payload checksum, so we undo it
541 * and then put the value in host order for further stack use.
543 __sum16 sum
= (__force __sum16
)htons(csum
);
544 skb
->csum
= csum_unfold(~sum
);
545 skb
->ip_summed
= CHECKSUM_COMPLETE
;
547 adapter
->hw_csum_good
++;
551 * e1000e_update_tail_wa - helper function for e1000e_update_[rt]dt_wa()
552 * @hw: pointer to the HW structure
553 * @tail: address of tail descriptor register
554 * @i: value to write to tail descriptor register
556 * When updating the tail register, the ME could be accessing Host CSR
557 * registers at the same time. Normally, this is handled in h/w by an
558 * arbiter but on some parts there is a bug that acknowledges Host accesses
559 * later than it should which could result in the descriptor register to
560 * have an incorrect value. Workaround this by checking the FWSM register
561 * which has bit 24 set while ME is accessing Host CSR registers, wait
562 * if it is set and try again a number of times.
564 static inline s32
e1000e_update_tail_wa(struct e1000_hw
*hw
, u8 __iomem
* tail
,
569 while ((j
++ < E1000_ICH_FWSM_PCIM2PCI_COUNT
) &&
570 (er32(FWSM
) & E1000_ICH_FWSM_PCIM2PCI
))
575 if ((j
== E1000_ICH_FWSM_PCIM2PCI_COUNT
) && (i
!= readl(tail
)))
576 return E1000_ERR_SWFW_SYNC
;
581 static void e1000e_update_rdt_wa(struct e1000_adapter
*adapter
, unsigned int i
)
583 u8 __iomem
*tail
= (adapter
->hw
.hw_addr
+ adapter
->rx_ring
->tail
);
584 struct e1000_hw
*hw
= &adapter
->hw
;
586 if (e1000e_update_tail_wa(hw
, tail
, i
)) {
587 u32 rctl
= er32(RCTL
);
588 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
589 e_err("ME firmware caused invalid RDT - resetting\n");
590 schedule_work(&adapter
->reset_task
);
594 static void e1000e_update_tdt_wa(struct e1000_adapter
*adapter
, unsigned int i
)
596 u8 __iomem
*tail
= (adapter
->hw
.hw_addr
+ adapter
->tx_ring
->tail
);
597 struct e1000_hw
*hw
= &adapter
->hw
;
599 if (e1000e_update_tail_wa(hw
, tail
, i
)) {
600 u32 tctl
= er32(TCTL
);
601 ew32(TCTL
, tctl
& ~E1000_TCTL_EN
);
602 e_err("ME firmware caused invalid TDT - resetting\n");
603 schedule_work(&adapter
->reset_task
);
608 * e1000_alloc_rx_buffers - Replace used receive buffers
609 * @adapter: address of board private structure
611 static void e1000_alloc_rx_buffers(struct e1000_adapter
*adapter
,
612 int cleaned_count
, gfp_t gfp
)
614 struct net_device
*netdev
= adapter
->netdev
;
615 struct pci_dev
*pdev
= adapter
->pdev
;
616 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
617 union e1000_rx_desc_extended
*rx_desc
;
618 struct e1000_buffer
*buffer_info
;
621 unsigned int bufsz
= adapter
->rx_buffer_len
;
623 i
= rx_ring
->next_to_use
;
624 buffer_info
= &rx_ring
->buffer_info
[i
];
626 while (cleaned_count
--) {
627 skb
= buffer_info
->skb
;
633 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
635 /* Better luck next round */
636 adapter
->alloc_rx_buff_failed
++;
640 buffer_info
->skb
= skb
;
642 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
643 adapter
->rx_buffer_len
,
645 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
646 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
647 adapter
->rx_dma_failed
++;
651 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
652 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
654 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
656 * Force memory writes to complete before letting h/w
657 * know there are new descriptors to fetch. (Only
658 * applicable for weak-ordered memory model archs,
662 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
663 e1000e_update_rdt_wa(adapter
, i
);
665 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
668 if (i
== rx_ring
->count
)
670 buffer_info
= &rx_ring
->buffer_info
[i
];
673 rx_ring
->next_to_use
= i
;
677 * e1000_alloc_rx_buffers_ps - Replace used receive buffers; packet split
678 * @adapter: address of board private structure
680 static void e1000_alloc_rx_buffers_ps(struct e1000_adapter
*adapter
,
681 int cleaned_count
, gfp_t gfp
)
683 struct net_device
*netdev
= adapter
->netdev
;
684 struct pci_dev
*pdev
= adapter
->pdev
;
685 union e1000_rx_desc_packet_split
*rx_desc
;
686 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
687 struct e1000_buffer
*buffer_info
;
688 struct e1000_ps_page
*ps_page
;
692 i
= rx_ring
->next_to_use
;
693 buffer_info
= &rx_ring
->buffer_info
[i
];
695 while (cleaned_count
--) {
696 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
698 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
699 ps_page
= &buffer_info
->ps_pages
[j
];
700 if (j
>= adapter
->rx_ps_pages
) {
701 /* all unused desc entries get hw null ptr */
702 rx_desc
->read
.buffer_addr
[j
+ 1] =
706 if (!ps_page
->page
) {
707 ps_page
->page
= alloc_page(gfp
);
708 if (!ps_page
->page
) {
709 adapter
->alloc_rx_buff_failed
++;
712 ps_page
->dma
= dma_map_page(&pdev
->dev
,
716 if (dma_mapping_error(&pdev
->dev
,
718 dev_err(&adapter
->pdev
->dev
,
719 "Rx DMA page map failed\n");
720 adapter
->rx_dma_failed
++;
725 * Refresh the desc even if buffer_addrs
726 * didn't change because each write-back
729 rx_desc
->read
.buffer_addr
[j
+ 1] =
730 cpu_to_le64(ps_page
->dma
);
733 skb
= __netdev_alloc_skb_ip_align(netdev
,
734 adapter
->rx_ps_bsize0
,
738 adapter
->alloc_rx_buff_failed
++;
742 buffer_info
->skb
= skb
;
743 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
744 adapter
->rx_ps_bsize0
,
746 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
)) {
747 dev_err(&pdev
->dev
, "Rx DMA map failed\n");
748 adapter
->rx_dma_failed
++;
750 dev_kfree_skb_any(skb
);
751 buffer_info
->skb
= NULL
;
755 rx_desc
->read
.buffer_addr
[0] = cpu_to_le64(buffer_info
->dma
);
757 if (unlikely(!(i
& (E1000_RX_BUFFER_WRITE
- 1)))) {
759 * Force memory writes to complete before letting h/w
760 * know there are new descriptors to fetch. (Only
761 * applicable for weak-ordered memory model archs,
765 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
766 e1000e_update_rdt_wa(adapter
, i
<< 1);
769 adapter
->hw
.hw_addr
+ rx_ring
->tail
);
773 if (i
== rx_ring
->count
)
775 buffer_info
= &rx_ring
->buffer_info
[i
];
779 rx_ring
->next_to_use
= i
;
783 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
784 * @adapter: address of board private structure
785 * @cleaned_count: number of buffers to allocate this pass
788 static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter
*adapter
,
789 int cleaned_count
, gfp_t gfp
)
791 struct net_device
*netdev
= adapter
->netdev
;
792 struct pci_dev
*pdev
= adapter
->pdev
;
793 union e1000_rx_desc_extended
*rx_desc
;
794 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
795 struct e1000_buffer
*buffer_info
;
798 unsigned int bufsz
= 256 - 16 /* for skb_reserve */;
800 i
= rx_ring
->next_to_use
;
801 buffer_info
= &rx_ring
->buffer_info
[i
];
803 while (cleaned_count
--) {
804 skb
= buffer_info
->skb
;
810 skb
= __netdev_alloc_skb_ip_align(netdev
, bufsz
, gfp
);
811 if (unlikely(!skb
)) {
812 /* Better luck next round */
813 adapter
->alloc_rx_buff_failed
++;
817 buffer_info
->skb
= skb
;
819 /* allocate a new page if necessary */
820 if (!buffer_info
->page
) {
821 buffer_info
->page
= alloc_page(gfp
);
822 if (unlikely(!buffer_info
->page
)) {
823 adapter
->alloc_rx_buff_failed
++;
828 if (!buffer_info
->dma
)
829 buffer_info
->dma
= dma_map_page(&pdev
->dev
,
830 buffer_info
->page
, 0,
834 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
835 rx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
837 if (unlikely(++i
== rx_ring
->count
))
839 buffer_info
= &rx_ring
->buffer_info
[i
];
842 if (likely(rx_ring
->next_to_use
!= i
)) {
843 rx_ring
->next_to_use
= i
;
844 if (unlikely(i
-- == 0))
845 i
= (rx_ring
->count
- 1);
847 /* Force memory writes to complete before letting h/w
848 * know there are new descriptors to fetch. (Only
849 * applicable for weak-ordered memory model archs,
852 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
853 e1000e_update_rdt_wa(adapter
, i
);
855 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
860 * e1000_clean_rx_irq - Send received data up the network stack; legacy
861 * @adapter: board private structure
863 * the return value indicates whether actual cleaning was done, there
864 * is no guarantee that everything was cleaned
866 static bool e1000_clean_rx_irq(struct e1000_adapter
*adapter
,
867 int *work_done
, int work_to_do
)
869 struct net_device
*netdev
= adapter
->netdev
;
870 struct pci_dev
*pdev
= adapter
->pdev
;
871 struct e1000_hw
*hw
= &adapter
->hw
;
872 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
873 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
874 struct e1000_buffer
*buffer_info
, *next_buffer
;
877 int cleaned_count
= 0;
879 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
881 i
= rx_ring
->next_to_clean
;
882 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
883 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
884 buffer_info
= &rx_ring
->buffer_info
[i
];
886 while (staterr
& E1000_RXD_STAT_DD
) {
889 if (*work_done
>= work_to_do
)
892 rmb(); /* read descriptor and rx_buffer_info after status DD */
894 skb
= buffer_info
->skb
;
895 buffer_info
->skb
= NULL
;
897 prefetch(skb
->data
- NET_IP_ALIGN
);
900 if (i
== rx_ring
->count
)
902 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
905 next_buffer
= &rx_ring
->buffer_info
[i
];
909 dma_unmap_single(&pdev
->dev
,
911 adapter
->rx_buffer_len
,
913 buffer_info
->dma
= 0;
915 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
918 * !EOP means multiple descriptors were used to store a single
919 * packet, if that's the case we need to toss it. In fact, we
920 * need to toss every packet with the EOP bit clear and the
921 * next frame that _does_ have the EOP bit set, as it is by
922 * definition only a frame fragment
924 if (unlikely(!(staterr
& E1000_RXD_STAT_EOP
)))
925 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
927 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
928 /* All receives must fit into a single buffer */
929 e_dbg("Receive packet consumed multiple buffers\n");
931 buffer_info
->skb
= skb
;
932 if (staterr
& E1000_RXD_STAT_EOP
)
933 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
937 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
939 buffer_info
->skb
= skb
;
943 /* adjust length to remove Ethernet CRC */
944 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
947 total_rx_bytes
+= length
;
951 * code added for copybreak, this should improve
952 * performance for small packets with large amounts
953 * of reassembly being done in the stack
955 if (length
< copybreak
) {
956 struct sk_buff
*new_skb
=
957 netdev_alloc_skb_ip_align(netdev
, length
);
959 skb_copy_to_linear_data_offset(new_skb
,
965 /* save the skb in buffer_info as good */
966 buffer_info
->skb
= skb
;
969 /* else just continue with the old one */
971 /* end copybreak code */
972 skb_put(skb
, length
);
974 /* Receive Checksum Offload */
975 e1000_rx_checksum(adapter
, staterr
,
976 le16_to_cpu(rx_desc
->wb
.lower
.hi_dword
.
979 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
980 rx_desc
->wb
.upper
.vlan
);
983 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
985 /* return some buffers to hardware, one at a time is too slow */
986 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
987 adapter
->alloc_rx_buf(adapter
, cleaned_count
,
992 /* use prefetched values */
994 buffer_info
= next_buffer
;
996 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
998 rx_ring
->next_to_clean
= i
;
1000 cleaned_count
= e1000_desc_unused(rx_ring
);
1002 adapter
->alloc_rx_buf(adapter
, cleaned_count
, GFP_ATOMIC
);
1004 adapter
->total_rx_bytes
+= total_rx_bytes
;
1005 adapter
->total_rx_packets
+= total_rx_packets
;
1009 static void e1000_put_txbuf(struct e1000_adapter
*adapter
,
1010 struct e1000_buffer
*buffer_info
)
1012 if (buffer_info
->dma
) {
1013 if (buffer_info
->mapped_as_page
)
1014 dma_unmap_page(&adapter
->pdev
->dev
, buffer_info
->dma
,
1015 buffer_info
->length
, DMA_TO_DEVICE
);
1017 dma_unmap_single(&adapter
->pdev
->dev
, buffer_info
->dma
,
1018 buffer_info
->length
, DMA_TO_DEVICE
);
1019 buffer_info
->dma
= 0;
1021 if (buffer_info
->skb
) {
1022 dev_kfree_skb_any(buffer_info
->skb
);
1023 buffer_info
->skb
= NULL
;
1025 buffer_info
->time_stamp
= 0;
1028 static void e1000_print_hw_hang(struct work_struct
*work
)
1030 struct e1000_adapter
*adapter
= container_of(work
,
1031 struct e1000_adapter
,
1033 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1034 unsigned int i
= tx_ring
->next_to_clean
;
1035 unsigned int eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1036 struct e1000_tx_desc
*eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1037 struct e1000_hw
*hw
= &adapter
->hw
;
1038 u16 phy_status
, phy_1000t_status
, phy_ext_status
;
1041 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1044 e1e_rphy(hw
, PHY_STATUS
, &phy_status
);
1045 e1e_rphy(hw
, PHY_1000T_STATUS
, &phy_1000t_status
);
1046 e1e_rphy(hw
, PHY_EXT_STATUS
, &phy_ext_status
);
1048 pci_read_config_word(adapter
->pdev
, PCI_STATUS
, &pci_status
);
1050 /* detected Hardware unit hang */
1051 e_err("Detected Hardware Unit Hang:\n"
1054 " next_to_use <%x>\n"
1055 " next_to_clean <%x>\n"
1056 "buffer_info[next_to_clean]:\n"
1057 " time_stamp <%lx>\n"
1058 " next_to_watch <%x>\n"
1060 " next_to_watch.status <%x>\n"
1063 "PHY 1000BASE-T Status <%x>\n"
1064 "PHY Extended Status <%x>\n"
1065 "PCI Status <%x>\n",
1066 readl(adapter
->hw
.hw_addr
+ tx_ring
->head
),
1067 readl(adapter
->hw
.hw_addr
+ tx_ring
->tail
),
1068 tx_ring
->next_to_use
,
1069 tx_ring
->next_to_clean
,
1070 tx_ring
->buffer_info
[eop
].time_stamp
,
1073 eop_desc
->upper
.fields
.status
,
1082 * e1000_clean_tx_irq - Reclaim resources after transmit completes
1083 * @adapter: board private structure
1085 * the return value indicates whether actual cleaning was done, there
1086 * is no guarantee that everything was cleaned
1088 static bool e1000_clean_tx_irq(struct e1000_adapter
*adapter
)
1090 struct net_device
*netdev
= adapter
->netdev
;
1091 struct e1000_hw
*hw
= &adapter
->hw
;
1092 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1093 struct e1000_tx_desc
*tx_desc
, *eop_desc
;
1094 struct e1000_buffer
*buffer_info
;
1095 unsigned int i
, eop
;
1096 unsigned int count
= 0;
1097 unsigned int total_tx_bytes
= 0, total_tx_packets
= 0;
1099 i
= tx_ring
->next_to_clean
;
1100 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1101 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1103 while ((eop_desc
->upper
.data
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
1104 (count
< tx_ring
->count
)) {
1105 bool cleaned
= false;
1106 rmb(); /* read buffer_info after eop_desc */
1107 for (; !cleaned
; count
++) {
1108 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
1109 buffer_info
= &tx_ring
->buffer_info
[i
];
1110 cleaned
= (i
== eop
);
1113 total_tx_packets
+= buffer_info
->segs
;
1114 total_tx_bytes
+= buffer_info
->bytecount
;
1117 e1000_put_txbuf(adapter
, buffer_info
);
1118 tx_desc
->upper
.data
= 0;
1121 if (i
== tx_ring
->count
)
1125 if (i
== tx_ring
->next_to_use
)
1127 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
1128 eop_desc
= E1000_TX_DESC(*tx_ring
, eop
);
1131 tx_ring
->next_to_clean
= i
;
1133 #define TX_WAKE_THRESHOLD 32
1134 if (count
&& netif_carrier_ok(netdev
) &&
1135 e1000_desc_unused(tx_ring
) >= TX_WAKE_THRESHOLD
) {
1136 /* Make sure that anybody stopping the queue after this
1137 * sees the new next_to_clean.
1141 if (netif_queue_stopped(netdev
) &&
1142 !(test_bit(__E1000_DOWN
, &adapter
->state
))) {
1143 netif_wake_queue(netdev
);
1144 ++adapter
->restart_queue
;
1148 if (adapter
->detect_tx_hung
) {
1150 * Detect a transmit hang in hardware, this serializes the
1151 * check with the clearing of time_stamp and movement of i
1153 adapter
->detect_tx_hung
= 0;
1154 if (tx_ring
->buffer_info
[i
].time_stamp
&&
1155 time_after(jiffies
, tx_ring
->buffer_info
[i
].time_stamp
1156 + (adapter
->tx_timeout_factor
* HZ
)) &&
1157 !(er32(STATUS
) & E1000_STATUS_TXOFF
)) {
1158 schedule_work(&adapter
->print_hang_task
);
1159 netif_stop_queue(netdev
);
1162 adapter
->total_tx_bytes
+= total_tx_bytes
;
1163 adapter
->total_tx_packets
+= total_tx_packets
;
1164 return count
< tx_ring
->count
;
1168 * e1000_clean_rx_irq_ps - Send received data up the network stack; packet split
1169 * @adapter: board private structure
1171 * the return value indicates whether actual cleaning was done, there
1172 * is no guarantee that everything was cleaned
1174 static bool e1000_clean_rx_irq_ps(struct e1000_adapter
*adapter
,
1175 int *work_done
, int work_to_do
)
1177 struct e1000_hw
*hw
= &adapter
->hw
;
1178 union e1000_rx_desc_packet_split
*rx_desc
, *next_rxd
;
1179 struct net_device
*netdev
= adapter
->netdev
;
1180 struct pci_dev
*pdev
= adapter
->pdev
;
1181 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1182 struct e1000_buffer
*buffer_info
, *next_buffer
;
1183 struct e1000_ps_page
*ps_page
;
1184 struct sk_buff
*skb
;
1186 u32 length
, staterr
;
1187 int cleaned_count
= 0;
1189 unsigned int total_rx_bytes
= 0, total_rx_packets
= 0;
1191 i
= rx_ring
->next_to_clean
;
1192 rx_desc
= E1000_RX_DESC_PS(*rx_ring
, i
);
1193 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1194 buffer_info
= &rx_ring
->buffer_info
[i
];
1196 while (staterr
& E1000_RXD_STAT_DD
) {
1197 if (*work_done
>= work_to_do
)
1200 skb
= buffer_info
->skb
;
1201 rmb(); /* read descriptor and rx_buffer_info after status DD */
1203 /* in the packet split case this is header only */
1204 prefetch(skb
->data
- NET_IP_ALIGN
);
1207 if (i
== rx_ring
->count
)
1209 next_rxd
= E1000_RX_DESC_PS(*rx_ring
, i
);
1212 next_buffer
= &rx_ring
->buffer_info
[i
];
1216 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1217 adapter
->rx_ps_bsize0
, DMA_FROM_DEVICE
);
1218 buffer_info
->dma
= 0;
1220 /* see !EOP comment in other Rx routine */
1221 if (!(staterr
& E1000_RXD_STAT_EOP
))
1222 adapter
->flags2
|= FLAG2_IS_DISCARDING
;
1224 if (adapter
->flags2
& FLAG2_IS_DISCARDING
) {
1225 e_dbg("Packet Split buffers didn't pick up the full "
1227 dev_kfree_skb_irq(skb
);
1228 if (staterr
& E1000_RXD_STAT_EOP
)
1229 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1233 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
1234 dev_kfree_skb_irq(skb
);
1238 length
= le16_to_cpu(rx_desc
->wb
.middle
.length0
);
1241 e_dbg("Last part of the packet spanning multiple "
1243 dev_kfree_skb_irq(skb
);
1248 skb_put(skb
, length
);
1252 * this looks ugly, but it seems compiler issues make it
1253 * more efficient than reusing j
1255 int l1
= le16_to_cpu(rx_desc
->wb
.upper
.length
[0]);
1258 * page alloc/put takes too long and effects small packet
1259 * throughput, so unsplit small packets and save the alloc/put
1260 * only valid in softirq (napi) context to call kmap_*
1262 if (l1
&& (l1
<= copybreak
) &&
1263 ((length
+ l1
) <= adapter
->rx_ps_bsize0
)) {
1266 ps_page
= &buffer_info
->ps_pages
[0];
1269 * there is no documentation about how to call
1270 * kmap_atomic, so we can't hold the mapping
1273 dma_sync_single_for_cpu(&pdev
->dev
, ps_page
->dma
,
1274 PAGE_SIZE
, DMA_FROM_DEVICE
);
1275 vaddr
= kmap_atomic(ps_page
->page
, KM_SKB_DATA_SOFTIRQ
);
1276 memcpy(skb_tail_pointer(skb
), vaddr
, l1
);
1277 kunmap_atomic(vaddr
, KM_SKB_DATA_SOFTIRQ
);
1278 dma_sync_single_for_device(&pdev
->dev
, ps_page
->dma
,
1279 PAGE_SIZE
, DMA_FROM_DEVICE
);
1281 /* remove the CRC */
1282 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1290 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1291 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
[j
]);
1295 ps_page
= &buffer_info
->ps_pages
[j
];
1296 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1299 skb_fill_page_desc(skb
, j
, ps_page
->page
, 0, length
);
1300 ps_page
->page
= NULL
;
1302 skb
->data_len
+= length
;
1303 skb
->truesize
+= PAGE_SIZE
;
1306 /* strip the ethernet crc, problem is we're using pages now so
1307 * this whole operation can get a little cpu intensive
1309 if (!(adapter
->flags2
& FLAG2_CRC_STRIPPING
))
1310 pskb_trim(skb
, skb
->len
- 4);
1313 total_rx_bytes
+= skb
->len
;
1316 e1000_rx_checksum(adapter
, staterr
, le16_to_cpu(
1317 rx_desc
->wb
.lower
.hi_dword
.csum_ip
.csum
), skb
);
1319 if (rx_desc
->wb
.upper
.header_status
&
1320 cpu_to_le16(E1000_RXDPS_HDRSTAT_HDRSP
))
1321 adapter
->rx_hdr_split
++;
1323 e1000_receive_skb(adapter
, netdev
, skb
,
1324 staterr
, rx_desc
->wb
.middle
.vlan
);
1327 rx_desc
->wb
.middle
.status_error
&= cpu_to_le32(~0xFF);
1328 buffer_info
->skb
= NULL
;
1330 /* return some buffers to hardware, one at a time is too slow */
1331 if (cleaned_count
>= E1000_RX_BUFFER_WRITE
) {
1332 adapter
->alloc_rx_buf(adapter
, cleaned_count
,
1337 /* use prefetched values */
1339 buffer_info
= next_buffer
;
1341 staterr
= le32_to_cpu(rx_desc
->wb
.middle
.status_error
);
1343 rx_ring
->next_to_clean
= i
;
1345 cleaned_count
= e1000_desc_unused(rx_ring
);
1347 adapter
->alloc_rx_buf(adapter
, cleaned_count
, GFP_ATOMIC
);
1349 adapter
->total_rx_bytes
+= total_rx_bytes
;
1350 adapter
->total_rx_packets
+= total_rx_packets
;
1355 * e1000_consume_page - helper function
1357 static void e1000_consume_page(struct e1000_buffer
*bi
, struct sk_buff
*skb
,
1362 skb
->data_len
+= length
;
1363 skb
->truesize
+= PAGE_SIZE
;
1367 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
1368 * @adapter: board private structure
1370 * the return value indicates whether actual cleaning was done, there
1371 * is no guarantee that everything was cleaned
1374 static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter
*adapter
,
1375 int *work_done
, int work_to_do
)
1377 struct net_device
*netdev
= adapter
->netdev
;
1378 struct pci_dev
*pdev
= adapter
->pdev
;
1379 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1380 union e1000_rx_desc_extended
*rx_desc
, *next_rxd
;
1381 struct e1000_buffer
*buffer_info
, *next_buffer
;
1382 u32 length
, staterr
;
1384 int cleaned_count
= 0;
1385 bool cleaned
= false;
1386 unsigned int total_rx_bytes
=0, total_rx_packets
=0;
1388 i
= rx_ring
->next_to_clean
;
1389 rx_desc
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1390 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1391 buffer_info
= &rx_ring
->buffer_info
[i
];
1393 while (staterr
& E1000_RXD_STAT_DD
) {
1394 struct sk_buff
*skb
;
1396 if (*work_done
>= work_to_do
)
1399 rmb(); /* read descriptor and rx_buffer_info after status DD */
1401 skb
= buffer_info
->skb
;
1402 buffer_info
->skb
= NULL
;
1405 if (i
== rx_ring
->count
)
1407 next_rxd
= E1000_RX_DESC_EXT(*rx_ring
, i
);
1410 next_buffer
= &rx_ring
->buffer_info
[i
];
1414 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
, PAGE_SIZE
,
1416 buffer_info
->dma
= 0;
1418 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
1420 /* errors is only valid for DD + EOP descriptors */
1421 if (unlikely((staterr
& E1000_RXD_STAT_EOP
) &&
1422 (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
))) {
1423 /* recycle both page and skb */
1424 buffer_info
->skb
= skb
;
1425 /* an error means any chain goes out the window too */
1426 if (rx_ring
->rx_skb_top
)
1427 dev_kfree_skb_irq(rx_ring
->rx_skb_top
);
1428 rx_ring
->rx_skb_top
= NULL
;
1432 #define rxtop (rx_ring->rx_skb_top)
1433 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
1434 /* this descriptor is only the beginning (or middle) */
1436 /* this is the beginning of a chain */
1438 skb_fill_page_desc(rxtop
, 0, buffer_info
->page
,
1441 /* this is the middle of a chain */
1442 skb_fill_page_desc(rxtop
,
1443 skb_shinfo(rxtop
)->nr_frags
,
1444 buffer_info
->page
, 0, length
);
1445 /* re-use the skb, only consumed the page */
1446 buffer_info
->skb
= skb
;
1448 e1000_consume_page(buffer_info
, rxtop
, length
);
1452 /* end of the chain */
1453 skb_fill_page_desc(rxtop
,
1454 skb_shinfo(rxtop
)->nr_frags
,
1455 buffer_info
->page
, 0, length
);
1456 /* re-use the current skb, we only consumed the
1458 buffer_info
->skb
= skb
;
1461 e1000_consume_page(buffer_info
, skb
, length
);
1463 /* no chain, got EOP, this buf is the packet
1464 * copybreak to save the put_page/alloc_page */
1465 if (length
<= copybreak
&&
1466 skb_tailroom(skb
) >= length
) {
1468 vaddr
= kmap_atomic(buffer_info
->page
,
1469 KM_SKB_DATA_SOFTIRQ
);
1470 memcpy(skb_tail_pointer(skb
), vaddr
,
1472 kunmap_atomic(vaddr
,
1473 KM_SKB_DATA_SOFTIRQ
);
1474 /* re-use the page, so don't erase
1475 * buffer_info->page */
1476 skb_put(skb
, length
);
1478 skb_fill_page_desc(skb
, 0,
1479 buffer_info
->page
, 0,
1481 e1000_consume_page(buffer_info
, skb
,
1487 /* Receive Checksum Offload XXX recompute due to CRC strip? */
1488 e1000_rx_checksum(adapter
, staterr
,
1489 le16_to_cpu(rx_desc
->wb
.lower
.hi_dword
.
1490 csum_ip
.csum
), skb
);
1492 /* probably a little skewed due to removing CRC */
1493 total_rx_bytes
+= skb
->len
;
1496 /* eth type trans needs skb->data to point to something */
1497 if (!pskb_may_pull(skb
, ETH_HLEN
)) {
1498 e_err("pskb_may_pull failed.\n");
1499 dev_kfree_skb_irq(skb
);
1503 e1000_receive_skb(adapter
, netdev
, skb
, staterr
,
1504 rx_desc
->wb
.upper
.vlan
);
1507 rx_desc
->wb
.upper
.status_error
&= cpu_to_le32(~0xFF);
1509 /* return some buffers to hardware, one at a time is too slow */
1510 if (unlikely(cleaned_count
>= E1000_RX_BUFFER_WRITE
)) {
1511 adapter
->alloc_rx_buf(adapter
, cleaned_count
,
1516 /* use prefetched values */
1518 buffer_info
= next_buffer
;
1520 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
1522 rx_ring
->next_to_clean
= i
;
1524 cleaned_count
= e1000_desc_unused(rx_ring
);
1526 adapter
->alloc_rx_buf(adapter
, cleaned_count
, GFP_ATOMIC
);
1528 adapter
->total_rx_bytes
+= total_rx_bytes
;
1529 adapter
->total_rx_packets
+= total_rx_packets
;
1534 * e1000_clean_rx_ring - Free Rx Buffers per Queue
1535 * @adapter: board private structure
1537 static void e1000_clean_rx_ring(struct e1000_adapter
*adapter
)
1539 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1540 struct e1000_buffer
*buffer_info
;
1541 struct e1000_ps_page
*ps_page
;
1542 struct pci_dev
*pdev
= adapter
->pdev
;
1545 /* Free all the Rx ring sk_buffs */
1546 for (i
= 0; i
< rx_ring
->count
; i
++) {
1547 buffer_info
= &rx_ring
->buffer_info
[i
];
1548 if (buffer_info
->dma
) {
1549 if (adapter
->clean_rx
== e1000_clean_rx_irq
)
1550 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1551 adapter
->rx_buffer_len
,
1553 else if (adapter
->clean_rx
== e1000_clean_jumbo_rx_irq
)
1554 dma_unmap_page(&pdev
->dev
, buffer_info
->dma
,
1557 else if (adapter
->clean_rx
== e1000_clean_rx_irq_ps
)
1558 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
1559 adapter
->rx_ps_bsize0
,
1561 buffer_info
->dma
= 0;
1564 if (buffer_info
->page
) {
1565 put_page(buffer_info
->page
);
1566 buffer_info
->page
= NULL
;
1569 if (buffer_info
->skb
) {
1570 dev_kfree_skb(buffer_info
->skb
);
1571 buffer_info
->skb
= NULL
;
1574 for (j
= 0; j
< PS_PAGE_BUFFERS
; j
++) {
1575 ps_page
= &buffer_info
->ps_pages
[j
];
1578 dma_unmap_page(&pdev
->dev
, ps_page
->dma
, PAGE_SIZE
,
1581 put_page(ps_page
->page
);
1582 ps_page
->page
= NULL
;
1586 /* there also may be some cached data from a chained receive */
1587 if (rx_ring
->rx_skb_top
) {
1588 dev_kfree_skb(rx_ring
->rx_skb_top
);
1589 rx_ring
->rx_skb_top
= NULL
;
1592 /* Zero out the descriptor ring */
1593 memset(rx_ring
->desc
, 0, rx_ring
->size
);
1595 rx_ring
->next_to_clean
= 0;
1596 rx_ring
->next_to_use
= 0;
1597 adapter
->flags2
&= ~FLAG2_IS_DISCARDING
;
1599 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
1600 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
1603 static void e1000e_downshift_workaround(struct work_struct
*work
)
1605 struct e1000_adapter
*adapter
= container_of(work
,
1606 struct e1000_adapter
, downshift_task
);
1608 if (test_bit(__E1000_DOWN
, &adapter
->state
))
1611 e1000e_gig_downshift_workaround_ich8lan(&adapter
->hw
);
1615 * e1000_intr_msi - Interrupt Handler
1616 * @irq: interrupt number
1617 * @data: pointer to a network interface device structure
1619 static irqreturn_t
e1000_intr_msi(int irq
, void *data
)
1621 struct net_device
*netdev
= data
;
1622 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1623 struct e1000_hw
*hw
= &adapter
->hw
;
1624 u32 icr
= er32(ICR
);
1627 * read ICR disables interrupts using IAM
1630 if (icr
& E1000_ICR_LSC
) {
1631 hw
->mac
.get_link_status
= 1;
1633 * ICH8 workaround-- Call gig speed drop workaround on cable
1634 * disconnect (LSC) before accessing any PHY registers
1636 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1637 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1638 schedule_work(&adapter
->downshift_task
);
1641 * 80003ES2LAN workaround-- For packet buffer work-around on
1642 * link down event; disable receives here in the ISR and reset
1643 * adapter in watchdog
1645 if (netif_carrier_ok(netdev
) &&
1646 adapter
->flags
& FLAG_RX_NEEDS_RESTART
) {
1647 /* disable receives */
1648 u32 rctl
= er32(RCTL
);
1649 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1650 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1652 /* guard against interrupt when we're going down */
1653 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1654 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1657 if (napi_schedule_prep(&adapter
->napi
)) {
1658 adapter
->total_tx_bytes
= 0;
1659 adapter
->total_tx_packets
= 0;
1660 adapter
->total_rx_bytes
= 0;
1661 adapter
->total_rx_packets
= 0;
1662 __napi_schedule(&adapter
->napi
);
1669 * e1000_intr - Interrupt Handler
1670 * @irq: interrupt number
1671 * @data: pointer to a network interface device structure
1673 static irqreturn_t
e1000_intr(int irq
, void *data
)
1675 struct net_device
*netdev
= data
;
1676 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1677 struct e1000_hw
*hw
= &adapter
->hw
;
1678 u32 rctl
, icr
= er32(ICR
);
1680 if (!icr
|| test_bit(__E1000_DOWN
, &adapter
->state
))
1681 return IRQ_NONE
; /* Not our interrupt */
1684 * IMS will not auto-mask if INT_ASSERTED is not set, and if it is
1685 * not set, then the adapter didn't send an interrupt
1687 if (!(icr
& E1000_ICR_INT_ASSERTED
))
1691 * Interrupt Auto-Mask...upon reading ICR,
1692 * interrupts are masked. No need for the
1696 if (icr
& E1000_ICR_LSC
) {
1697 hw
->mac
.get_link_status
= 1;
1699 * ICH8 workaround-- Call gig speed drop workaround on cable
1700 * disconnect (LSC) before accessing any PHY registers
1702 if ((adapter
->flags
& FLAG_LSC_GIG_SPEED_DROP
) &&
1703 (!(er32(STATUS
) & E1000_STATUS_LU
)))
1704 schedule_work(&adapter
->downshift_task
);
1707 * 80003ES2LAN workaround--
1708 * For packet buffer work-around on link down event;
1709 * disable receives here in the ISR and
1710 * reset adapter in watchdog
1712 if (netif_carrier_ok(netdev
) &&
1713 (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)) {
1714 /* disable receives */
1716 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
1717 adapter
->flags
|= FLAG_RX_RESTART_NOW
;
1719 /* guard against interrupt when we're going down */
1720 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1721 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1724 if (napi_schedule_prep(&adapter
->napi
)) {
1725 adapter
->total_tx_bytes
= 0;
1726 adapter
->total_tx_packets
= 0;
1727 adapter
->total_rx_bytes
= 0;
1728 adapter
->total_rx_packets
= 0;
1729 __napi_schedule(&adapter
->napi
);
1735 static irqreturn_t
e1000_msix_other(int irq
, void *data
)
1737 struct net_device
*netdev
= data
;
1738 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1739 struct e1000_hw
*hw
= &adapter
->hw
;
1740 u32 icr
= er32(ICR
);
1742 if (!(icr
& E1000_ICR_INT_ASSERTED
)) {
1743 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1744 ew32(IMS
, E1000_IMS_OTHER
);
1748 if (icr
& adapter
->eiac_mask
)
1749 ew32(ICS
, (icr
& adapter
->eiac_mask
));
1751 if (icr
& E1000_ICR_OTHER
) {
1752 if (!(icr
& E1000_ICR_LSC
))
1753 goto no_link_interrupt
;
1754 hw
->mac
.get_link_status
= 1;
1755 /* guard against interrupt when we're going down */
1756 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1757 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1761 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
1762 ew32(IMS
, E1000_IMS_LSC
| E1000_IMS_OTHER
);
1768 static irqreturn_t
e1000_intr_msix_tx(int irq
, void *data
)
1770 struct net_device
*netdev
= data
;
1771 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1772 struct e1000_hw
*hw
= &adapter
->hw
;
1773 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1776 adapter
->total_tx_bytes
= 0;
1777 adapter
->total_tx_packets
= 0;
1779 if (!e1000_clean_tx_irq(adapter
))
1780 /* Ring was not completely cleaned, so fire another interrupt */
1781 ew32(ICS
, tx_ring
->ims_val
);
1786 static irqreturn_t
e1000_intr_msix_rx(int irq
, void *data
)
1788 struct net_device
*netdev
= data
;
1789 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
1791 /* Write the ITR value calculated at the end of the
1792 * previous interrupt.
1794 if (adapter
->rx_ring
->set_itr
) {
1795 writel(1000000000 / (adapter
->rx_ring
->itr_val
* 256),
1796 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
1797 adapter
->rx_ring
->set_itr
= 0;
1800 if (napi_schedule_prep(&adapter
->napi
)) {
1801 adapter
->total_rx_bytes
= 0;
1802 adapter
->total_rx_packets
= 0;
1803 __napi_schedule(&adapter
->napi
);
1809 * e1000_configure_msix - Configure MSI-X hardware
1811 * e1000_configure_msix sets up the hardware to properly
1812 * generate MSI-X interrupts.
1814 static void e1000_configure_msix(struct e1000_adapter
*adapter
)
1816 struct e1000_hw
*hw
= &adapter
->hw
;
1817 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
1818 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
1820 u32 ctrl_ext
, ivar
= 0;
1822 adapter
->eiac_mask
= 0;
1824 /* Workaround issue with spurious interrupts on 82574 in MSI-X mode */
1825 if (hw
->mac
.type
== e1000_82574
) {
1826 u32 rfctl
= er32(RFCTL
);
1827 rfctl
|= E1000_RFCTL_ACK_DIS
;
1831 #define E1000_IVAR_INT_ALLOC_VALID 0x8
1832 /* Configure Rx vector */
1833 rx_ring
->ims_val
= E1000_IMS_RXQ0
;
1834 adapter
->eiac_mask
|= rx_ring
->ims_val
;
1835 if (rx_ring
->itr_val
)
1836 writel(1000000000 / (rx_ring
->itr_val
* 256),
1837 hw
->hw_addr
+ rx_ring
->itr_register
);
1839 writel(1, hw
->hw_addr
+ rx_ring
->itr_register
);
1840 ivar
= E1000_IVAR_INT_ALLOC_VALID
| vector
;
1842 /* Configure Tx vector */
1843 tx_ring
->ims_val
= E1000_IMS_TXQ0
;
1845 if (tx_ring
->itr_val
)
1846 writel(1000000000 / (tx_ring
->itr_val
* 256),
1847 hw
->hw_addr
+ tx_ring
->itr_register
);
1849 writel(1, hw
->hw_addr
+ tx_ring
->itr_register
);
1850 adapter
->eiac_mask
|= tx_ring
->ims_val
;
1851 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 8);
1853 /* set vector for Other Causes, e.g. link changes */
1855 ivar
|= ((E1000_IVAR_INT_ALLOC_VALID
| vector
) << 16);
1856 if (rx_ring
->itr_val
)
1857 writel(1000000000 / (rx_ring
->itr_val
* 256),
1858 hw
->hw_addr
+ E1000_EITR_82574(vector
));
1860 writel(1, hw
->hw_addr
+ E1000_EITR_82574(vector
));
1862 /* Cause Tx interrupts on every write back */
1867 /* enable MSI-X PBA support */
1868 ctrl_ext
= er32(CTRL_EXT
);
1869 ctrl_ext
|= E1000_CTRL_EXT_PBA_CLR
;
1871 /* Auto-Mask Other interrupts upon ICR read */
1872 #define E1000_EIAC_MASK_82574 0x01F00000
1873 ew32(IAM
, ~E1000_EIAC_MASK_82574
| E1000_IMS_OTHER
);
1874 ctrl_ext
|= E1000_CTRL_EXT_EIAME
;
1875 ew32(CTRL_EXT
, ctrl_ext
);
1879 void e1000e_reset_interrupt_capability(struct e1000_adapter
*adapter
)
1881 if (adapter
->msix_entries
) {
1882 pci_disable_msix(adapter
->pdev
);
1883 kfree(adapter
->msix_entries
);
1884 adapter
->msix_entries
= NULL
;
1885 } else if (adapter
->flags
& FLAG_MSI_ENABLED
) {
1886 pci_disable_msi(adapter
->pdev
);
1887 adapter
->flags
&= ~FLAG_MSI_ENABLED
;
1892 * e1000e_set_interrupt_capability - set MSI or MSI-X if supported
1894 * Attempt to configure interrupts using the best available
1895 * capabilities of the hardware and kernel.
1897 void e1000e_set_interrupt_capability(struct e1000_adapter
*adapter
)
1902 switch (adapter
->int_mode
) {
1903 case E1000E_INT_MODE_MSIX
:
1904 if (adapter
->flags
& FLAG_HAS_MSIX
) {
1905 adapter
->num_vectors
= 3; /* RxQ0, TxQ0 and other */
1906 adapter
->msix_entries
= kcalloc(adapter
->num_vectors
,
1907 sizeof(struct msix_entry
),
1909 if (adapter
->msix_entries
) {
1910 for (i
= 0; i
< adapter
->num_vectors
; i
++)
1911 adapter
->msix_entries
[i
].entry
= i
;
1913 err
= pci_enable_msix(adapter
->pdev
,
1914 adapter
->msix_entries
,
1915 adapter
->num_vectors
);
1919 /* MSI-X failed, so fall through and try MSI */
1920 e_err("Failed to initialize MSI-X interrupts. "
1921 "Falling back to MSI interrupts.\n");
1922 e1000e_reset_interrupt_capability(adapter
);
1924 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
1926 case E1000E_INT_MODE_MSI
:
1927 if (!pci_enable_msi(adapter
->pdev
)) {
1928 adapter
->flags
|= FLAG_MSI_ENABLED
;
1930 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
1931 e_err("Failed to initialize MSI interrupts. Falling "
1932 "back to legacy interrupts.\n");
1935 case E1000E_INT_MODE_LEGACY
:
1936 /* Don't do anything; this is the system default */
1940 /* store the number of vectors being used */
1941 adapter
->num_vectors
= 1;
1945 * e1000_request_msix - Initialize MSI-X interrupts
1947 * e1000_request_msix allocates MSI-X vectors and requests interrupts from the
1950 static int e1000_request_msix(struct e1000_adapter
*adapter
)
1952 struct net_device
*netdev
= adapter
->netdev
;
1953 int err
= 0, vector
= 0;
1955 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1956 snprintf(adapter
->rx_ring
->name
,
1957 sizeof(adapter
->rx_ring
->name
) - 1,
1958 "%s-rx-0", netdev
->name
);
1960 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1961 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1962 e1000_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1966 adapter
->rx_ring
->itr_register
= E1000_EITR_82574(vector
);
1967 adapter
->rx_ring
->itr_val
= adapter
->itr
;
1970 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5))
1971 snprintf(adapter
->tx_ring
->name
,
1972 sizeof(adapter
->tx_ring
->name
) - 1,
1973 "%s-tx-0", netdev
->name
);
1975 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1976 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1977 e1000_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1981 adapter
->tx_ring
->itr_register
= E1000_EITR_82574(vector
);
1982 adapter
->tx_ring
->itr_val
= adapter
->itr
;
1985 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1986 e1000_msix_other
, 0, netdev
->name
, netdev
);
1990 e1000_configure_msix(adapter
);
1997 * e1000_request_irq - initialize interrupts
1999 * Attempts to configure interrupts using the best available
2000 * capabilities of the hardware and kernel.
2002 static int e1000_request_irq(struct e1000_adapter
*adapter
)
2004 struct net_device
*netdev
= adapter
->netdev
;
2007 if (adapter
->msix_entries
) {
2008 err
= e1000_request_msix(adapter
);
2011 /* fall back to MSI */
2012 e1000e_reset_interrupt_capability(adapter
);
2013 adapter
->int_mode
= E1000E_INT_MODE_MSI
;
2014 e1000e_set_interrupt_capability(adapter
);
2016 if (adapter
->flags
& FLAG_MSI_ENABLED
) {
2017 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi
, 0,
2018 netdev
->name
, netdev
);
2022 /* fall back to legacy interrupt */
2023 e1000e_reset_interrupt_capability(adapter
);
2024 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
2027 err
= request_irq(adapter
->pdev
->irq
, e1000_intr
, IRQF_SHARED
,
2028 netdev
->name
, netdev
);
2030 e_err("Unable to allocate interrupt, Error: %d\n", err
);
2035 static void e1000_free_irq(struct e1000_adapter
*adapter
)
2037 struct net_device
*netdev
= adapter
->netdev
;
2039 if (adapter
->msix_entries
) {
2042 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2045 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2048 /* Other Causes interrupt vector */
2049 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
2053 free_irq(adapter
->pdev
->irq
, netdev
);
2057 * e1000_irq_disable - Mask off interrupt generation on the NIC
2059 static void e1000_irq_disable(struct e1000_adapter
*adapter
)
2061 struct e1000_hw
*hw
= &adapter
->hw
;
2064 if (adapter
->msix_entries
)
2065 ew32(EIAC_82574
, 0);
2068 if (adapter
->msix_entries
) {
2070 for (i
= 0; i
< adapter
->num_vectors
; i
++)
2071 synchronize_irq(adapter
->msix_entries
[i
].vector
);
2073 synchronize_irq(adapter
->pdev
->irq
);
2078 * e1000_irq_enable - Enable default interrupt generation settings
2080 static void e1000_irq_enable(struct e1000_adapter
*adapter
)
2082 struct e1000_hw
*hw
= &adapter
->hw
;
2084 if (adapter
->msix_entries
) {
2085 ew32(EIAC_82574
, adapter
->eiac_mask
& E1000_EIAC_MASK_82574
);
2086 ew32(IMS
, adapter
->eiac_mask
| E1000_IMS_OTHER
| E1000_IMS_LSC
);
2088 ew32(IMS
, IMS_ENABLE_MASK
);
2094 * e1000e_get_hw_control - get control of the h/w from f/w
2095 * @adapter: address of board private structure
2097 * e1000e_get_hw_control sets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2098 * For ASF and Pass Through versions of f/w this means that
2099 * the driver is loaded. For AMT version (only with 82573)
2100 * of the f/w this means that the network i/f is open.
2102 void e1000e_get_hw_control(struct e1000_adapter
*adapter
)
2104 struct e1000_hw
*hw
= &adapter
->hw
;
2108 /* Let firmware know the driver has taken over */
2109 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2111 ew32(SWSM
, swsm
| E1000_SWSM_DRV_LOAD
);
2112 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2113 ctrl_ext
= er32(CTRL_EXT
);
2114 ew32(CTRL_EXT
, ctrl_ext
| E1000_CTRL_EXT_DRV_LOAD
);
2119 * e1000e_release_hw_control - release control of the h/w to f/w
2120 * @adapter: address of board private structure
2122 * e1000e_release_hw_control resets {CTRL_EXT|SWSM}:DRV_LOAD bit.
2123 * For ASF and Pass Through versions of f/w this means that the
2124 * driver is no longer loaded. For AMT version (only with 82573) i
2125 * of the f/w this means that the network i/f is closed.
2128 void e1000e_release_hw_control(struct e1000_adapter
*adapter
)
2130 struct e1000_hw
*hw
= &adapter
->hw
;
2134 /* Let firmware taken over control of h/w */
2135 if (adapter
->flags
& FLAG_HAS_SWSM_ON_LOAD
) {
2137 ew32(SWSM
, swsm
& ~E1000_SWSM_DRV_LOAD
);
2138 } else if (adapter
->flags
& FLAG_HAS_CTRLEXT_ON_LOAD
) {
2139 ctrl_ext
= er32(CTRL_EXT
);
2140 ew32(CTRL_EXT
, ctrl_ext
& ~E1000_CTRL_EXT_DRV_LOAD
);
2145 * @e1000_alloc_ring - allocate memory for a ring structure
2147 static int e1000_alloc_ring_dma(struct e1000_adapter
*adapter
,
2148 struct e1000_ring
*ring
)
2150 struct pci_dev
*pdev
= adapter
->pdev
;
2152 ring
->desc
= dma_alloc_coherent(&pdev
->dev
, ring
->size
, &ring
->dma
,
2161 * e1000e_setup_tx_resources - allocate Tx resources (Descriptors)
2162 * @adapter: board private structure
2164 * Return 0 on success, negative on failure
2166 int e1000e_setup_tx_resources(struct e1000_adapter
*adapter
)
2168 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2169 int err
= -ENOMEM
, size
;
2171 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2172 tx_ring
->buffer_info
= vzalloc(size
);
2173 if (!tx_ring
->buffer_info
)
2176 /* round up to nearest 4K */
2177 tx_ring
->size
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2178 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
2180 err
= e1000_alloc_ring_dma(adapter
, tx_ring
);
2184 tx_ring
->next_to_use
= 0;
2185 tx_ring
->next_to_clean
= 0;
2189 vfree(tx_ring
->buffer_info
);
2190 e_err("Unable to allocate memory for the transmit descriptor ring\n");
2195 * e1000e_setup_rx_resources - allocate Rx resources (Descriptors)
2196 * @adapter: board private structure
2198 * Returns 0 on success, negative on failure
2200 int e1000e_setup_rx_resources(struct e1000_adapter
*adapter
)
2202 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2203 struct e1000_buffer
*buffer_info
;
2204 int i
, size
, desc_len
, err
= -ENOMEM
;
2206 size
= sizeof(struct e1000_buffer
) * rx_ring
->count
;
2207 rx_ring
->buffer_info
= vzalloc(size
);
2208 if (!rx_ring
->buffer_info
)
2211 for (i
= 0; i
< rx_ring
->count
; i
++) {
2212 buffer_info
= &rx_ring
->buffer_info
[i
];
2213 buffer_info
->ps_pages
= kcalloc(PS_PAGE_BUFFERS
,
2214 sizeof(struct e1000_ps_page
),
2216 if (!buffer_info
->ps_pages
)
2220 desc_len
= sizeof(union e1000_rx_desc_packet_split
);
2222 /* Round up to nearest 4K */
2223 rx_ring
->size
= rx_ring
->count
* desc_len
;
2224 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
2226 err
= e1000_alloc_ring_dma(adapter
, rx_ring
);
2230 rx_ring
->next_to_clean
= 0;
2231 rx_ring
->next_to_use
= 0;
2232 rx_ring
->rx_skb_top
= NULL
;
2237 for (i
= 0; i
< rx_ring
->count
; i
++) {
2238 buffer_info
= &rx_ring
->buffer_info
[i
];
2239 kfree(buffer_info
->ps_pages
);
2242 vfree(rx_ring
->buffer_info
);
2243 e_err("Unable to allocate memory for the receive descriptor ring\n");
2248 * e1000_clean_tx_ring - Free Tx Buffers
2249 * @adapter: board private structure
2251 static void e1000_clean_tx_ring(struct e1000_adapter
*adapter
)
2253 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2254 struct e1000_buffer
*buffer_info
;
2258 for (i
= 0; i
< tx_ring
->count
; i
++) {
2259 buffer_info
= &tx_ring
->buffer_info
[i
];
2260 e1000_put_txbuf(adapter
, buffer_info
);
2263 size
= sizeof(struct e1000_buffer
) * tx_ring
->count
;
2264 memset(tx_ring
->buffer_info
, 0, size
);
2266 memset(tx_ring
->desc
, 0, tx_ring
->size
);
2268 tx_ring
->next_to_use
= 0;
2269 tx_ring
->next_to_clean
= 0;
2271 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
2272 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2276 * e1000e_free_tx_resources - Free Tx Resources per Queue
2277 * @adapter: board private structure
2279 * Free all transmit software resources
2281 void e1000e_free_tx_resources(struct e1000_adapter
*adapter
)
2283 struct pci_dev
*pdev
= adapter
->pdev
;
2284 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2286 e1000_clean_tx_ring(adapter
);
2288 vfree(tx_ring
->buffer_info
);
2289 tx_ring
->buffer_info
= NULL
;
2291 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
2293 tx_ring
->desc
= NULL
;
2297 * e1000e_free_rx_resources - Free Rx Resources
2298 * @adapter: board private structure
2300 * Free all receive software resources
2303 void e1000e_free_rx_resources(struct e1000_adapter
*adapter
)
2305 struct pci_dev
*pdev
= adapter
->pdev
;
2306 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2309 e1000_clean_rx_ring(adapter
);
2311 for (i
= 0; i
< rx_ring
->count
; i
++)
2312 kfree(rx_ring
->buffer_info
[i
].ps_pages
);
2314 vfree(rx_ring
->buffer_info
);
2315 rx_ring
->buffer_info
= NULL
;
2317 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
2319 rx_ring
->desc
= NULL
;
2323 * e1000_update_itr - update the dynamic ITR value based on statistics
2324 * @adapter: pointer to adapter
2325 * @itr_setting: current adapter->itr
2326 * @packets: the number of packets during this measurement interval
2327 * @bytes: the number of bytes during this measurement interval
2329 * Stores a new ITR value based on packets and byte
2330 * counts during the last interrupt. The advantage of per interrupt
2331 * computation is faster updates and more accurate ITR for the current
2332 * traffic pattern. Constants in this function were computed
2333 * based on theoretical maximum wire speed and thresholds were set based
2334 * on testing data as well as attempting to minimize response time
2335 * while increasing bulk throughput. This functionality is controlled
2336 * by the InterruptThrottleRate module parameter.
2338 static unsigned int e1000_update_itr(struct e1000_adapter
*adapter
,
2339 u16 itr_setting
, int packets
,
2342 unsigned int retval
= itr_setting
;
2345 goto update_itr_done
;
2347 switch (itr_setting
) {
2348 case lowest_latency
:
2349 /* handle TSO and jumbo frames */
2350 if (bytes
/packets
> 8000)
2351 retval
= bulk_latency
;
2352 else if ((packets
< 5) && (bytes
> 512))
2353 retval
= low_latency
;
2355 case low_latency
: /* 50 usec aka 20000 ints/s */
2356 if (bytes
> 10000) {
2357 /* this if handles the TSO accounting */
2358 if (bytes
/packets
> 8000)
2359 retval
= bulk_latency
;
2360 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
2361 retval
= bulk_latency
;
2362 else if ((packets
> 35))
2363 retval
= lowest_latency
;
2364 } else if (bytes
/packets
> 2000) {
2365 retval
= bulk_latency
;
2366 } else if (packets
<= 2 && bytes
< 512) {
2367 retval
= lowest_latency
;
2370 case bulk_latency
: /* 250 usec aka 4000 ints/s */
2371 if (bytes
> 25000) {
2373 retval
= low_latency
;
2374 } else if (bytes
< 6000) {
2375 retval
= low_latency
;
2384 static void e1000_set_itr(struct e1000_adapter
*adapter
)
2386 struct e1000_hw
*hw
= &adapter
->hw
;
2388 u32 new_itr
= adapter
->itr
;
2390 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2391 if (adapter
->link_speed
!= SPEED_1000
) {
2397 if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
2402 adapter
->tx_itr
= e1000_update_itr(adapter
,
2404 adapter
->total_tx_packets
,
2405 adapter
->total_tx_bytes
);
2406 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2407 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
2408 adapter
->tx_itr
= low_latency
;
2410 adapter
->rx_itr
= e1000_update_itr(adapter
,
2412 adapter
->total_rx_packets
,
2413 adapter
->total_rx_bytes
);
2414 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2415 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
2416 adapter
->rx_itr
= low_latency
;
2418 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
2420 switch (current_itr
) {
2421 /* counts and packets in update_itr are dependent on these numbers */
2422 case lowest_latency
:
2426 new_itr
= 20000; /* aka hwitr = ~200 */
2436 if (new_itr
!= adapter
->itr
) {
2438 * this attempts to bias the interrupt rate towards Bulk
2439 * by adding intermediate steps when interrupt rate is
2442 new_itr
= new_itr
> adapter
->itr
?
2443 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
2445 adapter
->itr
= new_itr
;
2446 adapter
->rx_ring
->itr_val
= new_itr
;
2447 if (adapter
->msix_entries
)
2448 adapter
->rx_ring
->set_itr
= 1;
2451 ew32(ITR
, 1000000000 / (new_itr
* 256));
2458 * e1000_alloc_queues - Allocate memory for all rings
2459 * @adapter: board private structure to initialize
2461 static int __devinit
e1000_alloc_queues(struct e1000_adapter
*adapter
)
2463 adapter
->tx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2464 if (!adapter
->tx_ring
)
2467 adapter
->rx_ring
= kzalloc(sizeof(struct e1000_ring
), GFP_KERNEL
);
2468 if (!adapter
->rx_ring
)
2473 e_err("Unable to allocate memory for queues\n");
2474 kfree(adapter
->rx_ring
);
2475 kfree(adapter
->tx_ring
);
2480 * e1000_clean - NAPI Rx polling callback
2481 * @napi: struct associated with this polling callback
2482 * @budget: amount of packets driver is allowed to process this poll
2484 static int e1000_clean(struct napi_struct
*napi
, int budget
)
2486 struct e1000_adapter
*adapter
= container_of(napi
, struct e1000_adapter
, napi
);
2487 struct e1000_hw
*hw
= &adapter
->hw
;
2488 struct net_device
*poll_dev
= adapter
->netdev
;
2489 int tx_cleaned
= 1, work_done
= 0;
2491 adapter
= netdev_priv(poll_dev
);
2493 if (adapter
->msix_entries
&&
2494 !(adapter
->rx_ring
->ims_val
& adapter
->tx_ring
->ims_val
))
2497 tx_cleaned
= e1000_clean_tx_irq(adapter
);
2500 adapter
->clean_rx(adapter
, &work_done
, budget
);
2505 /* If budget not fully consumed, exit the polling mode */
2506 if (work_done
< budget
) {
2507 if (adapter
->itr_setting
& 3)
2508 e1000_set_itr(adapter
);
2509 napi_complete(napi
);
2510 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
2511 if (adapter
->msix_entries
)
2512 ew32(IMS
, adapter
->rx_ring
->ims_val
);
2514 e1000_irq_enable(adapter
);
2521 static void e1000_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
2523 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2524 struct e1000_hw
*hw
= &adapter
->hw
;
2527 /* don't update vlan cookie if already programmed */
2528 if ((adapter
->hw
.mng_cookie
.status
&
2529 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2530 (vid
== adapter
->mng_vlan_id
))
2533 /* add VID to filter table */
2534 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2535 index
= (vid
>> 5) & 0x7F;
2536 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2537 vfta
|= (1 << (vid
& 0x1F));
2538 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2541 set_bit(vid
, adapter
->active_vlans
);
2544 static void e1000_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
2546 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
2547 struct e1000_hw
*hw
= &adapter
->hw
;
2550 if ((adapter
->hw
.mng_cookie
.status
&
2551 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) &&
2552 (vid
== adapter
->mng_vlan_id
)) {
2553 /* release control to f/w */
2554 e1000e_release_hw_control(adapter
);
2558 /* remove VID from filter table */
2559 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2560 index
= (vid
>> 5) & 0x7F;
2561 vfta
= E1000_READ_REG_ARRAY(hw
, E1000_VFTA
, index
);
2562 vfta
&= ~(1 << (vid
& 0x1F));
2563 hw
->mac
.ops
.write_vfta(hw
, index
, vfta
);
2566 clear_bit(vid
, adapter
->active_vlans
);
2570 * e1000e_vlan_filter_disable - helper to disable hw VLAN filtering
2571 * @adapter: board private structure to initialize
2573 static void e1000e_vlan_filter_disable(struct e1000_adapter
*adapter
)
2575 struct net_device
*netdev
= adapter
->netdev
;
2576 struct e1000_hw
*hw
= &adapter
->hw
;
2579 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2580 /* disable VLAN receive filtering */
2582 rctl
&= ~(E1000_RCTL_VFE
| E1000_RCTL_CFIEN
);
2585 if (adapter
->mng_vlan_id
!= (u16
)E1000_MNG_VLAN_NONE
) {
2586 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
2587 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
2593 * e1000e_vlan_filter_enable - helper to enable HW VLAN filtering
2594 * @adapter: board private structure to initialize
2596 static void e1000e_vlan_filter_enable(struct e1000_adapter
*adapter
)
2598 struct e1000_hw
*hw
= &adapter
->hw
;
2601 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
) {
2602 /* enable VLAN receive filtering */
2604 rctl
|= E1000_RCTL_VFE
;
2605 rctl
&= ~E1000_RCTL_CFIEN
;
2611 * e1000e_vlan_strip_enable - helper to disable HW VLAN stripping
2612 * @adapter: board private structure to initialize
2614 static void e1000e_vlan_strip_disable(struct e1000_adapter
*adapter
)
2616 struct e1000_hw
*hw
= &adapter
->hw
;
2619 /* disable VLAN tag insert/strip */
2621 ctrl
&= ~E1000_CTRL_VME
;
2626 * e1000e_vlan_strip_enable - helper to enable HW VLAN stripping
2627 * @adapter: board private structure to initialize
2629 static void e1000e_vlan_strip_enable(struct e1000_adapter
*adapter
)
2631 struct e1000_hw
*hw
= &adapter
->hw
;
2634 /* enable VLAN tag insert/strip */
2636 ctrl
|= E1000_CTRL_VME
;
2640 static void e1000_update_mng_vlan(struct e1000_adapter
*adapter
)
2642 struct net_device
*netdev
= adapter
->netdev
;
2643 u16 vid
= adapter
->hw
.mng_cookie
.vlan_id
;
2644 u16 old_vid
= adapter
->mng_vlan_id
;
2646 if (adapter
->hw
.mng_cookie
.status
&
2647 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
) {
2648 e1000_vlan_rx_add_vid(netdev
, vid
);
2649 adapter
->mng_vlan_id
= vid
;
2652 if ((old_vid
!= (u16
)E1000_MNG_VLAN_NONE
) && (vid
!= old_vid
))
2653 e1000_vlan_rx_kill_vid(netdev
, old_vid
);
2656 static void e1000_restore_vlan(struct e1000_adapter
*adapter
)
2660 e1000_vlan_rx_add_vid(adapter
->netdev
, 0);
2662 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
2663 e1000_vlan_rx_add_vid(adapter
->netdev
, vid
);
2666 static void e1000_init_manageability_pt(struct e1000_adapter
*adapter
)
2668 struct e1000_hw
*hw
= &adapter
->hw
;
2669 u32 manc
, manc2h
, mdef
, i
, j
;
2671 if (!(adapter
->flags
& FLAG_MNG_PT_ENABLED
))
2677 * enable receiving management packets to the host. this will probably
2678 * generate destination unreachable messages from the host OS, but
2679 * the packets will be handled on SMBUS
2681 manc
|= E1000_MANC_EN_MNG2HOST
;
2682 manc2h
= er32(MANC2H
);
2684 switch (hw
->mac
.type
) {
2686 manc2h
|= (E1000_MANC2H_PORT_623
| E1000_MANC2H_PORT_664
);
2691 * Check if IPMI pass-through decision filter already exists;
2694 for (i
= 0, j
= 0; i
< 8; i
++) {
2695 mdef
= er32(MDEF(i
));
2697 /* Ignore filters with anything other than IPMI ports */
2698 if (mdef
& ~(E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2701 /* Enable this decision filter in MANC2H */
2708 if (j
== (E1000_MDEF_PORT_623
| E1000_MDEF_PORT_664
))
2711 /* Create new decision filter in an empty filter */
2712 for (i
= 0, j
= 0; i
< 8; i
++)
2713 if (er32(MDEF(i
)) == 0) {
2714 ew32(MDEF(i
), (E1000_MDEF_PORT_623
|
2715 E1000_MDEF_PORT_664
));
2722 e_warn("Unable to create IPMI pass-through filter\n");
2726 ew32(MANC2H
, manc2h
);
2731 * e1000_configure_tx - Configure Transmit Unit after Reset
2732 * @adapter: board private structure
2734 * Configure the Tx unit of the MAC after a reset.
2736 static void e1000_configure_tx(struct e1000_adapter
*adapter
)
2738 struct e1000_hw
*hw
= &adapter
->hw
;
2739 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
2741 u32 tdlen
, tctl
, tipg
, tarc
;
2744 /* Setup the HW Tx Head and Tail descriptor pointers */
2745 tdba
= tx_ring
->dma
;
2746 tdlen
= tx_ring
->count
* sizeof(struct e1000_tx_desc
);
2747 ew32(TDBAL
, (tdba
& DMA_BIT_MASK(32)));
2748 ew32(TDBAH
, (tdba
>> 32));
2752 tx_ring
->head
= E1000_TDH
;
2753 tx_ring
->tail
= E1000_TDT
;
2755 /* Set the default values for the Tx Inter Packet Gap timer */
2756 tipg
= DEFAULT_82543_TIPG_IPGT_COPPER
; /* 8 */
2757 ipgr1
= DEFAULT_82543_TIPG_IPGR1
; /* 8 */
2758 ipgr2
= DEFAULT_82543_TIPG_IPGR2
; /* 6 */
2760 if (adapter
->flags
& FLAG_TIPG_MEDIUM_FOR_80003ESLAN
)
2761 ipgr2
= DEFAULT_80003ES2LAN_TIPG_IPGR2
; /* 7 */
2763 tipg
|= ipgr1
<< E1000_TIPG_IPGR1_SHIFT
;
2764 tipg
|= ipgr2
<< E1000_TIPG_IPGR2_SHIFT
;
2767 /* Set the Tx Interrupt Delay register */
2768 ew32(TIDV
, adapter
->tx_int_delay
);
2769 /* Tx irq moderation */
2770 ew32(TADV
, adapter
->tx_abs_int_delay
);
2772 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
2773 u32 txdctl
= er32(TXDCTL(0));
2774 txdctl
&= ~(E1000_TXDCTL_PTHRESH
| E1000_TXDCTL_HTHRESH
|
2775 E1000_TXDCTL_WTHRESH
);
2777 * set up some performance related parameters to encourage the
2778 * hardware to use the bus more efficiently in bursts, depends
2779 * on the tx_int_delay to be enabled,
2780 * wthresh = 5 ==> burst write a cacheline (64 bytes) at a time
2781 * hthresh = 1 ==> prefetch when one or more available
2782 * pthresh = 0x1f ==> prefetch if internal cache 31 or less
2783 * BEWARE: this seems to work but should be considered first if
2784 * there are Tx hangs or other Tx related bugs
2786 txdctl
|= E1000_TXDCTL_DMA_BURST_ENABLE
;
2787 ew32(TXDCTL(0), txdctl
);
2788 /* erratum work around: set txdctl the same for both queues */
2789 ew32(TXDCTL(1), txdctl
);
2792 /* Program the Transmit Control Register */
2794 tctl
&= ~E1000_TCTL_CT
;
2795 tctl
|= E1000_TCTL_PSP
| E1000_TCTL_RTLC
|
2796 (E1000_COLLISION_THRESHOLD
<< E1000_CT_SHIFT
);
2798 if (adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) {
2799 tarc
= er32(TARC(0));
2801 * set the speed mode bit, we'll clear it if we're not at
2802 * gigabit link later
2804 #define SPEED_MODE_BIT (1 << 21)
2805 tarc
|= SPEED_MODE_BIT
;
2806 ew32(TARC(0), tarc
);
2809 /* errata: program both queues to unweighted RR */
2810 if (adapter
->flags
& FLAG_TARC_SET_BIT_ZERO
) {
2811 tarc
= er32(TARC(0));
2813 ew32(TARC(0), tarc
);
2814 tarc
= er32(TARC(1));
2816 ew32(TARC(1), tarc
);
2819 /* Setup Transmit Descriptor Settings for eop descriptor */
2820 adapter
->txd_cmd
= E1000_TXD_CMD_EOP
| E1000_TXD_CMD_IFCS
;
2822 /* only set IDE if we are delaying interrupts using the timers */
2823 if (adapter
->tx_int_delay
)
2824 adapter
->txd_cmd
|= E1000_TXD_CMD_IDE
;
2826 /* enable Report Status bit */
2827 adapter
->txd_cmd
|= E1000_TXD_CMD_RS
;
2831 e1000e_config_collision_dist(hw
);
2835 * e1000_setup_rctl - configure the receive control registers
2836 * @adapter: Board private structure
2838 #define PAGE_USE_COUNT(S) (((S) >> PAGE_SHIFT) + \
2839 (((S) & (PAGE_SIZE - 1)) ? 1 : 0))
2840 static void e1000_setup_rctl(struct e1000_adapter
*adapter
)
2842 struct e1000_hw
*hw
= &adapter
->hw
;
2846 /* Workaround Si errata on 82579 - configure jumbo frame flow */
2847 if (hw
->mac
.type
== e1000_pch2lan
) {
2850 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
)
2851 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, true);
2853 ret_val
= e1000_lv_jumbo_workaround_ich8lan(hw
, false);
2856 e_dbg("failed to enable jumbo frame workaround mode\n");
2859 /* Program MC offset vector base */
2861 rctl
&= ~(3 << E1000_RCTL_MO_SHIFT
);
2862 rctl
|= E1000_RCTL_EN
| E1000_RCTL_BAM
|
2863 E1000_RCTL_LBM_NO
| E1000_RCTL_RDMTS_HALF
|
2864 (adapter
->hw
.mac
.mc_filter_type
<< E1000_RCTL_MO_SHIFT
);
2866 /* Do not Store bad packets */
2867 rctl
&= ~E1000_RCTL_SBP
;
2869 /* Enable Long Packet receive */
2870 if (adapter
->netdev
->mtu
<= ETH_DATA_LEN
)
2871 rctl
&= ~E1000_RCTL_LPE
;
2873 rctl
|= E1000_RCTL_LPE
;
2875 /* Some systems expect that the CRC is included in SMBUS traffic. The
2876 * hardware strips the CRC before sending to both SMBUS (BMC) and to
2877 * host memory when this is enabled
2879 if (adapter
->flags2
& FLAG2_CRC_STRIPPING
)
2880 rctl
|= E1000_RCTL_SECRC
;
2882 /* Workaround Si errata on 82577 PHY - configure IPG for jumbos */
2883 if ((hw
->phy
.type
== e1000_phy_82577
) && (rctl
& E1000_RCTL_LPE
)) {
2886 e1e_rphy(hw
, PHY_REG(770, 26), &phy_data
);
2888 phy_data
|= (1 << 2);
2889 e1e_wphy(hw
, PHY_REG(770, 26), phy_data
);
2891 e1e_rphy(hw
, 22, &phy_data
);
2893 phy_data
|= (1 << 14);
2894 e1e_wphy(hw
, 0x10, 0x2823);
2895 e1e_wphy(hw
, 0x11, 0x0003);
2896 e1e_wphy(hw
, 22, phy_data
);
2899 /* Setup buffer sizes */
2900 rctl
&= ~E1000_RCTL_SZ_4096
;
2901 rctl
|= E1000_RCTL_BSEX
;
2902 switch (adapter
->rx_buffer_len
) {
2905 rctl
|= E1000_RCTL_SZ_2048
;
2906 rctl
&= ~E1000_RCTL_BSEX
;
2909 rctl
|= E1000_RCTL_SZ_4096
;
2912 rctl
|= E1000_RCTL_SZ_8192
;
2915 rctl
|= E1000_RCTL_SZ_16384
;
2919 /* Enable Extended Status in all Receive Descriptors */
2920 rfctl
= er32(RFCTL
);
2921 rfctl
|= E1000_RFCTL_EXTEN
;
2924 * 82571 and greater support packet-split where the protocol
2925 * header is placed in skb->data and the packet data is
2926 * placed in pages hanging off of skb_shinfo(skb)->nr_frags.
2927 * In the case of a non-split, skb->data is linearly filled,
2928 * followed by the page buffers. Therefore, skb->data is
2929 * sized to hold the largest protocol header.
2931 * allocations using alloc_page take too long for regular MTU
2932 * so only enable packet split for jumbo frames
2934 * Using pages when the page size is greater than 16k wastes
2935 * a lot of memory, since we allocate 3 pages at all times
2938 pages
= PAGE_USE_COUNT(adapter
->netdev
->mtu
);
2939 if (!(adapter
->flags
& FLAG_HAS_ERT
) && (pages
<= 3) &&
2940 (PAGE_SIZE
<= 16384) && (rctl
& E1000_RCTL_LPE
))
2941 adapter
->rx_ps_pages
= pages
;
2943 adapter
->rx_ps_pages
= 0;
2945 if (adapter
->rx_ps_pages
) {
2949 * disable packet split support for IPv6 extension headers,
2950 * because some malformed IPv6 headers can hang the Rx
2952 rfctl
|= (E1000_RFCTL_IPV6_EX_DIS
|
2953 E1000_RFCTL_NEW_IPV6_EXT_DIS
);
2955 /* Enable Packet split descriptors */
2956 rctl
|= E1000_RCTL_DTYP_PS
;
2958 psrctl
|= adapter
->rx_ps_bsize0
>>
2959 E1000_PSRCTL_BSIZE0_SHIFT
;
2961 switch (adapter
->rx_ps_pages
) {
2963 psrctl
|= PAGE_SIZE
<<
2964 E1000_PSRCTL_BSIZE3_SHIFT
;
2966 psrctl
|= PAGE_SIZE
<<
2967 E1000_PSRCTL_BSIZE2_SHIFT
;
2969 psrctl
|= PAGE_SIZE
>>
2970 E1000_PSRCTL_BSIZE1_SHIFT
;
2974 ew32(PSRCTL
, psrctl
);
2979 /* just started the receive unit, no need to restart */
2980 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
2984 * e1000_configure_rx - Configure Receive Unit after Reset
2985 * @adapter: board private structure
2987 * Configure the Rx unit of the MAC after a reset.
2989 static void e1000_configure_rx(struct e1000_adapter
*adapter
)
2991 struct e1000_hw
*hw
= &adapter
->hw
;
2992 struct e1000_ring
*rx_ring
= adapter
->rx_ring
;
2994 u32 rdlen
, rctl
, rxcsum
, ctrl_ext
;
2996 if (adapter
->rx_ps_pages
) {
2997 /* this is a 32 byte descriptor */
2998 rdlen
= rx_ring
->count
*
2999 sizeof(union e1000_rx_desc_packet_split
);
3000 adapter
->clean_rx
= e1000_clean_rx_irq_ps
;
3001 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers_ps
;
3002 } else if (adapter
->netdev
->mtu
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3003 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3004 adapter
->clean_rx
= e1000_clean_jumbo_rx_irq
;
3005 adapter
->alloc_rx_buf
= e1000_alloc_jumbo_rx_buffers
;
3007 rdlen
= rx_ring
->count
* sizeof(union e1000_rx_desc_extended
);
3008 adapter
->clean_rx
= e1000_clean_rx_irq
;
3009 adapter
->alloc_rx_buf
= e1000_alloc_rx_buffers
;
3012 /* disable receives while setting up the descriptors */
3014 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3015 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3017 usleep_range(10000, 20000);
3019 if (adapter
->flags2
& FLAG2_DMA_BURST
) {
3021 * set the writeback threshold (only takes effect if the RDTR
3022 * is set). set GRAN=1 and write back up to 0x4 worth, and
3023 * enable prefetching of 0x20 Rx descriptors
3029 ew32(RXDCTL(0), E1000_RXDCTL_DMA_BURST_ENABLE
);
3030 ew32(RXDCTL(1), E1000_RXDCTL_DMA_BURST_ENABLE
);
3033 * override the delay timers for enabling bursting, only if
3034 * the value was not set by the user via module options
3036 if (adapter
->rx_int_delay
== DEFAULT_RDTR
)
3037 adapter
->rx_int_delay
= BURST_RDTR
;
3038 if (adapter
->rx_abs_int_delay
== DEFAULT_RADV
)
3039 adapter
->rx_abs_int_delay
= BURST_RADV
;
3042 /* set the Receive Delay Timer Register */
3043 ew32(RDTR
, adapter
->rx_int_delay
);
3045 /* irq moderation */
3046 ew32(RADV
, adapter
->rx_abs_int_delay
);
3047 if ((adapter
->itr_setting
!= 0) && (adapter
->itr
!= 0))
3048 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
3050 ctrl_ext
= er32(CTRL_EXT
);
3051 /* Auto-Mask interrupts upon ICR access */
3052 ctrl_ext
|= E1000_CTRL_EXT_IAME
;
3053 ew32(IAM
, 0xffffffff);
3054 ew32(CTRL_EXT
, ctrl_ext
);
3058 * Setup the HW Rx Head and Tail Descriptor Pointers and
3059 * the Base and Length of the Rx Descriptor Ring
3061 rdba
= rx_ring
->dma
;
3062 ew32(RDBAL
, (rdba
& DMA_BIT_MASK(32)));
3063 ew32(RDBAH
, (rdba
>> 32));
3067 rx_ring
->head
= E1000_RDH
;
3068 rx_ring
->tail
= E1000_RDT
;
3070 /* Enable Receive Checksum Offload for TCP and UDP */
3071 rxcsum
= er32(RXCSUM
);
3072 if (adapter
->netdev
->features
& NETIF_F_RXCSUM
) {
3073 rxcsum
|= E1000_RXCSUM_TUOFL
;
3076 * IPv4 payload checksum for UDP fragments must be
3077 * used in conjunction with packet-split.
3079 if (adapter
->rx_ps_pages
)
3080 rxcsum
|= E1000_RXCSUM_IPPCSE
;
3082 rxcsum
&= ~E1000_RXCSUM_TUOFL
;
3083 /* no need to clear IPPCSE as it defaults to 0 */
3085 ew32(RXCSUM
, rxcsum
);
3088 * Enable early receives on supported devices, only takes effect when
3089 * packet size is equal or larger than the specified value (in 8 byte
3090 * units), e.g. using jumbo frames when setting to E1000_ERT_2048
3092 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
3093 (adapter
->hw
.mac
.type
== e1000_pch2lan
)) {
3094 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3095 u32 rxdctl
= er32(RXDCTL(0));
3096 ew32(RXDCTL(0), rxdctl
| 0x3);
3097 if (adapter
->flags
& FLAG_HAS_ERT
)
3098 ew32(ERT
, E1000_ERT_2048
| (1 << 13));
3100 * With jumbo frames and early-receive enabled,
3101 * excessive C-state transition latencies result in
3102 * dropped transactions.
3104 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
, 55);
3106 pm_qos_update_request(&adapter
->netdev
->pm_qos_req
,
3107 PM_QOS_DEFAULT_VALUE
);
3111 /* Enable Receives */
3116 * e1000_update_mc_addr_list - Update Multicast addresses
3117 * @hw: pointer to the HW structure
3118 * @mc_addr_list: array of multicast addresses to program
3119 * @mc_addr_count: number of multicast addresses to program
3121 * Updates the Multicast Table Array.
3122 * The caller must have a packed mc_addr_list of multicast addresses.
3124 static void e1000_update_mc_addr_list(struct e1000_hw
*hw
, u8
*mc_addr_list
,
3127 hw
->mac
.ops
.update_mc_addr_list(hw
, mc_addr_list
, mc_addr_count
);
3131 * e1000_set_multi - Multicast and Promiscuous mode set
3132 * @netdev: network interface device structure
3134 * The set_multi entry point is called whenever the multicast address
3135 * list or the network interface flags are updated. This routine is
3136 * responsible for configuring the hardware for proper multicast,
3137 * promiscuous mode, and all-multi behavior.
3139 static void e1000_set_multi(struct net_device
*netdev
)
3141 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3142 struct e1000_hw
*hw
= &adapter
->hw
;
3143 struct netdev_hw_addr
*ha
;
3147 /* Check for Promiscuous and All Multicast modes */
3151 if (netdev
->flags
& IFF_PROMISC
) {
3152 rctl
|= (E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3153 rctl
&= ~E1000_RCTL_VFE
;
3154 /* Do not hardware filter VLANs in promisc mode */
3155 e1000e_vlan_filter_disable(adapter
);
3157 if (netdev
->flags
& IFF_ALLMULTI
) {
3158 rctl
|= E1000_RCTL_MPE
;
3159 rctl
&= ~E1000_RCTL_UPE
;
3161 rctl
&= ~(E1000_RCTL_UPE
| E1000_RCTL_MPE
);
3163 e1000e_vlan_filter_enable(adapter
);
3168 if (!netdev_mc_empty(netdev
)) {
3171 mta_list
= kmalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
3175 /* prepare a packed array of only addresses. */
3176 netdev_for_each_mc_addr(ha
, netdev
)
3177 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
3179 e1000_update_mc_addr_list(hw
, mta_list
, i
);
3183 * if we're called from probe, we might not have
3184 * anything to do here, so clear out the list
3186 e1000_update_mc_addr_list(hw
, NULL
, 0);
3189 if (netdev
->features
& NETIF_F_HW_VLAN_RX
)
3190 e1000e_vlan_strip_enable(adapter
);
3192 e1000e_vlan_strip_disable(adapter
);
3196 * e1000_configure - configure the hardware for Rx and Tx
3197 * @adapter: private board structure
3199 static void e1000_configure(struct e1000_adapter
*adapter
)
3201 e1000_set_multi(adapter
->netdev
);
3203 e1000_restore_vlan(adapter
);
3204 e1000_init_manageability_pt(adapter
);
3206 e1000_configure_tx(adapter
);
3207 e1000_setup_rctl(adapter
);
3208 e1000_configure_rx(adapter
);
3209 adapter
->alloc_rx_buf(adapter
, e1000_desc_unused(adapter
->rx_ring
),
3214 * e1000e_power_up_phy - restore link in case the phy was powered down
3215 * @adapter: address of board private structure
3217 * The phy may be powered down to save power and turn off link when the
3218 * driver is unloaded and wake on lan is not enabled (among others)
3219 * *** this routine MUST be followed by a call to e1000e_reset ***
3221 void e1000e_power_up_phy(struct e1000_adapter
*adapter
)
3223 if (adapter
->hw
.phy
.ops
.power_up
)
3224 adapter
->hw
.phy
.ops
.power_up(&adapter
->hw
);
3226 adapter
->hw
.mac
.ops
.setup_link(&adapter
->hw
);
3230 * e1000_power_down_phy - Power down the PHY
3232 * Power down the PHY so no link is implied when interface is down.
3233 * The PHY cannot be powered down if management or WoL is active.
3235 static void e1000_power_down_phy(struct e1000_adapter
*adapter
)
3237 /* WoL is enabled */
3241 if (adapter
->hw
.phy
.ops
.power_down
)
3242 adapter
->hw
.phy
.ops
.power_down(&adapter
->hw
);
3246 * e1000e_reset - bring the hardware into a known good state
3248 * This function boots the hardware and enables some settings that
3249 * require a configuration cycle of the hardware - those cannot be
3250 * set/changed during runtime. After reset the device needs to be
3251 * properly configured for Rx, Tx etc.
3253 void e1000e_reset(struct e1000_adapter
*adapter
)
3255 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
3256 struct e1000_fc_info
*fc
= &adapter
->hw
.fc
;
3257 struct e1000_hw
*hw
= &adapter
->hw
;
3258 u32 tx_space
, min_tx_space
, min_rx_space
;
3259 u32 pba
= adapter
->pba
;
3262 /* reset Packet Buffer Allocation to default */
3265 if (adapter
->max_frame_size
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) {
3267 * To maintain wire speed transmits, the Tx FIFO should be
3268 * large enough to accommodate two full transmit packets,
3269 * rounded up to the next 1KB and expressed in KB. Likewise,
3270 * the Rx FIFO should be large enough to accommodate at least
3271 * one full receive packet and is similarly rounded up and
3275 /* upper 16 bits has Tx packet buffer allocation size in KB */
3276 tx_space
= pba
>> 16;
3277 /* lower 16 bits has Rx packet buffer allocation size in KB */
3280 * the Tx fifo also stores 16 bytes of information about the Tx
3281 * but don't include ethernet FCS because hardware appends it
3283 min_tx_space
= (adapter
->max_frame_size
+
3284 sizeof(struct e1000_tx_desc
) -
3286 min_tx_space
= ALIGN(min_tx_space
, 1024);
3287 min_tx_space
>>= 10;
3288 /* software strips receive CRC, so leave room for it */
3289 min_rx_space
= adapter
->max_frame_size
;
3290 min_rx_space
= ALIGN(min_rx_space
, 1024);
3291 min_rx_space
>>= 10;
3294 * If current Tx allocation is less than the min Tx FIFO size,
3295 * and the min Tx FIFO size is less than the current Rx FIFO
3296 * allocation, take space away from current Rx allocation
3298 if ((tx_space
< min_tx_space
) &&
3299 ((min_tx_space
- tx_space
) < pba
)) {
3300 pba
-= min_tx_space
- tx_space
;
3303 * if short on Rx space, Rx wins and must trump Tx
3304 * adjustment or use Early Receive if available
3306 if ((pba
< min_rx_space
) &&
3307 (!(adapter
->flags
& FLAG_HAS_ERT
)))
3308 /* ERT enabled in e1000_configure_rx */
3316 * flow control settings
3318 * The high water mark must be low enough to fit one full frame
3319 * (or the size used for early receive) above it in the Rx FIFO.
3320 * Set it to the lower of:
3321 * - 90% of the Rx FIFO size, and
3322 * - the full Rx FIFO size minus the early receive size (for parts
3323 * with ERT support assuming ERT set to E1000_ERT_2048), or
3324 * - the full Rx FIFO size minus one full frame
3326 if (adapter
->flags
& FLAG_DISABLE_FC_PAUSE_TIME
)
3327 fc
->pause_time
= 0xFFFF;
3329 fc
->pause_time
= E1000_FC_PAUSE_TIME
;
3331 fc
->current_mode
= fc
->requested_mode
;
3333 switch (hw
->mac
.type
) {
3335 if ((adapter
->flags
& FLAG_HAS_ERT
) &&
3336 (adapter
->netdev
->mtu
> ETH_DATA_LEN
))
3337 hwm
= min(((pba
<< 10) * 9 / 10),
3338 ((pba
<< 10) - (E1000_ERT_2048
<< 3)));
3340 hwm
= min(((pba
<< 10) * 9 / 10),
3341 ((pba
<< 10) - adapter
->max_frame_size
));
3343 fc
->high_water
= hwm
& E1000_FCRTH_RTH
; /* 8-byte granularity */
3344 fc
->low_water
= fc
->high_water
- 8;
3348 * Workaround PCH LOM adapter hangs with certain network
3349 * loads. If hangs persist, try disabling Tx flow control.
3351 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3352 fc
->high_water
= 0x3500;
3353 fc
->low_water
= 0x1500;
3355 fc
->high_water
= 0x5000;
3356 fc
->low_water
= 0x3000;
3358 fc
->refresh_time
= 0x1000;
3361 fc
->high_water
= 0x05C20;
3362 fc
->low_water
= 0x05048;
3363 fc
->pause_time
= 0x0650;
3364 fc
->refresh_time
= 0x0400;
3365 if (adapter
->netdev
->mtu
> ETH_DATA_LEN
) {
3373 * Disable Adaptive Interrupt Moderation if 2 full packets cannot
3374 * fit in receive buffer and early-receive not supported.
3376 if (adapter
->itr_setting
& 0x3) {
3377 if (((adapter
->max_frame_size
* 2) > (pba
<< 10)) &&
3378 !(adapter
->flags
& FLAG_HAS_ERT
)) {
3379 if (!(adapter
->flags2
& FLAG2_DISABLE_AIM
)) {
3380 dev_info(&adapter
->pdev
->dev
,
3381 "Interrupt Throttle Rate turned off\n");
3382 adapter
->flags2
|= FLAG2_DISABLE_AIM
;
3385 } else if (adapter
->flags2
& FLAG2_DISABLE_AIM
) {
3386 dev_info(&adapter
->pdev
->dev
,
3387 "Interrupt Throttle Rate turned on\n");
3388 adapter
->flags2
&= ~FLAG2_DISABLE_AIM
;
3389 adapter
->itr
= 20000;
3390 ew32(ITR
, 1000000000 / (adapter
->itr
* 256));
3394 /* Allow time for pending master requests to run */
3395 mac
->ops
.reset_hw(hw
);
3398 * For parts with AMT enabled, let the firmware know
3399 * that the network interface is in control
3401 if (adapter
->flags
& FLAG_HAS_AMT
)
3402 e1000e_get_hw_control(adapter
);
3406 if (mac
->ops
.init_hw(hw
))
3407 e_err("Hardware Error\n");
3409 e1000_update_mng_vlan(adapter
);
3411 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
3412 ew32(VET
, ETH_P_8021Q
);
3414 e1000e_reset_adaptive(hw
);
3416 if (!netif_running(adapter
->netdev
) &&
3417 !test_bit(__E1000_TESTING
, &adapter
->state
)) {
3418 e1000_power_down_phy(adapter
);
3422 e1000_get_phy_info(hw
);
3424 if ((adapter
->flags
& FLAG_HAS_SMART_POWER_DOWN
) &&
3425 !(adapter
->flags
& FLAG_SMART_POWER_DOWN
)) {
3428 * speed up time to link by disabling smart power down, ignore
3429 * the return value of this function because there is nothing
3430 * different we would do if it failed
3432 e1e_rphy(hw
, IGP02E1000_PHY_POWER_MGMT
, &phy_data
);
3433 phy_data
&= ~IGP02E1000_PM_SPD
;
3434 e1e_wphy(hw
, IGP02E1000_PHY_POWER_MGMT
, phy_data
);
3438 int e1000e_up(struct e1000_adapter
*adapter
)
3440 struct e1000_hw
*hw
= &adapter
->hw
;
3442 /* hardware has been reset, we need to reload some things */
3443 e1000_configure(adapter
);
3445 clear_bit(__E1000_DOWN
, &adapter
->state
);
3447 napi_enable(&adapter
->napi
);
3448 if (adapter
->msix_entries
)
3449 e1000_configure_msix(adapter
);
3450 e1000_irq_enable(adapter
);
3452 netif_start_queue(adapter
->netdev
);
3454 /* fire a link change interrupt to start the watchdog */
3455 if (adapter
->msix_entries
)
3456 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3458 ew32(ICS
, E1000_ICS_LSC
);
3463 static void e1000e_flush_descriptors(struct e1000_adapter
*adapter
)
3465 struct e1000_hw
*hw
= &adapter
->hw
;
3467 if (!(adapter
->flags2
& FLAG2_DMA_BURST
))
3470 /* flush pending descriptor writebacks to memory */
3471 ew32(TIDV
, adapter
->tx_int_delay
| E1000_TIDV_FPD
);
3472 ew32(RDTR
, adapter
->rx_int_delay
| E1000_RDTR_FPD
);
3474 /* execute the writes immediately */
3478 static void e1000e_update_stats(struct e1000_adapter
*adapter
);
3480 void e1000e_down(struct e1000_adapter
*adapter
)
3482 struct net_device
*netdev
= adapter
->netdev
;
3483 struct e1000_hw
*hw
= &adapter
->hw
;
3487 * signal that we're down so the interrupt handler does not
3488 * reschedule our watchdog timer
3490 set_bit(__E1000_DOWN
, &adapter
->state
);
3492 /* disable receives in the hardware */
3494 if (!(adapter
->flags2
& FLAG2_NO_DISABLE_RX
))
3495 ew32(RCTL
, rctl
& ~E1000_RCTL_EN
);
3496 /* flush and sleep below */
3498 netif_stop_queue(netdev
);
3500 /* disable transmits in the hardware */
3502 tctl
&= ~E1000_TCTL_EN
;
3505 /* flush both disables and wait for them to finish */
3507 usleep_range(10000, 20000);
3509 napi_disable(&adapter
->napi
);
3510 e1000_irq_disable(adapter
);
3512 del_timer_sync(&adapter
->watchdog_timer
);
3513 del_timer_sync(&adapter
->phy_info_timer
);
3515 netif_carrier_off(netdev
);
3517 spin_lock(&adapter
->stats64_lock
);
3518 e1000e_update_stats(adapter
);
3519 spin_unlock(&adapter
->stats64_lock
);
3521 e1000e_flush_descriptors(adapter
);
3522 e1000_clean_tx_ring(adapter
);
3523 e1000_clean_rx_ring(adapter
);
3525 adapter
->link_speed
= 0;
3526 adapter
->link_duplex
= 0;
3528 if (!pci_channel_offline(adapter
->pdev
))
3529 e1000e_reset(adapter
);
3532 * TODO: for power management, we could drop the link and
3533 * pci_disable_device here.
3537 void e1000e_reinit_locked(struct e1000_adapter
*adapter
)
3540 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
3541 usleep_range(1000, 2000);
3542 e1000e_down(adapter
);
3544 clear_bit(__E1000_RESETTING
, &adapter
->state
);
3548 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
3549 * @adapter: board private structure to initialize
3551 * e1000_sw_init initializes the Adapter private data structure.
3552 * Fields are initialized based on PCI device information and
3553 * OS network device settings (MTU size).
3555 static int __devinit
e1000_sw_init(struct e1000_adapter
*adapter
)
3557 struct net_device
*netdev
= adapter
->netdev
;
3559 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
3560 adapter
->rx_ps_bsize0
= 128;
3561 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
3562 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
3564 spin_lock_init(&adapter
->stats64_lock
);
3566 e1000e_set_interrupt_capability(adapter
);
3568 if (e1000_alloc_queues(adapter
))
3571 /* Explicitly disable IRQ since the NIC can be in any state. */
3572 e1000_irq_disable(adapter
);
3574 set_bit(__E1000_DOWN
, &adapter
->state
);
3579 * e1000_intr_msi_test - Interrupt Handler
3580 * @irq: interrupt number
3581 * @data: pointer to a network interface device structure
3583 static irqreturn_t
e1000_intr_msi_test(int irq
, void *data
)
3585 struct net_device
*netdev
= data
;
3586 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3587 struct e1000_hw
*hw
= &adapter
->hw
;
3588 u32 icr
= er32(ICR
);
3590 e_dbg("icr is %08X\n", icr
);
3591 if (icr
& E1000_ICR_RXSEQ
) {
3592 adapter
->flags
&= ~FLAG_MSI_TEST_FAILED
;
3600 * e1000_test_msi_interrupt - Returns 0 for successful test
3601 * @adapter: board private struct
3603 * code flow taken from tg3.c
3605 static int e1000_test_msi_interrupt(struct e1000_adapter
*adapter
)
3607 struct net_device
*netdev
= adapter
->netdev
;
3608 struct e1000_hw
*hw
= &adapter
->hw
;
3611 /* poll_enable hasn't been called yet, so don't need disable */
3612 /* clear any pending events */
3615 /* free the real vector and request a test handler */
3616 e1000_free_irq(adapter
);
3617 e1000e_reset_interrupt_capability(adapter
);
3619 /* Assume that the test fails, if it succeeds then the test
3620 * MSI irq handler will unset this flag */
3621 adapter
->flags
|= FLAG_MSI_TEST_FAILED
;
3623 err
= pci_enable_msi(adapter
->pdev
);
3625 goto msi_test_failed
;
3627 err
= request_irq(adapter
->pdev
->irq
, e1000_intr_msi_test
, 0,
3628 netdev
->name
, netdev
);
3630 pci_disable_msi(adapter
->pdev
);
3631 goto msi_test_failed
;
3636 e1000_irq_enable(adapter
);
3638 /* fire an unusual interrupt on the test handler */
3639 ew32(ICS
, E1000_ICS_RXSEQ
);
3643 e1000_irq_disable(adapter
);
3647 if (adapter
->flags
& FLAG_MSI_TEST_FAILED
) {
3648 adapter
->int_mode
= E1000E_INT_MODE_LEGACY
;
3649 e_info("MSI interrupt test failed, using legacy interrupt.\n");
3651 e_dbg("MSI interrupt test succeeded!\n");
3653 free_irq(adapter
->pdev
->irq
, netdev
);
3654 pci_disable_msi(adapter
->pdev
);
3657 e1000e_set_interrupt_capability(adapter
);
3658 return e1000_request_irq(adapter
);
3662 * e1000_test_msi - Returns 0 if MSI test succeeds or INTx mode is restored
3663 * @adapter: board private struct
3665 * code flow taken from tg3.c, called with e1000 interrupts disabled.
3667 static int e1000_test_msi(struct e1000_adapter
*adapter
)
3672 if (!(adapter
->flags
& FLAG_MSI_ENABLED
))
3675 /* disable SERR in case the MSI write causes a master abort */
3676 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3677 if (pci_cmd
& PCI_COMMAND_SERR
)
3678 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
,
3679 pci_cmd
& ~PCI_COMMAND_SERR
);
3681 err
= e1000_test_msi_interrupt(adapter
);
3683 /* re-enable SERR */
3684 if (pci_cmd
& PCI_COMMAND_SERR
) {
3685 pci_read_config_word(adapter
->pdev
, PCI_COMMAND
, &pci_cmd
);
3686 pci_cmd
|= PCI_COMMAND_SERR
;
3687 pci_write_config_word(adapter
->pdev
, PCI_COMMAND
, pci_cmd
);
3694 * e1000_open - Called when a network interface is made active
3695 * @netdev: network interface device structure
3697 * Returns 0 on success, negative value on failure
3699 * The open entry point is called when a network interface is made
3700 * active by the system (IFF_UP). At this point all resources needed
3701 * for transmit and receive operations are allocated, the interrupt
3702 * handler is registered with the OS, the watchdog timer is started,
3703 * and the stack is notified that the interface is ready.
3705 static int e1000_open(struct net_device
*netdev
)
3707 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3708 struct e1000_hw
*hw
= &adapter
->hw
;
3709 struct pci_dev
*pdev
= adapter
->pdev
;
3712 /* disallow open during test */
3713 if (test_bit(__E1000_TESTING
, &adapter
->state
))
3716 pm_runtime_get_sync(&pdev
->dev
);
3718 netif_carrier_off(netdev
);
3720 /* allocate transmit descriptors */
3721 err
= e1000e_setup_tx_resources(adapter
);
3725 /* allocate receive descriptors */
3726 err
= e1000e_setup_rx_resources(adapter
);
3731 * If AMT is enabled, let the firmware know that the network
3732 * interface is now open and reset the part to a known state.
3734 if (adapter
->flags
& FLAG_HAS_AMT
) {
3735 e1000e_get_hw_control(adapter
);
3736 e1000e_reset(adapter
);
3739 e1000e_power_up_phy(adapter
);
3741 adapter
->mng_vlan_id
= E1000_MNG_VLAN_NONE
;
3742 if ((adapter
->hw
.mng_cookie
.status
&
3743 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
))
3744 e1000_update_mng_vlan(adapter
);
3746 /* DMA latency requirement to workaround early-receive/jumbo issue */
3747 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
3748 (adapter
->hw
.mac
.type
== e1000_pch2lan
))
3749 pm_qos_add_request(&adapter
->netdev
->pm_qos_req
,
3750 PM_QOS_CPU_DMA_LATENCY
,
3751 PM_QOS_DEFAULT_VALUE
);
3754 * before we allocate an interrupt, we must be ready to handle it.
3755 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
3756 * as soon as we call pci_request_irq, so we have to setup our
3757 * clean_rx handler before we do so.
3759 e1000_configure(adapter
);
3761 err
= e1000_request_irq(adapter
);
3766 * Work around PCIe errata with MSI interrupts causing some chipsets to
3767 * ignore e1000e MSI messages, which means we need to test our MSI
3770 if (adapter
->int_mode
!= E1000E_INT_MODE_LEGACY
) {
3771 err
= e1000_test_msi(adapter
);
3773 e_err("Interrupt allocation failed\n");
3778 /* From here on the code is the same as e1000e_up() */
3779 clear_bit(__E1000_DOWN
, &adapter
->state
);
3781 napi_enable(&adapter
->napi
);
3783 e1000_irq_enable(adapter
);
3785 netif_start_queue(netdev
);
3787 adapter
->idle_check
= true;
3788 pm_runtime_put(&pdev
->dev
);
3790 /* fire a link status change interrupt to start the watchdog */
3791 if (adapter
->msix_entries
)
3792 ew32(ICS
, E1000_ICS_LSC
| E1000_ICR_OTHER
);
3794 ew32(ICS
, E1000_ICS_LSC
);
3799 e1000e_release_hw_control(adapter
);
3800 e1000_power_down_phy(adapter
);
3801 e1000e_free_rx_resources(adapter
);
3803 e1000e_free_tx_resources(adapter
);
3805 e1000e_reset(adapter
);
3806 pm_runtime_put_sync(&pdev
->dev
);
3812 * e1000_close - Disables a network interface
3813 * @netdev: network interface device structure
3815 * Returns 0, this is not allowed to fail
3817 * The close entry point is called when an interface is de-activated
3818 * by the OS. The hardware is still under the drivers control, but
3819 * needs to be disabled. A global MAC reset is issued to stop the
3820 * hardware, and all transmit and receive resources are freed.
3822 static int e1000_close(struct net_device
*netdev
)
3824 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3825 struct pci_dev
*pdev
= adapter
->pdev
;
3827 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
3829 pm_runtime_get_sync(&pdev
->dev
);
3831 if (!test_bit(__E1000_DOWN
, &adapter
->state
)) {
3832 e1000e_down(adapter
);
3833 e1000_free_irq(adapter
);
3835 e1000_power_down_phy(adapter
);
3837 e1000e_free_tx_resources(adapter
);
3838 e1000e_free_rx_resources(adapter
);
3841 * kill manageability vlan ID if supported, but not if a vlan with
3842 * the same ID is registered on the host OS (let 8021q kill it)
3844 if (adapter
->hw
.mng_cookie
.status
&
3845 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)
3846 e1000_vlan_rx_kill_vid(netdev
, adapter
->mng_vlan_id
);
3849 * If AMT is enabled, let the firmware know that the network
3850 * interface is now closed
3852 if ((adapter
->flags
& FLAG_HAS_AMT
) &&
3853 !test_bit(__E1000_TESTING
, &adapter
->state
))
3854 e1000e_release_hw_control(adapter
);
3856 if ((adapter
->flags
& FLAG_HAS_ERT
) ||
3857 (adapter
->hw
.mac
.type
== e1000_pch2lan
))
3858 pm_qos_remove_request(&adapter
->netdev
->pm_qos_req
);
3860 pm_runtime_put_sync(&pdev
->dev
);
3865 * e1000_set_mac - Change the Ethernet Address of the NIC
3866 * @netdev: network interface device structure
3867 * @p: pointer to an address structure
3869 * Returns 0 on success, negative on failure
3871 static int e1000_set_mac(struct net_device
*netdev
, void *p
)
3873 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
3874 struct sockaddr
*addr
= p
;
3876 if (!is_valid_ether_addr(addr
->sa_data
))
3877 return -EADDRNOTAVAIL
;
3879 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
3880 memcpy(adapter
->hw
.mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
3882 e1000e_rar_set(&adapter
->hw
, adapter
->hw
.mac
.addr
, 0);
3884 if (adapter
->flags
& FLAG_RESET_OVERWRITES_LAA
) {
3885 /* activate the work around */
3886 e1000e_set_laa_state_82571(&adapter
->hw
, 1);
3889 * Hold a copy of the LAA in RAR[14] This is done so that
3890 * between the time RAR[0] gets clobbered and the time it
3891 * gets fixed (in e1000_watchdog), the actual LAA is in one
3892 * of the RARs and no incoming packets directed to this port
3893 * are dropped. Eventually the LAA will be in RAR[0] and
3896 e1000e_rar_set(&adapter
->hw
,
3897 adapter
->hw
.mac
.addr
,
3898 adapter
->hw
.mac
.rar_entry_count
- 1);
3905 * e1000e_update_phy_task - work thread to update phy
3906 * @work: pointer to our work struct
3908 * this worker thread exists because we must acquire a
3909 * semaphore to read the phy, which we could msleep while
3910 * waiting for it, and we can't msleep in a timer.
3912 static void e1000e_update_phy_task(struct work_struct
*work
)
3914 struct e1000_adapter
*adapter
= container_of(work
,
3915 struct e1000_adapter
, update_phy_task
);
3917 if (test_bit(__E1000_DOWN
, &adapter
->state
))
3920 e1000_get_phy_info(&adapter
->hw
);
3924 * Need to wait a few seconds after link up to get diagnostic information from
3927 static void e1000_update_phy_info(unsigned long data
)
3929 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
3931 if (test_bit(__E1000_DOWN
, &adapter
->state
))
3934 schedule_work(&adapter
->update_phy_task
);
3938 * e1000e_update_phy_stats - Update the PHY statistics counters
3939 * @adapter: board private structure
3941 * Read/clear the upper 16-bit PHY registers and read/accumulate lower
3943 static void e1000e_update_phy_stats(struct e1000_adapter
*adapter
)
3945 struct e1000_hw
*hw
= &adapter
->hw
;
3949 ret_val
= hw
->phy
.ops
.acquire(hw
);
3954 * A page set is expensive so check if already on desired page.
3955 * If not, set to the page with the PHY status registers.
3958 ret_val
= e1000e_read_phy_reg_mdic(hw
, IGP01E1000_PHY_PAGE_SELECT
,
3962 if (phy_data
!= (HV_STATS_PAGE
<< IGP_PAGE_SHIFT
)) {
3963 ret_val
= hw
->phy
.ops
.set_page(hw
,
3964 HV_STATS_PAGE
<< IGP_PAGE_SHIFT
);
3969 /* Single Collision Count */
3970 hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_UPPER
, &phy_data
);
3971 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_SCC_LOWER
, &phy_data
);
3973 adapter
->stats
.scc
+= phy_data
;
3975 /* Excessive Collision Count */
3976 hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_UPPER
, &phy_data
);
3977 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_ECOL_LOWER
, &phy_data
);
3979 adapter
->stats
.ecol
+= phy_data
;
3981 /* Multiple Collision Count */
3982 hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_UPPER
, &phy_data
);
3983 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_MCC_LOWER
, &phy_data
);
3985 adapter
->stats
.mcc
+= phy_data
;
3987 /* Late Collision Count */
3988 hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_UPPER
, &phy_data
);
3989 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_LATECOL_LOWER
, &phy_data
);
3991 adapter
->stats
.latecol
+= phy_data
;
3993 /* Collision Count - also used for adaptive IFS */
3994 hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_UPPER
, &phy_data
);
3995 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_COLC_LOWER
, &phy_data
);
3997 hw
->mac
.collision_delta
= phy_data
;
4000 hw
->phy
.ops
.read_reg_page(hw
, HV_DC_UPPER
, &phy_data
);
4001 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_DC_LOWER
, &phy_data
);
4003 adapter
->stats
.dc
+= phy_data
;
4005 /* Transmit with no CRS */
4006 hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_UPPER
, &phy_data
);
4007 ret_val
= hw
->phy
.ops
.read_reg_page(hw
, HV_TNCRS_LOWER
, &phy_data
);
4009 adapter
->stats
.tncrs
+= phy_data
;
4012 hw
->phy
.ops
.release(hw
);
4016 * e1000e_update_stats - Update the board statistics counters
4017 * @adapter: board private structure
4019 static void e1000e_update_stats(struct e1000_adapter
*adapter
)
4021 struct net_device
*netdev
= adapter
->netdev
;
4022 struct e1000_hw
*hw
= &adapter
->hw
;
4023 struct pci_dev
*pdev
= adapter
->pdev
;
4026 * Prevent stats update while adapter is being reset, or if the pci
4027 * connection is down.
4029 if (adapter
->link_speed
== 0)
4031 if (pci_channel_offline(pdev
))
4034 adapter
->stats
.crcerrs
+= er32(CRCERRS
);
4035 adapter
->stats
.gprc
+= er32(GPRC
);
4036 adapter
->stats
.gorc
+= er32(GORCL
);
4037 er32(GORCH
); /* Clear gorc */
4038 adapter
->stats
.bprc
+= er32(BPRC
);
4039 adapter
->stats
.mprc
+= er32(MPRC
);
4040 adapter
->stats
.roc
+= er32(ROC
);
4042 adapter
->stats
.mpc
+= er32(MPC
);
4044 /* Half-duplex statistics */
4045 if (adapter
->link_duplex
== HALF_DUPLEX
) {
4046 if (adapter
->flags2
& FLAG2_HAS_PHY_STATS
) {
4047 e1000e_update_phy_stats(adapter
);
4049 adapter
->stats
.scc
+= er32(SCC
);
4050 adapter
->stats
.ecol
+= er32(ECOL
);
4051 adapter
->stats
.mcc
+= er32(MCC
);
4052 adapter
->stats
.latecol
+= er32(LATECOL
);
4053 adapter
->stats
.dc
+= er32(DC
);
4055 hw
->mac
.collision_delta
= er32(COLC
);
4057 if ((hw
->mac
.type
!= e1000_82574
) &&
4058 (hw
->mac
.type
!= e1000_82583
))
4059 adapter
->stats
.tncrs
+= er32(TNCRS
);
4061 adapter
->stats
.colc
+= hw
->mac
.collision_delta
;
4064 adapter
->stats
.xonrxc
+= er32(XONRXC
);
4065 adapter
->stats
.xontxc
+= er32(XONTXC
);
4066 adapter
->stats
.xoffrxc
+= er32(XOFFRXC
);
4067 adapter
->stats
.xofftxc
+= er32(XOFFTXC
);
4068 adapter
->stats
.gptc
+= er32(GPTC
);
4069 adapter
->stats
.gotc
+= er32(GOTCL
);
4070 er32(GOTCH
); /* Clear gotc */
4071 adapter
->stats
.rnbc
+= er32(RNBC
);
4072 adapter
->stats
.ruc
+= er32(RUC
);
4074 adapter
->stats
.mptc
+= er32(MPTC
);
4075 adapter
->stats
.bptc
+= er32(BPTC
);
4077 /* used for adaptive IFS */
4079 hw
->mac
.tx_packet_delta
= er32(TPT
);
4080 adapter
->stats
.tpt
+= hw
->mac
.tx_packet_delta
;
4082 adapter
->stats
.algnerrc
+= er32(ALGNERRC
);
4083 adapter
->stats
.rxerrc
+= er32(RXERRC
);
4084 adapter
->stats
.cexterr
+= er32(CEXTERR
);
4085 adapter
->stats
.tsctc
+= er32(TSCTC
);
4086 adapter
->stats
.tsctfc
+= er32(TSCTFC
);
4088 /* Fill out the OS statistics structure */
4089 netdev
->stats
.multicast
= adapter
->stats
.mprc
;
4090 netdev
->stats
.collisions
= adapter
->stats
.colc
;
4095 * RLEC on some newer hardware can be incorrect so build
4096 * our own version based on RUC and ROC
4098 netdev
->stats
.rx_errors
= adapter
->stats
.rxerrc
+
4099 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
4100 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
4101 adapter
->stats
.cexterr
;
4102 netdev
->stats
.rx_length_errors
= adapter
->stats
.ruc
+
4104 netdev
->stats
.rx_crc_errors
= adapter
->stats
.crcerrs
;
4105 netdev
->stats
.rx_frame_errors
= adapter
->stats
.algnerrc
;
4106 netdev
->stats
.rx_missed_errors
= adapter
->stats
.mpc
;
4109 netdev
->stats
.tx_errors
= adapter
->stats
.ecol
+
4110 adapter
->stats
.latecol
;
4111 netdev
->stats
.tx_aborted_errors
= adapter
->stats
.ecol
;
4112 netdev
->stats
.tx_window_errors
= adapter
->stats
.latecol
;
4113 netdev
->stats
.tx_carrier_errors
= adapter
->stats
.tncrs
;
4115 /* Tx Dropped needs to be maintained elsewhere */
4117 /* Management Stats */
4118 adapter
->stats
.mgptc
+= er32(MGTPTC
);
4119 adapter
->stats
.mgprc
+= er32(MGTPRC
);
4120 adapter
->stats
.mgpdc
+= er32(MGTPDC
);
4124 * e1000_phy_read_status - Update the PHY register status snapshot
4125 * @adapter: board private structure
4127 static void e1000_phy_read_status(struct e1000_adapter
*adapter
)
4129 struct e1000_hw
*hw
= &adapter
->hw
;
4130 struct e1000_phy_regs
*phy
= &adapter
->phy_regs
;
4132 if ((er32(STATUS
) & E1000_STATUS_LU
) &&
4133 (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
)) {
4136 ret_val
= e1e_rphy(hw
, PHY_CONTROL
, &phy
->bmcr
);
4137 ret_val
|= e1e_rphy(hw
, PHY_STATUS
, &phy
->bmsr
);
4138 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_ADV
, &phy
->advertise
);
4139 ret_val
|= e1e_rphy(hw
, PHY_LP_ABILITY
, &phy
->lpa
);
4140 ret_val
|= e1e_rphy(hw
, PHY_AUTONEG_EXP
, &phy
->expansion
);
4141 ret_val
|= e1e_rphy(hw
, PHY_1000T_CTRL
, &phy
->ctrl1000
);
4142 ret_val
|= e1e_rphy(hw
, PHY_1000T_STATUS
, &phy
->stat1000
);
4143 ret_val
|= e1e_rphy(hw
, PHY_EXT_STATUS
, &phy
->estatus
);
4145 e_warn("Error reading PHY register\n");
4148 * Do not read PHY registers if link is not up
4149 * Set values to typical power-on defaults
4151 phy
->bmcr
= (BMCR_SPEED1000
| BMCR_ANENABLE
| BMCR_FULLDPLX
);
4152 phy
->bmsr
= (BMSR_100FULL
| BMSR_100HALF
| BMSR_10FULL
|
4153 BMSR_10HALF
| BMSR_ESTATEN
| BMSR_ANEGCAPABLE
|
4155 phy
->advertise
= (ADVERTISE_PAUSE_ASYM
| ADVERTISE_PAUSE_CAP
|
4156 ADVERTISE_ALL
| ADVERTISE_CSMA
);
4158 phy
->expansion
= EXPANSION_ENABLENPAGE
;
4159 phy
->ctrl1000
= ADVERTISE_1000FULL
;
4161 phy
->estatus
= (ESTATUS_1000_TFULL
| ESTATUS_1000_THALF
);
4165 static void e1000_print_link_info(struct e1000_adapter
*adapter
)
4167 struct e1000_hw
*hw
= &adapter
->hw
;
4168 u32 ctrl
= er32(CTRL
);
4170 /* Link status message must follow this format for user tools */
4171 printk(KERN_INFO
"e1000e: %s NIC Link is Up %d Mbps %s, "
4172 "Flow Control: %s\n",
4173 adapter
->netdev
->name
,
4174 adapter
->link_speed
,
4175 (adapter
->link_duplex
== FULL_DUPLEX
) ?
4176 "Full Duplex" : "Half Duplex",
4177 ((ctrl
& E1000_CTRL_TFCE
) && (ctrl
& E1000_CTRL_RFCE
)) ?
4179 ((ctrl
& E1000_CTRL_RFCE
) ? "Rx" :
4180 ((ctrl
& E1000_CTRL_TFCE
) ? "Tx" : "None")));
4183 static bool e1000e_has_link(struct e1000_adapter
*adapter
)
4185 struct e1000_hw
*hw
= &adapter
->hw
;
4186 bool link_active
= 0;
4190 * get_link_status is set on LSC (link status) interrupt or
4191 * Rx sequence error interrupt. get_link_status will stay
4192 * false until the check_for_link establishes link
4193 * for copper adapters ONLY
4195 switch (hw
->phy
.media_type
) {
4196 case e1000_media_type_copper
:
4197 if (hw
->mac
.get_link_status
) {
4198 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4199 link_active
= !hw
->mac
.get_link_status
;
4204 case e1000_media_type_fiber
:
4205 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4206 link_active
= !!(er32(STATUS
) & E1000_STATUS_LU
);
4208 case e1000_media_type_internal_serdes
:
4209 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
4210 link_active
= adapter
->hw
.mac
.serdes_has_link
;
4213 case e1000_media_type_unknown
:
4217 if ((ret_val
== E1000_ERR_PHY
) && (hw
->phy
.type
== e1000_phy_igp_3
) &&
4218 (er32(CTRL
) & E1000_PHY_CTRL_GBE_DISABLE
)) {
4219 /* See e1000_kmrn_lock_loss_workaround_ich8lan() */
4220 e_info("Gigabit has been disabled, downgrading speed\n");
4226 static void e1000e_enable_receives(struct e1000_adapter
*adapter
)
4228 /* make sure the receive unit is started */
4229 if ((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
4230 (adapter
->flags
& FLAG_RX_RESTART_NOW
)) {
4231 struct e1000_hw
*hw
= &adapter
->hw
;
4232 u32 rctl
= er32(RCTL
);
4233 ew32(RCTL
, rctl
| E1000_RCTL_EN
);
4234 adapter
->flags
&= ~FLAG_RX_RESTART_NOW
;
4238 static void e1000e_check_82574_phy_workaround(struct e1000_adapter
*adapter
)
4240 struct e1000_hw
*hw
= &adapter
->hw
;
4243 * With 82574 controllers, PHY needs to be checked periodically
4244 * for hung state and reset, if two calls return true
4246 if (e1000_check_phy_82574(hw
))
4247 adapter
->phy_hang_count
++;
4249 adapter
->phy_hang_count
= 0;
4251 if (adapter
->phy_hang_count
> 1) {
4252 adapter
->phy_hang_count
= 0;
4253 schedule_work(&adapter
->reset_task
);
4258 * e1000_watchdog - Timer Call-back
4259 * @data: pointer to adapter cast into an unsigned long
4261 static void e1000_watchdog(unsigned long data
)
4263 struct e1000_adapter
*adapter
= (struct e1000_adapter
*) data
;
4265 /* Do the rest outside of interrupt context */
4266 schedule_work(&adapter
->watchdog_task
);
4268 /* TODO: make this use queue_delayed_work() */
4271 static void e1000_watchdog_task(struct work_struct
*work
)
4273 struct e1000_adapter
*adapter
= container_of(work
,
4274 struct e1000_adapter
, watchdog_task
);
4275 struct net_device
*netdev
= adapter
->netdev
;
4276 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
4277 struct e1000_phy_info
*phy
= &adapter
->hw
.phy
;
4278 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4279 struct e1000_hw
*hw
= &adapter
->hw
;
4282 if (test_bit(__E1000_DOWN
, &adapter
->state
))
4285 link
= e1000e_has_link(adapter
);
4286 if ((netif_carrier_ok(netdev
)) && link
) {
4287 /* Cancel scheduled suspend requests. */
4288 pm_runtime_resume(netdev
->dev
.parent
);
4290 e1000e_enable_receives(adapter
);
4294 if ((e1000e_enable_tx_pkt_filtering(hw
)) &&
4295 (adapter
->mng_vlan_id
!= adapter
->hw
.mng_cookie
.vlan_id
))
4296 e1000_update_mng_vlan(adapter
);
4299 if (!netif_carrier_ok(netdev
)) {
4302 /* Cancel scheduled suspend requests. */
4303 pm_runtime_resume(netdev
->dev
.parent
);
4305 /* update snapshot of PHY registers on LSC */
4306 e1000_phy_read_status(adapter
);
4307 mac
->ops
.get_link_up_info(&adapter
->hw
,
4308 &adapter
->link_speed
,
4309 &adapter
->link_duplex
);
4310 e1000_print_link_info(adapter
);
4312 * On supported PHYs, check for duplex mismatch only
4313 * if link has autonegotiated at 10/100 half
4315 if ((hw
->phy
.type
== e1000_phy_igp_3
||
4316 hw
->phy
.type
== e1000_phy_bm
) &&
4317 (hw
->mac
.autoneg
== true) &&
4318 (adapter
->link_speed
== SPEED_10
||
4319 adapter
->link_speed
== SPEED_100
) &&
4320 (adapter
->link_duplex
== HALF_DUPLEX
)) {
4323 e1e_rphy(hw
, PHY_AUTONEG_EXP
, &autoneg_exp
);
4325 if (!(autoneg_exp
& NWAY_ER_LP_NWAY_CAPS
))
4326 e_info("Autonegotiated half duplex but"
4327 " link partner cannot autoneg. "
4328 " Try forcing full duplex if "
4329 "link gets many collisions.\n");
4332 /* adjust timeout factor according to speed/duplex */
4333 adapter
->tx_timeout_factor
= 1;
4334 switch (adapter
->link_speed
) {
4337 adapter
->tx_timeout_factor
= 16;
4341 adapter
->tx_timeout_factor
= 10;
4346 * workaround: re-program speed mode bit after
4349 if ((adapter
->flags
& FLAG_TARC_SPEED_MODE_BIT
) &&
4352 tarc0
= er32(TARC(0));
4353 tarc0
&= ~SPEED_MODE_BIT
;
4354 ew32(TARC(0), tarc0
);
4358 * disable TSO for pcie and 10/100 speeds, to avoid
4359 * some hardware issues
4361 if (!(adapter
->flags
& FLAG_TSO_FORCE
)) {
4362 switch (adapter
->link_speed
) {
4365 e_info("10/100 speed: disabling TSO\n");
4366 netdev
->features
&= ~NETIF_F_TSO
;
4367 netdev
->features
&= ~NETIF_F_TSO6
;
4370 netdev
->features
|= NETIF_F_TSO
;
4371 netdev
->features
|= NETIF_F_TSO6
;
4380 * enable transmits in the hardware, need to do this
4381 * after setting TARC(0)
4384 tctl
|= E1000_TCTL_EN
;
4388 * Perform any post-link-up configuration before
4389 * reporting link up.
4391 if (phy
->ops
.cfg_on_link_up
)
4392 phy
->ops
.cfg_on_link_up(hw
);
4394 netif_carrier_on(netdev
);
4396 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4397 mod_timer(&adapter
->phy_info_timer
,
4398 round_jiffies(jiffies
+ 2 * HZ
));
4401 if (netif_carrier_ok(netdev
)) {
4402 adapter
->link_speed
= 0;
4403 adapter
->link_duplex
= 0;
4404 /* Link status message must follow this format */
4405 printk(KERN_INFO
"e1000e: %s NIC Link is Down\n",
4406 adapter
->netdev
->name
);
4407 netif_carrier_off(netdev
);
4408 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4409 mod_timer(&adapter
->phy_info_timer
,
4410 round_jiffies(jiffies
+ 2 * HZ
));
4412 if (adapter
->flags
& FLAG_RX_NEEDS_RESTART
)
4413 schedule_work(&adapter
->reset_task
);
4415 pm_schedule_suspend(netdev
->dev
.parent
,
4421 spin_lock(&adapter
->stats64_lock
);
4422 e1000e_update_stats(adapter
);
4424 mac
->tx_packet_delta
= adapter
->stats
.tpt
- adapter
->tpt_old
;
4425 adapter
->tpt_old
= adapter
->stats
.tpt
;
4426 mac
->collision_delta
= adapter
->stats
.colc
- adapter
->colc_old
;
4427 adapter
->colc_old
= adapter
->stats
.colc
;
4429 adapter
->gorc
= adapter
->stats
.gorc
- adapter
->gorc_old
;
4430 adapter
->gorc_old
= adapter
->stats
.gorc
;
4431 adapter
->gotc
= adapter
->stats
.gotc
- adapter
->gotc_old
;
4432 adapter
->gotc_old
= adapter
->stats
.gotc
;
4433 spin_unlock(&adapter
->stats64_lock
);
4435 e1000e_update_adaptive(&adapter
->hw
);
4437 if (!netif_carrier_ok(netdev
) &&
4438 (e1000_desc_unused(tx_ring
) + 1 < tx_ring
->count
)) {
4440 * We've lost link, so the controller stops DMA,
4441 * but we've got queued Tx work that's never going
4442 * to get done, so reset controller to flush Tx.
4443 * (Do the reset outside of interrupt context).
4445 schedule_work(&adapter
->reset_task
);
4446 /* return immediately since reset is imminent */
4450 /* Simple mode for Interrupt Throttle Rate (ITR) */
4451 if (adapter
->itr_setting
== 4) {
4453 * Symmetric Tx/Rx gets a reduced ITR=2000;
4454 * Total asymmetrical Tx or Rx gets ITR=8000;
4455 * everyone else is between 2000-8000.
4457 u32 goc
= (adapter
->gotc
+ adapter
->gorc
) / 10000;
4458 u32 dif
= (adapter
->gotc
> adapter
->gorc
?
4459 adapter
->gotc
- adapter
->gorc
:
4460 adapter
->gorc
- adapter
->gotc
) / 10000;
4461 u32 itr
= goc
> 0 ? (dif
* 6000 / goc
+ 2000) : 8000;
4463 ew32(ITR
, 1000000000 / (itr
* 256));
4466 /* Cause software interrupt to ensure Rx ring is cleaned */
4467 if (adapter
->msix_entries
)
4468 ew32(ICS
, adapter
->rx_ring
->ims_val
);
4470 ew32(ICS
, E1000_ICS_RXDMT0
);
4472 /* flush pending descriptors to memory before detecting Tx hang */
4473 e1000e_flush_descriptors(adapter
);
4475 /* Force detection of hung controller every watchdog period */
4476 adapter
->detect_tx_hung
= 1;
4479 * With 82571 controllers, LAA may be overwritten due to controller
4480 * reset from the other port. Set the appropriate LAA in RAR[0]
4482 if (e1000e_get_laa_state_82571(hw
))
4483 e1000e_rar_set(hw
, adapter
->hw
.mac
.addr
, 0);
4485 if (adapter
->flags2
& FLAG2_CHECK_PHY_HANG
)
4486 e1000e_check_82574_phy_workaround(adapter
);
4488 /* Reset the timer */
4489 if (!test_bit(__E1000_DOWN
, &adapter
->state
))
4490 mod_timer(&adapter
->watchdog_timer
,
4491 round_jiffies(jiffies
+ 2 * HZ
));
4494 #define E1000_TX_FLAGS_CSUM 0x00000001
4495 #define E1000_TX_FLAGS_VLAN 0x00000002
4496 #define E1000_TX_FLAGS_TSO 0x00000004
4497 #define E1000_TX_FLAGS_IPV4 0x00000008
4498 #define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
4499 #define E1000_TX_FLAGS_VLAN_SHIFT 16
4501 static int e1000_tso(struct e1000_adapter
*adapter
,
4502 struct sk_buff
*skb
)
4504 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4505 struct e1000_context_desc
*context_desc
;
4506 struct e1000_buffer
*buffer_info
;
4509 u16 ipcse
= 0, tucse
, mss
;
4510 u8 ipcss
, ipcso
, tucss
, tucso
, hdr_len
;
4512 if (!skb_is_gso(skb
))
4515 if (skb_header_cloned(skb
)) {
4516 int err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
4522 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4523 mss
= skb_shinfo(skb
)->gso_size
;
4524 if (skb
->protocol
== htons(ETH_P_IP
)) {
4525 struct iphdr
*iph
= ip_hdr(skb
);
4528 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
, iph
->daddr
,
4530 cmd_length
= E1000_TXD_CMD_IP
;
4531 ipcse
= skb_transport_offset(skb
) - 1;
4532 } else if (skb_is_gso_v6(skb
)) {
4533 ipv6_hdr(skb
)->payload_len
= 0;
4534 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
4535 &ipv6_hdr(skb
)->daddr
,
4539 ipcss
= skb_network_offset(skb
);
4540 ipcso
= (void *)&(ip_hdr(skb
)->check
) - (void *)skb
->data
;
4541 tucss
= skb_transport_offset(skb
);
4542 tucso
= (void *)&(tcp_hdr(skb
)->check
) - (void *)skb
->data
;
4545 cmd_length
|= (E1000_TXD_CMD_DEXT
| E1000_TXD_CMD_TSE
|
4546 E1000_TXD_CMD_TCP
| (skb
->len
- (hdr_len
)));
4548 i
= tx_ring
->next_to_use
;
4549 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4550 buffer_info
= &tx_ring
->buffer_info
[i
];
4552 context_desc
->lower_setup
.ip_fields
.ipcss
= ipcss
;
4553 context_desc
->lower_setup
.ip_fields
.ipcso
= ipcso
;
4554 context_desc
->lower_setup
.ip_fields
.ipcse
= cpu_to_le16(ipcse
);
4555 context_desc
->upper_setup
.tcp_fields
.tucss
= tucss
;
4556 context_desc
->upper_setup
.tcp_fields
.tucso
= tucso
;
4557 context_desc
->upper_setup
.tcp_fields
.tucse
= cpu_to_le16(tucse
);
4558 context_desc
->tcp_seg_setup
.fields
.mss
= cpu_to_le16(mss
);
4559 context_desc
->tcp_seg_setup
.fields
.hdr_len
= hdr_len
;
4560 context_desc
->cmd_and_length
= cpu_to_le32(cmd_length
);
4562 buffer_info
->time_stamp
= jiffies
;
4563 buffer_info
->next_to_watch
= i
;
4566 if (i
== tx_ring
->count
)
4568 tx_ring
->next_to_use
= i
;
4573 static bool e1000_tx_csum(struct e1000_adapter
*adapter
, struct sk_buff
*skb
)
4575 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4576 struct e1000_context_desc
*context_desc
;
4577 struct e1000_buffer
*buffer_info
;
4580 u32 cmd_len
= E1000_TXD_CMD_DEXT
;
4583 if (skb
->ip_summed
!= CHECKSUM_PARTIAL
)
4586 if (skb
->protocol
== cpu_to_be16(ETH_P_8021Q
))
4587 protocol
= vlan_eth_hdr(skb
)->h_vlan_encapsulated_proto
;
4589 protocol
= skb
->protocol
;
4592 case cpu_to_be16(ETH_P_IP
):
4593 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
4594 cmd_len
|= E1000_TXD_CMD_TCP
;
4596 case cpu_to_be16(ETH_P_IPV6
):
4597 /* XXX not handling all IPV6 headers */
4598 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
4599 cmd_len
|= E1000_TXD_CMD_TCP
;
4602 if (unlikely(net_ratelimit()))
4603 e_warn("checksum_partial proto=%x!\n",
4604 be16_to_cpu(protocol
));
4608 css
= skb_checksum_start_offset(skb
);
4610 i
= tx_ring
->next_to_use
;
4611 buffer_info
= &tx_ring
->buffer_info
[i
];
4612 context_desc
= E1000_CONTEXT_DESC(*tx_ring
, i
);
4614 context_desc
->lower_setup
.ip_config
= 0;
4615 context_desc
->upper_setup
.tcp_fields
.tucss
= css
;
4616 context_desc
->upper_setup
.tcp_fields
.tucso
=
4617 css
+ skb
->csum_offset
;
4618 context_desc
->upper_setup
.tcp_fields
.tucse
= 0;
4619 context_desc
->tcp_seg_setup
.data
= 0;
4620 context_desc
->cmd_and_length
= cpu_to_le32(cmd_len
);
4622 buffer_info
->time_stamp
= jiffies
;
4623 buffer_info
->next_to_watch
= i
;
4626 if (i
== tx_ring
->count
)
4628 tx_ring
->next_to_use
= i
;
4633 #define E1000_MAX_PER_TXD 8192
4634 #define E1000_MAX_TXD_PWR 12
4636 static int e1000_tx_map(struct e1000_adapter
*adapter
,
4637 struct sk_buff
*skb
, unsigned int first
,
4638 unsigned int max_per_txd
, unsigned int nr_frags
,
4641 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4642 struct pci_dev
*pdev
= adapter
->pdev
;
4643 struct e1000_buffer
*buffer_info
;
4644 unsigned int len
= skb_headlen(skb
);
4645 unsigned int offset
= 0, size
, count
= 0, i
;
4646 unsigned int f
, bytecount
, segs
;
4648 i
= tx_ring
->next_to_use
;
4651 buffer_info
= &tx_ring
->buffer_info
[i
];
4652 size
= min(len
, max_per_txd
);
4654 buffer_info
->length
= size
;
4655 buffer_info
->time_stamp
= jiffies
;
4656 buffer_info
->next_to_watch
= i
;
4657 buffer_info
->dma
= dma_map_single(&pdev
->dev
,
4659 size
, DMA_TO_DEVICE
);
4660 buffer_info
->mapped_as_page
= false;
4661 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4670 if (i
== tx_ring
->count
)
4675 for (f
= 0; f
< nr_frags
; f
++) {
4676 const struct skb_frag_struct
*frag
;
4678 frag
= &skb_shinfo(skb
)->frags
[f
];
4679 len
= skb_frag_size(frag
);
4684 if (i
== tx_ring
->count
)
4687 buffer_info
= &tx_ring
->buffer_info
[i
];
4688 size
= min(len
, max_per_txd
);
4690 buffer_info
->length
= size
;
4691 buffer_info
->time_stamp
= jiffies
;
4692 buffer_info
->next_to_watch
= i
;
4693 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
,
4694 offset
, size
, DMA_TO_DEVICE
);
4695 buffer_info
->mapped_as_page
= true;
4696 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
4705 segs
= skb_shinfo(skb
)->gso_segs
? : 1;
4706 /* multiply data chunks by size of headers */
4707 bytecount
= ((segs
- 1) * skb_headlen(skb
)) + skb
->len
;
4709 tx_ring
->buffer_info
[i
].skb
= skb
;
4710 tx_ring
->buffer_info
[i
].segs
= segs
;
4711 tx_ring
->buffer_info
[i
].bytecount
= bytecount
;
4712 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
4717 dev_err(&pdev
->dev
, "Tx DMA map failed\n");
4718 buffer_info
->dma
= 0;
4724 i
+= tx_ring
->count
;
4726 buffer_info
= &tx_ring
->buffer_info
[i
];
4727 e1000_put_txbuf(adapter
, buffer_info
);
4733 static void e1000_tx_queue(struct e1000_adapter
*adapter
,
4734 int tx_flags
, int count
)
4736 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4737 struct e1000_tx_desc
*tx_desc
= NULL
;
4738 struct e1000_buffer
*buffer_info
;
4739 u32 txd_upper
= 0, txd_lower
= E1000_TXD_CMD_IFCS
;
4742 if (tx_flags
& E1000_TX_FLAGS_TSO
) {
4743 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
|
4745 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4747 if (tx_flags
& E1000_TX_FLAGS_IPV4
)
4748 txd_upper
|= E1000_TXD_POPTS_IXSM
<< 8;
4751 if (tx_flags
& E1000_TX_FLAGS_CSUM
) {
4752 txd_lower
|= E1000_TXD_CMD_DEXT
| E1000_TXD_DTYP_D
;
4753 txd_upper
|= E1000_TXD_POPTS_TXSM
<< 8;
4756 if (tx_flags
& E1000_TX_FLAGS_VLAN
) {
4757 txd_lower
|= E1000_TXD_CMD_VLE
;
4758 txd_upper
|= (tx_flags
& E1000_TX_FLAGS_VLAN_MASK
);
4761 i
= tx_ring
->next_to_use
;
4764 buffer_info
= &tx_ring
->buffer_info
[i
];
4765 tx_desc
= E1000_TX_DESC(*tx_ring
, i
);
4766 tx_desc
->buffer_addr
= cpu_to_le64(buffer_info
->dma
);
4767 tx_desc
->lower
.data
=
4768 cpu_to_le32(txd_lower
| buffer_info
->length
);
4769 tx_desc
->upper
.data
= cpu_to_le32(txd_upper
);
4772 if (i
== tx_ring
->count
)
4774 } while (--count
> 0);
4776 tx_desc
->lower
.data
|= cpu_to_le32(adapter
->txd_cmd
);
4779 * Force memory writes to complete before letting h/w
4780 * know there are new descriptors to fetch. (Only
4781 * applicable for weak-ordered memory model archs,
4786 tx_ring
->next_to_use
= i
;
4788 if (adapter
->flags2
& FLAG2_PCIM2PCI_ARBITER_WA
)
4789 e1000e_update_tdt_wa(adapter
, i
);
4791 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
4794 * we need this if more than one processor can write to our tail
4795 * at a time, it synchronizes IO on IA64/Altix systems
4800 #define MINIMUM_DHCP_PACKET_SIZE 282
4801 static int e1000_transfer_dhcp_info(struct e1000_adapter
*adapter
,
4802 struct sk_buff
*skb
)
4804 struct e1000_hw
*hw
= &adapter
->hw
;
4807 if (vlan_tx_tag_present(skb
)) {
4808 if (!((vlan_tx_tag_get(skb
) == adapter
->hw
.mng_cookie
.vlan_id
) &&
4809 (adapter
->hw
.mng_cookie
.status
&
4810 E1000_MNG_DHCP_COOKIE_STATUS_VLAN
)))
4814 if (skb
->len
<= MINIMUM_DHCP_PACKET_SIZE
)
4817 if (((struct ethhdr
*) skb
->data
)->h_proto
!= htons(ETH_P_IP
))
4821 const struct iphdr
*ip
= (struct iphdr
*)((u8
*)skb
->data
+14);
4824 if (ip
->protocol
!= IPPROTO_UDP
)
4827 udp
= (struct udphdr
*)((u8
*)ip
+ (ip
->ihl
<< 2));
4828 if (ntohs(udp
->dest
) != 67)
4831 offset
= (u8
*)udp
+ 8 - skb
->data
;
4832 length
= skb
->len
- offset
;
4833 return e1000e_mng_write_dhcp_info(hw
, (u8
*)udp
+ 8, length
);
4839 static int __e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4841 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4843 netif_stop_queue(netdev
);
4845 * Herbert's original patch had:
4846 * smp_mb__after_netif_stop_queue();
4847 * but since that doesn't exist yet, just open code it.
4852 * We need to check again in a case another CPU has just
4853 * made room available.
4855 if (e1000_desc_unused(adapter
->tx_ring
) < size
)
4859 netif_start_queue(netdev
);
4860 ++adapter
->restart_queue
;
4864 static int e1000_maybe_stop_tx(struct net_device
*netdev
, int size
)
4866 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4868 if (e1000_desc_unused(adapter
->tx_ring
) >= size
)
4870 return __e1000_maybe_stop_tx(netdev
, size
);
4873 #define TXD_USE_COUNT(S, X) (((S) >> (X)) + 1 )
4874 static netdev_tx_t
e1000_xmit_frame(struct sk_buff
*skb
,
4875 struct net_device
*netdev
)
4877 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
4878 struct e1000_ring
*tx_ring
= adapter
->tx_ring
;
4880 unsigned int max_per_txd
= E1000_MAX_PER_TXD
;
4881 unsigned int max_txd_pwr
= E1000_MAX_TXD_PWR
;
4882 unsigned int tx_flags
= 0;
4883 unsigned int len
= skb_headlen(skb
);
4884 unsigned int nr_frags
;
4890 if (test_bit(__E1000_DOWN
, &adapter
->state
)) {
4891 dev_kfree_skb_any(skb
);
4892 return NETDEV_TX_OK
;
4895 if (skb
->len
<= 0) {
4896 dev_kfree_skb_any(skb
);
4897 return NETDEV_TX_OK
;
4900 mss
= skb_shinfo(skb
)->gso_size
;
4902 * The controller does a simple calculation to
4903 * make sure there is enough room in the FIFO before
4904 * initiating the DMA for each buffer. The calc is:
4905 * 4 = ceil(buffer len/mss). To make sure we don't
4906 * overrun the FIFO, adjust the max buffer len if mss
4911 max_per_txd
= min(mss
<< 2, max_per_txd
);
4912 max_txd_pwr
= fls(max_per_txd
) - 1;
4915 * TSO Workaround for 82571/2/3 Controllers -- if skb->data
4916 * points to just header, pull a few bytes of payload from
4917 * frags into skb->data
4919 hdr_len
= skb_transport_offset(skb
) + tcp_hdrlen(skb
);
4921 * we do this workaround for ES2LAN, but it is un-necessary,
4922 * avoiding it could save a lot of cycles
4924 if (skb
->data_len
&& (hdr_len
== len
)) {
4925 unsigned int pull_size
;
4927 pull_size
= min((unsigned int)4, skb
->data_len
);
4928 if (!__pskb_pull_tail(skb
, pull_size
)) {
4929 e_err("__pskb_pull_tail failed.\n");
4930 dev_kfree_skb_any(skb
);
4931 return NETDEV_TX_OK
;
4933 len
= skb_headlen(skb
);
4937 /* reserve a descriptor for the offload context */
4938 if ((mss
) || (skb
->ip_summed
== CHECKSUM_PARTIAL
))
4942 count
+= TXD_USE_COUNT(len
, max_txd_pwr
);
4944 nr_frags
= skb_shinfo(skb
)->nr_frags
;
4945 for (f
= 0; f
< nr_frags
; f
++)
4946 count
+= TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb
)->frags
[f
]),
4949 if (adapter
->hw
.mac
.tx_pkt_filtering
)
4950 e1000_transfer_dhcp_info(adapter
, skb
);
4953 * need: count + 2 desc gap to keep tail from touching
4954 * head, otherwise try next time
4956 if (e1000_maybe_stop_tx(netdev
, count
+ 2))
4957 return NETDEV_TX_BUSY
;
4959 if (vlan_tx_tag_present(skb
)) {
4960 tx_flags
|= E1000_TX_FLAGS_VLAN
;
4961 tx_flags
|= (vlan_tx_tag_get(skb
) << E1000_TX_FLAGS_VLAN_SHIFT
);
4964 first
= tx_ring
->next_to_use
;
4966 tso
= e1000_tso(adapter
, skb
);
4968 dev_kfree_skb_any(skb
);
4969 return NETDEV_TX_OK
;
4973 tx_flags
|= E1000_TX_FLAGS_TSO
;
4974 else if (e1000_tx_csum(adapter
, skb
))
4975 tx_flags
|= E1000_TX_FLAGS_CSUM
;
4978 * Old method was to assume IPv4 packet by default if TSO was enabled.
4979 * 82571 hardware supports TSO capabilities for IPv6 as well...
4980 * no longer assume, we must.
4982 if (skb
->protocol
== htons(ETH_P_IP
))
4983 tx_flags
|= E1000_TX_FLAGS_IPV4
;
4985 /* if count is 0 then mapping error has occurred */
4986 count
= e1000_tx_map(adapter
, skb
, first
, max_per_txd
, nr_frags
, mss
);
4988 e1000_tx_queue(adapter
, tx_flags
, count
);
4989 /* Make sure there is space in the ring for the next send. */
4990 e1000_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 2);
4993 dev_kfree_skb_any(skb
);
4994 tx_ring
->buffer_info
[first
].time_stamp
= 0;
4995 tx_ring
->next_to_use
= first
;
4998 return NETDEV_TX_OK
;
5002 * e1000_tx_timeout - Respond to a Tx Hang
5003 * @netdev: network interface device structure
5005 static void e1000_tx_timeout(struct net_device
*netdev
)
5007 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5009 /* Do the reset outside of interrupt context */
5010 adapter
->tx_timeout_count
++;
5011 schedule_work(&adapter
->reset_task
);
5014 static void e1000_reset_task(struct work_struct
*work
)
5016 struct e1000_adapter
*adapter
;
5017 adapter
= container_of(work
, struct e1000_adapter
, reset_task
);
5019 /* don't run the task if already down */
5020 if (test_bit(__E1000_DOWN
, &adapter
->state
))
5023 if (!((adapter
->flags
& FLAG_RX_NEEDS_RESTART
) &&
5024 (adapter
->flags
& FLAG_RX_RESTART_NOW
))) {
5025 e1000e_dump(adapter
);
5026 e_err("Reset adapter\n");
5028 e1000e_reinit_locked(adapter
);
5032 * e1000_get_stats64 - Get System Network Statistics
5033 * @netdev: network interface device structure
5034 * @stats: rtnl_link_stats64 pointer
5036 * Returns the address of the device statistics structure.
5038 struct rtnl_link_stats64
*e1000e_get_stats64(struct net_device
*netdev
,
5039 struct rtnl_link_stats64
*stats
)
5041 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5043 memset(stats
, 0, sizeof(struct rtnl_link_stats64
));
5044 spin_lock(&adapter
->stats64_lock
);
5045 e1000e_update_stats(adapter
);
5046 /* Fill out the OS statistics structure */
5047 stats
->rx_bytes
= adapter
->stats
.gorc
;
5048 stats
->rx_packets
= adapter
->stats
.gprc
;
5049 stats
->tx_bytes
= adapter
->stats
.gotc
;
5050 stats
->tx_packets
= adapter
->stats
.gptc
;
5051 stats
->multicast
= adapter
->stats
.mprc
;
5052 stats
->collisions
= adapter
->stats
.colc
;
5057 * RLEC on some newer hardware can be incorrect so build
5058 * our own version based on RUC and ROC
5060 stats
->rx_errors
= adapter
->stats
.rxerrc
+
5061 adapter
->stats
.crcerrs
+ adapter
->stats
.algnerrc
+
5062 adapter
->stats
.ruc
+ adapter
->stats
.roc
+
5063 adapter
->stats
.cexterr
;
5064 stats
->rx_length_errors
= adapter
->stats
.ruc
+
5066 stats
->rx_crc_errors
= adapter
->stats
.crcerrs
;
5067 stats
->rx_frame_errors
= adapter
->stats
.algnerrc
;
5068 stats
->rx_missed_errors
= adapter
->stats
.mpc
;
5071 stats
->tx_errors
= adapter
->stats
.ecol
+
5072 adapter
->stats
.latecol
;
5073 stats
->tx_aborted_errors
= adapter
->stats
.ecol
;
5074 stats
->tx_window_errors
= adapter
->stats
.latecol
;
5075 stats
->tx_carrier_errors
= adapter
->stats
.tncrs
;
5077 /* Tx Dropped needs to be maintained elsewhere */
5079 spin_unlock(&adapter
->stats64_lock
);
5084 * e1000_change_mtu - Change the Maximum Transfer Unit
5085 * @netdev: network interface device structure
5086 * @new_mtu: new value for maximum frame size
5088 * Returns 0 on success, negative on failure
5090 static int e1000_change_mtu(struct net_device
*netdev
, int new_mtu
)
5092 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5093 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
5095 /* Jumbo frame support */
5096 if ((max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
) &&
5097 !(adapter
->flags
& FLAG_HAS_JUMBO_FRAMES
)) {
5098 e_err("Jumbo Frames not supported.\n");
5102 /* Supported frame sizes */
5103 if ((new_mtu
< ETH_ZLEN
+ ETH_FCS_LEN
+ VLAN_HLEN
) ||
5104 (max_frame
> adapter
->max_hw_frame_size
)) {
5105 e_err("Unsupported MTU setting\n");
5109 /* Jumbo frame workaround on 82579 requires CRC be stripped */
5110 if ((adapter
->hw
.mac
.type
== e1000_pch2lan
) &&
5111 !(adapter
->flags2
& FLAG2_CRC_STRIPPING
) &&
5112 (new_mtu
> ETH_DATA_LEN
)) {
5113 e_err("Jumbo Frames not supported on 82579 when CRC "
5114 "stripping is disabled.\n");
5118 /* 82573 Errata 17 */
5119 if (((adapter
->hw
.mac
.type
== e1000_82573
) ||
5120 (adapter
->hw
.mac
.type
== e1000_82574
)) &&
5121 (max_frame
> ETH_FRAME_LEN
+ ETH_FCS_LEN
)) {
5122 adapter
->flags2
|= FLAG2_DISABLE_ASPM_L1
;
5123 e1000e_disable_aspm(adapter
->pdev
, PCIE_LINK_STATE_L1
);
5126 while (test_and_set_bit(__E1000_RESETTING
, &adapter
->state
))
5127 usleep_range(1000, 2000);
5128 /* e1000e_down -> e1000e_reset dependent on max_frame_size & mtu */
5129 adapter
->max_frame_size
= max_frame
;
5130 e_info("changing MTU from %d to %d\n", netdev
->mtu
, new_mtu
);
5131 netdev
->mtu
= new_mtu
;
5132 if (netif_running(netdev
))
5133 e1000e_down(adapter
);
5136 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
5137 * means we reserve 2 more, this pushes us to allocate from the next
5139 * i.e. RXBUFFER_2048 --> size-4096 slab
5140 * However with the new *_jumbo_rx* routines, jumbo receives will use
5144 if (max_frame
<= 2048)
5145 adapter
->rx_buffer_len
= 2048;
5147 adapter
->rx_buffer_len
= 4096;
5149 /* adjust allocation if LPE protects us, and we aren't using SBP */
5150 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
5151 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
5152 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
5155 if (netif_running(netdev
))
5158 e1000e_reset(adapter
);
5160 clear_bit(__E1000_RESETTING
, &adapter
->state
);
5165 static int e1000_mii_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
,
5168 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5169 struct mii_ioctl_data
*data
= if_mii(ifr
);
5171 if (adapter
->hw
.phy
.media_type
!= e1000_media_type_copper
)
5176 data
->phy_id
= adapter
->hw
.phy
.addr
;
5179 e1000_phy_read_status(adapter
);
5181 switch (data
->reg_num
& 0x1F) {
5183 data
->val_out
= adapter
->phy_regs
.bmcr
;
5186 data
->val_out
= adapter
->phy_regs
.bmsr
;
5189 data
->val_out
= (adapter
->hw
.phy
.id
>> 16);
5192 data
->val_out
= (adapter
->hw
.phy
.id
& 0xFFFF);
5195 data
->val_out
= adapter
->phy_regs
.advertise
;
5198 data
->val_out
= adapter
->phy_regs
.lpa
;
5201 data
->val_out
= adapter
->phy_regs
.expansion
;
5204 data
->val_out
= adapter
->phy_regs
.ctrl1000
;
5207 data
->val_out
= adapter
->phy_regs
.stat1000
;
5210 data
->val_out
= adapter
->phy_regs
.estatus
;
5223 static int e1000_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
5229 return e1000_mii_ioctl(netdev
, ifr
, cmd
);
5235 static int e1000_init_phy_wakeup(struct e1000_adapter
*adapter
, u32 wufc
)
5237 struct e1000_hw
*hw
= &adapter
->hw
;
5239 u16 phy_reg
, wuc_enable
;
5242 /* copy MAC RARs to PHY RARs */
5243 e1000_copy_rx_addrs_to_phy_ich8lan(hw
);
5245 retval
= hw
->phy
.ops
.acquire(hw
);
5247 e_err("Could not acquire PHY\n");
5251 /* Enable access to wakeup registers on and set page to BM_WUC_PAGE */
5252 retval
= e1000_enable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
5256 /* copy MAC MTA to PHY MTA - only needed for pchlan */
5257 for (i
= 0; i
< adapter
->hw
.mac
.mta_reg_count
; i
++) {
5258 mac_reg
= E1000_READ_REG_ARRAY(hw
, E1000_MTA
, i
);
5259 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
),
5260 (u16
)(mac_reg
& 0xFFFF));
5261 hw
->phy
.ops
.write_reg_page(hw
, BM_MTA(i
) + 1,
5262 (u16
)((mac_reg
>> 16) & 0xFFFF));
5265 /* configure PHY Rx Control register */
5266 hw
->phy
.ops
.read_reg_page(&adapter
->hw
, BM_RCTL
, &phy_reg
);
5267 mac_reg
= er32(RCTL
);
5268 if (mac_reg
& E1000_RCTL_UPE
)
5269 phy_reg
|= BM_RCTL_UPE
;
5270 if (mac_reg
& E1000_RCTL_MPE
)
5271 phy_reg
|= BM_RCTL_MPE
;
5272 phy_reg
&= ~(BM_RCTL_MO_MASK
);
5273 if (mac_reg
& E1000_RCTL_MO_3
)
5274 phy_reg
|= (((mac_reg
& E1000_RCTL_MO_3
) >> E1000_RCTL_MO_SHIFT
)
5275 << BM_RCTL_MO_SHIFT
);
5276 if (mac_reg
& E1000_RCTL_BAM
)
5277 phy_reg
|= BM_RCTL_BAM
;
5278 if (mac_reg
& E1000_RCTL_PMCF
)
5279 phy_reg
|= BM_RCTL_PMCF
;
5280 mac_reg
= er32(CTRL
);
5281 if (mac_reg
& E1000_CTRL_RFCE
)
5282 phy_reg
|= BM_RCTL_RFCE
;
5283 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_RCTL
, phy_reg
);
5285 /* enable PHY wakeup in MAC register */
5287 ew32(WUC
, E1000_WUC_PHY_WAKE
| E1000_WUC_PME_EN
);
5289 /* configure and enable PHY wakeup in PHY registers */
5290 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUFC
, wufc
);
5291 hw
->phy
.ops
.write_reg_page(&adapter
->hw
, BM_WUC
, E1000_WUC_PME_EN
);
5293 /* activate PHY wakeup */
5294 wuc_enable
|= BM_WUC_ENABLE_BIT
| BM_WUC_HOST_WU_BIT
;
5295 retval
= e1000_disable_phy_wakeup_reg_access_bm(hw
, &wuc_enable
);
5297 e_err("Could not set PHY Host Wakeup bit\n");
5299 hw
->phy
.ops
.release(hw
);
5304 static int __e1000_shutdown(struct pci_dev
*pdev
, bool *enable_wake
,
5307 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5308 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5309 struct e1000_hw
*hw
= &adapter
->hw
;
5310 u32 ctrl
, ctrl_ext
, rctl
, status
;
5311 /* Runtime suspend should only enable wakeup for link changes */
5312 u32 wufc
= runtime
? E1000_WUFC_LNKC
: adapter
->wol
;
5315 netif_device_detach(netdev
);
5317 if (netif_running(netdev
)) {
5318 WARN_ON(test_bit(__E1000_RESETTING
, &adapter
->state
));
5319 e1000e_down(adapter
);
5320 e1000_free_irq(adapter
);
5322 e1000e_reset_interrupt_capability(adapter
);
5324 retval
= pci_save_state(pdev
);
5328 status
= er32(STATUS
);
5329 if (status
& E1000_STATUS_LU
)
5330 wufc
&= ~E1000_WUFC_LNKC
;
5333 e1000_setup_rctl(adapter
);
5334 e1000_set_multi(netdev
);
5336 /* turn on all-multi mode if wake on multicast is enabled */
5337 if (wufc
& E1000_WUFC_MC
) {
5339 rctl
|= E1000_RCTL_MPE
;
5344 /* advertise wake from D3Cold */
5345 #define E1000_CTRL_ADVD3WUC 0x00100000
5346 /* phy power management enable */
5347 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5348 ctrl
|= E1000_CTRL_ADVD3WUC
;
5349 if (!(adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
))
5350 ctrl
|= E1000_CTRL_EN_PHY_PWR_MGMT
;
5353 if (adapter
->hw
.phy
.media_type
== e1000_media_type_fiber
||
5354 adapter
->hw
.phy
.media_type
==
5355 e1000_media_type_internal_serdes
) {
5356 /* keep the laser running in D3 */
5357 ctrl_ext
= er32(CTRL_EXT
);
5358 ctrl_ext
|= E1000_CTRL_EXT_SDP3_DATA
;
5359 ew32(CTRL_EXT
, ctrl_ext
);
5362 if (adapter
->flags
& FLAG_IS_ICH
)
5363 e1000_suspend_workarounds_ich8lan(&adapter
->hw
);
5365 /* Allow time for pending master requests to run */
5366 e1000e_disable_pcie_master(&adapter
->hw
);
5368 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5369 /* enable wakeup by the PHY */
5370 retval
= e1000_init_phy_wakeup(adapter
, wufc
);
5374 /* enable wakeup by the MAC */
5376 ew32(WUC
, E1000_WUC_PME_EN
);
5383 *enable_wake
= !!wufc
;
5385 /* make sure adapter isn't asleep if manageability is enabled */
5386 if ((adapter
->flags
& FLAG_MNG_PT_ENABLED
) ||
5387 (hw
->mac
.ops
.check_mng_mode(hw
)))
5388 *enable_wake
= true;
5390 if (adapter
->hw
.phy
.type
== e1000_phy_igp_3
)
5391 e1000e_igp3_phy_powerdown_workaround_ich8lan(&adapter
->hw
);
5394 * Release control of h/w to f/w. If f/w is AMT enabled, this
5395 * would have already happened in close and is redundant.
5397 e1000e_release_hw_control(adapter
);
5399 pci_disable_device(pdev
);
5404 static void e1000_power_off(struct pci_dev
*pdev
, bool sleep
, bool wake
)
5406 if (sleep
&& wake
) {
5407 pci_prepare_to_sleep(pdev
);
5411 pci_wake_from_d3(pdev
, wake
);
5412 pci_set_power_state(pdev
, PCI_D3hot
);
5415 static void e1000_complete_shutdown(struct pci_dev
*pdev
, bool sleep
,
5418 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5419 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5422 * The pci-e switch on some quad port adapters will report a
5423 * correctable error when the MAC transitions from D0 to D3. To
5424 * prevent this we need to mask off the correctable errors on the
5425 * downstream port of the pci-e switch.
5427 if (adapter
->flags
& FLAG_IS_QUAD_PORT
) {
5428 struct pci_dev
*us_dev
= pdev
->bus
->self
;
5429 int pos
= pci_pcie_cap(us_dev
);
5432 pci_read_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, &devctl
);
5433 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
,
5434 (devctl
& ~PCI_EXP_DEVCTL_CERE
));
5436 e1000_power_off(pdev
, sleep
, wake
);
5438 pci_write_config_word(us_dev
, pos
+ PCI_EXP_DEVCTL
, devctl
);
5440 e1000_power_off(pdev
, sleep
, wake
);
5444 #ifdef CONFIG_PCIEASPM
5445 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5447 pci_disable_link_state_locked(pdev
, state
);
5450 static void __e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5456 * Both device and parent should have the same ASPM setting.
5457 * Disable ASPM in downstream component first and then upstream.
5459 pos
= pci_pcie_cap(pdev
);
5460 pci_read_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5462 pci_write_config_word(pdev
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5464 if (!pdev
->bus
->self
)
5467 pos
= pci_pcie_cap(pdev
->bus
->self
);
5468 pci_read_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, ®16
);
5470 pci_write_config_word(pdev
->bus
->self
, pos
+ PCI_EXP_LNKCTL
, reg16
);
5473 static void e1000e_disable_aspm(struct pci_dev
*pdev
, u16 state
)
5475 dev_info(&pdev
->dev
, "Disabling ASPM %s %s\n",
5476 (state
& PCIE_LINK_STATE_L0S
) ? "L0s" : "",
5477 (state
& PCIE_LINK_STATE_L1
) ? "L1" : "");
5479 __e1000e_disable_aspm(pdev
, state
);
5483 static bool e1000e_pm_ready(struct e1000_adapter
*adapter
)
5485 return !!adapter
->tx_ring
->buffer_info
;
5488 static int __e1000_resume(struct pci_dev
*pdev
)
5490 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5491 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5492 struct e1000_hw
*hw
= &adapter
->hw
;
5493 u16 aspm_disable_flag
= 0;
5496 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
5497 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
5498 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5499 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
5500 if (aspm_disable_flag
)
5501 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
5503 pci_set_power_state(pdev
, PCI_D0
);
5504 pci_restore_state(pdev
);
5505 pci_save_state(pdev
);
5507 e1000e_set_interrupt_capability(adapter
);
5508 if (netif_running(netdev
)) {
5509 err
= e1000_request_irq(adapter
);
5514 if (hw
->mac
.type
== e1000_pch2lan
)
5515 e1000_resume_workarounds_pchlan(&adapter
->hw
);
5517 e1000e_power_up_phy(adapter
);
5519 /* report the system wakeup cause from S3/S4 */
5520 if (adapter
->flags2
& FLAG2_HAS_PHY_WAKEUP
) {
5523 e1e_rphy(&adapter
->hw
, BM_WUS
, &phy_data
);
5525 e_info("PHY Wakeup cause - %s\n",
5526 phy_data
& E1000_WUS_EX
? "Unicast Packet" :
5527 phy_data
& E1000_WUS_MC
? "Multicast Packet" :
5528 phy_data
& E1000_WUS_BC
? "Broadcast Packet" :
5529 phy_data
& E1000_WUS_MAG
? "Magic Packet" :
5530 phy_data
& E1000_WUS_LNKC
? "Link Status "
5531 " Change" : "other");
5533 e1e_wphy(&adapter
->hw
, BM_WUS
, ~0);
5535 u32 wus
= er32(WUS
);
5537 e_info("MAC Wakeup cause - %s\n",
5538 wus
& E1000_WUS_EX
? "Unicast Packet" :
5539 wus
& E1000_WUS_MC
? "Multicast Packet" :
5540 wus
& E1000_WUS_BC
? "Broadcast Packet" :
5541 wus
& E1000_WUS_MAG
? "Magic Packet" :
5542 wus
& E1000_WUS_LNKC
? "Link Status Change" :
5548 e1000e_reset(adapter
);
5550 e1000_init_manageability_pt(adapter
);
5552 if (netif_running(netdev
))
5555 netif_device_attach(netdev
);
5558 * If the controller has AMT, do not set DRV_LOAD until the interface
5559 * is up. For all other cases, let the f/w know that the h/w is now
5560 * under the control of the driver.
5562 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5563 e1000e_get_hw_control(adapter
);
5568 #ifdef CONFIG_PM_SLEEP
5569 static int e1000_suspend(struct device
*dev
)
5571 struct pci_dev
*pdev
= to_pci_dev(dev
);
5575 retval
= __e1000_shutdown(pdev
, &wake
, false);
5577 e1000_complete_shutdown(pdev
, true, wake
);
5582 static int e1000_resume(struct device
*dev
)
5584 struct pci_dev
*pdev
= to_pci_dev(dev
);
5585 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5586 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5588 if (e1000e_pm_ready(adapter
))
5589 adapter
->idle_check
= true;
5591 return __e1000_resume(pdev
);
5593 #endif /* CONFIG_PM_SLEEP */
5595 #ifdef CONFIG_PM_RUNTIME
5596 static int e1000_runtime_suspend(struct device
*dev
)
5598 struct pci_dev
*pdev
= to_pci_dev(dev
);
5599 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5600 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5602 if (e1000e_pm_ready(adapter
)) {
5605 __e1000_shutdown(pdev
, &wake
, true);
5611 static int e1000_idle(struct device
*dev
)
5613 struct pci_dev
*pdev
= to_pci_dev(dev
);
5614 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5615 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5617 if (!e1000e_pm_ready(adapter
))
5620 if (adapter
->idle_check
) {
5621 adapter
->idle_check
= false;
5622 if (!e1000e_has_link(adapter
))
5623 pm_schedule_suspend(dev
, MSEC_PER_SEC
);
5629 static int e1000_runtime_resume(struct device
*dev
)
5631 struct pci_dev
*pdev
= to_pci_dev(dev
);
5632 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5633 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5635 if (!e1000e_pm_ready(adapter
))
5638 adapter
->idle_check
= !dev
->power
.runtime_auto
;
5639 return __e1000_resume(pdev
);
5641 #endif /* CONFIG_PM_RUNTIME */
5642 #endif /* CONFIG_PM */
5644 static void e1000_shutdown(struct pci_dev
*pdev
)
5648 __e1000_shutdown(pdev
, &wake
, false);
5650 if (system_state
== SYSTEM_POWER_OFF
)
5651 e1000_complete_shutdown(pdev
, false, wake
);
5654 #ifdef CONFIG_NET_POLL_CONTROLLER
5656 static irqreturn_t
e1000_intr_msix(int irq
, void *data
)
5658 struct net_device
*netdev
= data
;
5659 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5661 if (adapter
->msix_entries
) {
5662 int vector
, msix_irq
;
5665 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5666 disable_irq(msix_irq
);
5667 e1000_intr_msix_rx(msix_irq
, netdev
);
5668 enable_irq(msix_irq
);
5671 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5672 disable_irq(msix_irq
);
5673 e1000_intr_msix_tx(msix_irq
, netdev
);
5674 enable_irq(msix_irq
);
5677 msix_irq
= adapter
->msix_entries
[vector
].vector
;
5678 disable_irq(msix_irq
);
5679 e1000_msix_other(msix_irq
, netdev
);
5680 enable_irq(msix_irq
);
5687 * Polling 'interrupt' - used by things like netconsole to send skbs
5688 * without having to re-enable interrupts. It's not called while
5689 * the interrupt routine is executing.
5691 static void e1000_netpoll(struct net_device
*netdev
)
5693 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5695 switch (adapter
->int_mode
) {
5696 case E1000E_INT_MODE_MSIX
:
5697 e1000_intr_msix(adapter
->pdev
->irq
, netdev
);
5699 case E1000E_INT_MODE_MSI
:
5700 disable_irq(adapter
->pdev
->irq
);
5701 e1000_intr_msi(adapter
->pdev
->irq
, netdev
);
5702 enable_irq(adapter
->pdev
->irq
);
5704 default: /* E1000E_INT_MODE_LEGACY */
5705 disable_irq(adapter
->pdev
->irq
);
5706 e1000_intr(adapter
->pdev
->irq
, netdev
);
5707 enable_irq(adapter
->pdev
->irq
);
5714 * e1000_io_error_detected - called when PCI error is detected
5715 * @pdev: Pointer to PCI device
5716 * @state: The current pci connection state
5718 * This function is called after a PCI bus error affecting
5719 * this device has been detected.
5721 static pci_ers_result_t
e1000_io_error_detected(struct pci_dev
*pdev
,
5722 pci_channel_state_t state
)
5724 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5725 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5727 netif_device_detach(netdev
);
5729 if (state
== pci_channel_io_perm_failure
)
5730 return PCI_ERS_RESULT_DISCONNECT
;
5732 if (netif_running(netdev
))
5733 e1000e_down(adapter
);
5734 pci_disable_device(pdev
);
5736 /* Request a slot slot reset. */
5737 return PCI_ERS_RESULT_NEED_RESET
;
5741 * e1000_io_slot_reset - called after the pci bus has been reset.
5742 * @pdev: Pointer to PCI device
5744 * Restart the card from scratch, as if from a cold-boot. Implementation
5745 * resembles the first-half of the e1000_resume routine.
5747 static pci_ers_result_t
e1000_io_slot_reset(struct pci_dev
*pdev
)
5749 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5750 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5751 struct e1000_hw
*hw
= &adapter
->hw
;
5752 u16 aspm_disable_flag
= 0;
5754 pci_ers_result_t result
;
5756 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
5757 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
5758 if (adapter
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5759 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
5760 if (aspm_disable_flag
)
5761 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
5763 err
= pci_enable_device_mem(pdev
);
5766 "Cannot re-enable PCI device after reset.\n");
5767 result
= PCI_ERS_RESULT_DISCONNECT
;
5769 pci_set_master(pdev
);
5770 pdev
->state_saved
= true;
5771 pci_restore_state(pdev
);
5773 pci_enable_wake(pdev
, PCI_D3hot
, 0);
5774 pci_enable_wake(pdev
, PCI_D3cold
, 0);
5776 e1000e_reset(adapter
);
5778 result
= PCI_ERS_RESULT_RECOVERED
;
5781 pci_cleanup_aer_uncorrect_error_status(pdev
);
5787 * e1000_io_resume - called when traffic can start flowing again.
5788 * @pdev: Pointer to PCI device
5790 * This callback is called when the error recovery driver tells us that
5791 * its OK to resume normal operation. Implementation resembles the
5792 * second-half of the e1000_resume routine.
5794 static void e1000_io_resume(struct pci_dev
*pdev
)
5796 struct net_device
*netdev
= pci_get_drvdata(pdev
);
5797 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5799 e1000_init_manageability_pt(adapter
);
5801 if (netif_running(netdev
)) {
5802 if (e1000e_up(adapter
)) {
5804 "can't bring device back up after reset\n");
5809 netif_device_attach(netdev
);
5812 * If the controller has AMT, do not set DRV_LOAD until the interface
5813 * is up. For all other cases, let the f/w know that the h/w is now
5814 * under the control of the driver.
5816 if (!(adapter
->flags
& FLAG_HAS_AMT
))
5817 e1000e_get_hw_control(adapter
);
5821 static void e1000_print_device_info(struct e1000_adapter
*adapter
)
5823 struct e1000_hw
*hw
= &adapter
->hw
;
5824 struct net_device
*netdev
= adapter
->netdev
;
5826 u8 pba_str
[E1000_PBANUM_LENGTH
];
5828 /* print bus type/speed/width info */
5829 e_info("(PCI Express:2.5GT/s:%s) %pM\n",
5831 ((hw
->bus
.width
== e1000_bus_width_pcie_x4
) ? "Width x4" :
5835 e_info("Intel(R) PRO/%s Network Connection\n",
5836 (hw
->phy
.type
== e1000_phy_ife
) ? "10/100" : "1000");
5837 ret_val
= e1000_read_pba_string_generic(hw
, pba_str
,
5838 E1000_PBANUM_LENGTH
);
5840 strncpy((char *)pba_str
, "Unknown", sizeof(pba_str
) - 1);
5841 e_info("MAC: %d, PHY: %d, PBA No: %s\n",
5842 hw
->mac
.type
, hw
->phy
.type
, pba_str
);
5845 static void e1000_eeprom_checks(struct e1000_adapter
*adapter
)
5847 struct e1000_hw
*hw
= &adapter
->hw
;
5851 if (hw
->mac
.type
!= e1000_82573
)
5854 ret_val
= e1000_read_nvm(hw
, NVM_INIT_CONTROL2_REG
, 1, &buf
);
5855 if (!ret_val
&& (!(le16_to_cpu(buf
) & (1 << 0)))) {
5856 /* Deep Smart Power Down (DSPD) */
5857 dev_warn(&adapter
->pdev
->dev
,
5858 "Warning: detected DSPD enabled in EEPROM\n");
5862 static int e1000_set_features(struct net_device
*netdev
, u32 features
)
5864 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
5865 u32 changed
= features
^ netdev
->features
;
5867 if (changed
& (NETIF_F_TSO
| NETIF_F_TSO6
))
5868 adapter
->flags
|= FLAG_TSO_FORCE
;
5870 if (!(changed
& (NETIF_F_HW_VLAN_RX
| NETIF_F_HW_VLAN_TX
|
5874 if (netif_running(netdev
))
5875 e1000e_reinit_locked(adapter
);
5877 e1000e_reset(adapter
);
5882 static const struct net_device_ops e1000e_netdev_ops
= {
5883 .ndo_open
= e1000_open
,
5884 .ndo_stop
= e1000_close
,
5885 .ndo_start_xmit
= e1000_xmit_frame
,
5886 .ndo_get_stats64
= e1000e_get_stats64
,
5887 .ndo_set_rx_mode
= e1000_set_multi
,
5888 .ndo_set_mac_address
= e1000_set_mac
,
5889 .ndo_change_mtu
= e1000_change_mtu
,
5890 .ndo_do_ioctl
= e1000_ioctl
,
5891 .ndo_tx_timeout
= e1000_tx_timeout
,
5892 .ndo_validate_addr
= eth_validate_addr
,
5894 .ndo_vlan_rx_add_vid
= e1000_vlan_rx_add_vid
,
5895 .ndo_vlan_rx_kill_vid
= e1000_vlan_rx_kill_vid
,
5896 #ifdef CONFIG_NET_POLL_CONTROLLER
5897 .ndo_poll_controller
= e1000_netpoll
,
5899 .ndo_set_features
= e1000_set_features
,
5903 * e1000_probe - Device Initialization Routine
5904 * @pdev: PCI device information struct
5905 * @ent: entry in e1000_pci_tbl
5907 * Returns 0 on success, negative on failure
5909 * e1000_probe initializes an adapter identified by a pci_dev structure.
5910 * The OS initialization, configuring of the adapter private structure,
5911 * and a hardware reset occur.
5913 static int __devinit
e1000_probe(struct pci_dev
*pdev
,
5914 const struct pci_device_id
*ent
)
5916 struct net_device
*netdev
;
5917 struct e1000_adapter
*adapter
;
5918 struct e1000_hw
*hw
;
5919 const struct e1000_info
*ei
= e1000_info_tbl
[ent
->driver_data
];
5920 resource_size_t mmio_start
, mmio_len
;
5921 resource_size_t flash_start
, flash_len
;
5923 static int cards_found
;
5924 u16 aspm_disable_flag
= 0;
5925 int i
, err
, pci_using_dac
;
5926 u16 eeprom_data
= 0;
5927 u16 eeprom_apme_mask
= E1000_EEPROM_APME
;
5929 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L0S
)
5930 aspm_disable_flag
= PCIE_LINK_STATE_L0S
;
5931 if (ei
->flags2
& FLAG2_DISABLE_ASPM_L1
)
5932 aspm_disable_flag
|= PCIE_LINK_STATE_L1
;
5933 if (aspm_disable_flag
)
5934 e1000e_disable_aspm(pdev
, aspm_disable_flag
);
5936 err
= pci_enable_device_mem(pdev
);
5941 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5943 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
5947 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
5949 err
= dma_set_coherent_mask(&pdev
->dev
,
5952 dev_err(&pdev
->dev
, "No usable DMA "
5953 "configuration, aborting\n");
5959 err
= pci_request_selected_regions_exclusive(pdev
,
5960 pci_select_bars(pdev
, IORESOURCE_MEM
),
5961 e1000e_driver_name
);
5965 /* AER (Advanced Error Reporting) hooks */
5966 pci_enable_pcie_error_reporting(pdev
);
5968 pci_set_master(pdev
);
5969 /* PCI config space info */
5970 err
= pci_save_state(pdev
);
5972 goto err_alloc_etherdev
;
5975 netdev
= alloc_etherdev(sizeof(struct e1000_adapter
));
5977 goto err_alloc_etherdev
;
5979 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
5981 netdev
->irq
= pdev
->irq
;
5983 pci_set_drvdata(pdev
, netdev
);
5984 adapter
= netdev_priv(netdev
);
5986 adapter
->netdev
= netdev
;
5987 adapter
->pdev
= pdev
;
5989 adapter
->pba
= ei
->pba
;
5990 adapter
->flags
= ei
->flags
;
5991 adapter
->flags2
= ei
->flags2
;
5992 adapter
->hw
.adapter
= adapter
;
5993 adapter
->hw
.mac
.type
= ei
->mac
;
5994 adapter
->max_hw_frame_size
= ei
->max_hw_frame_size
;
5995 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
5997 mmio_start
= pci_resource_start(pdev
, 0);
5998 mmio_len
= pci_resource_len(pdev
, 0);
6001 adapter
->hw
.hw_addr
= ioremap(mmio_start
, mmio_len
);
6002 if (!adapter
->hw
.hw_addr
)
6005 if ((adapter
->flags
& FLAG_HAS_FLASH
) &&
6006 (pci_resource_flags(pdev
, 1) & IORESOURCE_MEM
)) {
6007 flash_start
= pci_resource_start(pdev
, 1);
6008 flash_len
= pci_resource_len(pdev
, 1);
6009 adapter
->hw
.flash_address
= ioremap(flash_start
, flash_len
);
6010 if (!adapter
->hw
.flash_address
)
6014 /* construct the net_device struct */
6015 netdev
->netdev_ops
= &e1000e_netdev_ops
;
6016 e1000e_set_ethtool_ops(netdev
);
6017 netdev
->watchdog_timeo
= 5 * HZ
;
6018 netif_napi_add(netdev
, &adapter
->napi
, e1000_clean
, 64);
6019 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
6021 netdev
->mem_start
= mmio_start
;
6022 netdev
->mem_end
= mmio_start
+ mmio_len
;
6024 adapter
->bd_number
= cards_found
++;
6026 e1000e_check_options(adapter
);
6028 /* setup adapter struct */
6029 err
= e1000_sw_init(adapter
);
6033 memcpy(&hw
->mac
.ops
, ei
->mac_ops
, sizeof(hw
->mac
.ops
));
6034 memcpy(&hw
->nvm
.ops
, ei
->nvm_ops
, sizeof(hw
->nvm
.ops
));
6035 memcpy(&hw
->phy
.ops
, ei
->phy_ops
, sizeof(hw
->phy
.ops
));
6037 err
= ei
->get_variants(adapter
);
6041 if ((adapter
->flags
& FLAG_IS_ICH
) &&
6042 (adapter
->flags
& FLAG_READ_ONLY_NVM
))
6043 e1000e_write_protect_nvm_ich8lan(&adapter
->hw
);
6045 hw
->mac
.ops
.get_bus_info(&adapter
->hw
);
6047 adapter
->hw
.phy
.autoneg_wait_to_complete
= 0;
6049 /* Copper options */
6050 if (adapter
->hw
.phy
.media_type
== e1000_media_type_copper
) {
6051 adapter
->hw
.phy
.mdix
= AUTO_ALL_MODES
;
6052 adapter
->hw
.phy
.disable_polarity_correction
= 0;
6053 adapter
->hw
.phy
.ms_type
= e1000_ms_hw_default
;
6056 if (e1000_check_reset_block(&adapter
->hw
))
6057 e_info("PHY reset is blocked due to SOL/IDER session.\n");
6059 /* Set initial default active device features */
6060 netdev
->features
= (NETIF_F_SG
|
6061 NETIF_F_HW_VLAN_RX
|
6062 NETIF_F_HW_VLAN_TX
|
6068 /* Set user-changeable features (subset of all device features) */
6069 netdev
->hw_features
= netdev
->features
;
6071 if (adapter
->flags
& FLAG_HAS_HW_VLAN_FILTER
)
6072 netdev
->features
|= NETIF_F_HW_VLAN_FILTER
;
6074 netdev
->vlan_features
|= (NETIF_F_SG
|
6079 if (pci_using_dac
) {
6080 netdev
->features
|= NETIF_F_HIGHDMA
;
6081 netdev
->vlan_features
|= NETIF_F_HIGHDMA
;
6084 if (e1000e_enable_mng_pass_thru(&adapter
->hw
))
6085 adapter
->flags
|= FLAG_MNG_PT_ENABLED
;
6088 * before reading the NVM, reset the controller to
6089 * put the device in a known good starting state
6091 adapter
->hw
.mac
.ops
.reset_hw(&adapter
->hw
);
6094 * systems with ASPM and others may see the checksum fail on the first
6095 * attempt. Let's give it a few tries
6098 if (e1000_validate_nvm_checksum(&adapter
->hw
) >= 0)
6101 e_err("The NVM Checksum Is Not Valid\n");
6107 e1000_eeprom_checks(adapter
);
6109 /* copy the MAC address */
6110 if (e1000e_read_mac_addr(&adapter
->hw
))
6111 e_err("NVM Read Error while reading MAC address\n");
6113 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
6114 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
6116 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
6117 e_err("Invalid MAC Address: %pM\n", netdev
->perm_addr
);
6122 init_timer(&adapter
->watchdog_timer
);
6123 adapter
->watchdog_timer
.function
= e1000_watchdog
;
6124 adapter
->watchdog_timer
.data
= (unsigned long) adapter
;
6126 init_timer(&adapter
->phy_info_timer
);
6127 adapter
->phy_info_timer
.function
= e1000_update_phy_info
;
6128 adapter
->phy_info_timer
.data
= (unsigned long) adapter
;
6130 INIT_WORK(&adapter
->reset_task
, e1000_reset_task
);
6131 INIT_WORK(&adapter
->watchdog_task
, e1000_watchdog_task
);
6132 INIT_WORK(&adapter
->downshift_task
, e1000e_downshift_workaround
);
6133 INIT_WORK(&adapter
->update_phy_task
, e1000e_update_phy_task
);
6134 INIT_WORK(&adapter
->print_hang_task
, e1000_print_hw_hang
);
6136 /* Initialize link parameters. User can change them with ethtool */
6137 adapter
->hw
.mac
.autoneg
= 1;
6138 adapter
->fc_autoneg
= 1;
6139 adapter
->hw
.fc
.requested_mode
= e1000_fc_default
;
6140 adapter
->hw
.fc
.current_mode
= e1000_fc_default
;
6141 adapter
->hw
.phy
.autoneg_advertised
= 0x2f;
6143 /* ring size defaults */
6144 adapter
->rx_ring
->count
= 256;
6145 adapter
->tx_ring
->count
= 256;
6148 * Initial Wake on LAN setting - If APM wake is enabled in
6149 * the EEPROM, enable the ACPI Magic Packet filter
6151 if (adapter
->flags
& FLAG_APME_IN_WUC
) {
6152 /* APME bit in EEPROM is mapped to WUC.APME */
6153 eeprom_data
= er32(WUC
);
6154 eeprom_apme_mask
= E1000_WUC_APME
;
6155 if ((hw
->mac
.type
> e1000_ich10lan
) &&
6156 (eeprom_data
& E1000_WUC_PHY_WAKE
))
6157 adapter
->flags2
|= FLAG2_HAS_PHY_WAKEUP
;
6158 } else if (adapter
->flags
& FLAG_APME_IN_CTRL3
) {
6159 if (adapter
->flags
& FLAG_APME_CHECK_PORT_B
&&
6160 (adapter
->hw
.bus
.func
== 1))
6161 e1000_read_nvm(&adapter
->hw
,
6162 NVM_INIT_CONTROL3_PORT_B
, 1, &eeprom_data
);
6164 e1000_read_nvm(&adapter
->hw
,
6165 NVM_INIT_CONTROL3_PORT_A
, 1, &eeprom_data
);
6168 /* fetch WoL from EEPROM */
6169 if (eeprom_data
& eeprom_apme_mask
)
6170 adapter
->eeprom_wol
|= E1000_WUFC_MAG
;
6173 * now that we have the eeprom settings, apply the special cases
6174 * where the eeprom may be wrong or the board simply won't support
6175 * wake on lan on a particular port
6177 if (!(adapter
->flags
& FLAG_HAS_WOL
))
6178 adapter
->eeprom_wol
= 0;
6180 /* initialize the wol settings based on the eeprom settings */
6181 adapter
->wol
= adapter
->eeprom_wol
;
6182 device_set_wakeup_enable(&adapter
->pdev
->dev
, adapter
->wol
);
6184 /* save off EEPROM version number */
6185 e1000_read_nvm(&adapter
->hw
, 5, 1, &adapter
->eeprom_vers
);
6187 /* reset the hardware with the new settings */
6188 e1000e_reset(adapter
);
6191 * If the controller has AMT, do not set DRV_LOAD until the interface
6192 * is up. For all other cases, let the f/w know that the h/w is now
6193 * under the control of the driver.
6195 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6196 e1000e_get_hw_control(adapter
);
6198 strncpy(netdev
->name
, "eth%d", sizeof(netdev
->name
) - 1);
6199 err
= register_netdev(netdev
);
6203 /* carrier off reporting is important to ethtool even BEFORE open */
6204 netif_carrier_off(netdev
);
6206 e1000_print_device_info(adapter
);
6208 if (pci_dev_run_wake(pdev
))
6209 pm_runtime_put_noidle(&pdev
->dev
);
6214 if (!(adapter
->flags
& FLAG_HAS_AMT
))
6215 e1000e_release_hw_control(adapter
);
6217 if (!e1000_check_reset_block(&adapter
->hw
))
6218 e1000_phy_hw_reset(&adapter
->hw
);
6220 kfree(adapter
->tx_ring
);
6221 kfree(adapter
->rx_ring
);
6223 if (adapter
->hw
.flash_address
)
6224 iounmap(adapter
->hw
.flash_address
);
6225 e1000e_reset_interrupt_capability(adapter
);
6227 iounmap(adapter
->hw
.hw_addr
);
6229 free_netdev(netdev
);
6231 pci_release_selected_regions(pdev
,
6232 pci_select_bars(pdev
, IORESOURCE_MEM
));
6235 pci_disable_device(pdev
);
6240 * e1000_remove - Device Removal Routine
6241 * @pdev: PCI device information struct
6243 * e1000_remove is called by the PCI subsystem to alert the driver
6244 * that it should release a PCI device. The could be caused by a
6245 * Hot-Plug event, or because the driver is going to be removed from
6248 static void __devexit
e1000_remove(struct pci_dev
*pdev
)
6250 struct net_device
*netdev
= pci_get_drvdata(pdev
);
6251 struct e1000_adapter
*adapter
= netdev_priv(netdev
);
6252 bool down
= test_bit(__E1000_DOWN
, &adapter
->state
);
6255 * The timers may be rescheduled, so explicitly disable them
6256 * from being rescheduled.
6259 set_bit(__E1000_DOWN
, &adapter
->state
);
6260 del_timer_sync(&adapter
->watchdog_timer
);
6261 del_timer_sync(&adapter
->phy_info_timer
);
6263 cancel_work_sync(&adapter
->reset_task
);
6264 cancel_work_sync(&adapter
->watchdog_task
);
6265 cancel_work_sync(&adapter
->downshift_task
);
6266 cancel_work_sync(&adapter
->update_phy_task
);
6267 cancel_work_sync(&adapter
->print_hang_task
);
6269 if (!(netdev
->flags
& IFF_UP
))
6270 e1000_power_down_phy(adapter
);
6272 /* Don't lie to e1000_close() down the road. */
6274 clear_bit(__E1000_DOWN
, &adapter
->state
);
6275 unregister_netdev(netdev
);
6277 if (pci_dev_run_wake(pdev
))
6278 pm_runtime_get_noresume(&pdev
->dev
);
6281 * Release control of h/w to f/w. If f/w is AMT enabled, this
6282 * would have already happened in close and is redundant.
6284 e1000e_release_hw_control(adapter
);
6286 e1000e_reset_interrupt_capability(adapter
);
6287 kfree(adapter
->tx_ring
);
6288 kfree(adapter
->rx_ring
);
6290 iounmap(adapter
->hw
.hw_addr
);
6291 if (adapter
->hw
.flash_address
)
6292 iounmap(adapter
->hw
.flash_address
);
6293 pci_release_selected_regions(pdev
,
6294 pci_select_bars(pdev
, IORESOURCE_MEM
));
6296 free_netdev(netdev
);
6299 pci_disable_pcie_error_reporting(pdev
);
6301 pci_disable_device(pdev
);
6304 /* PCI Error Recovery (ERS) */
6305 static struct pci_error_handlers e1000_err_handler
= {
6306 .error_detected
= e1000_io_error_detected
,
6307 .slot_reset
= e1000_io_slot_reset
,
6308 .resume
= e1000_io_resume
,
6311 static DEFINE_PCI_DEVICE_TABLE(e1000_pci_tbl
) = {
6312 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_COPPER
), board_82571
},
6313 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_FIBER
), board_82571
},
6314 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER
), board_82571
},
6315 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_COPPER_LP
), board_82571
},
6316 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_QUAD_FIBER
), board_82571
},
6317 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES
), board_82571
},
6318 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_DUAL
), board_82571
},
6319 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571EB_SERDES_QUAD
), board_82571
},
6320 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82571PT_QUAD_COPPER
), board_82571
},
6322 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI
), board_82572
},
6323 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_COPPER
), board_82572
},
6324 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_FIBER
), board_82572
},
6325 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82572EI_SERDES
), board_82572
},
6327 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E
), board_82573
},
6328 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573E_IAMT
), board_82573
},
6329 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82573L
), board_82573
},
6331 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574L
), board_82574
},
6332 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82574LA
), board_82574
},
6333 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82583V
), board_82583
},
6335 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_DPT
),
6336 board_80003es2lan
},
6337 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_COPPER_SPT
),
6338 board_80003es2lan
},
6339 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_DPT
),
6340 board_80003es2lan
},
6341 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_80003ES2LAN_SERDES_SPT
),
6342 board_80003es2lan
},
6344 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE
), board_ich8lan
},
6345 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_G
), board_ich8lan
},
6346 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IFE_GT
), board_ich8lan
},
6347 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_AMT
), board_ich8lan
},
6348 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_C
), board_ich8lan
},
6349 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M
), board_ich8lan
},
6350 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_IGP_M_AMT
), board_ich8lan
},
6351 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH8_82567V_3
), board_ich8lan
},
6353 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE
), board_ich9lan
},
6354 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_G
), board_ich9lan
},
6355 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IFE_GT
), board_ich9lan
},
6356 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_AMT
), board_ich9lan
},
6357 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_C
), board_ich9lan
},
6358 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_BM
), board_ich9lan
},
6359 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M
), board_ich9lan
},
6360 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_AMT
), board_ich9lan
},
6361 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH9_IGP_M_V
), board_ich9lan
},
6363 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LM
), board_ich9lan
},
6364 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_LF
), board_ich9lan
},
6365 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_R_BM_V
), board_ich9lan
},
6367 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LM
), board_ich10lan
},
6368 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_LF
), board_ich10lan
},
6369 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_ICH10_D_BM_V
), board_ich10lan
},
6371 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LM
), board_pchlan
},
6372 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_M_HV_LC
), board_pchlan
},
6373 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DM
), board_pchlan
},
6374 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH_D_HV_DC
), board_pchlan
},
6376 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_LM
), board_pch2lan
},
6377 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_PCH2_LV_V
), board_pch2lan
},
6379 { } /* terminate list */
6381 MODULE_DEVICE_TABLE(pci
, e1000_pci_tbl
);
6384 static const struct dev_pm_ops e1000_pm_ops
= {
6385 SET_SYSTEM_SLEEP_PM_OPS(e1000_suspend
, e1000_resume
)
6386 SET_RUNTIME_PM_OPS(e1000_runtime_suspend
,
6387 e1000_runtime_resume
, e1000_idle
)
6391 /* PCI Device API Driver */
6392 static struct pci_driver e1000_driver
= {
6393 .name
= e1000e_driver_name
,
6394 .id_table
= e1000_pci_tbl
,
6395 .probe
= e1000_probe
,
6396 .remove
= __devexit_p(e1000_remove
),
6398 .driver
.pm
= &e1000_pm_ops
,
6400 .shutdown
= e1000_shutdown
,
6401 .err_handler
= &e1000_err_handler
6405 * e1000_init_module - Driver Registration Routine
6407 * e1000_init_module is the first routine called when the driver is
6408 * loaded. All it does is register with the PCI subsystem.
6410 static int __init
e1000_init_module(void)
6413 pr_info("Intel(R) PRO/1000 Network Driver - %s\n",
6414 e1000e_driver_version
);
6415 pr_info("Copyright(c) 1999 - 2011 Intel Corporation.\n");
6416 ret
= pci_register_driver(&e1000_driver
);
6420 module_init(e1000_init_module
);
6423 * e1000_exit_module - Driver Exit Cleanup Routine
6425 * e1000_exit_module is called just before the driver is removed
6428 static void __exit
e1000_exit_module(void)
6430 pci_unregister_driver(&e1000_driver
);
6432 module_exit(e1000_exit_module
);
6435 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
6436 MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
6437 MODULE_LICENSE("GPL");
6438 MODULE_VERSION(DRV_VERSION
);