1 /*******************************************************************************
3 Intel(R) 82576 Virtual Function Linux driver
4 Copyright(c) 2009 - 2010 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 *******************************************************************************/
28 #include <linux/module.h>
29 #include <linux/types.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/tcp.h>
37 #include <linux/ipv6.h>
38 #include <linux/slab.h>
39 #include <net/checksum.h>
40 #include <net/ip6_checksum.h>
41 #include <linux/mii.h>
42 #include <linux/ethtool.h>
43 #include <linux/if_vlan.h>
44 #include <linux/prefetch.h>
48 #define DRV_VERSION "2.0.1-k"
49 char igbvf_driver_name
[] = "igbvf";
50 const char igbvf_driver_version
[] = DRV_VERSION
;
51 static const char igbvf_driver_string
[] =
52 "Intel(R) Gigabit Virtual Function Network Driver";
53 static const char igbvf_copyright
[] =
54 "Copyright (c) 2009 - 2011 Intel Corporation.";
56 static int igbvf_poll(struct napi_struct
*napi
, int budget
);
57 static void igbvf_reset(struct igbvf_adapter
*);
58 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*);
59 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*);
61 static struct igbvf_info igbvf_vf_info
= {
65 .init_ops
= e1000_init_function_pointers_vf
,
68 static struct igbvf_info igbvf_i350_vf_info
= {
69 .mac
= e1000_vfadapt_i350
,
72 .init_ops
= e1000_init_function_pointers_vf
,
75 static const struct igbvf_info
*igbvf_info_tbl
[] = {
76 [board_vf
] = &igbvf_vf_info
,
77 [board_i350_vf
] = &igbvf_i350_vf_info
,
81 * igbvf_desc_unused - calculate if we have unused descriptors
83 static int igbvf_desc_unused(struct igbvf_ring
*ring
)
85 if (ring
->next_to_clean
> ring
->next_to_use
)
86 return ring
->next_to_clean
- ring
->next_to_use
- 1;
88 return ring
->count
+ ring
->next_to_clean
- ring
->next_to_use
- 1;
92 * igbvf_receive_skb - helper function to handle Rx indications
93 * @adapter: board private structure
94 * @status: descriptor status field as written by hardware
95 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
96 * @skb: pointer to sk_buff to be indicated to stack
98 static void igbvf_receive_skb(struct igbvf_adapter
*adapter
,
99 struct net_device
*netdev
,
101 u32 status
, u16 vlan
)
103 if (status
& E1000_RXD_STAT_VP
) {
104 u16 vid
= le16_to_cpu(vlan
) & E1000_RXD_SPC_VLAN_MASK
;
105 if (test_bit(vid
, adapter
->active_vlans
))
106 __vlan_hwaccel_put_tag(skb
, vid
);
108 netif_receive_skb(skb
);
111 static inline void igbvf_rx_checksum_adv(struct igbvf_adapter
*adapter
,
112 u32 status_err
, struct sk_buff
*skb
)
114 skb_checksum_none_assert(skb
);
116 /* Ignore Checksum bit is set or checksum is disabled through ethtool */
117 if ((status_err
& E1000_RXD_STAT_IXSM
) ||
118 (adapter
->flags
& IGBVF_FLAG_RX_CSUM_DISABLED
))
121 /* TCP/UDP checksum error bit is set */
123 (E1000_RXDEXT_STATERR_TCPE
| E1000_RXDEXT_STATERR_IPE
)) {
124 /* let the stack verify checksum errors */
125 adapter
->hw_csum_err
++;
129 /* It must be a TCP or UDP packet with a valid checksum */
130 if (status_err
& (E1000_RXD_STAT_TCPCS
| E1000_RXD_STAT_UDPCS
))
131 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
133 adapter
->hw_csum_good
++;
137 * igbvf_alloc_rx_buffers - Replace used receive buffers; packet split
138 * @rx_ring: address of ring structure to repopulate
139 * @cleaned_count: number of buffers to repopulate
141 static void igbvf_alloc_rx_buffers(struct igbvf_ring
*rx_ring
,
144 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
145 struct net_device
*netdev
= adapter
->netdev
;
146 struct pci_dev
*pdev
= adapter
->pdev
;
147 union e1000_adv_rx_desc
*rx_desc
;
148 struct igbvf_buffer
*buffer_info
;
153 i
= rx_ring
->next_to_use
;
154 buffer_info
= &rx_ring
->buffer_info
[i
];
156 if (adapter
->rx_ps_hdr_size
)
157 bufsz
= adapter
->rx_ps_hdr_size
;
159 bufsz
= adapter
->rx_buffer_len
;
161 while (cleaned_count
--) {
162 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
164 if (adapter
->rx_ps_hdr_size
&& !buffer_info
->page_dma
) {
165 if (!buffer_info
->page
) {
166 buffer_info
->page
= alloc_page(GFP_ATOMIC
);
167 if (!buffer_info
->page
) {
168 adapter
->alloc_rx_buff_failed
++;
171 buffer_info
->page_offset
= 0;
173 buffer_info
->page_offset
^= PAGE_SIZE
/ 2;
175 buffer_info
->page_dma
=
176 dma_map_page(&pdev
->dev
, buffer_info
->page
,
177 buffer_info
->page_offset
,
182 if (!buffer_info
->skb
) {
183 skb
= netdev_alloc_skb_ip_align(netdev
, bufsz
);
185 adapter
->alloc_rx_buff_failed
++;
189 buffer_info
->skb
= skb
;
190 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
,
194 /* Refresh the desc even if buffer_addrs didn't change because
195 * each write-back erases this info. */
196 if (adapter
->rx_ps_hdr_size
) {
197 rx_desc
->read
.pkt_addr
=
198 cpu_to_le64(buffer_info
->page_dma
);
199 rx_desc
->read
.hdr_addr
= cpu_to_le64(buffer_info
->dma
);
201 rx_desc
->read
.pkt_addr
=
202 cpu_to_le64(buffer_info
->dma
);
203 rx_desc
->read
.hdr_addr
= 0;
207 if (i
== rx_ring
->count
)
209 buffer_info
= &rx_ring
->buffer_info
[i
];
213 if (rx_ring
->next_to_use
!= i
) {
214 rx_ring
->next_to_use
= i
;
216 i
= (rx_ring
->count
- 1);
220 /* Force memory writes to complete before letting h/w
221 * know there are new descriptors to fetch. (Only
222 * applicable for weak-ordered memory model archs,
225 writel(i
, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
230 * igbvf_clean_rx_irq - Send received data up the network stack; legacy
231 * @adapter: board private structure
233 * the return value indicates whether actual cleaning was done, there
234 * is no guarantee that everything was cleaned
236 static bool igbvf_clean_rx_irq(struct igbvf_adapter
*adapter
,
237 int *work_done
, int work_to_do
)
239 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
240 struct net_device
*netdev
= adapter
->netdev
;
241 struct pci_dev
*pdev
= adapter
->pdev
;
242 union e1000_adv_rx_desc
*rx_desc
, *next_rxd
;
243 struct igbvf_buffer
*buffer_info
, *next_buffer
;
245 bool cleaned
= false;
246 int cleaned_count
= 0;
247 unsigned int total_bytes
= 0, total_packets
= 0;
249 u32 length
, hlen
, staterr
;
251 i
= rx_ring
->next_to_clean
;
252 rx_desc
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
253 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
255 while (staterr
& E1000_RXD_STAT_DD
) {
256 if (*work_done
>= work_to_do
)
259 rmb(); /* read descriptor and rx_buffer_info after status DD */
261 buffer_info
= &rx_ring
->buffer_info
[i
];
263 /* HW will not DMA in data larger than the given buffer, even
264 * if it parses the (NFS, of course) header to be larger. In
265 * that case, it fills the header buffer and spills the rest
268 hlen
= (le16_to_cpu(rx_desc
->wb
.lower
.lo_dword
.hs_rss
.hdr_info
) &
269 E1000_RXDADV_HDRBUFLEN_MASK
) >> E1000_RXDADV_HDRBUFLEN_SHIFT
;
270 if (hlen
> adapter
->rx_ps_hdr_size
)
271 hlen
= adapter
->rx_ps_hdr_size
;
273 length
= le16_to_cpu(rx_desc
->wb
.upper
.length
);
277 skb
= buffer_info
->skb
;
278 prefetch(skb
->data
- NET_IP_ALIGN
);
279 buffer_info
->skb
= NULL
;
280 if (!adapter
->rx_ps_hdr_size
) {
281 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
282 adapter
->rx_buffer_len
,
284 buffer_info
->dma
= 0;
285 skb_put(skb
, length
);
289 if (!skb_shinfo(skb
)->nr_frags
) {
290 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
291 adapter
->rx_ps_hdr_size
,
297 dma_unmap_page(&pdev
->dev
, buffer_info
->page_dma
,
300 buffer_info
->page_dma
= 0;
302 skb_fill_page_desc(skb
, skb_shinfo(skb
)->nr_frags
,
304 buffer_info
->page_offset
,
307 if ((adapter
->rx_buffer_len
> (PAGE_SIZE
/ 2)) ||
308 (page_count(buffer_info
->page
) != 1))
309 buffer_info
->page
= NULL
;
311 get_page(buffer_info
->page
);
314 skb
->data_len
+= length
;
315 skb
->truesize
+= PAGE_SIZE
/ 2;
319 if (i
== rx_ring
->count
)
321 next_rxd
= IGBVF_RX_DESC_ADV(*rx_ring
, i
);
323 next_buffer
= &rx_ring
->buffer_info
[i
];
325 if (!(staterr
& E1000_RXD_STAT_EOP
)) {
326 buffer_info
->skb
= next_buffer
->skb
;
327 buffer_info
->dma
= next_buffer
->dma
;
328 next_buffer
->skb
= skb
;
329 next_buffer
->dma
= 0;
333 if (staterr
& E1000_RXDEXT_ERR_FRAME_ERR_MASK
) {
334 dev_kfree_skb_irq(skb
);
338 total_bytes
+= skb
->len
;
341 igbvf_rx_checksum_adv(adapter
, staterr
, skb
);
343 skb
->protocol
= eth_type_trans(skb
, netdev
);
345 igbvf_receive_skb(adapter
, netdev
, skb
, staterr
,
346 rx_desc
->wb
.upper
.vlan
);
349 rx_desc
->wb
.upper
.status_error
= 0;
351 /* return some buffers to hardware, one at a time is too slow */
352 if (cleaned_count
>= IGBVF_RX_BUFFER_WRITE
) {
353 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
357 /* use prefetched values */
359 buffer_info
= next_buffer
;
361 staterr
= le32_to_cpu(rx_desc
->wb
.upper
.status_error
);
364 rx_ring
->next_to_clean
= i
;
365 cleaned_count
= igbvf_desc_unused(rx_ring
);
368 igbvf_alloc_rx_buffers(rx_ring
, cleaned_count
);
370 adapter
->total_rx_packets
+= total_packets
;
371 adapter
->total_rx_bytes
+= total_bytes
;
372 adapter
->net_stats
.rx_bytes
+= total_bytes
;
373 adapter
->net_stats
.rx_packets
+= total_packets
;
377 static void igbvf_put_txbuf(struct igbvf_adapter
*adapter
,
378 struct igbvf_buffer
*buffer_info
)
380 if (buffer_info
->dma
) {
381 if (buffer_info
->mapped_as_page
)
382 dma_unmap_page(&adapter
->pdev
->dev
,
387 dma_unmap_single(&adapter
->pdev
->dev
,
391 buffer_info
->dma
= 0;
393 if (buffer_info
->skb
) {
394 dev_kfree_skb_any(buffer_info
->skb
);
395 buffer_info
->skb
= NULL
;
397 buffer_info
->time_stamp
= 0;
401 * igbvf_setup_tx_resources - allocate Tx resources (Descriptors)
402 * @adapter: board private structure
404 * Return 0 on success, negative on failure
406 int igbvf_setup_tx_resources(struct igbvf_adapter
*adapter
,
407 struct igbvf_ring
*tx_ring
)
409 struct pci_dev
*pdev
= adapter
->pdev
;
412 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
413 tx_ring
->buffer_info
= vzalloc(size
);
414 if (!tx_ring
->buffer_info
)
417 /* round up to nearest 4K */
418 tx_ring
->size
= tx_ring
->count
* sizeof(union e1000_adv_tx_desc
);
419 tx_ring
->size
= ALIGN(tx_ring
->size
, 4096);
421 tx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, tx_ring
->size
,
422 &tx_ring
->dma
, GFP_KERNEL
);
427 tx_ring
->adapter
= adapter
;
428 tx_ring
->next_to_use
= 0;
429 tx_ring
->next_to_clean
= 0;
433 vfree(tx_ring
->buffer_info
);
434 dev_err(&adapter
->pdev
->dev
,
435 "Unable to allocate memory for the transmit descriptor ring\n");
440 * igbvf_setup_rx_resources - allocate Rx resources (Descriptors)
441 * @adapter: board private structure
443 * Returns 0 on success, negative on failure
445 int igbvf_setup_rx_resources(struct igbvf_adapter
*adapter
,
446 struct igbvf_ring
*rx_ring
)
448 struct pci_dev
*pdev
= adapter
->pdev
;
451 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
452 rx_ring
->buffer_info
= vzalloc(size
);
453 if (!rx_ring
->buffer_info
)
456 desc_len
= sizeof(union e1000_adv_rx_desc
);
458 /* Round up to nearest 4K */
459 rx_ring
->size
= rx_ring
->count
* desc_len
;
460 rx_ring
->size
= ALIGN(rx_ring
->size
, 4096);
462 rx_ring
->desc
= dma_alloc_coherent(&pdev
->dev
, rx_ring
->size
,
463 &rx_ring
->dma
, GFP_KERNEL
);
468 rx_ring
->next_to_clean
= 0;
469 rx_ring
->next_to_use
= 0;
471 rx_ring
->adapter
= adapter
;
476 vfree(rx_ring
->buffer_info
);
477 rx_ring
->buffer_info
= NULL
;
478 dev_err(&adapter
->pdev
->dev
,
479 "Unable to allocate memory for the receive descriptor ring\n");
484 * igbvf_clean_tx_ring - Free Tx Buffers
485 * @tx_ring: ring to be cleaned
487 static void igbvf_clean_tx_ring(struct igbvf_ring
*tx_ring
)
489 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
490 struct igbvf_buffer
*buffer_info
;
494 if (!tx_ring
->buffer_info
)
497 /* Free all the Tx ring sk_buffs */
498 for (i
= 0; i
< tx_ring
->count
; i
++) {
499 buffer_info
= &tx_ring
->buffer_info
[i
];
500 igbvf_put_txbuf(adapter
, buffer_info
);
503 size
= sizeof(struct igbvf_buffer
) * tx_ring
->count
;
504 memset(tx_ring
->buffer_info
, 0, size
);
506 /* Zero out the descriptor ring */
507 memset(tx_ring
->desc
, 0, tx_ring
->size
);
509 tx_ring
->next_to_use
= 0;
510 tx_ring
->next_to_clean
= 0;
512 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->head
);
513 writel(0, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
517 * igbvf_free_tx_resources - Free Tx Resources per Queue
518 * @tx_ring: ring to free resources from
520 * Free all transmit software resources
522 void igbvf_free_tx_resources(struct igbvf_ring
*tx_ring
)
524 struct pci_dev
*pdev
= tx_ring
->adapter
->pdev
;
526 igbvf_clean_tx_ring(tx_ring
);
528 vfree(tx_ring
->buffer_info
);
529 tx_ring
->buffer_info
= NULL
;
531 dma_free_coherent(&pdev
->dev
, tx_ring
->size
, tx_ring
->desc
,
534 tx_ring
->desc
= NULL
;
538 * igbvf_clean_rx_ring - Free Rx Buffers per Queue
539 * @adapter: board private structure
541 static void igbvf_clean_rx_ring(struct igbvf_ring
*rx_ring
)
543 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
544 struct igbvf_buffer
*buffer_info
;
545 struct pci_dev
*pdev
= adapter
->pdev
;
549 if (!rx_ring
->buffer_info
)
552 /* Free all the Rx ring sk_buffs */
553 for (i
= 0; i
< rx_ring
->count
; i
++) {
554 buffer_info
= &rx_ring
->buffer_info
[i
];
555 if (buffer_info
->dma
) {
556 if (adapter
->rx_ps_hdr_size
){
557 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
558 adapter
->rx_ps_hdr_size
,
561 dma_unmap_single(&pdev
->dev
, buffer_info
->dma
,
562 adapter
->rx_buffer_len
,
565 buffer_info
->dma
= 0;
568 if (buffer_info
->skb
) {
569 dev_kfree_skb(buffer_info
->skb
);
570 buffer_info
->skb
= NULL
;
573 if (buffer_info
->page
) {
574 if (buffer_info
->page_dma
)
575 dma_unmap_page(&pdev
->dev
,
576 buffer_info
->page_dma
,
579 put_page(buffer_info
->page
);
580 buffer_info
->page
= NULL
;
581 buffer_info
->page_dma
= 0;
582 buffer_info
->page_offset
= 0;
586 size
= sizeof(struct igbvf_buffer
) * rx_ring
->count
;
587 memset(rx_ring
->buffer_info
, 0, size
);
589 /* Zero out the descriptor ring */
590 memset(rx_ring
->desc
, 0, rx_ring
->size
);
592 rx_ring
->next_to_clean
= 0;
593 rx_ring
->next_to_use
= 0;
595 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->head
);
596 writel(0, adapter
->hw
.hw_addr
+ rx_ring
->tail
);
600 * igbvf_free_rx_resources - Free Rx Resources
601 * @rx_ring: ring to clean the resources from
603 * Free all receive software resources
606 void igbvf_free_rx_resources(struct igbvf_ring
*rx_ring
)
608 struct pci_dev
*pdev
= rx_ring
->adapter
->pdev
;
610 igbvf_clean_rx_ring(rx_ring
);
612 vfree(rx_ring
->buffer_info
);
613 rx_ring
->buffer_info
= NULL
;
615 dma_free_coherent(&pdev
->dev
, rx_ring
->size
, rx_ring
->desc
,
617 rx_ring
->desc
= NULL
;
621 * igbvf_update_itr - update the dynamic ITR value based on statistics
622 * @adapter: pointer to adapter
623 * @itr_setting: current adapter->itr
624 * @packets: the number of packets during this measurement interval
625 * @bytes: the number of bytes during this measurement interval
627 * Stores a new ITR value based on packets and byte
628 * counts during the last interrupt. The advantage of per interrupt
629 * computation is faster updates and more accurate ITR for the current
630 * traffic pattern. Constants in this function were computed
631 * based on theoretical maximum wire speed and thresholds were set based
632 * on testing data as well as attempting to minimize response time
633 * while increasing bulk throughput. This functionality is controlled
634 * by the InterruptThrottleRate module parameter.
636 static unsigned int igbvf_update_itr(struct igbvf_adapter
*adapter
,
637 u16 itr_setting
, int packets
,
640 unsigned int retval
= itr_setting
;
643 goto update_itr_done
;
645 switch (itr_setting
) {
647 /* handle TSO and jumbo frames */
648 if (bytes
/packets
> 8000)
649 retval
= bulk_latency
;
650 else if ((packets
< 5) && (bytes
> 512))
651 retval
= low_latency
;
653 case low_latency
: /* 50 usec aka 20000 ints/s */
655 /* this if handles the TSO accounting */
656 if (bytes
/packets
> 8000)
657 retval
= bulk_latency
;
658 else if ((packets
< 10) || ((bytes
/packets
) > 1200))
659 retval
= bulk_latency
;
660 else if ((packets
> 35))
661 retval
= lowest_latency
;
662 } else if (bytes
/packets
> 2000) {
663 retval
= bulk_latency
;
664 } else if (packets
<= 2 && bytes
< 512) {
665 retval
= lowest_latency
;
668 case bulk_latency
: /* 250 usec aka 4000 ints/s */
671 retval
= low_latency
;
672 } else if (bytes
< 6000) {
673 retval
= low_latency
;
682 static void igbvf_set_itr(struct igbvf_adapter
*adapter
)
684 struct e1000_hw
*hw
= &adapter
->hw
;
686 u32 new_itr
= adapter
->itr
;
688 adapter
->tx_itr
= igbvf_update_itr(adapter
, adapter
->tx_itr
,
689 adapter
->total_tx_packets
,
690 adapter
->total_tx_bytes
);
691 /* conservative mode (itr 3) eliminates the lowest_latency setting */
692 if (adapter
->itr_setting
== 3 && adapter
->tx_itr
== lowest_latency
)
693 adapter
->tx_itr
= low_latency
;
695 adapter
->rx_itr
= igbvf_update_itr(adapter
, adapter
->rx_itr
,
696 adapter
->total_rx_packets
,
697 adapter
->total_rx_bytes
);
698 /* conservative mode (itr 3) eliminates the lowest_latency setting */
699 if (adapter
->itr_setting
== 3 && adapter
->rx_itr
== lowest_latency
)
700 adapter
->rx_itr
= low_latency
;
702 current_itr
= max(adapter
->rx_itr
, adapter
->tx_itr
);
704 switch (current_itr
) {
705 /* counts and packets in update_itr are dependent on these numbers */
710 new_itr
= 20000; /* aka hwitr = ~200 */
719 if (new_itr
!= adapter
->itr
) {
721 * this attempts to bias the interrupt rate towards Bulk
722 * by adding intermediate steps when interrupt rate is
725 new_itr
= new_itr
> adapter
->itr
?
726 min(adapter
->itr
+ (new_itr
>> 2), new_itr
) :
728 adapter
->itr
= new_itr
;
729 adapter
->rx_ring
->itr_val
= 1952;
731 if (adapter
->msix_entries
)
732 adapter
->rx_ring
->set_itr
= 1;
739 * igbvf_clean_tx_irq - Reclaim resources after transmit completes
740 * @adapter: board private structure
741 * returns true if ring is completely cleaned
743 static bool igbvf_clean_tx_irq(struct igbvf_ring
*tx_ring
)
745 struct igbvf_adapter
*adapter
= tx_ring
->adapter
;
746 struct net_device
*netdev
= adapter
->netdev
;
747 struct igbvf_buffer
*buffer_info
;
749 union e1000_adv_tx_desc
*tx_desc
, *eop_desc
;
750 unsigned int total_bytes
= 0, total_packets
= 0;
751 unsigned int i
, eop
, count
= 0;
752 bool cleaned
= false;
754 i
= tx_ring
->next_to_clean
;
755 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
756 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
758 while ((eop_desc
->wb
.status
& cpu_to_le32(E1000_TXD_STAT_DD
)) &&
759 (count
< tx_ring
->count
)) {
760 rmb(); /* read buffer_info after eop_desc status */
761 for (cleaned
= false; !cleaned
; count
++) {
762 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
763 buffer_info
= &tx_ring
->buffer_info
[i
];
764 cleaned
= (i
== eop
);
765 skb
= buffer_info
->skb
;
768 unsigned int segs
, bytecount
;
770 /* gso_segs is currently only valid for tcp */
771 segs
= skb_shinfo(skb
)->gso_segs
?: 1;
772 /* multiply data chunks by size of headers */
773 bytecount
= ((segs
- 1) * skb_headlen(skb
)) +
775 total_packets
+= segs
;
776 total_bytes
+= bytecount
;
779 igbvf_put_txbuf(adapter
, buffer_info
);
780 tx_desc
->wb
.status
= 0;
783 if (i
== tx_ring
->count
)
786 eop
= tx_ring
->buffer_info
[i
].next_to_watch
;
787 eop_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, eop
);
790 tx_ring
->next_to_clean
= i
;
792 if (unlikely(count
&&
793 netif_carrier_ok(netdev
) &&
794 igbvf_desc_unused(tx_ring
) >= IGBVF_TX_QUEUE_WAKE
)) {
795 /* Make sure that anybody stopping the queue after this
796 * sees the new next_to_clean.
799 if (netif_queue_stopped(netdev
) &&
800 !(test_bit(__IGBVF_DOWN
, &adapter
->state
))) {
801 netif_wake_queue(netdev
);
802 ++adapter
->restart_queue
;
806 adapter
->net_stats
.tx_bytes
+= total_bytes
;
807 adapter
->net_stats
.tx_packets
+= total_packets
;
808 return count
< tx_ring
->count
;
811 static irqreturn_t
igbvf_msix_other(int irq
, void *data
)
813 struct net_device
*netdev
= data
;
814 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
815 struct e1000_hw
*hw
= &adapter
->hw
;
817 adapter
->int_counter1
++;
819 netif_carrier_off(netdev
);
820 hw
->mac
.get_link_status
= 1;
821 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
822 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
824 ew32(EIMS
, adapter
->eims_other
);
829 static irqreturn_t
igbvf_intr_msix_tx(int irq
, void *data
)
831 struct net_device
*netdev
= data
;
832 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
833 struct e1000_hw
*hw
= &adapter
->hw
;
834 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
837 adapter
->total_tx_bytes
= 0;
838 adapter
->total_tx_packets
= 0;
840 /* auto mask will automatically reenable the interrupt when we write
842 if (!igbvf_clean_tx_irq(tx_ring
))
843 /* Ring was not completely cleaned, so fire another interrupt */
844 ew32(EICS
, tx_ring
->eims_value
);
846 ew32(EIMS
, tx_ring
->eims_value
);
851 static irqreturn_t
igbvf_intr_msix_rx(int irq
, void *data
)
853 struct net_device
*netdev
= data
;
854 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
856 adapter
->int_counter0
++;
858 /* Write the ITR value calculated at the end of the
859 * previous interrupt.
861 if (adapter
->rx_ring
->set_itr
) {
862 writel(adapter
->rx_ring
->itr_val
,
863 adapter
->hw
.hw_addr
+ adapter
->rx_ring
->itr_register
);
864 adapter
->rx_ring
->set_itr
= 0;
867 if (napi_schedule_prep(&adapter
->rx_ring
->napi
)) {
868 adapter
->total_rx_bytes
= 0;
869 adapter
->total_rx_packets
= 0;
870 __napi_schedule(&adapter
->rx_ring
->napi
);
876 #define IGBVF_NO_QUEUE -1
878 static void igbvf_assign_vector(struct igbvf_adapter
*adapter
, int rx_queue
,
879 int tx_queue
, int msix_vector
)
881 struct e1000_hw
*hw
= &adapter
->hw
;
884 /* 82576 uses a table-based method for assigning vectors.
885 Each queue has a single entry in the table to which we write
886 a vector number along with a "valid" bit. Sadly, the layout
887 of the table is somewhat counterintuitive. */
888 if (rx_queue
> IGBVF_NO_QUEUE
) {
889 index
= (rx_queue
>> 1);
890 ivar
= array_er32(IVAR0
, index
);
891 if (rx_queue
& 0x1) {
892 /* vector goes into third byte of register */
893 ivar
= ivar
& 0xFF00FFFF;
894 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 16;
896 /* vector goes into low byte of register */
897 ivar
= ivar
& 0xFFFFFF00;
898 ivar
|= msix_vector
| E1000_IVAR_VALID
;
900 adapter
->rx_ring
[rx_queue
].eims_value
= 1 << msix_vector
;
901 array_ew32(IVAR0
, index
, ivar
);
903 if (tx_queue
> IGBVF_NO_QUEUE
) {
904 index
= (tx_queue
>> 1);
905 ivar
= array_er32(IVAR0
, index
);
906 if (tx_queue
& 0x1) {
907 /* vector goes into high byte of register */
908 ivar
= ivar
& 0x00FFFFFF;
909 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 24;
911 /* vector goes into second byte of register */
912 ivar
= ivar
& 0xFFFF00FF;
913 ivar
|= (msix_vector
| E1000_IVAR_VALID
) << 8;
915 adapter
->tx_ring
[tx_queue
].eims_value
= 1 << msix_vector
;
916 array_ew32(IVAR0
, index
, ivar
);
921 * igbvf_configure_msix - Configure MSI-X hardware
923 * igbvf_configure_msix sets up the hardware to properly
924 * generate MSI-X interrupts.
926 static void igbvf_configure_msix(struct igbvf_adapter
*adapter
)
929 struct e1000_hw
*hw
= &adapter
->hw
;
930 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
931 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
934 adapter
->eims_enable_mask
= 0;
936 igbvf_assign_vector(adapter
, IGBVF_NO_QUEUE
, 0, vector
++);
937 adapter
->eims_enable_mask
|= tx_ring
->eims_value
;
938 if (tx_ring
->itr_val
)
939 writel(tx_ring
->itr_val
,
940 hw
->hw_addr
+ tx_ring
->itr_register
);
942 writel(1952, hw
->hw_addr
+ tx_ring
->itr_register
);
944 igbvf_assign_vector(adapter
, 0, IGBVF_NO_QUEUE
, vector
++);
945 adapter
->eims_enable_mask
|= rx_ring
->eims_value
;
946 if (rx_ring
->itr_val
)
947 writel(rx_ring
->itr_val
,
948 hw
->hw_addr
+ rx_ring
->itr_register
);
950 writel(1952, hw
->hw_addr
+ rx_ring
->itr_register
);
952 /* set vector for other causes, i.e. link changes */
954 tmp
= (vector
++ | E1000_IVAR_VALID
);
956 ew32(IVAR_MISC
, tmp
);
958 adapter
->eims_enable_mask
= (1 << (vector
)) - 1;
959 adapter
->eims_other
= 1 << (vector
- 1);
963 static void igbvf_reset_interrupt_capability(struct igbvf_adapter
*adapter
)
965 if (adapter
->msix_entries
) {
966 pci_disable_msix(adapter
->pdev
);
967 kfree(adapter
->msix_entries
);
968 adapter
->msix_entries
= NULL
;
973 * igbvf_set_interrupt_capability - set MSI or MSI-X if supported
975 * Attempt to configure interrupts using the best available
976 * capabilities of the hardware and kernel.
978 static void igbvf_set_interrupt_capability(struct igbvf_adapter
*adapter
)
983 /* we allocate 3 vectors, 1 for tx, 1 for rx, one for pf messages */
984 adapter
->msix_entries
= kcalloc(3, sizeof(struct msix_entry
),
986 if (adapter
->msix_entries
) {
987 for (i
= 0; i
< 3; i
++)
988 adapter
->msix_entries
[i
].entry
= i
;
990 err
= pci_enable_msix(adapter
->pdev
,
991 adapter
->msix_entries
, 3);
996 dev_err(&adapter
->pdev
->dev
,
997 "Failed to initialize MSI-X interrupts.\n");
998 igbvf_reset_interrupt_capability(adapter
);
1003 * igbvf_request_msix - Initialize MSI-X interrupts
1005 * igbvf_request_msix allocates MSI-X vectors and requests interrupts from the
1008 static int igbvf_request_msix(struct igbvf_adapter
*adapter
)
1010 struct net_device
*netdev
= adapter
->netdev
;
1011 int err
= 0, vector
= 0;
1013 if (strlen(netdev
->name
) < (IFNAMSIZ
- 5)) {
1014 sprintf(adapter
->tx_ring
->name
, "%s-tx-0", netdev
->name
);
1015 sprintf(adapter
->rx_ring
->name
, "%s-rx-0", netdev
->name
);
1017 memcpy(adapter
->tx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1018 memcpy(adapter
->rx_ring
->name
, netdev
->name
, IFNAMSIZ
);
1021 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1022 igbvf_intr_msix_tx
, 0, adapter
->tx_ring
->name
,
1027 adapter
->tx_ring
->itr_register
= E1000_EITR(vector
);
1028 adapter
->tx_ring
->itr_val
= 1952;
1031 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1032 igbvf_intr_msix_rx
, 0, adapter
->rx_ring
->name
,
1037 adapter
->rx_ring
->itr_register
= E1000_EITR(vector
);
1038 adapter
->rx_ring
->itr_val
= 1952;
1041 err
= request_irq(adapter
->msix_entries
[vector
].vector
,
1042 igbvf_msix_other
, 0, netdev
->name
, netdev
);
1046 igbvf_configure_msix(adapter
);
1053 * igbvf_alloc_queues - Allocate memory for all rings
1054 * @adapter: board private structure to initialize
1056 static int __devinit
igbvf_alloc_queues(struct igbvf_adapter
*adapter
)
1058 struct net_device
*netdev
= adapter
->netdev
;
1060 adapter
->tx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1061 if (!adapter
->tx_ring
)
1064 adapter
->rx_ring
= kzalloc(sizeof(struct igbvf_ring
), GFP_KERNEL
);
1065 if (!adapter
->rx_ring
) {
1066 kfree(adapter
->tx_ring
);
1070 netif_napi_add(netdev
, &adapter
->rx_ring
->napi
, igbvf_poll
, 64);
1076 * igbvf_request_irq - initialize interrupts
1078 * Attempts to configure interrupts using the best available
1079 * capabilities of the hardware and kernel.
1081 static int igbvf_request_irq(struct igbvf_adapter
*adapter
)
1085 /* igbvf supports msi-x only */
1086 if (adapter
->msix_entries
)
1087 err
= igbvf_request_msix(adapter
);
1092 dev_err(&adapter
->pdev
->dev
,
1093 "Unable to allocate interrupt, Error: %d\n", err
);
1098 static void igbvf_free_irq(struct igbvf_adapter
*adapter
)
1100 struct net_device
*netdev
= adapter
->netdev
;
1103 if (adapter
->msix_entries
) {
1104 for (vector
= 0; vector
< 3; vector
++)
1105 free_irq(adapter
->msix_entries
[vector
].vector
, netdev
);
1110 * igbvf_irq_disable - Mask off interrupt generation on the NIC
1112 static void igbvf_irq_disable(struct igbvf_adapter
*adapter
)
1114 struct e1000_hw
*hw
= &adapter
->hw
;
1118 if (adapter
->msix_entries
)
1123 * igbvf_irq_enable - Enable default interrupt generation settings
1125 static void igbvf_irq_enable(struct igbvf_adapter
*adapter
)
1127 struct e1000_hw
*hw
= &adapter
->hw
;
1129 ew32(EIAC
, adapter
->eims_enable_mask
);
1130 ew32(EIAM
, adapter
->eims_enable_mask
);
1131 ew32(EIMS
, adapter
->eims_enable_mask
);
1135 * igbvf_poll - NAPI Rx polling callback
1136 * @napi: struct associated with this polling callback
1137 * @budget: amount of packets driver is allowed to process this poll
1139 static int igbvf_poll(struct napi_struct
*napi
, int budget
)
1141 struct igbvf_ring
*rx_ring
= container_of(napi
, struct igbvf_ring
, napi
);
1142 struct igbvf_adapter
*adapter
= rx_ring
->adapter
;
1143 struct e1000_hw
*hw
= &adapter
->hw
;
1146 igbvf_clean_rx_irq(adapter
, &work_done
, budget
);
1148 /* If not enough Rx work done, exit the polling mode */
1149 if (work_done
< budget
) {
1150 napi_complete(napi
);
1152 if (adapter
->itr_setting
& 3)
1153 igbvf_set_itr(adapter
);
1155 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1156 ew32(EIMS
, adapter
->rx_ring
->eims_value
);
1163 * igbvf_set_rlpml - set receive large packet maximum length
1164 * @adapter: board private structure
1166 * Configure the maximum size of packets that will be received
1168 static void igbvf_set_rlpml(struct igbvf_adapter
*adapter
)
1171 struct e1000_hw
*hw
= &adapter
->hw
;
1173 max_frame_size
= adapter
->max_frame_size
+ VLAN_TAG_SIZE
;
1174 e1000_rlpml_set_vf(hw
, max_frame_size
);
1177 static void igbvf_vlan_rx_add_vid(struct net_device
*netdev
, u16 vid
)
1179 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1180 struct e1000_hw
*hw
= &adapter
->hw
;
1182 if (hw
->mac
.ops
.set_vfta(hw
, vid
, true))
1183 dev_err(&adapter
->pdev
->dev
, "Failed to add vlan id %d\n", vid
);
1185 set_bit(vid
, adapter
->active_vlans
);
1188 static void igbvf_vlan_rx_kill_vid(struct net_device
*netdev
, u16 vid
)
1190 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1191 struct e1000_hw
*hw
= &adapter
->hw
;
1193 igbvf_irq_disable(adapter
);
1195 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1196 igbvf_irq_enable(adapter
);
1198 if (hw
->mac
.ops
.set_vfta(hw
, vid
, false))
1199 dev_err(&adapter
->pdev
->dev
,
1200 "Failed to remove vlan id %d\n", vid
);
1202 clear_bit(vid
, adapter
->active_vlans
);
1205 static void igbvf_restore_vlan(struct igbvf_adapter
*adapter
)
1209 for_each_set_bit(vid
, adapter
->active_vlans
, VLAN_N_VID
)
1210 igbvf_vlan_rx_add_vid(adapter
->netdev
, vid
);
1214 * igbvf_configure_tx - Configure Transmit Unit after Reset
1215 * @adapter: board private structure
1217 * Configure the Tx unit of the MAC after a reset.
1219 static void igbvf_configure_tx(struct igbvf_adapter
*adapter
)
1221 struct e1000_hw
*hw
= &adapter
->hw
;
1222 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1224 u32 txdctl
, dca_txctrl
;
1226 /* disable transmits */
1227 txdctl
= er32(TXDCTL(0));
1228 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1232 /* Setup the HW Tx Head and Tail descriptor pointers */
1233 ew32(TDLEN(0), tx_ring
->count
* sizeof(union e1000_adv_tx_desc
));
1234 tdba
= tx_ring
->dma
;
1235 ew32(TDBAL(0), (tdba
& DMA_BIT_MASK(32)));
1236 ew32(TDBAH(0), (tdba
>> 32));
1239 tx_ring
->head
= E1000_TDH(0);
1240 tx_ring
->tail
= E1000_TDT(0);
1242 /* Turn off Relaxed Ordering on head write-backs. The writebacks
1243 * MUST be delivered in order or it will completely screw up
1246 dca_txctrl
= er32(DCA_TXCTRL(0));
1247 dca_txctrl
&= ~E1000_DCA_TXCTRL_TX_WB_RO_EN
;
1248 ew32(DCA_TXCTRL(0), dca_txctrl
);
1250 /* enable transmits */
1251 txdctl
|= E1000_TXDCTL_QUEUE_ENABLE
;
1252 ew32(TXDCTL(0), txdctl
);
1254 /* Setup Transmit Descriptor Settings for eop descriptor */
1255 adapter
->txd_cmd
= E1000_ADVTXD_DCMD_EOP
| E1000_ADVTXD_DCMD_IFCS
;
1257 /* enable Report Status bit */
1258 adapter
->txd_cmd
|= E1000_ADVTXD_DCMD_RS
;
1262 * igbvf_setup_srrctl - configure the receive control registers
1263 * @adapter: Board private structure
1265 static void igbvf_setup_srrctl(struct igbvf_adapter
*adapter
)
1267 struct e1000_hw
*hw
= &adapter
->hw
;
1270 srrctl
&= ~(E1000_SRRCTL_DESCTYPE_MASK
|
1271 E1000_SRRCTL_BSIZEHDR_MASK
|
1272 E1000_SRRCTL_BSIZEPKT_MASK
);
1274 /* Enable queue drop to avoid head of line blocking */
1275 srrctl
|= E1000_SRRCTL_DROP_EN
;
1277 /* Setup buffer sizes */
1278 srrctl
|= ALIGN(adapter
->rx_buffer_len
, 1024) >>
1279 E1000_SRRCTL_BSIZEPKT_SHIFT
;
1281 if (adapter
->rx_buffer_len
< 2048) {
1282 adapter
->rx_ps_hdr_size
= 0;
1283 srrctl
|= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF
;
1285 adapter
->rx_ps_hdr_size
= 128;
1286 srrctl
|= adapter
->rx_ps_hdr_size
<<
1287 E1000_SRRCTL_BSIZEHDRSIZE_SHIFT
;
1288 srrctl
|= E1000_SRRCTL_DESCTYPE_HDR_SPLIT_ALWAYS
;
1291 ew32(SRRCTL(0), srrctl
);
1295 * igbvf_configure_rx - Configure Receive Unit after Reset
1296 * @adapter: board private structure
1298 * Configure the Rx unit of the MAC after a reset.
1300 static void igbvf_configure_rx(struct igbvf_adapter
*adapter
)
1302 struct e1000_hw
*hw
= &adapter
->hw
;
1303 struct igbvf_ring
*rx_ring
= adapter
->rx_ring
;
1307 /* disable receives */
1308 rxdctl
= er32(RXDCTL(0));
1309 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1313 rdlen
= rx_ring
->count
* sizeof(union e1000_adv_rx_desc
);
1316 * Setup the HW Rx Head and Tail Descriptor Pointers and
1317 * the Base and Length of the Rx Descriptor Ring
1319 rdba
= rx_ring
->dma
;
1320 ew32(RDBAL(0), (rdba
& DMA_BIT_MASK(32)));
1321 ew32(RDBAH(0), (rdba
>> 32));
1322 ew32(RDLEN(0), rx_ring
->count
* sizeof(union e1000_adv_rx_desc
));
1323 rx_ring
->head
= E1000_RDH(0);
1324 rx_ring
->tail
= E1000_RDT(0);
1328 rxdctl
|= E1000_RXDCTL_QUEUE_ENABLE
;
1329 rxdctl
&= 0xFFF00000;
1330 rxdctl
|= IGBVF_RX_PTHRESH
;
1331 rxdctl
|= IGBVF_RX_HTHRESH
<< 8;
1332 rxdctl
|= IGBVF_RX_WTHRESH
<< 16;
1334 igbvf_set_rlpml(adapter
);
1336 /* enable receives */
1337 ew32(RXDCTL(0), rxdctl
);
1341 * igbvf_set_multi - Multicast and Promiscuous mode set
1342 * @netdev: network interface device structure
1344 * The set_multi entry point is called whenever the multicast address
1345 * list or the network interface flags are updated. This routine is
1346 * responsible for configuring the hardware for proper multicast,
1347 * promiscuous mode, and all-multi behavior.
1349 static void igbvf_set_multi(struct net_device
*netdev
)
1351 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1352 struct e1000_hw
*hw
= &adapter
->hw
;
1353 struct netdev_hw_addr
*ha
;
1354 u8
*mta_list
= NULL
;
1357 if (!netdev_mc_empty(netdev
)) {
1358 mta_list
= kmalloc(netdev_mc_count(netdev
) * 6, GFP_ATOMIC
);
1360 dev_err(&adapter
->pdev
->dev
,
1361 "failed to allocate multicast filter list\n");
1366 /* prepare a packed array of only addresses. */
1368 netdev_for_each_mc_addr(ha
, netdev
)
1369 memcpy(mta_list
+ (i
++ * ETH_ALEN
), ha
->addr
, ETH_ALEN
);
1371 hw
->mac
.ops
.update_mc_addr_list(hw
, mta_list
, i
, 0, 0);
1376 * igbvf_configure - configure the hardware for Rx and Tx
1377 * @adapter: private board structure
1379 static void igbvf_configure(struct igbvf_adapter
*adapter
)
1381 igbvf_set_multi(adapter
->netdev
);
1383 igbvf_restore_vlan(adapter
);
1385 igbvf_configure_tx(adapter
);
1386 igbvf_setup_srrctl(adapter
);
1387 igbvf_configure_rx(adapter
);
1388 igbvf_alloc_rx_buffers(adapter
->rx_ring
,
1389 igbvf_desc_unused(adapter
->rx_ring
));
1392 /* igbvf_reset - bring the hardware into a known good state
1394 * This function boots the hardware and enables some settings that
1395 * require a configuration cycle of the hardware - those cannot be
1396 * set/changed during runtime. After reset the device needs to be
1397 * properly configured for Rx, Tx etc.
1399 static void igbvf_reset(struct igbvf_adapter
*adapter
)
1401 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1402 struct net_device
*netdev
= adapter
->netdev
;
1403 struct e1000_hw
*hw
= &adapter
->hw
;
1405 /* Allow time for pending master requests to run */
1406 if (mac
->ops
.reset_hw(hw
))
1407 dev_err(&adapter
->pdev
->dev
, "PF still resetting\n");
1409 mac
->ops
.init_hw(hw
);
1411 if (is_valid_ether_addr(adapter
->hw
.mac
.addr
)) {
1412 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
,
1414 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
,
1418 adapter
->last_reset
= jiffies
;
1421 int igbvf_up(struct igbvf_adapter
*adapter
)
1423 struct e1000_hw
*hw
= &adapter
->hw
;
1425 /* hardware has been reset, we need to reload some things */
1426 igbvf_configure(adapter
);
1428 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1430 napi_enable(&adapter
->rx_ring
->napi
);
1431 if (adapter
->msix_entries
)
1432 igbvf_configure_msix(adapter
);
1434 /* Clear any pending interrupts. */
1436 igbvf_irq_enable(adapter
);
1438 /* start the watchdog */
1439 hw
->mac
.get_link_status
= 1;
1440 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1446 void igbvf_down(struct igbvf_adapter
*adapter
)
1448 struct net_device
*netdev
= adapter
->netdev
;
1449 struct e1000_hw
*hw
= &adapter
->hw
;
1453 * signal that we're down so the interrupt handler does not
1454 * reschedule our watchdog timer
1456 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1458 /* disable receives in the hardware */
1459 rxdctl
= er32(RXDCTL(0));
1460 ew32(RXDCTL(0), rxdctl
& ~E1000_RXDCTL_QUEUE_ENABLE
);
1462 netif_stop_queue(netdev
);
1464 /* disable transmits in the hardware */
1465 txdctl
= er32(TXDCTL(0));
1466 ew32(TXDCTL(0), txdctl
& ~E1000_TXDCTL_QUEUE_ENABLE
);
1468 /* flush both disables and wait for them to finish */
1472 napi_disable(&adapter
->rx_ring
->napi
);
1474 igbvf_irq_disable(adapter
);
1476 del_timer_sync(&adapter
->watchdog_timer
);
1478 netif_carrier_off(netdev
);
1480 /* record the stats before reset*/
1481 igbvf_update_stats(adapter
);
1483 adapter
->link_speed
= 0;
1484 adapter
->link_duplex
= 0;
1486 igbvf_reset(adapter
);
1487 igbvf_clean_tx_ring(adapter
->tx_ring
);
1488 igbvf_clean_rx_ring(adapter
->rx_ring
);
1491 void igbvf_reinit_locked(struct igbvf_adapter
*adapter
)
1494 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
1496 igbvf_down(adapter
);
1498 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
1502 * igbvf_sw_init - Initialize general software structures (struct igbvf_adapter)
1503 * @adapter: board private structure to initialize
1505 * igbvf_sw_init initializes the Adapter private data structure.
1506 * Fields are initialized based on PCI device information and
1507 * OS network device settings (MTU size).
1509 static int __devinit
igbvf_sw_init(struct igbvf_adapter
*adapter
)
1511 struct net_device
*netdev
= adapter
->netdev
;
1514 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
;
1515 adapter
->rx_ps_hdr_size
= 0;
1516 adapter
->max_frame_size
= netdev
->mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
1517 adapter
->min_frame_size
= ETH_ZLEN
+ ETH_FCS_LEN
;
1519 adapter
->tx_int_delay
= 8;
1520 adapter
->tx_abs_int_delay
= 32;
1521 adapter
->rx_int_delay
= 0;
1522 adapter
->rx_abs_int_delay
= 8;
1523 adapter
->itr_setting
= 3;
1524 adapter
->itr
= 20000;
1526 /* Set various function pointers */
1527 adapter
->ei
->init_ops(&adapter
->hw
);
1529 rc
= adapter
->hw
.mac
.ops
.init_params(&adapter
->hw
);
1533 rc
= adapter
->hw
.mbx
.ops
.init_params(&adapter
->hw
);
1537 igbvf_set_interrupt_capability(adapter
);
1539 if (igbvf_alloc_queues(adapter
))
1542 spin_lock_init(&adapter
->tx_queue_lock
);
1544 /* Explicitly disable IRQ since the NIC can be in any state. */
1545 igbvf_irq_disable(adapter
);
1547 spin_lock_init(&adapter
->stats_lock
);
1549 set_bit(__IGBVF_DOWN
, &adapter
->state
);
1553 static void igbvf_initialize_last_counter_stats(struct igbvf_adapter
*adapter
)
1555 struct e1000_hw
*hw
= &adapter
->hw
;
1557 adapter
->stats
.last_gprc
= er32(VFGPRC
);
1558 adapter
->stats
.last_gorc
= er32(VFGORC
);
1559 adapter
->stats
.last_gptc
= er32(VFGPTC
);
1560 adapter
->stats
.last_gotc
= er32(VFGOTC
);
1561 adapter
->stats
.last_mprc
= er32(VFMPRC
);
1562 adapter
->stats
.last_gotlbc
= er32(VFGOTLBC
);
1563 adapter
->stats
.last_gptlbc
= er32(VFGPTLBC
);
1564 adapter
->stats
.last_gorlbc
= er32(VFGORLBC
);
1565 adapter
->stats
.last_gprlbc
= er32(VFGPRLBC
);
1567 adapter
->stats
.base_gprc
= er32(VFGPRC
);
1568 adapter
->stats
.base_gorc
= er32(VFGORC
);
1569 adapter
->stats
.base_gptc
= er32(VFGPTC
);
1570 adapter
->stats
.base_gotc
= er32(VFGOTC
);
1571 adapter
->stats
.base_mprc
= er32(VFMPRC
);
1572 adapter
->stats
.base_gotlbc
= er32(VFGOTLBC
);
1573 adapter
->stats
.base_gptlbc
= er32(VFGPTLBC
);
1574 adapter
->stats
.base_gorlbc
= er32(VFGORLBC
);
1575 adapter
->stats
.base_gprlbc
= er32(VFGPRLBC
);
1579 * igbvf_open - Called when a network interface is made active
1580 * @netdev: network interface device structure
1582 * Returns 0 on success, negative value on failure
1584 * The open entry point is called when a network interface is made
1585 * active by the system (IFF_UP). At this point all resources needed
1586 * for transmit and receive operations are allocated, the interrupt
1587 * handler is registered with the OS, the watchdog timer is started,
1588 * and the stack is notified that the interface is ready.
1590 static int igbvf_open(struct net_device
*netdev
)
1592 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1593 struct e1000_hw
*hw
= &adapter
->hw
;
1596 /* disallow open during test */
1597 if (test_bit(__IGBVF_TESTING
, &adapter
->state
))
1600 /* allocate transmit descriptors */
1601 err
= igbvf_setup_tx_resources(adapter
, adapter
->tx_ring
);
1605 /* allocate receive descriptors */
1606 err
= igbvf_setup_rx_resources(adapter
, adapter
->rx_ring
);
1611 * before we allocate an interrupt, we must be ready to handle it.
1612 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1613 * as soon as we call pci_request_irq, so we have to setup our
1614 * clean_rx handler before we do so.
1616 igbvf_configure(adapter
);
1618 err
= igbvf_request_irq(adapter
);
1622 /* From here on the code is the same as igbvf_up() */
1623 clear_bit(__IGBVF_DOWN
, &adapter
->state
);
1625 napi_enable(&adapter
->rx_ring
->napi
);
1627 /* clear any pending interrupts */
1630 igbvf_irq_enable(adapter
);
1632 /* start the watchdog */
1633 hw
->mac
.get_link_status
= 1;
1634 mod_timer(&adapter
->watchdog_timer
, jiffies
+ 1);
1639 igbvf_free_rx_resources(adapter
->rx_ring
);
1641 igbvf_free_tx_resources(adapter
->tx_ring
);
1643 igbvf_reset(adapter
);
1649 * igbvf_close - Disables a network interface
1650 * @netdev: network interface device structure
1652 * Returns 0, this is not allowed to fail
1654 * The close entry point is called when an interface is de-activated
1655 * by the OS. The hardware is still under the drivers control, but
1656 * needs to be disabled. A global MAC reset is issued to stop the
1657 * hardware, and all transmit and receive resources are freed.
1659 static int igbvf_close(struct net_device
*netdev
)
1661 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1663 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
1664 igbvf_down(adapter
);
1666 igbvf_free_irq(adapter
);
1668 igbvf_free_tx_resources(adapter
->tx_ring
);
1669 igbvf_free_rx_resources(adapter
->rx_ring
);
1674 * igbvf_set_mac - Change the Ethernet Address of the NIC
1675 * @netdev: network interface device structure
1676 * @p: pointer to an address structure
1678 * Returns 0 on success, negative on failure
1680 static int igbvf_set_mac(struct net_device
*netdev
, void *p
)
1682 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
1683 struct e1000_hw
*hw
= &adapter
->hw
;
1684 struct sockaddr
*addr
= p
;
1686 if (!is_valid_ether_addr(addr
->sa_data
))
1687 return -EADDRNOTAVAIL
;
1689 memcpy(hw
->mac
.addr
, addr
->sa_data
, netdev
->addr_len
);
1691 hw
->mac
.ops
.rar_set(hw
, hw
->mac
.addr
, 0);
1693 if (memcmp(addr
->sa_data
, hw
->mac
.addr
, 6))
1694 return -EADDRNOTAVAIL
;
1696 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1701 #define UPDATE_VF_COUNTER(reg, name) \
1703 u32 current_counter = er32(reg); \
1704 if (current_counter < adapter->stats.last_##name) \
1705 adapter->stats.name += 0x100000000LL; \
1706 adapter->stats.last_##name = current_counter; \
1707 adapter->stats.name &= 0xFFFFFFFF00000000LL; \
1708 adapter->stats.name |= current_counter; \
1712 * igbvf_update_stats - Update the board statistics counters
1713 * @adapter: board private structure
1715 void igbvf_update_stats(struct igbvf_adapter
*adapter
)
1717 struct e1000_hw
*hw
= &adapter
->hw
;
1718 struct pci_dev
*pdev
= adapter
->pdev
;
1721 * Prevent stats update while adapter is being reset, link is down
1722 * or if the pci connection is down.
1724 if (adapter
->link_speed
== 0)
1727 if (test_bit(__IGBVF_RESETTING
, &adapter
->state
))
1730 if (pci_channel_offline(pdev
))
1733 UPDATE_VF_COUNTER(VFGPRC
, gprc
);
1734 UPDATE_VF_COUNTER(VFGORC
, gorc
);
1735 UPDATE_VF_COUNTER(VFGPTC
, gptc
);
1736 UPDATE_VF_COUNTER(VFGOTC
, gotc
);
1737 UPDATE_VF_COUNTER(VFMPRC
, mprc
);
1738 UPDATE_VF_COUNTER(VFGOTLBC
, gotlbc
);
1739 UPDATE_VF_COUNTER(VFGPTLBC
, gptlbc
);
1740 UPDATE_VF_COUNTER(VFGORLBC
, gorlbc
);
1741 UPDATE_VF_COUNTER(VFGPRLBC
, gprlbc
);
1743 /* Fill out the OS statistics structure */
1744 adapter
->net_stats
.multicast
= adapter
->stats
.mprc
;
1747 static void igbvf_print_link_info(struct igbvf_adapter
*adapter
)
1749 dev_info(&adapter
->pdev
->dev
, "Link is Up %d Mbps %s\n",
1750 adapter
->link_speed
,
1751 ((adapter
->link_duplex
== FULL_DUPLEX
) ?
1752 "Full Duplex" : "Half Duplex"));
1755 static bool igbvf_has_link(struct igbvf_adapter
*adapter
)
1757 struct e1000_hw
*hw
= &adapter
->hw
;
1758 s32 ret_val
= E1000_SUCCESS
;
1761 /* If interface is down, stay link down */
1762 if (test_bit(__IGBVF_DOWN
, &adapter
->state
))
1765 ret_val
= hw
->mac
.ops
.check_for_link(hw
);
1766 link_active
= !hw
->mac
.get_link_status
;
1768 /* if check for link returns error we will need to reset */
1769 if (ret_val
&& time_after(jiffies
, adapter
->last_reset
+ (10 * HZ
)))
1770 schedule_work(&adapter
->reset_task
);
1776 * igbvf_watchdog - Timer Call-back
1777 * @data: pointer to adapter cast into an unsigned long
1779 static void igbvf_watchdog(unsigned long data
)
1781 struct igbvf_adapter
*adapter
= (struct igbvf_adapter
*) data
;
1783 /* Do the rest outside of interrupt context */
1784 schedule_work(&adapter
->watchdog_task
);
1787 static void igbvf_watchdog_task(struct work_struct
*work
)
1789 struct igbvf_adapter
*adapter
= container_of(work
,
1790 struct igbvf_adapter
,
1792 struct net_device
*netdev
= adapter
->netdev
;
1793 struct e1000_mac_info
*mac
= &adapter
->hw
.mac
;
1794 struct igbvf_ring
*tx_ring
= adapter
->tx_ring
;
1795 struct e1000_hw
*hw
= &adapter
->hw
;
1799 link
= igbvf_has_link(adapter
);
1802 if (!netif_carrier_ok(netdev
)) {
1803 mac
->ops
.get_link_up_info(&adapter
->hw
,
1804 &adapter
->link_speed
,
1805 &adapter
->link_duplex
);
1806 igbvf_print_link_info(adapter
);
1808 netif_carrier_on(netdev
);
1809 netif_wake_queue(netdev
);
1812 if (netif_carrier_ok(netdev
)) {
1813 adapter
->link_speed
= 0;
1814 adapter
->link_duplex
= 0;
1815 dev_info(&adapter
->pdev
->dev
, "Link is Down\n");
1816 netif_carrier_off(netdev
);
1817 netif_stop_queue(netdev
);
1821 if (netif_carrier_ok(netdev
)) {
1822 igbvf_update_stats(adapter
);
1824 tx_pending
= (igbvf_desc_unused(tx_ring
) + 1 <
1828 * We've lost link, so the controller stops DMA,
1829 * but we've got queued Tx work that's never going
1830 * to get done, so reset controller to flush Tx.
1831 * (Do the reset outside of interrupt context).
1833 adapter
->tx_timeout_count
++;
1834 schedule_work(&adapter
->reset_task
);
1838 /* Cause software interrupt to ensure Rx ring is cleaned */
1839 ew32(EICS
, adapter
->rx_ring
->eims_value
);
1841 /* Reset the timer */
1842 if (!test_bit(__IGBVF_DOWN
, &adapter
->state
))
1843 mod_timer(&adapter
->watchdog_timer
,
1844 round_jiffies(jiffies
+ (2 * HZ
)));
1847 #define IGBVF_TX_FLAGS_CSUM 0x00000001
1848 #define IGBVF_TX_FLAGS_VLAN 0x00000002
1849 #define IGBVF_TX_FLAGS_TSO 0x00000004
1850 #define IGBVF_TX_FLAGS_IPV4 0x00000008
1851 #define IGBVF_TX_FLAGS_VLAN_MASK 0xffff0000
1852 #define IGBVF_TX_FLAGS_VLAN_SHIFT 16
1854 static int igbvf_tso(struct igbvf_adapter
*adapter
,
1855 struct igbvf_ring
*tx_ring
,
1856 struct sk_buff
*skb
, u32 tx_flags
, u8
*hdr_len
)
1858 struct e1000_adv_tx_context_desc
*context_desc
;
1861 struct igbvf_buffer
*buffer_info
;
1862 u32 info
= 0, tu_cmd
= 0;
1863 u32 mss_l4len_idx
, l4len
;
1866 if (skb_header_cloned(skb
)) {
1867 err
= pskb_expand_head(skb
, 0, 0, GFP_ATOMIC
);
1869 dev_err(&adapter
->pdev
->dev
,
1870 "igbvf_tso returning an error\n");
1875 l4len
= tcp_hdrlen(skb
);
1878 if (skb
->protocol
== htons(ETH_P_IP
)) {
1879 struct iphdr
*iph
= ip_hdr(skb
);
1882 tcp_hdr(skb
)->check
= ~csum_tcpudp_magic(iph
->saddr
,
1886 } else if (skb_is_gso_v6(skb
)) {
1887 ipv6_hdr(skb
)->payload_len
= 0;
1888 tcp_hdr(skb
)->check
= ~csum_ipv6_magic(&ipv6_hdr(skb
)->saddr
,
1889 &ipv6_hdr(skb
)->daddr
,
1893 i
= tx_ring
->next_to_use
;
1895 buffer_info
= &tx_ring
->buffer_info
[i
];
1896 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1897 /* VLAN MACLEN IPLEN */
1898 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
1899 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
1900 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
1901 *hdr_len
+= skb_network_offset(skb
);
1902 info
|= (skb_transport_header(skb
) - skb_network_header(skb
));
1903 *hdr_len
+= (skb_transport_header(skb
) - skb_network_header(skb
));
1904 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
1906 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1907 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
1909 if (skb
->protocol
== htons(ETH_P_IP
))
1910 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
1911 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1913 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
1916 mss_l4len_idx
= (skb_shinfo(skb
)->gso_size
<< E1000_ADVTXD_MSS_SHIFT
);
1917 mss_l4len_idx
|= (l4len
<< E1000_ADVTXD_L4LEN_SHIFT
);
1919 context_desc
->mss_l4len_idx
= cpu_to_le32(mss_l4len_idx
);
1920 context_desc
->seqnum_seed
= 0;
1922 buffer_info
->time_stamp
= jiffies
;
1923 buffer_info
->next_to_watch
= i
;
1924 buffer_info
->dma
= 0;
1926 if (i
== tx_ring
->count
)
1929 tx_ring
->next_to_use
= i
;
1934 static inline bool igbvf_tx_csum(struct igbvf_adapter
*adapter
,
1935 struct igbvf_ring
*tx_ring
,
1936 struct sk_buff
*skb
, u32 tx_flags
)
1938 struct e1000_adv_tx_context_desc
*context_desc
;
1940 struct igbvf_buffer
*buffer_info
;
1941 u32 info
= 0, tu_cmd
= 0;
1943 if ((skb
->ip_summed
== CHECKSUM_PARTIAL
) ||
1944 (tx_flags
& IGBVF_TX_FLAGS_VLAN
)) {
1945 i
= tx_ring
->next_to_use
;
1946 buffer_info
= &tx_ring
->buffer_info
[i
];
1947 context_desc
= IGBVF_TX_CTXTDESC_ADV(*tx_ring
, i
);
1949 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
1950 info
|= (tx_flags
& IGBVF_TX_FLAGS_VLAN_MASK
);
1952 info
|= (skb_network_offset(skb
) << E1000_ADVTXD_MACLEN_SHIFT
);
1953 if (skb
->ip_summed
== CHECKSUM_PARTIAL
)
1954 info
|= (skb_transport_header(skb
) -
1955 skb_network_header(skb
));
1958 context_desc
->vlan_macip_lens
= cpu_to_le32(info
);
1960 tu_cmd
|= (E1000_TXD_CMD_DEXT
| E1000_ADVTXD_DTYP_CTXT
);
1962 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
1963 switch (skb
->protocol
) {
1964 case __constant_htons(ETH_P_IP
):
1965 tu_cmd
|= E1000_ADVTXD_TUCMD_IPV4
;
1966 if (ip_hdr(skb
)->protocol
== IPPROTO_TCP
)
1967 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1969 case __constant_htons(ETH_P_IPV6
):
1970 if (ipv6_hdr(skb
)->nexthdr
== IPPROTO_TCP
)
1971 tu_cmd
|= E1000_ADVTXD_TUCMD_L4T_TCP
;
1978 context_desc
->type_tucmd_mlhl
= cpu_to_le32(tu_cmd
);
1979 context_desc
->seqnum_seed
= 0;
1980 context_desc
->mss_l4len_idx
= 0;
1982 buffer_info
->time_stamp
= jiffies
;
1983 buffer_info
->next_to_watch
= i
;
1984 buffer_info
->dma
= 0;
1986 if (i
== tx_ring
->count
)
1988 tx_ring
->next_to_use
= i
;
1996 static int igbvf_maybe_stop_tx(struct net_device
*netdev
, int size
)
1998 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2000 /* there is enough descriptors then we don't need to worry */
2001 if (igbvf_desc_unused(adapter
->tx_ring
) >= size
)
2004 netif_stop_queue(netdev
);
2008 /* We need to check again just in case room has been made available */
2009 if (igbvf_desc_unused(adapter
->tx_ring
) < size
)
2012 netif_wake_queue(netdev
);
2014 ++adapter
->restart_queue
;
2018 #define IGBVF_MAX_TXD_PWR 16
2019 #define IGBVF_MAX_DATA_PER_TXD (1 << IGBVF_MAX_TXD_PWR)
2021 static inline int igbvf_tx_map_adv(struct igbvf_adapter
*adapter
,
2022 struct igbvf_ring
*tx_ring
,
2023 struct sk_buff
*skb
,
2026 struct igbvf_buffer
*buffer_info
;
2027 struct pci_dev
*pdev
= adapter
->pdev
;
2028 unsigned int len
= skb_headlen(skb
);
2029 unsigned int count
= 0, i
;
2032 i
= tx_ring
->next_to_use
;
2034 buffer_info
= &tx_ring
->buffer_info
[i
];
2035 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2036 buffer_info
->length
= len
;
2037 /* set time_stamp *before* dma to help avoid a possible race */
2038 buffer_info
->time_stamp
= jiffies
;
2039 buffer_info
->next_to_watch
= i
;
2040 buffer_info
->mapped_as_page
= false;
2041 buffer_info
->dma
= dma_map_single(&pdev
->dev
, skb
->data
, len
,
2043 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2047 for (f
= 0; f
< skb_shinfo(skb
)->nr_frags
; f
++) {
2048 const struct skb_frag_struct
*frag
;
2052 if (i
== tx_ring
->count
)
2055 frag
= &skb_shinfo(skb
)->frags
[f
];
2056 len
= skb_frag_size(frag
);
2058 buffer_info
= &tx_ring
->buffer_info
[i
];
2059 BUG_ON(len
>= IGBVF_MAX_DATA_PER_TXD
);
2060 buffer_info
->length
= len
;
2061 buffer_info
->time_stamp
= jiffies
;
2062 buffer_info
->next_to_watch
= i
;
2063 buffer_info
->mapped_as_page
= true;
2064 buffer_info
->dma
= skb_frag_dma_map(&pdev
->dev
, frag
, 0, len
,
2066 if (dma_mapping_error(&pdev
->dev
, buffer_info
->dma
))
2070 tx_ring
->buffer_info
[i
].skb
= skb
;
2071 tx_ring
->buffer_info
[first
].next_to_watch
= i
;
2076 dev_err(&pdev
->dev
, "TX DMA map failed\n");
2078 /* clear timestamp and dma mappings for failed buffer_info mapping */
2079 buffer_info
->dma
= 0;
2080 buffer_info
->time_stamp
= 0;
2081 buffer_info
->length
= 0;
2082 buffer_info
->next_to_watch
= 0;
2083 buffer_info
->mapped_as_page
= false;
2087 /* clear timestamp and dma mappings for remaining portion of packet */
2090 i
+= tx_ring
->count
;
2092 buffer_info
= &tx_ring
->buffer_info
[i
];
2093 igbvf_put_txbuf(adapter
, buffer_info
);
2099 static inline void igbvf_tx_queue_adv(struct igbvf_adapter
*adapter
,
2100 struct igbvf_ring
*tx_ring
,
2101 int tx_flags
, int count
, u32 paylen
,
2104 union e1000_adv_tx_desc
*tx_desc
= NULL
;
2105 struct igbvf_buffer
*buffer_info
;
2106 u32 olinfo_status
= 0, cmd_type_len
;
2109 cmd_type_len
= (E1000_ADVTXD_DTYP_DATA
| E1000_ADVTXD_DCMD_IFCS
|
2110 E1000_ADVTXD_DCMD_DEXT
);
2112 if (tx_flags
& IGBVF_TX_FLAGS_VLAN
)
2113 cmd_type_len
|= E1000_ADVTXD_DCMD_VLE
;
2115 if (tx_flags
& IGBVF_TX_FLAGS_TSO
) {
2116 cmd_type_len
|= E1000_ADVTXD_DCMD_TSE
;
2118 /* insert tcp checksum */
2119 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2121 /* insert ip checksum */
2122 if (tx_flags
& IGBVF_TX_FLAGS_IPV4
)
2123 olinfo_status
|= E1000_TXD_POPTS_IXSM
<< 8;
2125 } else if (tx_flags
& IGBVF_TX_FLAGS_CSUM
) {
2126 olinfo_status
|= E1000_TXD_POPTS_TXSM
<< 8;
2129 olinfo_status
|= ((paylen
- hdr_len
) << E1000_ADVTXD_PAYLEN_SHIFT
);
2131 i
= tx_ring
->next_to_use
;
2133 buffer_info
= &tx_ring
->buffer_info
[i
];
2134 tx_desc
= IGBVF_TX_DESC_ADV(*tx_ring
, i
);
2135 tx_desc
->read
.buffer_addr
= cpu_to_le64(buffer_info
->dma
);
2136 tx_desc
->read
.cmd_type_len
=
2137 cpu_to_le32(cmd_type_len
| buffer_info
->length
);
2138 tx_desc
->read
.olinfo_status
= cpu_to_le32(olinfo_status
);
2140 if (i
== tx_ring
->count
)
2144 tx_desc
->read
.cmd_type_len
|= cpu_to_le32(adapter
->txd_cmd
);
2145 /* Force memory writes to complete before letting h/w
2146 * know there are new descriptors to fetch. (Only
2147 * applicable for weak-ordered memory model archs,
2148 * such as IA-64). */
2151 tx_ring
->next_to_use
= i
;
2152 writel(i
, adapter
->hw
.hw_addr
+ tx_ring
->tail
);
2153 /* we need this if more than one processor can write to our tail
2154 * at a time, it syncronizes IO on IA64/Altix systems */
2158 static netdev_tx_t
igbvf_xmit_frame_ring_adv(struct sk_buff
*skb
,
2159 struct net_device
*netdev
,
2160 struct igbvf_ring
*tx_ring
)
2162 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2163 unsigned int first
, tx_flags
= 0;
2168 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2169 dev_kfree_skb_any(skb
);
2170 return NETDEV_TX_OK
;
2173 if (skb
->len
<= 0) {
2174 dev_kfree_skb_any(skb
);
2175 return NETDEV_TX_OK
;
2179 * need: count + 4 desc gap to keep tail from touching
2180 * + 2 desc gap to keep tail from touching head,
2181 * + 1 desc for skb->data,
2182 * + 1 desc for context descriptor,
2183 * head, otherwise try next time
2185 if (igbvf_maybe_stop_tx(netdev
, skb_shinfo(skb
)->nr_frags
+ 4)) {
2186 /* this is a hard error */
2187 return NETDEV_TX_BUSY
;
2190 if (vlan_tx_tag_present(skb
)) {
2191 tx_flags
|= IGBVF_TX_FLAGS_VLAN
;
2192 tx_flags
|= (vlan_tx_tag_get(skb
) << IGBVF_TX_FLAGS_VLAN_SHIFT
);
2195 if (skb
->protocol
== htons(ETH_P_IP
))
2196 tx_flags
|= IGBVF_TX_FLAGS_IPV4
;
2198 first
= tx_ring
->next_to_use
;
2200 tso
= skb_is_gso(skb
) ?
2201 igbvf_tso(adapter
, tx_ring
, skb
, tx_flags
, &hdr_len
) : 0;
2202 if (unlikely(tso
< 0)) {
2203 dev_kfree_skb_any(skb
);
2204 return NETDEV_TX_OK
;
2208 tx_flags
|= IGBVF_TX_FLAGS_TSO
;
2209 else if (igbvf_tx_csum(adapter
, tx_ring
, skb
, tx_flags
) &&
2210 (skb
->ip_summed
== CHECKSUM_PARTIAL
))
2211 tx_flags
|= IGBVF_TX_FLAGS_CSUM
;
2214 * count reflects descriptors mapped, if 0 then mapping error
2215 * has occurred and we need to rewind the descriptor queue
2217 count
= igbvf_tx_map_adv(adapter
, tx_ring
, skb
, first
);
2220 igbvf_tx_queue_adv(adapter
, tx_ring
, tx_flags
, count
,
2222 /* Make sure there is space in the ring for the next send. */
2223 igbvf_maybe_stop_tx(netdev
, MAX_SKB_FRAGS
+ 4);
2225 dev_kfree_skb_any(skb
);
2226 tx_ring
->buffer_info
[first
].time_stamp
= 0;
2227 tx_ring
->next_to_use
= first
;
2230 return NETDEV_TX_OK
;
2233 static netdev_tx_t
igbvf_xmit_frame(struct sk_buff
*skb
,
2234 struct net_device
*netdev
)
2236 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2237 struct igbvf_ring
*tx_ring
;
2239 if (test_bit(__IGBVF_DOWN
, &adapter
->state
)) {
2240 dev_kfree_skb_any(skb
);
2241 return NETDEV_TX_OK
;
2244 tx_ring
= &adapter
->tx_ring
[0];
2246 return igbvf_xmit_frame_ring_adv(skb
, netdev
, tx_ring
);
2250 * igbvf_tx_timeout - Respond to a Tx Hang
2251 * @netdev: network interface device structure
2253 static void igbvf_tx_timeout(struct net_device
*netdev
)
2255 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2257 /* Do the reset outside of interrupt context */
2258 adapter
->tx_timeout_count
++;
2259 schedule_work(&adapter
->reset_task
);
2262 static void igbvf_reset_task(struct work_struct
*work
)
2264 struct igbvf_adapter
*adapter
;
2265 adapter
= container_of(work
, struct igbvf_adapter
, reset_task
);
2267 igbvf_reinit_locked(adapter
);
2271 * igbvf_get_stats - Get System Network Statistics
2272 * @netdev: network interface device structure
2274 * Returns the address of the device statistics structure.
2275 * The statistics are actually updated from the timer callback.
2277 static struct net_device_stats
*igbvf_get_stats(struct net_device
*netdev
)
2279 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2281 /* only return the current stats */
2282 return &adapter
->net_stats
;
2286 * igbvf_change_mtu - Change the Maximum Transfer Unit
2287 * @netdev: network interface device structure
2288 * @new_mtu: new value for maximum frame size
2290 * Returns 0 on success, negative on failure
2292 static int igbvf_change_mtu(struct net_device
*netdev
, int new_mtu
)
2294 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2295 int max_frame
= new_mtu
+ ETH_HLEN
+ ETH_FCS_LEN
;
2297 if ((new_mtu
< 68) || (max_frame
> MAX_JUMBO_FRAME_SIZE
)) {
2298 dev_err(&adapter
->pdev
->dev
, "Invalid MTU setting\n");
2302 #define MAX_STD_JUMBO_FRAME_SIZE 9234
2303 if (max_frame
> MAX_STD_JUMBO_FRAME_SIZE
) {
2304 dev_err(&adapter
->pdev
->dev
, "MTU > 9216 not supported.\n");
2308 while (test_and_set_bit(__IGBVF_RESETTING
, &adapter
->state
))
2310 /* igbvf_down has a dependency on max_frame_size */
2311 adapter
->max_frame_size
= max_frame
;
2312 if (netif_running(netdev
))
2313 igbvf_down(adapter
);
2316 * NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
2317 * means we reserve 2 more, this pushes us to allocate from the next
2319 * i.e. RXBUFFER_2048 --> size-4096 slab
2320 * However with the new *_jumbo_rx* routines, jumbo receives will use
2324 if (max_frame
<= 1024)
2325 adapter
->rx_buffer_len
= 1024;
2326 else if (max_frame
<= 2048)
2327 adapter
->rx_buffer_len
= 2048;
2329 #if (PAGE_SIZE / 2) > 16384
2330 adapter
->rx_buffer_len
= 16384;
2332 adapter
->rx_buffer_len
= PAGE_SIZE
/ 2;
2336 /* adjust allocation if LPE protects us, and we aren't using SBP */
2337 if ((max_frame
== ETH_FRAME_LEN
+ ETH_FCS_LEN
) ||
2338 (max_frame
== ETH_FRAME_LEN
+ VLAN_HLEN
+ ETH_FCS_LEN
))
2339 adapter
->rx_buffer_len
= ETH_FRAME_LEN
+ VLAN_HLEN
+
2342 dev_info(&adapter
->pdev
->dev
, "changing MTU from %d to %d\n",
2343 netdev
->mtu
, new_mtu
);
2344 netdev
->mtu
= new_mtu
;
2346 if (netif_running(netdev
))
2349 igbvf_reset(adapter
);
2351 clear_bit(__IGBVF_RESETTING
, &adapter
->state
);
2356 static int igbvf_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2364 static int igbvf_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2366 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2367 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2372 netif_device_detach(netdev
);
2374 if (netif_running(netdev
)) {
2375 WARN_ON(test_bit(__IGBVF_RESETTING
, &adapter
->state
));
2376 igbvf_down(adapter
);
2377 igbvf_free_irq(adapter
);
2381 retval
= pci_save_state(pdev
);
2386 pci_disable_device(pdev
);
2392 static int igbvf_resume(struct pci_dev
*pdev
)
2394 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2395 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2398 pci_restore_state(pdev
);
2399 err
= pci_enable_device_mem(pdev
);
2401 dev_err(&pdev
->dev
, "Cannot enable PCI device from suspend\n");
2405 pci_set_master(pdev
);
2407 if (netif_running(netdev
)) {
2408 err
= igbvf_request_irq(adapter
);
2413 igbvf_reset(adapter
);
2415 if (netif_running(netdev
))
2418 netif_device_attach(netdev
);
2424 static void igbvf_shutdown(struct pci_dev
*pdev
)
2426 igbvf_suspend(pdev
, PMSG_SUSPEND
);
2429 #ifdef CONFIG_NET_POLL_CONTROLLER
2431 * Polling 'interrupt' - used by things like netconsole to send skbs
2432 * without having to re-enable interrupts. It's not called while
2433 * the interrupt routine is executing.
2435 static void igbvf_netpoll(struct net_device
*netdev
)
2437 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2439 disable_irq(adapter
->pdev
->irq
);
2441 igbvf_clean_tx_irq(adapter
->tx_ring
);
2443 enable_irq(adapter
->pdev
->irq
);
2448 * igbvf_io_error_detected - called when PCI error is detected
2449 * @pdev: Pointer to PCI device
2450 * @state: The current pci connection state
2452 * This function is called after a PCI bus error affecting
2453 * this device has been detected.
2455 static pci_ers_result_t
igbvf_io_error_detected(struct pci_dev
*pdev
,
2456 pci_channel_state_t state
)
2458 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2459 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2461 netif_device_detach(netdev
);
2463 if (state
== pci_channel_io_perm_failure
)
2464 return PCI_ERS_RESULT_DISCONNECT
;
2466 if (netif_running(netdev
))
2467 igbvf_down(adapter
);
2468 pci_disable_device(pdev
);
2470 /* Request a slot slot reset. */
2471 return PCI_ERS_RESULT_NEED_RESET
;
2475 * igbvf_io_slot_reset - called after the pci bus has been reset.
2476 * @pdev: Pointer to PCI device
2478 * Restart the card from scratch, as if from a cold-boot. Implementation
2479 * resembles the first-half of the igbvf_resume routine.
2481 static pci_ers_result_t
igbvf_io_slot_reset(struct pci_dev
*pdev
)
2483 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2484 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2486 if (pci_enable_device_mem(pdev
)) {
2488 "Cannot re-enable PCI device after reset.\n");
2489 return PCI_ERS_RESULT_DISCONNECT
;
2491 pci_set_master(pdev
);
2493 igbvf_reset(adapter
);
2495 return PCI_ERS_RESULT_RECOVERED
;
2499 * igbvf_io_resume - called when traffic can start flowing again.
2500 * @pdev: Pointer to PCI device
2502 * This callback is called when the error recovery driver tells us that
2503 * its OK to resume normal operation. Implementation resembles the
2504 * second-half of the igbvf_resume routine.
2506 static void igbvf_io_resume(struct pci_dev
*pdev
)
2508 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2509 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2511 if (netif_running(netdev
)) {
2512 if (igbvf_up(adapter
)) {
2514 "can't bring device back up after reset\n");
2519 netif_device_attach(netdev
);
2522 static void igbvf_print_device_info(struct igbvf_adapter
*adapter
)
2524 struct e1000_hw
*hw
= &adapter
->hw
;
2525 struct net_device
*netdev
= adapter
->netdev
;
2526 struct pci_dev
*pdev
= adapter
->pdev
;
2528 if (hw
->mac
.type
== e1000_vfadapt_i350
)
2529 dev_info(&pdev
->dev
, "Intel(R) I350 Virtual Function\n");
2531 dev_info(&pdev
->dev
, "Intel(R) 82576 Virtual Function\n");
2532 dev_info(&pdev
->dev
, "Address: %pM\n", netdev
->dev_addr
);
2535 static int igbvf_set_features(struct net_device
*netdev
, u32 features
)
2537 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2539 if (features
& NETIF_F_RXCSUM
)
2540 adapter
->flags
&= ~IGBVF_FLAG_RX_CSUM_DISABLED
;
2542 adapter
->flags
|= IGBVF_FLAG_RX_CSUM_DISABLED
;
2547 static const struct net_device_ops igbvf_netdev_ops
= {
2548 .ndo_open
= igbvf_open
,
2549 .ndo_stop
= igbvf_close
,
2550 .ndo_start_xmit
= igbvf_xmit_frame
,
2551 .ndo_get_stats
= igbvf_get_stats
,
2552 .ndo_set_rx_mode
= igbvf_set_multi
,
2553 .ndo_set_mac_address
= igbvf_set_mac
,
2554 .ndo_change_mtu
= igbvf_change_mtu
,
2555 .ndo_do_ioctl
= igbvf_ioctl
,
2556 .ndo_tx_timeout
= igbvf_tx_timeout
,
2557 .ndo_vlan_rx_add_vid
= igbvf_vlan_rx_add_vid
,
2558 .ndo_vlan_rx_kill_vid
= igbvf_vlan_rx_kill_vid
,
2559 #ifdef CONFIG_NET_POLL_CONTROLLER
2560 .ndo_poll_controller
= igbvf_netpoll
,
2562 .ndo_set_features
= igbvf_set_features
,
2566 * igbvf_probe - Device Initialization Routine
2567 * @pdev: PCI device information struct
2568 * @ent: entry in igbvf_pci_tbl
2570 * Returns 0 on success, negative on failure
2572 * igbvf_probe initializes an adapter identified by a pci_dev structure.
2573 * The OS initialization, configuring of the adapter private structure,
2574 * and a hardware reset occur.
2576 static int __devinit
igbvf_probe(struct pci_dev
*pdev
,
2577 const struct pci_device_id
*ent
)
2579 struct net_device
*netdev
;
2580 struct igbvf_adapter
*adapter
;
2581 struct e1000_hw
*hw
;
2582 const struct igbvf_info
*ei
= igbvf_info_tbl
[ent
->driver_data
];
2584 static int cards_found
;
2585 int err
, pci_using_dac
;
2587 err
= pci_enable_device_mem(pdev
);
2592 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(64));
2594 err
= dma_set_coherent_mask(&pdev
->dev
, DMA_BIT_MASK(64));
2598 err
= dma_set_mask(&pdev
->dev
, DMA_BIT_MASK(32));
2600 err
= dma_set_coherent_mask(&pdev
->dev
,
2603 dev_err(&pdev
->dev
, "No usable DMA "
2604 "configuration, aborting\n");
2610 err
= pci_request_regions(pdev
, igbvf_driver_name
);
2614 pci_set_master(pdev
);
2617 netdev
= alloc_etherdev(sizeof(struct igbvf_adapter
));
2619 goto err_alloc_etherdev
;
2621 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2623 pci_set_drvdata(pdev
, netdev
);
2624 adapter
= netdev_priv(netdev
);
2626 adapter
->netdev
= netdev
;
2627 adapter
->pdev
= pdev
;
2629 adapter
->pba
= ei
->pba
;
2630 adapter
->flags
= ei
->flags
;
2631 adapter
->hw
.back
= adapter
;
2632 adapter
->hw
.mac
.type
= ei
->mac
;
2633 adapter
->msg_enable
= (1 << NETIF_MSG_DRV
| NETIF_MSG_PROBE
) - 1;
2635 /* PCI config space info */
2637 hw
->vendor_id
= pdev
->vendor
;
2638 hw
->device_id
= pdev
->device
;
2639 hw
->subsystem_vendor_id
= pdev
->subsystem_vendor
;
2640 hw
->subsystem_device_id
= pdev
->subsystem_device
;
2641 hw
->revision_id
= pdev
->revision
;
2644 adapter
->hw
.hw_addr
= ioremap(pci_resource_start(pdev
, 0),
2645 pci_resource_len(pdev
, 0));
2647 if (!adapter
->hw
.hw_addr
)
2650 if (ei
->get_variants
) {
2651 err
= ei
->get_variants(adapter
);
2656 /* setup adapter struct */
2657 err
= igbvf_sw_init(adapter
);
2661 /* construct the net_device struct */
2662 netdev
->netdev_ops
= &igbvf_netdev_ops
;
2664 igbvf_set_ethtool_ops(netdev
);
2665 netdev
->watchdog_timeo
= 5 * HZ
;
2666 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2668 adapter
->bd_number
= cards_found
++;
2670 netdev
->hw_features
= NETIF_F_SG
|
2677 netdev
->features
= netdev
->hw_features
|
2678 NETIF_F_HW_VLAN_TX
|
2679 NETIF_F_HW_VLAN_RX
|
2680 NETIF_F_HW_VLAN_FILTER
;
2683 netdev
->features
|= NETIF_F_HIGHDMA
;
2685 netdev
->vlan_features
|= NETIF_F_TSO
;
2686 netdev
->vlan_features
|= NETIF_F_TSO6
;
2687 netdev
->vlan_features
|= NETIF_F_IP_CSUM
;
2688 netdev
->vlan_features
|= NETIF_F_IPV6_CSUM
;
2689 netdev
->vlan_features
|= NETIF_F_SG
;
2691 /*reset the controller to put the device in a known good state */
2692 err
= hw
->mac
.ops
.reset_hw(hw
);
2694 dev_info(&pdev
->dev
,
2695 "PF still in reset state, assigning new address."
2696 " Is the PF interface up?\n");
2697 dev_hw_addr_random(adapter
->netdev
, hw
->mac
.addr
);
2699 err
= hw
->mac
.ops
.read_mac_addr(hw
);
2701 dev_err(&pdev
->dev
, "Error reading MAC address\n");
2706 memcpy(netdev
->dev_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
2707 memcpy(netdev
->perm_addr
, adapter
->hw
.mac
.addr
, netdev
->addr_len
);
2709 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
2710 dev_err(&pdev
->dev
, "Invalid MAC Address: %pM\n",
2716 setup_timer(&adapter
->watchdog_timer
, &igbvf_watchdog
,
2717 (unsigned long) adapter
);
2719 INIT_WORK(&adapter
->reset_task
, igbvf_reset_task
);
2720 INIT_WORK(&adapter
->watchdog_task
, igbvf_watchdog_task
);
2722 /* ring size defaults */
2723 adapter
->rx_ring
->count
= 1024;
2724 adapter
->tx_ring
->count
= 1024;
2726 /* reset the hardware with the new settings */
2727 igbvf_reset(adapter
);
2729 strcpy(netdev
->name
, "eth%d");
2730 err
= register_netdev(netdev
);
2734 /* tell the stack to leave us alone until igbvf_open() is called */
2735 netif_carrier_off(netdev
);
2736 netif_stop_queue(netdev
);
2738 igbvf_print_device_info(adapter
);
2740 igbvf_initialize_last_counter_stats(adapter
);
2745 kfree(adapter
->tx_ring
);
2746 kfree(adapter
->rx_ring
);
2748 igbvf_reset_interrupt_capability(adapter
);
2749 iounmap(adapter
->hw
.hw_addr
);
2751 free_netdev(netdev
);
2753 pci_release_regions(pdev
);
2756 pci_disable_device(pdev
);
2761 * igbvf_remove - Device Removal Routine
2762 * @pdev: PCI device information struct
2764 * igbvf_remove is called by the PCI subsystem to alert the driver
2765 * that it should release a PCI device. The could be caused by a
2766 * Hot-Plug event, or because the driver is going to be removed from
2769 static void __devexit
igbvf_remove(struct pci_dev
*pdev
)
2771 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2772 struct igbvf_adapter
*adapter
= netdev_priv(netdev
);
2773 struct e1000_hw
*hw
= &adapter
->hw
;
2776 * The watchdog timer may be rescheduled, so explicitly
2777 * disable it from being rescheduled.
2779 set_bit(__IGBVF_DOWN
, &adapter
->state
);
2780 del_timer_sync(&adapter
->watchdog_timer
);
2782 cancel_work_sync(&adapter
->reset_task
);
2783 cancel_work_sync(&adapter
->watchdog_task
);
2785 unregister_netdev(netdev
);
2787 igbvf_reset_interrupt_capability(adapter
);
2790 * it is important to delete the napi struct prior to freeing the
2791 * rx ring so that you do not end up with null pointer refs
2793 netif_napi_del(&adapter
->rx_ring
->napi
);
2794 kfree(adapter
->tx_ring
);
2795 kfree(adapter
->rx_ring
);
2797 iounmap(hw
->hw_addr
);
2798 if (hw
->flash_address
)
2799 iounmap(hw
->flash_address
);
2800 pci_release_regions(pdev
);
2802 free_netdev(netdev
);
2804 pci_disable_device(pdev
);
2807 /* PCI Error Recovery (ERS) */
2808 static struct pci_error_handlers igbvf_err_handler
= {
2809 .error_detected
= igbvf_io_error_detected
,
2810 .slot_reset
= igbvf_io_slot_reset
,
2811 .resume
= igbvf_io_resume
,
2814 static DEFINE_PCI_DEVICE_TABLE(igbvf_pci_tbl
) = {
2815 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_82576_VF
), board_vf
},
2816 { PCI_VDEVICE(INTEL
, E1000_DEV_ID_I350_VF
), board_i350_vf
},
2817 { } /* terminate list */
2819 MODULE_DEVICE_TABLE(pci
, igbvf_pci_tbl
);
2821 /* PCI Device API Driver */
2822 static struct pci_driver igbvf_driver
= {
2823 .name
= igbvf_driver_name
,
2824 .id_table
= igbvf_pci_tbl
,
2825 .probe
= igbvf_probe
,
2826 .remove
= __devexit_p(igbvf_remove
),
2828 /* Power Management Hooks */
2829 .suspend
= igbvf_suspend
,
2830 .resume
= igbvf_resume
,
2832 .shutdown
= igbvf_shutdown
,
2833 .err_handler
= &igbvf_err_handler
2837 * igbvf_init_module - Driver Registration Routine
2839 * igbvf_init_module is the first routine called when the driver is
2840 * loaded. All it does is register with the PCI subsystem.
2842 static int __init
igbvf_init_module(void)
2845 printk(KERN_INFO
"%s - version %s\n",
2846 igbvf_driver_string
, igbvf_driver_version
);
2847 printk(KERN_INFO
"%s\n", igbvf_copyright
);
2849 ret
= pci_register_driver(&igbvf_driver
);
2853 module_init(igbvf_init_module
);
2856 * igbvf_exit_module - Driver Exit Cleanup Routine
2858 * igbvf_exit_module is called just before the driver is removed
2861 static void __exit
igbvf_exit_module(void)
2863 pci_unregister_driver(&igbvf_driver
);
2865 module_exit(igbvf_exit_module
);
2868 MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
2869 MODULE_DESCRIPTION("Intel(R) Gigabit Virtual Function Network Driver");
2870 MODULE_LICENSE("GPL");
2871 MODULE_VERSION(DRV_VERSION
);