1 /*******************************************************************************
3 Intel(R) Gigabit Ethernet Linux driver
4 Copyright(c) 2007-2011 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/if_ether.h>
29 #include <linux/delay.h>
31 #include "e1000_mac.h"
32 #include "e1000_phy.h"
34 static s32
igb_phy_setup_autoneg(struct e1000_hw
*hw
);
35 static void igb_phy_force_speed_duplex_setup(struct e1000_hw
*hw
,
37 static s32
igb_wait_autoneg(struct e1000_hw
*hw
);
39 /* Cable length tables */
40 static const u16 e1000_m88_cable_length_table
[] =
41 { 0, 50, 80, 110, 140, 140, E1000_CABLE_LENGTH_UNDEFINED
};
42 #define M88E1000_CABLE_LENGTH_TABLE_SIZE \
43 (sizeof(e1000_m88_cable_length_table) / \
44 sizeof(e1000_m88_cable_length_table[0]))
46 static const u16 e1000_igp_2_cable_length_table
[] =
47 { 0, 0, 0, 0, 0, 0, 0, 0, 3, 5, 8, 11, 13, 16, 18, 21,
48 0, 0, 0, 3, 6, 10, 13, 16, 19, 23, 26, 29, 32, 35, 38, 41,
49 6, 10, 14, 18, 22, 26, 30, 33, 37, 41, 44, 48, 51, 54, 58, 61,
50 21, 26, 31, 35, 40, 44, 49, 53, 57, 61, 65, 68, 72, 75, 79, 82,
51 40, 45, 51, 56, 61, 66, 70, 75, 79, 83, 87, 91, 94, 98, 101, 104,
52 60, 66, 72, 77, 82, 87, 92, 96, 100, 104, 108, 111, 114, 117, 119, 121,
53 83, 89, 95, 100, 105, 109, 113, 116, 119, 122, 124,
54 104, 109, 114, 118, 121, 124};
55 #define IGP02E1000_CABLE_LENGTH_TABLE_SIZE \
56 (sizeof(e1000_igp_2_cable_length_table) / \
57 sizeof(e1000_igp_2_cable_length_table[0]))
60 * igb_check_reset_block - Check if PHY reset is blocked
61 * @hw: pointer to the HW structure
63 * Read the PHY management control register and check whether a PHY reset
64 * is blocked. If a reset is not blocked return 0, otherwise
65 * return E1000_BLK_PHY_RESET (12).
67 s32
igb_check_reset_block(struct e1000_hw
*hw
)
71 manc
= rd32(E1000_MANC
);
73 return (manc
& E1000_MANC_BLK_PHY_RST_ON_IDE
) ?
74 E1000_BLK_PHY_RESET
: 0;
78 * igb_get_phy_id - Retrieve the PHY ID and revision
79 * @hw: pointer to the HW structure
81 * Reads the PHY registers and stores the PHY ID and possibly the PHY
82 * revision in the hardware structure.
84 s32
igb_get_phy_id(struct e1000_hw
*hw
)
86 struct e1000_phy_info
*phy
= &hw
->phy
;
90 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID1
, &phy_id
);
94 phy
->id
= (u32
)(phy_id
<< 16);
96 ret_val
= phy
->ops
.read_reg(hw
, PHY_ID2
, &phy_id
);
100 phy
->id
|= (u32
)(phy_id
& PHY_REVISION_MASK
);
101 phy
->revision
= (u32
)(phy_id
& ~PHY_REVISION_MASK
);
108 * igb_phy_reset_dsp - Reset PHY DSP
109 * @hw: pointer to the HW structure
111 * Reset the digital signal processor.
113 static s32
igb_phy_reset_dsp(struct e1000_hw
*hw
)
117 if (!(hw
->phy
.ops
.write_reg
))
120 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0xC1);
124 ret_val
= hw
->phy
.ops
.write_reg(hw
, M88E1000_PHY_GEN_CONTROL
, 0);
131 * igb_read_phy_reg_mdic - Read MDI control register
132 * @hw: pointer to the HW structure
133 * @offset: register offset to be read
134 * @data: pointer to the read data
136 * Reads the MDI control regsiter in the PHY at offset and stores the
137 * information read to data.
139 s32
igb_read_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
141 struct e1000_phy_info
*phy
= &hw
->phy
;
145 if (offset
> MAX_PHY_REG_ADDRESS
) {
146 hw_dbg("PHY Address %d is out of range\n", offset
);
147 ret_val
= -E1000_ERR_PARAM
;
152 * Set up Op-code, Phy Address, and register offset in the MDI
153 * Control register. The MAC will take care of interfacing with the
154 * PHY to retrieve the desired data.
156 mdic
= ((offset
<< E1000_MDIC_REG_SHIFT
) |
157 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
158 (E1000_MDIC_OP_READ
));
160 wr32(E1000_MDIC
, mdic
);
163 * Poll the ready bit to see if the MDI read completed
164 * Increasing the time out as testing showed failures with
167 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
169 mdic
= rd32(E1000_MDIC
);
170 if (mdic
& E1000_MDIC_READY
)
173 if (!(mdic
& E1000_MDIC_READY
)) {
174 hw_dbg("MDI Read did not complete\n");
175 ret_val
= -E1000_ERR_PHY
;
178 if (mdic
& E1000_MDIC_ERROR
) {
179 hw_dbg("MDI Error\n");
180 ret_val
= -E1000_ERR_PHY
;
190 * igb_write_phy_reg_mdic - Write MDI control register
191 * @hw: pointer to the HW structure
192 * @offset: register offset to write to
193 * @data: data to write to register at offset
195 * Writes data to MDI control register in the PHY at offset.
197 s32
igb_write_phy_reg_mdic(struct e1000_hw
*hw
, u32 offset
, u16 data
)
199 struct e1000_phy_info
*phy
= &hw
->phy
;
203 if (offset
> MAX_PHY_REG_ADDRESS
) {
204 hw_dbg("PHY Address %d is out of range\n", offset
);
205 ret_val
= -E1000_ERR_PARAM
;
210 * Set up Op-code, Phy Address, and register offset in the MDI
211 * Control register. The MAC will take care of interfacing with the
212 * PHY to retrieve the desired data.
214 mdic
= (((u32
)data
) |
215 (offset
<< E1000_MDIC_REG_SHIFT
) |
216 (phy
->addr
<< E1000_MDIC_PHY_SHIFT
) |
217 (E1000_MDIC_OP_WRITE
));
219 wr32(E1000_MDIC
, mdic
);
222 * Poll the ready bit to see if the MDI read completed
223 * Increasing the time out as testing showed failures with
226 for (i
= 0; i
< (E1000_GEN_POLL_TIMEOUT
* 3); i
++) {
228 mdic
= rd32(E1000_MDIC
);
229 if (mdic
& E1000_MDIC_READY
)
232 if (!(mdic
& E1000_MDIC_READY
)) {
233 hw_dbg("MDI Write did not complete\n");
234 ret_val
= -E1000_ERR_PHY
;
237 if (mdic
& E1000_MDIC_ERROR
) {
238 hw_dbg("MDI Error\n");
239 ret_val
= -E1000_ERR_PHY
;
248 * igb_read_phy_reg_i2c - Read PHY register using i2c
249 * @hw: pointer to the HW structure
250 * @offset: register offset to be read
251 * @data: pointer to the read data
253 * Reads the PHY register at offset using the i2c interface and stores the
254 * retrieved information in data.
256 s32
igb_read_phy_reg_i2c(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
258 struct e1000_phy_info
*phy
= &hw
->phy
;
263 * Set up Op-code, Phy Address, and register address in the I2CCMD
264 * register. The MAC will take care of interfacing with the
265 * PHY to retrieve the desired data.
267 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
268 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
269 (E1000_I2CCMD_OPCODE_READ
));
271 wr32(E1000_I2CCMD
, i2ccmd
);
273 /* Poll the ready bit to see if the I2C read completed */
274 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
276 i2ccmd
= rd32(E1000_I2CCMD
);
277 if (i2ccmd
& E1000_I2CCMD_READY
)
280 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
281 hw_dbg("I2CCMD Read did not complete\n");
282 return -E1000_ERR_PHY
;
284 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
285 hw_dbg("I2CCMD Error bit set\n");
286 return -E1000_ERR_PHY
;
289 /* Need to byte-swap the 16-bit value. */
290 *data
= ((i2ccmd
>> 8) & 0x00FF) | ((i2ccmd
<< 8) & 0xFF00);
296 * igb_write_phy_reg_i2c - Write PHY register using i2c
297 * @hw: pointer to the HW structure
298 * @offset: register offset to write to
299 * @data: data to write at register offset
301 * Writes the data to PHY register at the offset using the i2c interface.
303 s32
igb_write_phy_reg_i2c(struct e1000_hw
*hw
, u32 offset
, u16 data
)
305 struct e1000_phy_info
*phy
= &hw
->phy
;
307 u16 phy_data_swapped
;
309 /* Prevent overwritting SFP I2C EEPROM which is at A0 address.*/
310 if ((hw
->phy
.addr
== 0) || (hw
->phy
.addr
> 7)) {
311 hw_dbg("PHY I2C Address %d is out of range.\n",
313 return -E1000_ERR_CONFIG
;
316 /* Swap the data bytes for the I2C interface */
317 phy_data_swapped
= ((data
>> 8) & 0x00FF) | ((data
<< 8) & 0xFF00);
320 * Set up Op-code, Phy Address, and register address in the I2CCMD
321 * register. The MAC will take care of interfacing with the
322 * PHY to retrieve the desired data.
324 i2ccmd
= ((offset
<< E1000_I2CCMD_REG_ADDR_SHIFT
) |
325 (phy
->addr
<< E1000_I2CCMD_PHY_ADDR_SHIFT
) |
326 E1000_I2CCMD_OPCODE_WRITE
|
329 wr32(E1000_I2CCMD
, i2ccmd
);
331 /* Poll the ready bit to see if the I2C read completed */
332 for (i
= 0; i
< E1000_I2CCMD_PHY_TIMEOUT
; i
++) {
334 i2ccmd
= rd32(E1000_I2CCMD
);
335 if (i2ccmd
& E1000_I2CCMD_READY
)
338 if (!(i2ccmd
& E1000_I2CCMD_READY
)) {
339 hw_dbg("I2CCMD Write did not complete\n");
340 return -E1000_ERR_PHY
;
342 if (i2ccmd
& E1000_I2CCMD_ERROR
) {
343 hw_dbg("I2CCMD Error bit set\n");
344 return -E1000_ERR_PHY
;
351 * igb_read_phy_reg_igp - Read igp PHY register
352 * @hw: pointer to the HW structure
353 * @offset: register offset to be read
354 * @data: pointer to the read data
356 * Acquires semaphore, if necessary, then reads the PHY register at offset
357 * and storing the retrieved information in data. Release any acquired
358 * semaphores before exiting.
360 s32
igb_read_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16
*data
)
364 if (!(hw
->phy
.ops
.acquire
))
367 ret_val
= hw
->phy
.ops
.acquire(hw
);
371 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
372 ret_val
= igb_write_phy_reg_mdic(hw
,
373 IGP01E1000_PHY_PAGE_SELECT
,
376 hw
->phy
.ops
.release(hw
);
381 ret_val
= igb_read_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
384 hw
->phy
.ops
.release(hw
);
391 * igb_write_phy_reg_igp - Write igp PHY register
392 * @hw: pointer to the HW structure
393 * @offset: register offset to write to
394 * @data: data to write at register offset
396 * Acquires semaphore, if necessary, then writes the data to PHY register
397 * at the offset. Release any acquired semaphores before exiting.
399 s32
igb_write_phy_reg_igp(struct e1000_hw
*hw
, u32 offset
, u16 data
)
403 if (!(hw
->phy
.ops
.acquire
))
406 ret_val
= hw
->phy
.ops
.acquire(hw
);
410 if (offset
> MAX_PHY_MULTI_PAGE_REG
) {
411 ret_val
= igb_write_phy_reg_mdic(hw
,
412 IGP01E1000_PHY_PAGE_SELECT
,
415 hw
->phy
.ops
.release(hw
);
420 ret_val
= igb_write_phy_reg_mdic(hw
, MAX_PHY_REG_ADDRESS
& offset
,
423 hw
->phy
.ops
.release(hw
);
430 * igb_copper_link_setup_82580 - Setup 82580 PHY for copper link
431 * @hw: pointer to the HW structure
433 * Sets up Carrier-sense on Transmit and downshift values.
435 s32
igb_copper_link_setup_82580(struct e1000_hw
*hw
)
437 struct e1000_phy_info
*phy
= &hw
->phy
;
442 if (phy
->reset_disable
) {
447 if (phy
->type
== e1000_phy_82580
) {
448 ret_val
= hw
->phy
.ops
.reset(hw
);
450 hw_dbg("Error resetting the PHY.\n");
455 /* Enable CRS on TX. This must be set for half-duplex operation. */
456 ret_val
= phy
->ops
.read_reg(hw
, I82580_CFG_REG
, &phy_data
);
460 phy_data
|= I82580_CFG_ASSERT_CRS_ON_TX
;
462 /* Enable downshift */
463 phy_data
|= I82580_CFG_ENABLE_DOWNSHIFT
;
465 ret_val
= phy
->ops
.write_reg(hw
, I82580_CFG_REG
, phy_data
);
472 * igb_copper_link_setup_m88 - Setup m88 PHY's for copper link
473 * @hw: pointer to the HW structure
475 * Sets up MDI/MDI-X and polarity for m88 PHY's. If necessary, transmit clock
476 * and downshift values are set also.
478 s32
igb_copper_link_setup_m88(struct e1000_hw
*hw
)
480 struct e1000_phy_info
*phy
= &hw
->phy
;
484 if (phy
->reset_disable
) {
489 /* Enable CRS on TX. This must be set for half-duplex operation. */
490 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
494 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
498 * MDI/MDI-X = 0 (default)
499 * 0 - Auto for all speeds
502 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
504 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
508 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
511 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
514 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
518 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
524 * disable_polarity_correction = 0 (default)
525 * Automatic Correction for Reversed Cable Polarity
529 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
530 if (phy
->disable_polarity_correction
== 1)
531 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
533 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
537 if (phy
->revision
< E1000_REVISION_4
) {
539 * Force TX_CLK in the Extended PHY Specific Control Register
542 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
547 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
549 if ((phy
->revision
== E1000_REVISION_2
) &&
550 (phy
->id
== M88E1111_I_PHY_ID
)) {
551 /* 82573L PHY - set the downshift counter to 5x. */
552 phy_data
&= ~M88EC018_EPSCR_DOWNSHIFT_COUNTER_MASK
;
553 phy_data
|= M88EC018_EPSCR_DOWNSHIFT_COUNTER_5X
;
555 /* Configure Master and Slave downshift values */
556 phy_data
&= ~(M88E1000_EPSCR_MASTER_DOWNSHIFT_MASK
|
557 M88E1000_EPSCR_SLAVE_DOWNSHIFT_MASK
);
558 phy_data
|= (M88E1000_EPSCR_MASTER_DOWNSHIFT_1X
|
559 M88E1000_EPSCR_SLAVE_DOWNSHIFT_1X
);
561 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
,
567 /* Commit the changes. */
568 ret_val
= igb_phy_sw_reset(hw
);
570 hw_dbg("Error committing the PHY changes\n");
579 * igb_copper_link_setup_m88_gen2 - Setup m88 PHY's for copper link
580 * @hw: pointer to the HW structure
582 * Sets up MDI/MDI-X and polarity for i347-AT4, m88e1322 and m88e1112 PHY's.
583 * Also enables and sets the downshift parameters.
585 s32
igb_copper_link_setup_m88_gen2(struct e1000_hw
*hw
)
587 struct e1000_phy_info
*phy
= &hw
->phy
;
591 if (phy
->reset_disable
) {
596 /* Enable CRS on Tx. This must be set for half-duplex operation. */
597 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
603 * MDI/MDI-X = 0 (default)
604 * 0 - Auto for all speeds
607 * 3 - Auto for 1000Base-T only (MDI-X for 10/100Base-T modes)
609 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
613 phy_data
|= M88E1000_PSCR_MDI_MANUAL_MODE
;
616 phy_data
|= M88E1000_PSCR_MDIX_MANUAL_MODE
;
619 /* M88E1112 does not support this mode) */
620 if (phy
->id
!= M88E1112_E_PHY_ID
) {
621 phy_data
|= M88E1000_PSCR_AUTO_X_1000T
;
626 phy_data
|= M88E1000_PSCR_AUTO_X_MODE
;
632 * disable_polarity_correction = 0 (default)
633 * Automatic Correction for Reversed Cable Polarity
637 phy_data
&= ~M88E1000_PSCR_POLARITY_REVERSAL
;
638 if (phy
->disable_polarity_correction
== 1)
639 phy_data
|= M88E1000_PSCR_POLARITY_REVERSAL
;
641 /* Enable downshift and setting it to X6 */
642 phy_data
&= ~I347AT4_PSCR_DOWNSHIFT_MASK
;
643 phy_data
|= I347AT4_PSCR_DOWNSHIFT_6X
;
644 phy_data
|= I347AT4_PSCR_DOWNSHIFT_ENABLE
;
646 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
650 /* Commit the changes. */
651 ret_val
= igb_phy_sw_reset(hw
);
653 hw_dbg("Error committing the PHY changes\n");
662 * igb_copper_link_setup_igp - Setup igp PHY's for copper link
663 * @hw: pointer to the HW structure
665 * Sets up LPLU, MDI/MDI-X, polarity, Smartspeed and Master/Slave config for
668 s32
igb_copper_link_setup_igp(struct e1000_hw
*hw
)
670 struct e1000_phy_info
*phy
= &hw
->phy
;
674 if (phy
->reset_disable
) {
679 ret_val
= phy
->ops
.reset(hw
);
681 hw_dbg("Error resetting the PHY.\n");
686 * Wait 100ms for MAC to configure PHY from NVM settings, to avoid
687 * timeout issues when LFS is enabled.
692 * The NVM settings will configure LPLU in D3 for
695 if (phy
->type
== e1000_phy_igp
) {
696 /* disable lplu d3 during driver init */
697 if (phy
->ops
.set_d3_lplu_state
)
698 ret_val
= phy
->ops
.set_d3_lplu_state(hw
, false);
700 hw_dbg("Error Disabling LPLU D3\n");
705 /* disable lplu d0 during driver init */
706 ret_val
= phy
->ops
.set_d0_lplu_state(hw
, false);
708 hw_dbg("Error Disabling LPLU D0\n");
711 /* Configure mdi-mdix settings */
712 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &data
);
716 data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
720 data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
723 data
|= IGP01E1000_PSCR_FORCE_MDI_MDIX
;
727 data
|= IGP01E1000_PSCR_AUTO_MDIX
;
730 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, data
);
734 /* set auto-master slave resolution settings */
735 if (hw
->mac
.autoneg
) {
737 * when autonegotiation advertisement is only 1000Mbps then we
738 * should disable SmartSpeed and enable Auto MasterSlave
739 * resolution as hardware default.
741 if (phy
->autoneg_advertised
== ADVERTISE_1000_FULL
) {
742 /* Disable SmartSpeed */
743 ret_val
= phy
->ops
.read_reg(hw
,
744 IGP01E1000_PHY_PORT_CONFIG
,
749 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
750 ret_val
= phy
->ops
.write_reg(hw
,
751 IGP01E1000_PHY_PORT_CONFIG
,
756 /* Set auto Master/Slave resolution process */
757 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
761 data
&= ~CR_1000T_MS_ENABLE
;
762 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
767 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
, &data
);
771 /* load defaults for future use */
772 phy
->original_ms_type
= (data
& CR_1000T_MS_ENABLE
) ?
773 ((data
& CR_1000T_MS_VALUE
) ?
774 e1000_ms_force_master
:
775 e1000_ms_force_slave
) :
778 switch (phy
->ms_type
) {
779 case e1000_ms_force_master
:
780 data
|= (CR_1000T_MS_ENABLE
| CR_1000T_MS_VALUE
);
782 case e1000_ms_force_slave
:
783 data
|= CR_1000T_MS_ENABLE
;
784 data
&= ~(CR_1000T_MS_VALUE
);
787 data
&= ~CR_1000T_MS_ENABLE
;
791 ret_val
= phy
->ops
.write_reg(hw
, PHY_1000T_CTRL
, data
);
801 * igb_copper_link_autoneg - Setup/Enable autoneg for copper link
802 * @hw: pointer to the HW structure
804 * Performs initial bounds checking on autoneg advertisement parameter, then
805 * configure to advertise the full capability. Setup the PHY to autoneg
806 * and restart the negotiation process between the link partner. If
807 * autoneg_wait_to_complete, then wait for autoneg to complete before exiting.
809 static s32
igb_copper_link_autoneg(struct e1000_hw
*hw
)
811 struct e1000_phy_info
*phy
= &hw
->phy
;
816 * Perform some bounds checking on the autoneg advertisement
819 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
822 * If autoneg_advertised is zero, we assume it was not defaulted
823 * by the calling code so we set to advertise full capability.
825 if (phy
->autoneg_advertised
== 0)
826 phy
->autoneg_advertised
= phy
->autoneg_mask
;
828 hw_dbg("Reconfiguring auto-neg advertisement params\n");
829 ret_val
= igb_phy_setup_autoneg(hw
);
831 hw_dbg("Error Setting up Auto-Negotiation\n");
834 hw_dbg("Restarting Auto-Neg\n");
837 * Restart auto-negotiation by setting the Auto Neg Enable bit and
838 * the Auto Neg Restart bit in the PHY control register.
840 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
844 phy_ctrl
|= (MII_CR_AUTO_NEG_EN
| MII_CR_RESTART_AUTO_NEG
);
845 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
850 * Does the user want to wait for Auto-Neg to complete here, or
851 * check at a later time (for example, callback routine).
853 if (phy
->autoneg_wait_to_complete
) {
854 ret_val
= igb_wait_autoneg(hw
);
856 hw_dbg("Error while waiting for "
857 "autoneg to complete\n");
862 hw
->mac
.get_link_status
= true;
869 * igb_phy_setup_autoneg - Configure PHY for auto-negotiation
870 * @hw: pointer to the HW structure
872 * Reads the MII auto-neg advertisement register and/or the 1000T control
873 * register and if the PHY is already setup for auto-negotiation, then
874 * return successful. Otherwise, setup advertisement and flow control to
875 * the appropriate values for the wanted auto-negotiation.
877 static s32
igb_phy_setup_autoneg(struct e1000_hw
*hw
)
879 struct e1000_phy_info
*phy
= &hw
->phy
;
881 u16 mii_autoneg_adv_reg
;
882 u16 mii_1000t_ctrl_reg
= 0;
884 phy
->autoneg_advertised
&= phy
->autoneg_mask
;
886 /* Read the MII Auto-Neg Advertisement Register (Address 4). */
887 ret_val
= phy
->ops
.read_reg(hw
, PHY_AUTONEG_ADV
, &mii_autoneg_adv_reg
);
891 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
892 /* Read the MII 1000Base-T Control Register (Address 9). */
893 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_CTRL
,
894 &mii_1000t_ctrl_reg
);
900 * Need to parse both autoneg_advertised and fc and set up
901 * the appropriate PHY registers. First we will parse for
902 * autoneg_advertised software override. Since we can advertise
903 * a plethora of combinations, we need to check each bit
908 * First we clear all the 10/100 mb speed bits in the Auto-Neg
909 * Advertisement Register (Address 4) and the 1000 mb speed bits in
910 * the 1000Base-T Control Register (Address 9).
912 mii_autoneg_adv_reg
&= ~(NWAY_AR_100TX_FD_CAPS
|
913 NWAY_AR_100TX_HD_CAPS
|
914 NWAY_AR_10T_FD_CAPS
|
915 NWAY_AR_10T_HD_CAPS
);
916 mii_1000t_ctrl_reg
&= ~(CR_1000T_HD_CAPS
| CR_1000T_FD_CAPS
);
918 hw_dbg("autoneg_advertised %x\n", phy
->autoneg_advertised
);
920 /* Do we want to advertise 10 Mb Half Duplex? */
921 if (phy
->autoneg_advertised
& ADVERTISE_10_HALF
) {
922 hw_dbg("Advertise 10mb Half duplex\n");
923 mii_autoneg_adv_reg
|= NWAY_AR_10T_HD_CAPS
;
926 /* Do we want to advertise 10 Mb Full Duplex? */
927 if (phy
->autoneg_advertised
& ADVERTISE_10_FULL
) {
928 hw_dbg("Advertise 10mb Full duplex\n");
929 mii_autoneg_adv_reg
|= NWAY_AR_10T_FD_CAPS
;
932 /* Do we want to advertise 100 Mb Half Duplex? */
933 if (phy
->autoneg_advertised
& ADVERTISE_100_HALF
) {
934 hw_dbg("Advertise 100mb Half duplex\n");
935 mii_autoneg_adv_reg
|= NWAY_AR_100TX_HD_CAPS
;
938 /* Do we want to advertise 100 Mb Full Duplex? */
939 if (phy
->autoneg_advertised
& ADVERTISE_100_FULL
) {
940 hw_dbg("Advertise 100mb Full duplex\n");
941 mii_autoneg_adv_reg
|= NWAY_AR_100TX_FD_CAPS
;
944 /* We do not allow the Phy to advertise 1000 Mb Half Duplex */
945 if (phy
->autoneg_advertised
& ADVERTISE_1000_HALF
)
946 hw_dbg("Advertise 1000mb Half duplex request denied!\n");
948 /* Do we want to advertise 1000 Mb Full Duplex? */
949 if (phy
->autoneg_advertised
& ADVERTISE_1000_FULL
) {
950 hw_dbg("Advertise 1000mb Full duplex\n");
951 mii_1000t_ctrl_reg
|= CR_1000T_FD_CAPS
;
955 * Check for a software override of the flow control settings, and
956 * setup the PHY advertisement registers accordingly. If
957 * auto-negotiation is enabled, then software will have to set the
958 * "PAUSE" bits to the correct value in the Auto-Negotiation
959 * Advertisement Register (PHY_AUTONEG_ADV) and re-start auto-
962 * The possible values of the "fc" parameter are:
963 * 0: Flow control is completely disabled
964 * 1: Rx flow control is enabled (we can receive pause frames
965 * but not send pause frames).
966 * 2: Tx flow control is enabled (we can send pause frames
967 * but we do not support receiving pause frames).
968 * 3: Both Rx and TX flow control (symmetric) are enabled.
969 * other: No software override. The flow control configuration
970 * in the EEPROM is used.
972 switch (hw
->fc
.current_mode
) {
975 * Flow control (RX & TX) is completely disabled by a
976 * software over-ride.
978 mii_autoneg_adv_reg
&= ~(NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
980 case e1000_fc_rx_pause
:
982 * RX Flow control is enabled, and TX Flow control is
983 * disabled, by a software over-ride.
985 * Since there really isn't a way to advertise that we are
986 * capable of RX Pause ONLY, we will advertise that we
987 * support both symmetric and asymmetric RX PAUSE. Later
988 * (in e1000_config_fc_after_link_up) we will disable the
989 * hw's ability to send PAUSE frames.
991 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
993 case e1000_fc_tx_pause
:
995 * TX Flow control is enabled, and RX Flow control is
996 * disabled, by a software over-ride.
998 mii_autoneg_adv_reg
|= NWAY_AR_ASM_DIR
;
999 mii_autoneg_adv_reg
&= ~NWAY_AR_PAUSE
;
1003 * Flow control (both RX and TX) is enabled by a software
1006 mii_autoneg_adv_reg
|= (NWAY_AR_ASM_DIR
| NWAY_AR_PAUSE
);
1009 hw_dbg("Flow control param set incorrectly\n");
1010 ret_val
= -E1000_ERR_CONFIG
;
1014 ret_val
= phy
->ops
.write_reg(hw
, PHY_AUTONEG_ADV
, mii_autoneg_adv_reg
);
1018 hw_dbg("Auto-Neg Advertising %x\n", mii_autoneg_adv_reg
);
1020 if (phy
->autoneg_mask
& ADVERTISE_1000_FULL
) {
1021 ret_val
= phy
->ops
.write_reg(hw
,
1023 mii_1000t_ctrl_reg
);
1033 * igb_setup_copper_link - Configure copper link settings
1034 * @hw: pointer to the HW structure
1036 * Calls the appropriate function to configure the link for auto-neg or forced
1037 * speed and duplex. Then we check for link, once link is established calls
1038 * to configure collision distance and flow control are called. If link is
1039 * not established, we return -E1000_ERR_PHY (-2).
1041 s32
igb_setup_copper_link(struct e1000_hw
*hw
)
1047 if (hw
->mac
.autoneg
) {
1049 * Setup autoneg and flow control advertisement and perform
1052 ret_val
= igb_copper_link_autoneg(hw
);
1057 * PHY will be set to 10H, 10F, 100H or 100F
1058 * depending on user settings.
1060 hw_dbg("Forcing Speed and Duplex\n");
1061 ret_val
= hw
->phy
.ops
.force_speed_duplex(hw
);
1063 hw_dbg("Error Forcing Speed and Duplex\n");
1069 * Check link status. Wait up to 100 microseconds for link to become
1072 ret_val
= igb_phy_has_link(hw
,
1073 COPPER_LINK_UP_LIMIT
,
1080 hw_dbg("Valid link established!!!\n");
1081 igb_config_collision_dist(hw
);
1082 ret_val
= igb_config_fc_after_link_up(hw
);
1084 hw_dbg("Unable to establish link!!!\n");
1092 * igb_phy_force_speed_duplex_igp - Force speed/duplex for igp PHY
1093 * @hw: pointer to the HW structure
1095 * Calls the PHY setup function to force speed and duplex. Clears the
1096 * auto-crossover to force MDI manually. Waits for link and returns
1097 * successful if link up is successful, else -E1000_ERR_PHY (-2).
1099 s32
igb_phy_force_speed_duplex_igp(struct e1000_hw
*hw
)
1101 struct e1000_phy_info
*phy
= &hw
->phy
;
1106 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1110 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
1112 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1117 * Clear Auto-Crossover to force MDI manually. IGP requires MDI
1118 * forced whenever speed and duplex are forced.
1120 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, &phy_data
);
1124 phy_data
&= ~IGP01E1000_PSCR_AUTO_MDIX
;
1125 phy_data
&= ~IGP01E1000_PSCR_FORCE_MDI_MDIX
;
1127 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CTRL
, phy_data
);
1131 hw_dbg("IGP PSCR: %X\n", phy_data
);
1135 if (phy
->autoneg_wait_to_complete
) {
1136 hw_dbg("Waiting for forced speed/duplex link on IGP phy.\n");
1138 ret_val
= igb_phy_has_link(hw
,
1146 hw_dbg("Link taking longer than expected.\n");
1149 ret_val
= igb_phy_has_link(hw
,
1162 * igb_phy_force_speed_duplex_m88 - Force speed/duplex for m88 PHY
1163 * @hw: pointer to the HW structure
1165 * Calls the PHY setup function to force speed and duplex. Clears the
1166 * auto-crossover to force MDI manually. Resets the PHY to commit the
1167 * changes. If time expires while waiting for link up, we reset the DSP.
1168 * After reset, TX_CLK and CRS on TX must be set. Return successful upon
1169 * successful completion, else return corresponding error code.
1171 s32
igb_phy_force_speed_duplex_m88(struct e1000_hw
*hw
)
1173 struct e1000_phy_info
*phy
= &hw
->phy
;
1179 * Clear Auto-Crossover to force MDI manually. M88E1000 requires MDI
1180 * forced whenever speed and duplex are forced.
1182 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1186 phy_data
&= ~M88E1000_PSCR_AUTO_X_MODE
;
1187 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1191 hw_dbg("M88E1000 PSCR: %X\n", phy_data
);
1193 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
1197 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
1199 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
1203 /* Reset the phy to commit changes. */
1204 ret_val
= igb_phy_sw_reset(hw
);
1208 if (phy
->autoneg_wait_to_complete
) {
1209 hw_dbg("Waiting for forced speed/duplex link on M88 phy.\n");
1211 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
, 100000, &link
);
1216 if (hw
->phy
.type
!= e1000_phy_m88
||
1217 hw
->phy
.id
== I347AT4_E_PHY_ID
||
1218 hw
->phy
.id
== M88E1112_E_PHY_ID
) {
1219 hw_dbg("Link taking longer than expected.\n");
1223 * We didn't get link.
1224 * Reset the DSP and cross our fingers.
1226 ret_val
= phy
->ops
.write_reg(hw
,
1227 M88E1000_PHY_PAGE_SELECT
,
1231 ret_val
= igb_phy_reset_dsp(hw
);
1238 ret_val
= igb_phy_has_link(hw
, PHY_FORCE_LIMIT
,
1244 if (hw
->phy
.type
!= e1000_phy_m88
||
1245 hw
->phy
.id
== I347AT4_E_PHY_ID
||
1246 hw
->phy
.id
== M88E1112_E_PHY_ID
)
1249 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, &phy_data
);
1254 * Resetting the phy means we need to re-force TX_CLK in the
1255 * Extended PHY Specific Control Register to 25MHz clock from
1256 * the reset value of 2.5MHz.
1258 phy_data
|= M88E1000_EPSCR_TX_CLK_25
;
1259 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_EXT_PHY_SPEC_CTRL
, phy_data
);
1264 * In addition, we must re-enable CRS on Tx for both half and full
1267 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1271 phy_data
|= M88E1000_PSCR_ASSERT_CRS_ON_TX
;
1272 ret_val
= phy
->ops
.write_reg(hw
, M88E1000_PHY_SPEC_CTRL
, phy_data
);
1279 * igb_phy_force_speed_duplex_setup - Configure forced PHY speed/duplex
1280 * @hw: pointer to the HW structure
1281 * @phy_ctrl: pointer to current value of PHY_CONTROL
1283 * Forces speed and duplex on the PHY by doing the following: disable flow
1284 * control, force speed/duplex on the MAC, disable auto speed detection,
1285 * disable auto-negotiation, configure duplex, configure speed, configure
1286 * the collision distance, write configuration to CTRL register. The
1287 * caller must write to the PHY_CONTROL register for these settings to
1290 static void igb_phy_force_speed_duplex_setup(struct e1000_hw
*hw
,
1293 struct e1000_mac_info
*mac
= &hw
->mac
;
1296 /* Turn off flow control when forcing speed/duplex */
1297 hw
->fc
.current_mode
= e1000_fc_none
;
1299 /* Force speed/duplex on the mac */
1300 ctrl
= rd32(E1000_CTRL
);
1301 ctrl
|= (E1000_CTRL_FRCSPD
| E1000_CTRL_FRCDPX
);
1302 ctrl
&= ~E1000_CTRL_SPD_SEL
;
1304 /* Disable Auto Speed Detection */
1305 ctrl
&= ~E1000_CTRL_ASDE
;
1307 /* Disable autoneg on the phy */
1308 *phy_ctrl
&= ~MII_CR_AUTO_NEG_EN
;
1310 /* Forcing Full or Half Duplex? */
1311 if (mac
->forced_speed_duplex
& E1000_ALL_HALF_DUPLEX
) {
1312 ctrl
&= ~E1000_CTRL_FD
;
1313 *phy_ctrl
&= ~MII_CR_FULL_DUPLEX
;
1314 hw_dbg("Half Duplex\n");
1316 ctrl
|= E1000_CTRL_FD
;
1317 *phy_ctrl
|= MII_CR_FULL_DUPLEX
;
1318 hw_dbg("Full Duplex\n");
1321 /* Forcing 10mb or 100mb? */
1322 if (mac
->forced_speed_duplex
& E1000_ALL_100_SPEED
) {
1323 ctrl
|= E1000_CTRL_SPD_100
;
1324 *phy_ctrl
|= MII_CR_SPEED_100
;
1325 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_10
);
1326 hw_dbg("Forcing 100mb\n");
1328 ctrl
&= ~(E1000_CTRL_SPD_1000
| E1000_CTRL_SPD_100
);
1329 *phy_ctrl
|= MII_CR_SPEED_10
;
1330 *phy_ctrl
&= ~(MII_CR_SPEED_1000
| MII_CR_SPEED_100
);
1331 hw_dbg("Forcing 10mb\n");
1334 igb_config_collision_dist(hw
);
1336 wr32(E1000_CTRL
, ctrl
);
1340 * igb_set_d3_lplu_state - Sets low power link up state for D3
1341 * @hw: pointer to the HW structure
1342 * @active: boolean used to enable/disable lplu
1344 * Success returns 0, Failure returns 1
1346 * The low power link up (lplu) state is set to the power management level D3
1347 * and SmartSpeed is disabled when active is true, else clear lplu for D3
1348 * and enable Smartspeed. LPLU and Smartspeed are mutually exclusive. LPLU
1349 * is used during Dx states where the power conservation is most important.
1350 * During driver activity, SmartSpeed should be enabled so performance is
1353 s32
igb_set_d3_lplu_state(struct e1000_hw
*hw
, bool active
)
1355 struct e1000_phy_info
*phy
= &hw
->phy
;
1359 if (!(hw
->phy
.ops
.read_reg
))
1362 ret_val
= phy
->ops
.read_reg(hw
, IGP02E1000_PHY_POWER_MGMT
, &data
);
1367 data
&= ~IGP02E1000_PM_D3_LPLU
;
1368 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1373 * LPLU and SmartSpeed are mutually exclusive. LPLU is used
1374 * during Dx states where the power conservation is most
1375 * important. During driver activity we should enable
1376 * SmartSpeed, so performance is maintained.
1378 if (phy
->smart_speed
== e1000_smart_speed_on
) {
1379 ret_val
= phy
->ops
.read_reg(hw
,
1380 IGP01E1000_PHY_PORT_CONFIG
,
1385 data
|= IGP01E1000_PSCFR_SMART_SPEED
;
1386 ret_val
= phy
->ops
.write_reg(hw
,
1387 IGP01E1000_PHY_PORT_CONFIG
,
1391 } else if (phy
->smart_speed
== e1000_smart_speed_off
) {
1392 ret_val
= phy
->ops
.read_reg(hw
,
1393 IGP01E1000_PHY_PORT_CONFIG
,
1398 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1399 ret_val
= phy
->ops
.write_reg(hw
,
1400 IGP01E1000_PHY_PORT_CONFIG
,
1405 } else if ((phy
->autoneg_advertised
== E1000_ALL_SPEED_DUPLEX
) ||
1406 (phy
->autoneg_advertised
== E1000_ALL_NOT_GIG
) ||
1407 (phy
->autoneg_advertised
== E1000_ALL_10_SPEED
)) {
1408 data
|= IGP02E1000_PM_D3_LPLU
;
1409 ret_val
= phy
->ops
.write_reg(hw
, IGP02E1000_PHY_POWER_MGMT
,
1414 /* When LPLU is enabled, we should disable SmartSpeed */
1415 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1420 data
&= ~IGP01E1000_PSCFR_SMART_SPEED
;
1421 ret_val
= phy
->ops
.write_reg(hw
, IGP01E1000_PHY_PORT_CONFIG
,
1430 * igb_check_downshift - Checks whether a downshift in speed occurred
1431 * @hw: pointer to the HW structure
1433 * Success returns 0, Failure returns 1
1435 * A downshift is detected by querying the PHY link health.
1437 s32
igb_check_downshift(struct e1000_hw
*hw
)
1439 struct e1000_phy_info
*phy
= &hw
->phy
;
1441 u16 phy_data
, offset
, mask
;
1443 switch (phy
->type
) {
1445 case e1000_phy_gg82563
:
1446 offset
= M88E1000_PHY_SPEC_STATUS
;
1447 mask
= M88E1000_PSSR_DOWNSHIFT
;
1449 case e1000_phy_igp_2
:
1451 case e1000_phy_igp_3
:
1452 offset
= IGP01E1000_PHY_LINK_HEALTH
;
1453 mask
= IGP01E1000_PLHR_SS_DOWNGRADE
;
1456 /* speed downshift not supported */
1457 phy
->speed_downgraded
= false;
1462 ret_val
= phy
->ops
.read_reg(hw
, offset
, &phy_data
);
1465 phy
->speed_downgraded
= (phy_data
& mask
) ? true : false;
1472 * igb_check_polarity_m88 - Checks the polarity.
1473 * @hw: pointer to the HW structure
1475 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1477 * Polarity is determined based on the PHY specific status register.
1479 static s32
igb_check_polarity_m88(struct e1000_hw
*hw
)
1481 struct e1000_phy_info
*phy
= &hw
->phy
;
1485 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &data
);
1488 phy
->cable_polarity
= (data
& M88E1000_PSSR_REV_POLARITY
)
1489 ? e1000_rev_polarity_reversed
1490 : e1000_rev_polarity_normal
;
1496 * igb_check_polarity_igp - Checks the polarity.
1497 * @hw: pointer to the HW structure
1499 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
1501 * Polarity is determined based on the PHY port status register, and the
1502 * current speed (since there is no polarity at 100Mbps).
1504 static s32
igb_check_polarity_igp(struct e1000_hw
*hw
)
1506 struct e1000_phy_info
*phy
= &hw
->phy
;
1508 u16 data
, offset
, mask
;
1511 * Polarity is determined based on the speed of
1514 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1518 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1519 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1520 offset
= IGP01E1000_PHY_PCS_INIT_REG
;
1521 mask
= IGP01E1000_PHY_POLARITY_MASK
;
1524 * This really only applies to 10Mbps since
1525 * there is no polarity for 100Mbps (always 0).
1527 offset
= IGP01E1000_PHY_PORT_STATUS
;
1528 mask
= IGP01E1000_PSSR_POLARITY_REVERSED
;
1531 ret_val
= phy
->ops
.read_reg(hw
, offset
, &data
);
1534 phy
->cable_polarity
= (data
& mask
)
1535 ? e1000_rev_polarity_reversed
1536 : e1000_rev_polarity_normal
;
1543 * igb_wait_autoneg - Wait for auto-neg compeletion
1544 * @hw: pointer to the HW structure
1546 * Waits for auto-negotiation to complete or for the auto-negotiation time
1547 * limit to expire, which ever happens first.
1549 static s32
igb_wait_autoneg(struct e1000_hw
*hw
)
1554 /* Break after autoneg completes or PHY_AUTO_NEG_LIMIT expires. */
1555 for (i
= PHY_AUTO_NEG_LIMIT
; i
> 0; i
--) {
1556 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1559 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1562 if (phy_status
& MII_SR_AUTONEG_COMPLETE
)
1568 * PHY_AUTO_NEG_TIME expiration doesn't guarantee auto-negotiation
1575 * igb_phy_has_link - Polls PHY for link
1576 * @hw: pointer to the HW structure
1577 * @iterations: number of times to poll for link
1578 * @usec_interval: delay between polling attempts
1579 * @success: pointer to whether polling was successful or not
1581 * Polls the PHY status register for link, 'iterations' number of times.
1583 s32
igb_phy_has_link(struct e1000_hw
*hw
, u32 iterations
,
1584 u32 usec_interval
, bool *success
)
1589 for (i
= 0; i
< iterations
; i
++) {
1591 * Some PHYs require the PHY_STATUS register to be read
1592 * twice due to the link bit being sticky. No harm doing
1593 * it across the board.
1595 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1598 * If the first read fails, another entity may have
1599 * ownership of the resources, wait and try again to
1600 * see if they have relinquished the resources yet.
1602 udelay(usec_interval
);
1604 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_STATUS
, &phy_status
);
1607 if (phy_status
& MII_SR_LINK_STATUS
)
1609 if (usec_interval
>= 1000)
1610 mdelay(usec_interval
/1000);
1612 udelay(usec_interval
);
1615 *success
= (i
< iterations
) ? true : false;
1621 * igb_get_cable_length_m88 - Determine cable length for m88 PHY
1622 * @hw: pointer to the HW structure
1624 * Reads the PHY specific status register to retrieve the cable length
1625 * information. The cable length is determined by averaging the minimum and
1626 * maximum values to get the "average" cable length. The m88 PHY has four
1627 * possible cable length values, which are:
1628 * Register Value Cable Length
1632 * 3 110 - 140 meters
1635 s32
igb_get_cable_length_m88(struct e1000_hw
*hw
)
1637 struct e1000_phy_info
*phy
= &hw
->phy
;
1639 u16 phy_data
, index
;
1641 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1645 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1646 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1647 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1) {
1648 ret_val
= -E1000_ERR_PHY
;
1652 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1653 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1655 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1661 s32
igb_get_cable_length_m88_gen2(struct e1000_hw
*hw
)
1663 struct e1000_phy_info
*phy
= &hw
->phy
;
1665 u16 phy_data
, phy_data2
, index
, default_page
, is_cm
;
1667 switch (hw
->phy
.id
) {
1668 case I347AT4_E_PHY_ID
:
1669 /* Remember the original page select and set it to 7 */
1670 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PAGE_SELECT
,
1675 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
, 0x07);
1679 /* Get cable length from PHY Cable Diagnostics Control Reg */
1680 ret_val
= phy
->ops
.read_reg(hw
, (I347AT4_PCDL
+ phy
->addr
),
1685 /* Check if the unit of cable length is meters or cm */
1686 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PCDC
, &phy_data2
);
1690 is_cm
= !(phy_data
& I347AT4_PCDC_CABLE_LENGTH_UNIT
);
1692 /* Populate the phy structure with cable length in meters */
1693 phy
->min_cable_length
= phy_data
/ (is_cm
? 100 : 1);
1694 phy
->max_cable_length
= phy_data
/ (is_cm
? 100 : 1);
1695 phy
->cable_length
= phy_data
/ (is_cm
? 100 : 1);
1697 /* Reset the page selec to its original value */
1698 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
,
1703 case M88E1112_E_PHY_ID
:
1704 /* Remember the original page select and set it to 5 */
1705 ret_val
= phy
->ops
.read_reg(hw
, I347AT4_PAGE_SELECT
,
1710 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
, 0x05);
1714 ret_val
= phy
->ops
.read_reg(hw
, M88E1112_VCT_DSP_DISTANCE
,
1719 index
= (phy_data
& M88E1000_PSSR_CABLE_LENGTH
) >>
1720 M88E1000_PSSR_CABLE_LENGTH_SHIFT
;
1721 if (index
>= M88E1000_CABLE_LENGTH_TABLE_SIZE
- 1) {
1722 ret_val
= -E1000_ERR_PHY
;
1726 phy
->min_cable_length
= e1000_m88_cable_length_table
[index
];
1727 phy
->max_cable_length
= e1000_m88_cable_length_table
[index
+ 1];
1729 phy
->cable_length
= (phy
->min_cable_length
+
1730 phy
->max_cable_length
) / 2;
1732 /* Reset the page select to its original value */
1733 ret_val
= phy
->ops
.write_reg(hw
, I347AT4_PAGE_SELECT
,
1740 ret_val
= -E1000_ERR_PHY
;
1749 * igb_get_cable_length_igp_2 - Determine cable length for igp2 PHY
1750 * @hw: pointer to the HW structure
1752 * The automatic gain control (agc) normalizes the amplitude of the
1753 * received signal, adjusting for the attenuation produced by the
1754 * cable. By reading the AGC registers, which represent the
1755 * combination of coarse and fine gain value, the value can be put
1756 * into a lookup table to obtain the approximate cable length
1759 s32
igb_get_cable_length_igp_2(struct e1000_hw
*hw
)
1761 struct e1000_phy_info
*phy
= &hw
->phy
;
1763 u16 phy_data
, i
, agc_value
= 0;
1764 u16 cur_agc_index
, max_agc_index
= 0;
1765 u16 min_agc_index
= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
- 1;
1766 static const u16 agc_reg_array
[IGP02E1000_PHY_CHANNEL_NUM
] = {
1767 IGP02E1000_PHY_AGC_A
,
1768 IGP02E1000_PHY_AGC_B
,
1769 IGP02E1000_PHY_AGC_C
,
1770 IGP02E1000_PHY_AGC_D
1773 /* Read the AGC registers for all channels */
1774 for (i
= 0; i
< IGP02E1000_PHY_CHANNEL_NUM
; i
++) {
1775 ret_val
= phy
->ops
.read_reg(hw
, agc_reg_array
[i
], &phy_data
);
1780 * Getting bits 15:9, which represent the combination of
1781 * coarse and fine gain values. The result is a number
1782 * that can be put into the lookup table to obtain the
1783 * approximate cable length.
1785 cur_agc_index
= (phy_data
>> IGP02E1000_AGC_LENGTH_SHIFT
) &
1786 IGP02E1000_AGC_LENGTH_MASK
;
1788 /* Array index bound check. */
1789 if ((cur_agc_index
>= IGP02E1000_CABLE_LENGTH_TABLE_SIZE
) ||
1790 (cur_agc_index
== 0)) {
1791 ret_val
= -E1000_ERR_PHY
;
1795 /* Remove min & max AGC values from calculation. */
1796 if (e1000_igp_2_cable_length_table
[min_agc_index
] >
1797 e1000_igp_2_cable_length_table
[cur_agc_index
])
1798 min_agc_index
= cur_agc_index
;
1799 if (e1000_igp_2_cable_length_table
[max_agc_index
] <
1800 e1000_igp_2_cable_length_table
[cur_agc_index
])
1801 max_agc_index
= cur_agc_index
;
1803 agc_value
+= e1000_igp_2_cable_length_table
[cur_agc_index
];
1806 agc_value
-= (e1000_igp_2_cable_length_table
[min_agc_index
] +
1807 e1000_igp_2_cable_length_table
[max_agc_index
]);
1808 agc_value
/= (IGP02E1000_PHY_CHANNEL_NUM
- 2);
1810 /* Calculate cable length with the error range of +/- 10 meters. */
1811 phy
->min_cable_length
= ((agc_value
- IGP02E1000_AGC_RANGE
) > 0) ?
1812 (agc_value
- IGP02E1000_AGC_RANGE
) : 0;
1813 phy
->max_cable_length
= agc_value
+ IGP02E1000_AGC_RANGE
;
1815 phy
->cable_length
= (phy
->min_cable_length
+ phy
->max_cable_length
) / 2;
1822 * igb_get_phy_info_m88 - Retrieve PHY information
1823 * @hw: pointer to the HW structure
1825 * Valid for only copper links. Read the PHY status register (sticky read)
1826 * to verify that link is up. Read the PHY special control register to
1827 * determine the polarity and 10base-T extended distance. Read the PHY
1828 * special status register to determine MDI/MDIx and current speed. If
1829 * speed is 1000, then determine cable length, local and remote receiver.
1831 s32
igb_get_phy_info_m88(struct e1000_hw
*hw
)
1833 struct e1000_phy_info
*phy
= &hw
->phy
;
1838 if (phy
->media_type
!= e1000_media_type_copper
) {
1839 hw_dbg("Phy info is only valid for copper media\n");
1840 ret_val
= -E1000_ERR_CONFIG
;
1844 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
1849 hw_dbg("Phy info is only valid if link is up\n");
1850 ret_val
= -E1000_ERR_CONFIG
;
1854 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_CTRL
, &phy_data
);
1858 phy
->polarity_correction
= (phy_data
& M88E1000_PSCR_POLARITY_REVERSAL
)
1861 ret_val
= igb_check_polarity_m88(hw
);
1865 ret_val
= phy
->ops
.read_reg(hw
, M88E1000_PHY_SPEC_STATUS
, &phy_data
);
1869 phy
->is_mdix
= (phy_data
& M88E1000_PSSR_MDIX
) ? true : false;
1871 if ((phy_data
& M88E1000_PSSR_SPEED
) == M88E1000_PSSR_1000MBS
) {
1872 ret_val
= phy
->ops
.get_cable_length(hw
);
1876 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &phy_data
);
1880 phy
->local_rx
= (phy_data
& SR_1000T_LOCAL_RX_STATUS
)
1881 ? e1000_1000t_rx_status_ok
1882 : e1000_1000t_rx_status_not_ok
;
1884 phy
->remote_rx
= (phy_data
& SR_1000T_REMOTE_RX_STATUS
)
1885 ? e1000_1000t_rx_status_ok
1886 : e1000_1000t_rx_status_not_ok
;
1888 /* Set values to "undefined" */
1889 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1890 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1891 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1899 * igb_get_phy_info_igp - Retrieve igp PHY information
1900 * @hw: pointer to the HW structure
1902 * Read PHY status to determine if link is up. If link is up, then
1903 * set/determine 10base-T extended distance and polarity correction. Read
1904 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
1905 * determine on the cable length, local and remote receiver.
1907 s32
igb_get_phy_info_igp(struct e1000_hw
*hw
)
1909 struct e1000_phy_info
*phy
= &hw
->phy
;
1914 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
1919 hw_dbg("Phy info is only valid if link is up\n");
1920 ret_val
= -E1000_ERR_CONFIG
;
1924 phy
->polarity_correction
= true;
1926 ret_val
= igb_check_polarity_igp(hw
);
1930 ret_val
= phy
->ops
.read_reg(hw
, IGP01E1000_PHY_PORT_STATUS
, &data
);
1934 phy
->is_mdix
= (data
& IGP01E1000_PSSR_MDIX
) ? true : false;
1936 if ((data
& IGP01E1000_PSSR_SPEED_MASK
) ==
1937 IGP01E1000_PSSR_SPEED_1000MBPS
) {
1938 ret_val
= phy
->ops
.get_cable_length(hw
);
1942 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
1946 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
1947 ? e1000_1000t_rx_status_ok
1948 : e1000_1000t_rx_status_not_ok
;
1950 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
1951 ? e1000_1000t_rx_status_ok
1952 : e1000_1000t_rx_status_not_ok
;
1954 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
1955 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
1956 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
1964 * igb_phy_sw_reset - PHY software reset
1965 * @hw: pointer to the HW structure
1967 * Does a software reset of the PHY by reading the PHY control register and
1968 * setting/write the control register reset bit to the PHY.
1970 s32
igb_phy_sw_reset(struct e1000_hw
*hw
)
1975 if (!(hw
->phy
.ops
.read_reg
))
1978 ret_val
= hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &phy_ctrl
);
1982 phy_ctrl
|= MII_CR_RESET
;
1983 ret_val
= hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, phy_ctrl
);
1994 * igb_phy_hw_reset - PHY hardware reset
1995 * @hw: pointer to the HW structure
1997 * Verify the reset block is not blocking us from resetting. Acquire
1998 * semaphore (if necessary) and read/set/write the device control reset
1999 * bit in the PHY. Wait the appropriate delay time for the device to
2000 * reset and relase the semaphore (if necessary).
2002 s32
igb_phy_hw_reset(struct e1000_hw
*hw
)
2004 struct e1000_phy_info
*phy
= &hw
->phy
;
2008 ret_val
= igb_check_reset_block(hw
);
2014 ret_val
= phy
->ops
.acquire(hw
);
2018 ctrl
= rd32(E1000_CTRL
);
2019 wr32(E1000_CTRL
, ctrl
| E1000_CTRL_PHY_RST
);
2022 udelay(phy
->reset_delay_us
);
2024 wr32(E1000_CTRL
, ctrl
);
2029 phy
->ops
.release(hw
);
2031 ret_val
= phy
->ops
.get_cfg_done(hw
);
2038 * igb_phy_init_script_igp3 - Inits the IGP3 PHY
2039 * @hw: pointer to the HW structure
2041 * Initializes a Intel Gigabit PHY3 when an EEPROM is not present.
2043 s32
igb_phy_init_script_igp3(struct e1000_hw
*hw
)
2045 hw_dbg("Running IGP 3 PHY init script\n");
2047 /* PHY init IGP 3 */
2048 /* Enable rise/fall, 10-mode work in class-A */
2049 hw
->phy
.ops
.write_reg(hw
, 0x2F5B, 0x9018);
2050 /* Remove all caps from Replica path filter */
2051 hw
->phy
.ops
.write_reg(hw
, 0x2F52, 0x0000);
2052 /* Bias trimming for ADC, AFE and Driver (Default) */
2053 hw
->phy
.ops
.write_reg(hw
, 0x2FB1, 0x8B24);
2054 /* Increase Hybrid poly bias */
2055 hw
->phy
.ops
.write_reg(hw
, 0x2FB2, 0xF8F0);
2056 /* Add 4% to TX amplitude in Giga mode */
2057 hw
->phy
.ops
.write_reg(hw
, 0x2010, 0x10B0);
2058 /* Disable trimming (TTT) */
2059 hw
->phy
.ops
.write_reg(hw
, 0x2011, 0x0000);
2060 /* Poly DC correction to 94.6% + 2% for all channels */
2061 hw
->phy
.ops
.write_reg(hw
, 0x20DD, 0x249A);
2062 /* ABS DC correction to 95.9% */
2063 hw
->phy
.ops
.write_reg(hw
, 0x20DE, 0x00D3);
2064 /* BG temp curve trim */
2065 hw
->phy
.ops
.write_reg(hw
, 0x28B4, 0x04CE);
2066 /* Increasing ADC OPAMP stage 1 currents to max */
2067 hw
->phy
.ops
.write_reg(hw
, 0x2F70, 0x29E4);
2068 /* Force 1000 ( required for enabling PHY regs configuration) */
2069 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x0140);
2070 /* Set upd_freq to 6 */
2071 hw
->phy
.ops
.write_reg(hw
, 0x1F30, 0x1606);
2073 hw
->phy
.ops
.write_reg(hw
, 0x1F31, 0xB814);
2074 /* Disable adaptive fixed FFE (Default) */
2075 hw
->phy
.ops
.write_reg(hw
, 0x1F35, 0x002A);
2076 /* Enable FFE hysteresis */
2077 hw
->phy
.ops
.write_reg(hw
, 0x1F3E, 0x0067);
2078 /* Fixed FFE for short cable lengths */
2079 hw
->phy
.ops
.write_reg(hw
, 0x1F54, 0x0065);
2080 /* Fixed FFE for medium cable lengths */
2081 hw
->phy
.ops
.write_reg(hw
, 0x1F55, 0x002A);
2082 /* Fixed FFE for long cable lengths */
2083 hw
->phy
.ops
.write_reg(hw
, 0x1F56, 0x002A);
2084 /* Enable Adaptive Clip Threshold */
2085 hw
->phy
.ops
.write_reg(hw
, 0x1F72, 0x3FB0);
2086 /* AHT reset limit to 1 */
2087 hw
->phy
.ops
.write_reg(hw
, 0x1F76, 0xC0FF);
2088 /* Set AHT master delay to 127 msec */
2089 hw
->phy
.ops
.write_reg(hw
, 0x1F77, 0x1DEC);
2090 /* Set scan bits for AHT */
2091 hw
->phy
.ops
.write_reg(hw
, 0x1F78, 0xF9EF);
2092 /* Set AHT Preset bits */
2093 hw
->phy
.ops
.write_reg(hw
, 0x1F79, 0x0210);
2094 /* Change integ_factor of channel A to 3 */
2095 hw
->phy
.ops
.write_reg(hw
, 0x1895, 0x0003);
2096 /* Change prop_factor of channels BCD to 8 */
2097 hw
->phy
.ops
.write_reg(hw
, 0x1796, 0x0008);
2098 /* Change cg_icount + enable integbp for channels BCD */
2099 hw
->phy
.ops
.write_reg(hw
, 0x1798, 0xD008);
2101 * Change cg_icount + enable integbp + change prop_factor_master
2102 * to 8 for channel A
2104 hw
->phy
.ops
.write_reg(hw
, 0x1898, 0xD918);
2105 /* Disable AHT in Slave mode on channel A */
2106 hw
->phy
.ops
.write_reg(hw
, 0x187A, 0x0800);
2108 * Enable LPLU and disable AN to 1000 in non-D0a states,
2111 hw
->phy
.ops
.write_reg(hw
, 0x0019, 0x008D);
2112 /* Enable restart AN on an1000_dis change */
2113 hw
->phy
.ops
.write_reg(hw
, 0x001B, 0x2080);
2114 /* Enable wh_fifo read clock in 10/100 modes */
2115 hw
->phy
.ops
.write_reg(hw
, 0x0014, 0x0045);
2116 /* Restart AN, Speed selection is 1000 */
2117 hw
->phy
.ops
.write_reg(hw
, 0x0000, 0x1340);
2123 * igb_power_up_phy_copper - Restore copper link in case of PHY power down
2124 * @hw: pointer to the HW structure
2126 * In the case of a PHY power down to save power, or to turn off link during a
2127 * driver unload, restore the link to previous settings.
2129 void igb_power_up_phy_copper(struct e1000_hw
*hw
)
2133 /* The PHY will retain its settings across a power down/up cycle */
2134 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
2135 mii_reg
&= ~MII_CR_POWER_DOWN
;
2136 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
2140 * igb_power_down_phy_copper - Power down copper PHY
2141 * @hw: pointer to the HW structure
2143 * Power down PHY to save power when interface is down and wake on lan
2146 void igb_power_down_phy_copper(struct e1000_hw
*hw
)
2150 /* The PHY will retain its settings across a power down/up cycle */
2151 hw
->phy
.ops
.read_reg(hw
, PHY_CONTROL
, &mii_reg
);
2152 mii_reg
|= MII_CR_POWER_DOWN
;
2153 hw
->phy
.ops
.write_reg(hw
, PHY_CONTROL
, mii_reg
);
2158 * igb_check_polarity_82580 - Checks the polarity.
2159 * @hw: pointer to the HW structure
2161 * Success returns 0, Failure returns -E1000_ERR_PHY (-2)
2163 * Polarity is determined based on the PHY specific status register.
2165 static s32
igb_check_polarity_82580(struct e1000_hw
*hw
)
2167 struct e1000_phy_info
*phy
= &hw
->phy
;
2172 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_STATUS_2
, &data
);
2175 phy
->cable_polarity
= (data
& I82580_PHY_STATUS2_REV_POLARITY
)
2176 ? e1000_rev_polarity_reversed
2177 : e1000_rev_polarity_normal
;
2183 * igb_phy_force_speed_duplex_82580 - Force speed/duplex for I82580 PHY
2184 * @hw: pointer to the HW structure
2186 * Calls the PHY setup function to force speed and duplex. Clears the
2187 * auto-crossover to force MDI manually. Waits for link and returns
2188 * successful if link up is successful, else -E1000_ERR_PHY (-2).
2190 s32
igb_phy_force_speed_duplex_82580(struct e1000_hw
*hw
)
2192 struct e1000_phy_info
*phy
= &hw
->phy
;
2198 ret_val
= phy
->ops
.read_reg(hw
, PHY_CONTROL
, &phy_data
);
2202 igb_phy_force_speed_duplex_setup(hw
, &phy_data
);
2204 ret_val
= phy
->ops
.write_reg(hw
, PHY_CONTROL
, phy_data
);
2209 * Clear Auto-Crossover to force MDI manually. 82580 requires MDI
2210 * forced whenever speed and duplex are forced.
2212 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_CTRL_2
, &phy_data
);
2216 phy_data
&= ~I82580_PHY_CTRL2_AUTO_MDIX
;
2217 phy_data
&= ~I82580_PHY_CTRL2_FORCE_MDI_MDIX
;
2219 ret_val
= phy
->ops
.write_reg(hw
, I82580_PHY_CTRL_2
, phy_data
);
2223 hw_dbg("I82580_PHY_CTRL_2: %X\n", phy_data
);
2227 if (phy
->autoneg_wait_to_complete
) {
2228 hw_dbg("Waiting for forced speed/duplex link on 82580 phy\n");
2230 ret_val
= igb_phy_has_link(hw
,
2238 hw_dbg("Link taking longer than expected.\n");
2241 ret_val
= igb_phy_has_link(hw
,
2254 * igb_get_phy_info_82580 - Retrieve I82580 PHY information
2255 * @hw: pointer to the HW structure
2257 * Read PHY status to determine if link is up. If link is up, then
2258 * set/determine 10base-T extended distance and polarity correction. Read
2259 * PHY port status to determine MDI/MDIx and speed. Based on the speed,
2260 * determine on the cable length, local and remote receiver.
2262 s32
igb_get_phy_info_82580(struct e1000_hw
*hw
)
2264 struct e1000_phy_info
*phy
= &hw
->phy
;
2270 ret_val
= igb_phy_has_link(hw
, 1, 0, &link
);
2275 hw_dbg("Phy info is only valid if link is up\n");
2276 ret_val
= -E1000_ERR_CONFIG
;
2280 phy
->polarity_correction
= true;
2282 ret_val
= igb_check_polarity_82580(hw
);
2286 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_STATUS_2
, &data
);
2290 phy
->is_mdix
= (data
& I82580_PHY_STATUS2_MDIX
) ? true : false;
2292 if ((data
& I82580_PHY_STATUS2_SPEED_MASK
) ==
2293 I82580_PHY_STATUS2_SPEED_1000MBPS
) {
2294 ret_val
= hw
->phy
.ops
.get_cable_length(hw
);
2298 ret_val
= phy
->ops
.read_reg(hw
, PHY_1000T_STATUS
, &data
);
2302 phy
->local_rx
= (data
& SR_1000T_LOCAL_RX_STATUS
)
2303 ? e1000_1000t_rx_status_ok
2304 : e1000_1000t_rx_status_not_ok
;
2306 phy
->remote_rx
= (data
& SR_1000T_REMOTE_RX_STATUS
)
2307 ? e1000_1000t_rx_status_ok
2308 : e1000_1000t_rx_status_not_ok
;
2310 phy
->cable_length
= E1000_CABLE_LENGTH_UNDEFINED
;
2311 phy
->local_rx
= e1000_1000t_rx_status_undefined
;
2312 phy
->remote_rx
= e1000_1000t_rx_status_undefined
;
2320 * igb_get_cable_length_82580 - Determine cable length for 82580 PHY
2321 * @hw: pointer to the HW structure
2323 * Reads the diagnostic status register and verifies result is valid before
2324 * placing it in the phy_cable_length field.
2326 s32
igb_get_cable_length_82580(struct e1000_hw
*hw
)
2328 struct e1000_phy_info
*phy
= &hw
->phy
;
2330 u16 phy_data
, length
;
2333 ret_val
= phy
->ops
.read_reg(hw
, I82580_PHY_DIAG_STATUS
, &phy_data
);
2337 length
= (phy_data
& I82580_DSTATUS_CABLE_LENGTH
) >>
2338 I82580_DSTATUS_CABLE_LENGTH_SHIFT
;
2340 if (length
== E1000_CABLE_LENGTH_UNDEFINED
)
2341 ret_val
= -E1000_ERR_PHY
;
2343 phy
->cable_length
= length
;