2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
47 #include <linux/prefetch.h>
52 #define DRV_NAME "skge"
53 #define DRV_VERSION "1.14"
55 #define DEFAULT_TX_RING_SIZE 128
56 #define DEFAULT_RX_RING_SIZE 512
57 #define MAX_TX_RING_SIZE 1024
58 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
59 #define MAX_RX_RING_SIZE 4096
60 #define RX_COPY_THRESHOLD 128
61 #define RX_BUF_SIZE 1536
62 #define PHY_RETRIES 1000
63 #define ETH_JUMBO_MTU 9000
64 #define TX_WATCHDOG (5 * HZ)
65 #define NAPI_WEIGHT 64
69 #define SKGE_EEPROM_MAGIC 0x9933aabb
72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74 MODULE_LICENSE("GPL");
75 MODULE_VERSION(DRV_VERSION
);
77 static const u32 default_msg
= (NETIF_MSG_DRV
| NETIF_MSG_PROBE
|
78 NETIF_MSG_LINK
| NETIF_MSG_IFUP
|
81 static int debug
= -1; /* defaults above */
82 module_param(debug
, int, 0);
83 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
85 static DEFINE_PCI_DEVICE_TABLE(skge_id_table
) = {
86 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, 0x1700) }, /* 3Com 3C940 */
87 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, 0x80EB) }, /* 3Com 3C940B */
88 #ifdef CONFIG_SKGE_GENESIS
89 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x4300) }, /* SK-9xx */
91 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, 0x4320) }, /* SK-98xx V2.0 */
92 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* D-Link DGE-530T (rev.B) */
93 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4c00) }, /* D-Link DGE-530T */
94 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4302) }, /* D-Link DGE-530T Rev C1 */
95 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) }, /* Marvell Yukon 88E8001/8003/8010 */
96 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
97 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, 0x434E) }, /* CNet PowerG-2000 */
98 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, 0x1064) }, /* Linksys EG1064 v2 */
99 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 }, /* Linksys EG1032 v2 */
102 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
104 static int skge_up(struct net_device
*dev
);
105 static int skge_down(struct net_device
*dev
);
106 static void skge_phy_reset(struct skge_port
*skge
);
107 static void skge_tx_clean(struct net_device
*dev
);
108 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
109 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
110 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
111 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
112 static void yukon_init(struct skge_hw
*hw
, int port
);
113 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
114 static void genesis_link_up(struct skge_port
*skge
);
115 static void skge_set_multicast(struct net_device
*dev
);
116 static irqreturn_t
skge_intr(int irq
, void *dev_id
);
118 /* Avoid conditionals by using array */
119 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
120 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
121 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
122 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
123 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
124 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
126 static inline bool is_genesis(const struct skge_hw
*hw
)
128 #ifdef CONFIG_SKGE_GENESIS
129 return hw
->chip_id
== CHIP_ID_GENESIS
;
135 static int skge_get_regs_len(struct net_device
*dev
)
141 * Returns copy of whole control register region
142 * Note: skip RAM address register because accessing it will
145 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
148 const struct skge_port
*skge
= netdev_priv(dev
);
149 const void __iomem
*io
= skge
->hw
->regs
;
152 memset(p
, 0, regs
->len
);
153 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
155 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
156 regs
->len
- B3_RI_WTO_R1
);
159 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
160 static u32
wol_supported(const struct skge_hw
*hw
)
165 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
168 return WAKE_MAGIC
| WAKE_PHY
;
171 static void skge_wol_init(struct skge_port
*skge
)
173 struct skge_hw
*hw
= skge
->hw
;
174 int port
= skge
->port
;
177 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
178 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
181 skge_write8(hw
, B0_POWER_CTRL
,
182 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
184 /* WA code for COMA mode -- clear PHY reset */
185 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
186 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
187 u32 reg
= skge_read32(hw
, B2_GP_IO
);
190 skge_write32(hw
, B2_GP_IO
, reg
);
193 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
195 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
196 GPC_ANEG_1
| GPC_RST_SET
);
198 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
200 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
201 GPC_ANEG_1
| GPC_RST_CLR
);
203 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
205 /* Force to 10/100 skge_reset will re-enable on resume */
206 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
207 (PHY_AN_100FULL
| PHY_AN_100HALF
|
208 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
));
210 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
211 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
212 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
213 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
216 /* Set GMAC to no flow control and auto update for speed/duplex */
217 gma_write16(hw
, port
, GM_GP_CTRL
,
218 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
219 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
221 /* Set WOL address */
222 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
223 skge
->netdev
->dev_addr
, ETH_ALEN
);
225 /* Turn on appropriate WOL control bits */
226 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
228 if (skge
->wol
& WAKE_PHY
)
229 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
231 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
233 if (skge
->wol
& WAKE_MAGIC
)
234 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
236 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;
238 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
239 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
242 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
245 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
247 struct skge_port
*skge
= netdev_priv(dev
);
249 wol
->supported
= wol_supported(skge
->hw
);
250 wol
->wolopts
= skge
->wol
;
253 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
255 struct skge_port
*skge
= netdev_priv(dev
);
256 struct skge_hw
*hw
= skge
->hw
;
258 if ((wol
->wolopts
& ~wol_supported(hw
)) ||
259 !device_can_wakeup(&hw
->pdev
->dev
))
262 skge
->wol
= wol
->wolopts
;
264 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
269 /* Determine supported/advertised modes based on hardware.
270 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
272 static u32
skge_supported_modes(const struct skge_hw
*hw
)
277 supported
= (SUPPORTED_10baseT_Half
|
278 SUPPORTED_10baseT_Full
|
279 SUPPORTED_100baseT_Half
|
280 SUPPORTED_100baseT_Full
|
281 SUPPORTED_1000baseT_Half
|
282 SUPPORTED_1000baseT_Full
|
287 supported
&= ~(SUPPORTED_10baseT_Half
|
288 SUPPORTED_10baseT_Full
|
289 SUPPORTED_100baseT_Half
|
290 SUPPORTED_100baseT_Full
);
292 else if (hw
->chip_id
== CHIP_ID_YUKON
)
293 supported
&= ~SUPPORTED_1000baseT_Half
;
295 supported
= (SUPPORTED_1000baseT_Full
|
296 SUPPORTED_1000baseT_Half
|
303 static int skge_get_settings(struct net_device
*dev
,
304 struct ethtool_cmd
*ecmd
)
306 struct skge_port
*skge
= netdev_priv(dev
);
307 struct skge_hw
*hw
= skge
->hw
;
309 ecmd
->transceiver
= XCVR_INTERNAL
;
310 ecmd
->supported
= skge_supported_modes(hw
);
313 ecmd
->port
= PORT_TP
;
314 ecmd
->phy_address
= hw
->phy_addr
;
316 ecmd
->port
= PORT_FIBRE
;
318 ecmd
->advertising
= skge
->advertising
;
319 ecmd
->autoneg
= skge
->autoneg
;
320 ethtool_cmd_speed_set(ecmd
, skge
->speed
);
321 ecmd
->duplex
= skge
->duplex
;
325 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
327 struct skge_port
*skge
= netdev_priv(dev
);
328 const struct skge_hw
*hw
= skge
->hw
;
329 u32 supported
= skge_supported_modes(hw
);
332 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
333 ecmd
->advertising
= supported
;
338 u32 speed
= ethtool_cmd_speed(ecmd
);
342 if (ecmd
->duplex
== DUPLEX_FULL
)
343 setting
= SUPPORTED_1000baseT_Full
;
344 else if (ecmd
->duplex
== DUPLEX_HALF
)
345 setting
= SUPPORTED_1000baseT_Half
;
350 if (ecmd
->duplex
== DUPLEX_FULL
)
351 setting
= SUPPORTED_100baseT_Full
;
352 else if (ecmd
->duplex
== DUPLEX_HALF
)
353 setting
= SUPPORTED_100baseT_Half
;
359 if (ecmd
->duplex
== DUPLEX_FULL
)
360 setting
= SUPPORTED_10baseT_Full
;
361 else if (ecmd
->duplex
== DUPLEX_HALF
)
362 setting
= SUPPORTED_10baseT_Half
;
370 if ((setting
& supported
) == 0)
374 skge
->duplex
= ecmd
->duplex
;
377 skge
->autoneg
= ecmd
->autoneg
;
378 skge
->advertising
= ecmd
->advertising
;
380 if (netif_running(dev
)) {
392 static void skge_get_drvinfo(struct net_device
*dev
,
393 struct ethtool_drvinfo
*info
)
395 struct skge_port
*skge
= netdev_priv(dev
);
397 strcpy(info
->driver
, DRV_NAME
);
398 strcpy(info
->version
, DRV_VERSION
);
399 strcpy(info
->fw_version
, "N/A");
400 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
403 static const struct skge_stat
{
404 char name
[ETH_GSTRING_LEN
];
408 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
409 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
411 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
412 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
413 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
414 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
415 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
416 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
417 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
418 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
420 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
421 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
422 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
423 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
424 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
425 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
427 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
428 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
429 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
430 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
431 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
434 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
438 return ARRAY_SIZE(skge_stats
);
444 static void skge_get_ethtool_stats(struct net_device
*dev
,
445 struct ethtool_stats
*stats
, u64
*data
)
447 struct skge_port
*skge
= netdev_priv(dev
);
449 if (is_genesis(skge
->hw
))
450 genesis_get_stats(skge
, data
);
452 yukon_get_stats(skge
, data
);
455 /* Use hardware MIB variables for critical path statistics and
456 * transmit feedback not reported at interrupt.
457 * Other errors are accounted for in interrupt handler.
459 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
461 struct skge_port
*skge
= netdev_priv(dev
);
462 u64 data
[ARRAY_SIZE(skge_stats
)];
464 if (is_genesis(skge
->hw
))
465 genesis_get_stats(skge
, data
);
467 yukon_get_stats(skge
, data
);
469 dev
->stats
.tx_bytes
= data
[0];
470 dev
->stats
.rx_bytes
= data
[1];
471 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
472 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
473 dev
->stats
.multicast
= data
[3] + data
[5];
474 dev
->stats
.collisions
= data
[10];
475 dev
->stats
.tx_aborted_errors
= data
[12];
480 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
486 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
487 memcpy(data
+ i
* ETH_GSTRING_LEN
,
488 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
493 static void skge_get_ring_param(struct net_device
*dev
,
494 struct ethtool_ringparam
*p
)
496 struct skge_port
*skge
= netdev_priv(dev
);
498 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
499 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
501 p
->rx_pending
= skge
->rx_ring
.count
;
502 p
->tx_pending
= skge
->tx_ring
.count
;
505 static int skge_set_ring_param(struct net_device
*dev
,
506 struct ethtool_ringparam
*p
)
508 struct skge_port
*skge
= netdev_priv(dev
);
511 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
512 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
515 skge
->rx_ring
.count
= p
->rx_pending
;
516 skge
->tx_ring
.count
= p
->tx_pending
;
518 if (netif_running(dev
)) {
528 static u32
skge_get_msglevel(struct net_device
*netdev
)
530 struct skge_port
*skge
= netdev_priv(netdev
);
531 return skge
->msg_enable
;
534 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
536 struct skge_port
*skge
= netdev_priv(netdev
);
537 skge
->msg_enable
= value
;
540 static int skge_nway_reset(struct net_device
*dev
)
542 struct skge_port
*skge
= netdev_priv(dev
);
544 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
547 skge_phy_reset(skge
);
551 static void skge_get_pauseparam(struct net_device
*dev
,
552 struct ethtool_pauseparam
*ecmd
)
554 struct skge_port
*skge
= netdev_priv(dev
);
556 ecmd
->rx_pause
= ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
) ||
557 (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
));
558 ecmd
->tx_pause
= (ecmd
->rx_pause
||
559 (skge
->flow_control
== FLOW_MODE_LOC_SEND
));
561 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
564 static int skge_set_pauseparam(struct net_device
*dev
,
565 struct ethtool_pauseparam
*ecmd
)
567 struct skge_port
*skge
= netdev_priv(dev
);
568 struct ethtool_pauseparam old
;
571 skge_get_pauseparam(dev
, &old
);
573 if (ecmd
->autoneg
!= old
.autoneg
)
574 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
576 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
577 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
578 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
579 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
580 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
581 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
583 skge
->flow_control
= FLOW_MODE_NONE
;
586 if (netif_running(dev
)) {
598 /* Chip internal frequency for clock calculations */
599 static inline u32
hwkhz(const struct skge_hw
*hw
)
601 return is_genesis(hw
) ? 53125 : 78125;
604 /* Chip HZ to microseconds */
605 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
607 return (ticks
* 1000) / hwkhz(hw
);
610 /* Microseconds to chip HZ */
611 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
613 return hwkhz(hw
) * usec
/ 1000;
616 static int skge_get_coalesce(struct net_device
*dev
,
617 struct ethtool_coalesce
*ecmd
)
619 struct skge_port
*skge
= netdev_priv(dev
);
620 struct skge_hw
*hw
= skge
->hw
;
621 int port
= skge
->port
;
623 ecmd
->rx_coalesce_usecs
= 0;
624 ecmd
->tx_coalesce_usecs
= 0;
626 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
627 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
628 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
630 if (msk
& rxirqmask
[port
])
631 ecmd
->rx_coalesce_usecs
= delay
;
632 if (msk
& txirqmask
[port
])
633 ecmd
->tx_coalesce_usecs
= delay
;
639 /* Note: interrupt timer is per board, but can turn on/off per port */
640 static int skge_set_coalesce(struct net_device
*dev
,
641 struct ethtool_coalesce
*ecmd
)
643 struct skge_port
*skge
= netdev_priv(dev
);
644 struct skge_hw
*hw
= skge
->hw
;
645 int port
= skge
->port
;
646 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
649 if (ecmd
->rx_coalesce_usecs
== 0)
650 msk
&= ~rxirqmask
[port
];
651 else if (ecmd
->rx_coalesce_usecs
< 25 ||
652 ecmd
->rx_coalesce_usecs
> 33333)
655 msk
|= rxirqmask
[port
];
656 delay
= ecmd
->rx_coalesce_usecs
;
659 if (ecmd
->tx_coalesce_usecs
== 0)
660 msk
&= ~txirqmask
[port
];
661 else if (ecmd
->tx_coalesce_usecs
< 25 ||
662 ecmd
->tx_coalesce_usecs
> 33333)
665 msk
|= txirqmask
[port
];
666 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
669 skge_write32(hw
, B2_IRQM_MSK
, msk
);
671 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
673 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
674 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
679 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
680 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
682 struct skge_hw
*hw
= skge
->hw
;
683 int port
= skge
->port
;
685 spin_lock_bh(&hw
->phy_lock
);
686 if (is_genesis(hw
)) {
689 if (hw
->phy_type
== SK_PHY_BCOM
)
690 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
692 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
693 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
695 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
696 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
697 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
701 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
702 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
704 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
705 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
710 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
711 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
712 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
714 if (hw
->phy_type
== SK_PHY_BCOM
)
715 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
717 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
718 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
719 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
726 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
727 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
728 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
729 PHY_M_LED_MO_10(MO_LED_OFF
) |
730 PHY_M_LED_MO_100(MO_LED_OFF
) |
731 PHY_M_LED_MO_1000(MO_LED_OFF
) |
732 PHY_M_LED_MO_RX(MO_LED_OFF
));
735 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
736 PHY_M_LED_PULS_DUR(PULS_170MS
) |
737 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
741 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
742 PHY_M_LED_MO_RX(MO_LED_OFF
) |
743 (skge
->speed
== SPEED_100
?
744 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
747 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
748 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
749 PHY_M_LED_MO_DUP(MO_LED_ON
) |
750 PHY_M_LED_MO_10(MO_LED_ON
) |
751 PHY_M_LED_MO_100(MO_LED_ON
) |
752 PHY_M_LED_MO_1000(MO_LED_ON
) |
753 PHY_M_LED_MO_RX(MO_LED_ON
));
756 spin_unlock_bh(&hw
->phy_lock
);
759 /* blink LED's for finding board */
760 static int skge_set_phys_id(struct net_device
*dev
,
761 enum ethtool_phys_id_state state
)
763 struct skge_port
*skge
= netdev_priv(dev
);
766 case ETHTOOL_ID_ACTIVE
:
767 return 2; /* cycle on/off twice per second */
770 skge_led(skge
, LED_MODE_TST
);
774 skge_led(skge
, LED_MODE_OFF
);
777 case ETHTOOL_ID_INACTIVE
:
778 /* back to regular LED state */
779 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
785 static int skge_get_eeprom_len(struct net_device
*dev
)
787 struct skge_port
*skge
= netdev_priv(dev
);
790 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
791 return 1 << (((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
794 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
798 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
801 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
802 } while (!(offset
& PCI_VPD_ADDR_F
));
804 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
808 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
810 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
811 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
812 offset
| PCI_VPD_ADDR_F
);
815 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
816 } while (offset
& PCI_VPD_ADDR_F
);
819 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
822 struct skge_port
*skge
= netdev_priv(dev
);
823 struct pci_dev
*pdev
= skge
->hw
->pdev
;
824 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
825 int length
= eeprom
->len
;
826 u16 offset
= eeprom
->offset
;
831 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
834 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
835 int n
= min_t(int, length
, sizeof(val
));
837 memcpy(data
, &val
, n
);
845 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
848 struct skge_port
*skge
= netdev_priv(dev
);
849 struct pci_dev
*pdev
= skge
->hw
->pdev
;
850 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
851 int length
= eeprom
->len
;
852 u16 offset
= eeprom
->offset
;
857 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
862 int n
= min_t(int, length
, sizeof(val
));
865 val
= skge_vpd_read(pdev
, cap
, offset
);
866 memcpy(&val
, data
, n
);
868 skge_vpd_write(pdev
, cap
, offset
, val
);
877 static const struct ethtool_ops skge_ethtool_ops
= {
878 .get_settings
= skge_get_settings
,
879 .set_settings
= skge_set_settings
,
880 .get_drvinfo
= skge_get_drvinfo
,
881 .get_regs_len
= skge_get_regs_len
,
882 .get_regs
= skge_get_regs
,
883 .get_wol
= skge_get_wol
,
884 .set_wol
= skge_set_wol
,
885 .get_msglevel
= skge_get_msglevel
,
886 .set_msglevel
= skge_set_msglevel
,
887 .nway_reset
= skge_nway_reset
,
888 .get_link
= ethtool_op_get_link
,
889 .get_eeprom_len
= skge_get_eeprom_len
,
890 .get_eeprom
= skge_get_eeprom
,
891 .set_eeprom
= skge_set_eeprom
,
892 .get_ringparam
= skge_get_ring_param
,
893 .set_ringparam
= skge_set_ring_param
,
894 .get_pauseparam
= skge_get_pauseparam
,
895 .set_pauseparam
= skge_set_pauseparam
,
896 .get_coalesce
= skge_get_coalesce
,
897 .set_coalesce
= skge_set_coalesce
,
898 .get_strings
= skge_get_strings
,
899 .set_phys_id
= skge_set_phys_id
,
900 .get_sset_count
= skge_get_sset_count
,
901 .get_ethtool_stats
= skge_get_ethtool_stats
,
905 * Allocate ring elements and chain them together
906 * One-to-one association of board descriptors with ring elements
908 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
910 struct skge_tx_desc
*d
;
911 struct skge_element
*e
;
914 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
918 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
920 if (i
== ring
->count
- 1) {
921 e
->next
= ring
->start
;
922 d
->next_offset
= base
;
925 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
928 ring
->to_use
= ring
->to_clean
= ring
->start
;
933 /* Allocate and setup a new buffer for receiving */
934 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
935 struct sk_buff
*skb
, unsigned int bufsize
)
937 struct skge_rx_desc
*rd
= e
->desc
;
940 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
944 rd
->dma_hi
= map
>> 32;
946 rd
->csum1_start
= ETH_HLEN
;
947 rd
->csum2_start
= ETH_HLEN
;
953 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
954 dma_unmap_addr_set(e
, mapaddr
, map
);
955 dma_unmap_len_set(e
, maplen
, bufsize
);
958 /* Resume receiving using existing skb,
959 * Note: DMA address is not changed by chip.
960 * MTU not changed while receiver active.
962 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
964 struct skge_rx_desc
*rd
= e
->desc
;
967 rd
->csum2_start
= ETH_HLEN
;
971 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
975 /* Free all buffers in receive ring, assumes receiver stopped */
976 static void skge_rx_clean(struct skge_port
*skge
)
978 struct skge_hw
*hw
= skge
->hw
;
979 struct skge_ring
*ring
= &skge
->rx_ring
;
980 struct skge_element
*e
;
984 struct skge_rx_desc
*rd
= e
->desc
;
987 pci_unmap_single(hw
->pdev
,
988 dma_unmap_addr(e
, mapaddr
),
989 dma_unmap_len(e
, maplen
),
991 dev_kfree_skb(e
->skb
);
994 } while ((e
= e
->next
) != ring
->start
);
998 /* Allocate buffers for receive ring
999 * For receive: to_clean is next received frame.
1001 static int skge_rx_fill(struct net_device
*dev
)
1003 struct skge_port
*skge
= netdev_priv(dev
);
1004 struct skge_ring
*ring
= &skge
->rx_ring
;
1005 struct skge_element
*e
;
1009 struct sk_buff
*skb
;
1011 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1016 skb_reserve(skb
, NET_IP_ALIGN
);
1017 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
1018 } while ((e
= e
->next
) != ring
->start
);
1020 ring
->to_clean
= ring
->start
;
1024 static const char *skge_pause(enum pause_status status
)
1027 case FLOW_STAT_NONE
:
1029 case FLOW_STAT_REM_SEND
:
1031 case FLOW_STAT_LOC_SEND
:
1033 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1036 return "indeterminated";
1041 static void skge_link_up(struct skge_port
*skge
)
1043 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1044 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
1046 netif_carrier_on(skge
->netdev
);
1047 netif_wake_queue(skge
->netdev
);
1049 netif_info(skge
, link
, skge
->netdev
,
1050 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1052 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1053 skge_pause(skge
->flow_status
));
1056 static void skge_link_down(struct skge_port
*skge
)
1058 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
1059 netif_carrier_off(skge
->netdev
);
1060 netif_stop_queue(skge
->netdev
);
1062 netif_info(skge
, link
, skge
->netdev
, "Link is down\n");
1065 static void xm_link_down(struct skge_hw
*hw
, int port
)
1067 struct net_device
*dev
= hw
->dev
[port
];
1068 struct skge_port
*skge
= netdev_priv(dev
);
1070 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1072 if (netif_carrier_ok(dev
))
1073 skge_link_down(skge
);
1076 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1080 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1081 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1083 if (hw
->phy_type
== SK_PHY_XMAC
)
1086 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1087 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1094 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1099 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1102 if (__xm_phy_read(hw
, port
, reg
, &v
))
1103 pr_warning("%s: phy read timed out\n", hw
->dev
[port
]->name
);
1107 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1111 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1112 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1113 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1120 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1121 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1122 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1129 static void genesis_init(struct skge_hw
*hw
)
1131 /* set blink source counter */
1132 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1133 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1135 /* configure mac arbiter */
1136 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1138 /* configure mac arbiter timeout values */
1139 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1140 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1141 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1142 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1144 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1145 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1146 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1147 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1149 /* configure packet arbiter timeout */
1150 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1151 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1152 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1153 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1154 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1157 static void genesis_reset(struct skge_hw
*hw
, int port
)
1159 static const u8 zero
[8] = { 0 };
1162 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1164 /* reset the statistics module */
1165 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1166 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1167 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1168 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1169 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1171 /* disable Broadcom PHY IRQ */
1172 if (hw
->phy_type
== SK_PHY_BCOM
)
1173 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1175 xm_outhash(hw
, port
, XM_HSM
, zero
);
1177 /* Flush TX and RX fifo */
1178 reg
= xm_read32(hw
, port
, XM_MODE
);
1179 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1180 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1183 /* Convert mode to MII values */
1184 static const u16 phy_pause_map
[] = {
1185 [FLOW_MODE_NONE
] = 0,
1186 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1187 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1188 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1191 /* special defines for FIBER (88E1011S only) */
1192 static const u16 fiber_pause_map
[] = {
1193 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1194 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1195 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1196 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1200 /* Check status of Broadcom phy link */
1201 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1203 struct net_device
*dev
= hw
->dev
[port
];
1204 struct skge_port
*skge
= netdev_priv(dev
);
1207 /* read twice because of latch */
1208 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1209 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1211 if ((status
& PHY_ST_LSYNC
) == 0) {
1212 xm_link_down(hw
, port
);
1216 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1219 if (!(status
& PHY_ST_AN_OVER
))
1222 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1223 if (lpa
& PHY_B_AN_RF
) {
1224 netdev_notice(dev
, "remote fault\n");
1228 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1230 /* Check Duplex mismatch */
1231 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1232 case PHY_B_RES_1000FD
:
1233 skge
->duplex
= DUPLEX_FULL
;
1235 case PHY_B_RES_1000HD
:
1236 skge
->duplex
= DUPLEX_HALF
;
1239 netdev_notice(dev
, "duplex mismatch\n");
1243 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1244 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1245 case PHY_B_AS_PAUSE_MSK
:
1246 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1249 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1252 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1255 skge
->flow_status
= FLOW_STAT_NONE
;
1257 skge
->speed
= SPEED_1000
;
1260 if (!netif_carrier_ok(dev
))
1261 genesis_link_up(skge
);
1264 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1265 * Phy on for 100 or 10Mbit operation
1267 static void bcom_phy_init(struct skge_port
*skge
)
1269 struct skge_hw
*hw
= skge
->hw
;
1270 int port
= skge
->port
;
1272 u16 id1
, r
, ext
, ctl
;
1274 /* magic workaround patterns for Broadcom */
1275 static const struct {
1279 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1280 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1281 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1282 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1284 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1285 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1288 /* read Id from external PHY (all have the same address) */
1289 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1291 /* Optimize MDIO transfer by suppressing preamble. */
1292 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1294 xm_write16(hw
, port
, XM_MMU_CMD
, r
);
1297 case PHY_BCOM_ID1_C0
:
1299 * Workaround BCOM Errata for the C0 type.
1300 * Write magic patterns to reserved registers.
1302 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1303 xm_phy_write(hw
, port
,
1304 C0hack
[i
].reg
, C0hack
[i
].val
);
1307 case PHY_BCOM_ID1_A1
:
1309 * Workaround BCOM Errata for the A1 type.
1310 * Write magic patterns to reserved registers.
1312 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1313 xm_phy_write(hw
, port
,
1314 A1hack
[i
].reg
, A1hack
[i
].val
);
1319 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1320 * Disable Power Management after reset.
1322 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1323 r
|= PHY_B_AC_DIS_PM
;
1324 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1327 xm_read16(hw
, port
, XM_ISRC
);
1329 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1330 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1332 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1334 * Workaround BCOM Errata #1 for the C5 type.
1335 * 1000Base-T Link Acquisition Failure in Slave Mode
1336 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1338 u16 adv
= PHY_B_1000C_RD
;
1339 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1340 adv
|= PHY_B_1000C_AHD
;
1341 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1342 adv
|= PHY_B_1000C_AFD
;
1343 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1345 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1347 if (skge
->duplex
== DUPLEX_FULL
)
1348 ctl
|= PHY_CT_DUP_MD
;
1349 /* Force to slave */
1350 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1353 /* Set autonegotiation pause parameters */
1354 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1355 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1357 /* Handle Jumbo frames */
1358 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1359 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1360 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1362 ext
|= PHY_B_PEC_HIGH_LA
;
1366 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1367 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1369 /* Use link status change interrupt */
1370 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1373 static void xm_phy_init(struct skge_port
*skge
)
1375 struct skge_hw
*hw
= skge
->hw
;
1376 int port
= skge
->port
;
1379 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1380 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1381 ctrl
|= PHY_X_AN_HD
;
1382 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1383 ctrl
|= PHY_X_AN_FD
;
1385 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1387 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1389 /* Restart Auto-negotiation */
1390 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1392 /* Set DuplexMode in Config register */
1393 if (skge
->duplex
== DUPLEX_FULL
)
1394 ctrl
|= PHY_CT_DUP_MD
;
1396 * Do NOT enable Auto-negotiation here. This would hold
1397 * the link down because no IDLEs are transmitted
1401 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1403 /* Poll PHY for status changes */
1404 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1407 static int xm_check_link(struct net_device
*dev
)
1409 struct skge_port
*skge
= netdev_priv(dev
);
1410 struct skge_hw
*hw
= skge
->hw
;
1411 int port
= skge
->port
;
1414 /* read twice because of latch */
1415 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1416 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1418 if ((status
& PHY_ST_LSYNC
) == 0) {
1419 xm_link_down(hw
, port
);
1423 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1426 if (!(status
& PHY_ST_AN_OVER
))
1429 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1430 if (lpa
& PHY_B_AN_RF
) {
1431 netdev_notice(dev
, "remote fault\n");
1435 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1437 /* Check Duplex mismatch */
1438 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1440 skge
->duplex
= DUPLEX_FULL
;
1443 skge
->duplex
= DUPLEX_HALF
;
1446 netdev_notice(dev
, "duplex mismatch\n");
1450 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1451 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1452 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1453 (lpa
& PHY_X_P_SYM_MD
))
1454 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1455 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1456 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1457 /* Enable PAUSE receive, disable PAUSE transmit */
1458 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1459 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1460 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1461 /* Disable PAUSE receive, enable PAUSE transmit */
1462 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1464 skge
->flow_status
= FLOW_STAT_NONE
;
1466 skge
->speed
= SPEED_1000
;
1469 if (!netif_carrier_ok(dev
))
1470 genesis_link_up(skge
);
1474 /* Poll to check for link coming up.
1476 * Since internal PHY is wired to a level triggered pin, can't
1477 * get an interrupt when carrier is detected, need to poll for
1480 static void xm_link_timer(unsigned long arg
)
1482 struct skge_port
*skge
= (struct skge_port
*) arg
;
1483 struct net_device
*dev
= skge
->netdev
;
1484 struct skge_hw
*hw
= skge
->hw
;
1485 int port
= skge
->port
;
1487 unsigned long flags
;
1489 if (!netif_running(dev
))
1492 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1495 * Verify that the link by checking GPIO register three times.
1496 * This pin has the signal from the link_sync pin connected to it.
1498 for (i
= 0; i
< 3; i
++) {
1499 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1503 /* Re-enable interrupt to detect link down */
1504 if (xm_check_link(dev
)) {
1505 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1506 msk
&= ~XM_IS_INP_ASS
;
1507 xm_write16(hw
, port
, XM_IMSK
, msk
);
1508 xm_read16(hw
, port
, XM_ISRC
);
1511 mod_timer(&skge
->link_timer
,
1512 round_jiffies(jiffies
+ LINK_HZ
));
1514 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1517 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1519 struct net_device
*dev
= hw
->dev
[port
];
1520 struct skge_port
*skge
= netdev_priv(dev
);
1521 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1524 static const u8 zero
[6] = { 0 };
1526 for (i
= 0; i
< 10; i
++) {
1527 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1529 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1534 netdev_warn(dev
, "genesis reset failed\n");
1537 /* Unreset the XMAC. */
1538 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1541 * Perform additional initialization for external PHYs,
1542 * namely for the 1000baseTX cards that use the XMAC's
1545 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1546 /* Take external Phy out of reset */
1547 r
= skge_read32(hw
, B2_GP_IO
);
1549 r
|= GP_DIR_0
|GP_IO_0
;
1551 r
|= GP_DIR_2
|GP_IO_2
;
1553 skge_write32(hw
, B2_GP_IO
, r
);
1555 /* Enable GMII interface */
1556 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1560 switch (hw
->phy_type
) {
1565 bcom_phy_init(skge
);
1566 bcom_check_link(hw
, port
);
1569 /* Set Station Address */
1570 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1572 /* We don't use match addresses so clear */
1573 for (i
= 1; i
< 16; i
++)
1574 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1576 /* Clear MIB counters */
1577 xm_write16(hw
, port
, XM_STAT_CMD
,
1578 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1579 /* Clear two times according to Errata #3 */
1580 xm_write16(hw
, port
, XM_STAT_CMD
,
1581 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1583 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1584 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1586 /* We don't need the FCS appended to the packet. */
1587 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1589 r
|= XM_RX_BIG_PK_OK
;
1591 if (skge
->duplex
== DUPLEX_HALF
) {
1593 * If in manual half duplex mode the other side might be in
1594 * full duplex mode, so ignore if a carrier extension is not seen
1595 * on frames received
1597 r
|= XM_RX_DIS_CEXT
;
1599 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1601 /* We want short frames padded to 60 bytes. */
1602 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1604 /* Increase threshold for jumbo frames on dual port */
1605 if (hw
->ports
> 1 && jumbo
)
1606 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1608 xm_write16(hw
, port
, XM_TX_THR
, 512);
1611 * Enable the reception of all error frames. This is is
1612 * a necessary evil due to the design of the XMAC. The
1613 * XMAC's receive FIFO is only 8K in size, however jumbo
1614 * frames can be up to 9000 bytes in length. When bad
1615 * frame filtering is enabled, the XMAC's RX FIFO operates
1616 * in 'store and forward' mode. For this to work, the
1617 * entire frame has to fit into the FIFO, but that means
1618 * that jumbo frames larger than 8192 bytes will be
1619 * truncated. Disabling all bad frame filtering causes
1620 * the RX FIFO to operate in streaming mode, in which
1621 * case the XMAC will start transferring frames out of the
1622 * RX FIFO as soon as the FIFO threshold is reached.
1624 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1628 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1629 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1630 * and 'Octets Rx OK Hi Cnt Ov'.
1632 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1635 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1636 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1637 * and 'Octets Tx OK Hi Cnt Ov'.
1639 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1641 /* Configure MAC arbiter */
1642 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1644 /* configure timeout values */
1645 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1646 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1647 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1648 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1650 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1651 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1652 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1653 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1655 /* Configure Rx MAC FIFO */
1656 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1657 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1658 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1660 /* Configure Tx MAC FIFO */
1661 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1662 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1663 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1666 /* Enable frame flushing if jumbo frames used */
1667 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1669 /* enable timeout timers if normal frames */
1670 skge_write16(hw
, B3_PA_CTRL
,
1671 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1675 static void genesis_stop(struct skge_port
*skge
)
1677 struct skge_hw
*hw
= skge
->hw
;
1678 int port
= skge
->port
;
1679 unsigned retries
= 1000;
1682 /* Disable Tx and Rx */
1683 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1684 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1685 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1687 genesis_reset(hw
, port
);
1689 /* Clear Tx packet arbiter timeout IRQ */
1690 skge_write16(hw
, B3_PA_CTRL
,
1691 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1694 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1696 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1697 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1699 } while (--retries
> 0);
1701 /* For external PHYs there must be special handling */
1702 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1703 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1711 skge_write32(hw
, B2_GP_IO
, reg
);
1712 skge_read32(hw
, B2_GP_IO
);
1715 xm_write16(hw
, port
, XM_MMU_CMD
,
1716 xm_read16(hw
, port
, XM_MMU_CMD
)
1717 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1719 xm_read16(hw
, port
, XM_MMU_CMD
);
1723 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1725 struct skge_hw
*hw
= skge
->hw
;
1726 int port
= skge
->port
;
1728 unsigned long timeout
= jiffies
+ HZ
;
1730 xm_write16(hw
, port
,
1731 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1733 /* wait for update to complete */
1734 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1735 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1736 if (time_after(jiffies
, timeout
))
1741 /* special case for 64 bit octet counter */
1742 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1743 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1744 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1745 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1747 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1748 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1751 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1753 struct net_device
*dev
= hw
->dev
[port
];
1754 struct skge_port
*skge
= netdev_priv(dev
);
1755 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1757 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1758 "mac interrupt status 0x%x\n", status
);
1760 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1761 xm_link_down(hw
, port
);
1762 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1765 if (status
& XM_IS_TXF_UR
) {
1766 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1767 ++dev
->stats
.tx_fifo_errors
;
1771 static void genesis_link_up(struct skge_port
*skge
)
1773 struct skge_hw
*hw
= skge
->hw
;
1774 int port
= skge
->port
;
1778 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1781 * enabling pause frame reception is required for 1000BT
1782 * because the XMAC is not reset if the link is going down
1784 if (skge
->flow_status
== FLOW_STAT_NONE
||
1785 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1786 /* Disable Pause Frame Reception */
1787 cmd
|= XM_MMU_IGN_PF
;
1789 /* Enable Pause Frame Reception */
1790 cmd
&= ~XM_MMU_IGN_PF
;
1792 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1794 mode
= xm_read32(hw
, port
, XM_MODE
);
1795 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1796 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1798 * Configure Pause Frame Generation
1799 * Use internal and external Pause Frame Generation.
1800 * Sending pause frames is edge triggered.
1801 * Send a Pause frame with the maximum pause time if
1802 * internal oder external FIFO full condition occurs.
1803 * Send a zero pause time frame to re-start transmission.
1805 /* XM_PAUSE_DA = '010000C28001' (default) */
1806 /* XM_MAC_PTIME = 0xffff (maximum) */
1807 /* remember this value is defined in big endian (!) */
1808 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1810 mode
|= XM_PAUSE_MODE
;
1811 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1814 * disable pause frame generation is required for 1000BT
1815 * because the XMAC is not reset if the link is going down
1817 /* Disable Pause Mode in Mode Register */
1818 mode
&= ~XM_PAUSE_MODE
;
1820 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1823 xm_write32(hw
, port
, XM_MODE
, mode
);
1825 /* Turn on detection of Tx underrun */
1826 msk
= xm_read16(hw
, port
, XM_IMSK
);
1827 msk
&= ~XM_IS_TXF_UR
;
1828 xm_write16(hw
, port
, XM_IMSK
, msk
);
1830 xm_read16(hw
, port
, XM_ISRC
);
1832 /* get MMU Command Reg. */
1833 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1834 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1835 cmd
|= XM_MMU_GMII_FD
;
1838 * Workaround BCOM Errata (#10523) for all BCom Phys
1839 * Enable Power Management after link up
1841 if (hw
->phy_type
== SK_PHY_BCOM
) {
1842 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1843 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1844 & ~PHY_B_AC_DIS_PM
);
1845 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1849 xm_write16(hw
, port
, XM_MMU_CMD
,
1850 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1855 static inline void bcom_phy_intr(struct skge_port
*skge
)
1857 struct skge_hw
*hw
= skge
->hw
;
1858 int port
= skge
->port
;
1861 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1862 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
1863 "phy interrupt status 0x%x\n", isrc
);
1865 if (isrc
& PHY_B_IS_PSE
)
1866 pr_err("%s: uncorrectable pair swap error\n",
1867 hw
->dev
[port
]->name
);
1869 /* Workaround BCom Errata:
1870 * enable and disable loopback mode if "NO HCD" occurs.
1872 if (isrc
& PHY_B_IS_NO_HDCL
) {
1873 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1874 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1875 ctrl
| PHY_CT_LOOP
);
1876 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1877 ctrl
& ~PHY_CT_LOOP
);
1880 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1881 bcom_check_link(hw
, port
);
1885 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1889 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1890 gma_write16(hw
, port
, GM_SMI_CTRL
,
1891 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1892 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1895 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1899 pr_warning("%s: phy write timeout\n", hw
->dev
[port
]->name
);
1903 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1907 gma_write16(hw
, port
, GM_SMI_CTRL
,
1908 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1909 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1911 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1913 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1919 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1923 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1926 if (__gm_phy_read(hw
, port
, reg
, &v
))
1927 pr_warning("%s: phy read timeout\n", hw
->dev
[port
]->name
);
1931 /* Marvell Phy Initialization */
1932 static void yukon_init(struct skge_hw
*hw
, int port
)
1934 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1935 u16 ctrl
, ct1000
, adv
;
1937 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1938 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1940 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1941 PHY_M_EC_MAC_S_MSK
);
1942 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1944 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1946 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1949 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1950 if (skge
->autoneg
== AUTONEG_DISABLE
)
1951 ctrl
&= ~PHY_CT_ANE
;
1953 ctrl
|= PHY_CT_RESET
;
1954 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
1960 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1962 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1963 ct1000
|= PHY_M_1000C_AFD
;
1964 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1965 ct1000
|= PHY_M_1000C_AHD
;
1966 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
1967 adv
|= PHY_M_AN_100_FD
;
1968 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
1969 adv
|= PHY_M_AN_100_HD
;
1970 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
1971 adv
|= PHY_M_AN_10_FD
;
1972 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
1973 adv
|= PHY_M_AN_10_HD
;
1975 /* Set Flow-control capabilities */
1976 adv
|= phy_pause_map
[skge
->flow_control
];
1978 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1979 adv
|= PHY_M_AN_1000X_AFD
;
1980 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1981 adv
|= PHY_M_AN_1000X_AHD
;
1983 adv
|= fiber_pause_map
[skge
->flow_control
];
1986 /* Restart Auto-negotiation */
1987 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1989 /* forced speed/duplex settings */
1990 ct1000
= PHY_M_1000C_MSE
;
1992 if (skge
->duplex
== DUPLEX_FULL
)
1993 ctrl
|= PHY_CT_DUP_MD
;
1995 switch (skge
->speed
) {
1997 ctrl
|= PHY_CT_SP1000
;
2000 ctrl
|= PHY_CT_SP100
;
2004 ctrl
|= PHY_CT_RESET
;
2007 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2009 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2010 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2012 /* Enable phy interrupt on autonegotiation complete (or link up) */
2013 if (skge
->autoneg
== AUTONEG_ENABLE
)
2014 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2016 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2019 static void yukon_reset(struct skge_hw
*hw
, int port
)
2021 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2022 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2023 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2024 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2025 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2027 gma_write16(hw
, port
, GM_RX_CTRL
,
2028 gma_read16(hw
, port
, GM_RX_CTRL
)
2029 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2032 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2033 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2038 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2041 reg
= skge_read32(hw
, B2_FAR
);
2042 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2043 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2044 skge_write32(hw
, B2_FAR
, reg
);
2048 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2050 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2053 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2055 /* WA code for COMA mode -- set PHY reset */
2056 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2057 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2058 reg
= skge_read32(hw
, B2_GP_IO
);
2059 reg
|= GP_DIR_9
| GP_IO_9
;
2060 skge_write32(hw
, B2_GP_IO
, reg
);
2064 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2065 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2067 /* WA code for COMA mode -- clear PHY reset */
2068 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2069 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2070 reg
= skge_read32(hw
, B2_GP_IO
);
2073 skge_write32(hw
, B2_GP_IO
, reg
);
2076 /* Set hardware config mode */
2077 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2078 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2079 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2081 /* Clear GMC reset */
2082 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2083 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2084 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2086 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2087 reg
= GM_GPCR_AU_ALL_DIS
;
2088 gma_write16(hw
, port
, GM_GP_CTRL
,
2089 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2091 switch (skge
->speed
) {
2093 reg
&= ~GM_GPCR_SPEED_100
;
2094 reg
|= GM_GPCR_SPEED_1000
;
2097 reg
&= ~GM_GPCR_SPEED_1000
;
2098 reg
|= GM_GPCR_SPEED_100
;
2101 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2105 if (skge
->duplex
== DUPLEX_FULL
)
2106 reg
|= GM_GPCR_DUP_FULL
;
2108 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2110 switch (skge
->flow_control
) {
2111 case FLOW_MODE_NONE
:
2112 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2113 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2115 case FLOW_MODE_LOC_SEND
:
2116 /* disable Rx flow-control */
2117 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2119 case FLOW_MODE_SYMMETRIC
:
2120 case FLOW_MODE_SYM_OR_REM
:
2121 /* enable Tx & Rx flow-control */
2125 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2126 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2128 yukon_init(hw
, port
);
2131 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2132 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2134 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2135 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2136 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2138 /* transmit control */
2139 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2141 /* receive control reg: unicast + multicast + no FCS */
2142 gma_write16(hw
, port
, GM_RX_CTRL
,
2143 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2145 /* transmit flow control */
2146 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2148 /* transmit parameter */
2149 gma_write16(hw
, port
, GM_TX_PARAM
,
2150 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2151 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2152 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2154 /* configure the Serial Mode Register */
2155 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2157 | IPG_DATA_VAL(IPG_DATA_DEF
);
2159 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2160 reg
|= GM_SMOD_JUMBO_ENA
;
2162 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2164 /* physical address: used for pause frames */
2165 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2166 /* virtual address for data */
2167 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2169 /* enable interrupt mask for counter overflows */
2170 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2171 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2172 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2174 /* Initialize Mac Fifo */
2176 /* Configure Rx MAC FIFO */
2177 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2178 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2180 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2181 if (is_yukon_lite_a0(hw
))
2182 reg
&= ~GMF_RX_F_FL_ON
;
2184 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2185 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2187 * because Pause Packet Truncation in GMAC is not working
2188 * we have to increase the Flush Threshold to 64 bytes
2189 * in order to flush pause packets in Rx FIFO on Yukon-1
2191 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2193 /* Configure Tx MAC FIFO */
2194 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2195 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2198 /* Go into power down mode */
2199 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2203 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2204 ctrl
|= PHY_M_PC_POL_R_DIS
;
2205 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2207 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2208 ctrl
|= PHY_CT_RESET
;
2209 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2211 /* switch IEEE compatible power down mode on */
2212 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2213 ctrl
|= PHY_CT_PDOWN
;
2214 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2217 static void yukon_stop(struct skge_port
*skge
)
2219 struct skge_hw
*hw
= skge
->hw
;
2220 int port
= skge
->port
;
2222 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2223 yukon_reset(hw
, port
);
2225 gma_write16(hw
, port
, GM_GP_CTRL
,
2226 gma_read16(hw
, port
, GM_GP_CTRL
)
2227 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2228 gma_read16(hw
, port
, GM_GP_CTRL
);
2230 yukon_suspend(hw
, port
);
2232 /* set GPHY Control reset */
2233 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2234 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2237 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2239 struct skge_hw
*hw
= skge
->hw
;
2240 int port
= skge
->port
;
2243 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2244 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2245 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2246 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2248 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2249 data
[i
] = gma_read32(hw
, port
,
2250 skge_stats
[i
].gma_offset
);
2253 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2255 struct net_device
*dev
= hw
->dev
[port
];
2256 struct skge_port
*skge
= netdev_priv(dev
);
2257 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2259 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2260 "mac interrupt status 0x%x\n", status
);
2262 if (status
& GM_IS_RX_FF_OR
) {
2263 ++dev
->stats
.rx_fifo_errors
;
2264 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2267 if (status
& GM_IS_TX_FF_UR
) {
2268 ++dev
->stats
.tx_fifo_errors
;
2269 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2274 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2276 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2277 case PHY_M_PS_SPEED_1000
:
2279 case PHY_M_PS_SPEED_100
:
2286 static void yukon_link_up(struct skge_port
*skge
)
2288 struct skge_hw
*hw
= skge
->hw
;
2289 int port
= skge
->port
;
2292 /* Enable Transmit FIFO Underrun */
2293 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2295 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2296 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2297 reg
|= GM_GPCR_DUP_FULL
;
2300 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2301 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2303 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2307 static void yukon_link_down(struct skge_port
*skge
)
2309 struct skge_hw
*hw
= skge
->hw
;
2310 int port
= skge
->port
;
2313 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2314 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2315 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2317 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2318 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2319 ctrl
|= PHY_M_AN_ASP
;
2320 /* restore Asymmetric Pause bit */
2321 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2324 skge_link_down(skge
);
2326 yukon_init(hw
, port
);
2329 static void yukon_phy_intr(struct skge_port
*skge
)
2331 struct skge_hw
*hw
= skge
->hw
;
2332 int port
= skge
->port
;
2333 const char *reason
= NULL
;
2334 u16 istatus
, phystat
;
2336 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2337 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2339 netif_printk(skge
, intr
, KERN_DEBUG
, skge
->netdev
,
2340 "phy interrupt status 0x%x 0x%x\n", istatus
, phystat
);
2342 if (istatus
& PHY_M_IS_AN_COMPL
) {
2343 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2345 reason
= "remote fault";
2349 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2350 reason
= "master/slave fault";
2354 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2355 reason
= "speed/duplex";
2359 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2360 ? DUPLEX_FULL
: DUPLEX_HALF
;
2361 skge
->speed
= yukon_speed(hw
, phystat
);
2363 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2364 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2365 case PHY_M_PS_PAUSE_MSK
:
2366 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2368 case PHY_M_PS_RX_P_EN
:
2369 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2371 case PHY_M_PS_TX_P_EN
:
2372 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2375 skge
->flow_status
= FLOW_STAT_NONE
;
2378 if (skge
->flow_status
== FLOW_STAT_NONE
||
2379 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2380 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2382 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2383 yukon_link_up(skge
);
2387 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2388 skge
->speed
= yukon_speed(hw
, phystat
);
2390 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2391 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2392 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2393 if (phystat
& PHY_M_PS_LINK_UP
)
2394 yukon_link_up(skge
);
2396 yukon_link_down(skge
);
2400 pr_err("%s: autonegotiation failed (%s)\n", skge
->netdev
->name
, reason
);
2402 /* XXX restart autonegotiation? */
2405 static void skge_phy_reset(struct skge_port
*skge
)
2407 struct skge_hw
*hw
= skge
->hw
;
2408 int port
= skge
->port
;
2409 struct net_device
*dev
= hw
->dev
[port
];
2411 netif_stop_queue(skge
->netdev
);
2412 netif_carrier_off(skge
->netdev
);
2414 spin_lock_bh(&hw
->phy_lock
);
2415 if (is_genesis(hw
)) {
2416 genesis_reset(hw
, port
);
2417 genesis_mac_init(hw
, port
);
2419 yukon_reset(hw
, port
);
2420 yukon_init(hw
, port
);
2422 spin_unlock_bh(&hw
->phy_lock
);
2424 skge_set_multicast(dev
);
2427 /* Basic MII support */
2428 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2430 struct mii_ioctl_data
*data
= if_mii(ifr
);
2431 struct skge_port
*skge
= netdev_priv(dev
);
2432 struct skge_hw
*hw
= skge
->hw
;
2433 int err
= -EOPNOTSUPP
;
2435 if (!netif_running(dev
))
2436 return -ENODEV
; /* Phy still in reset */
2440 data
->phy_id
= hw
->phy_addr
;
2445 spin_lock_bh(&hw
->phy_lock
);
2448 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2450 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2451 spin_unlock_bh(&hw
->phy_lock
);
2452 data
->val_out
= val
;
2457 spin_lock_bh(&hw
->phy_lock
);
2459 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2462 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2464 spin_unlock_bh(&hw
->phy_lock
);
2470 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2476 end
= start
+ len
- 1;
2478 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2479 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2480 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2481 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2482 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2484 if (q
== Q_R1
|| q
== Q_R2
) {
2485 /* Set thresholds on receive queue's */
2486 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2488 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2491 /* Enable store & forward on Tx queue's because
2492 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2494 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2497 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2500 /* Setup Bus Memory Interface */
2501 static void skge_qset(struct skge_port
*skge
, u16 q
,
2502 const struct skge_element
*e
)
2504 struct skge_hw
*hw
= skge
->hw
;
2505 u32 watermark
= 0x600;
2506 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2508 /* optimization to reduce window on 32bit/33mhz */
2509 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2512 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2513 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2514 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2515 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2518 static int skge_up(struct net_device
*dev
)
2520 struct skge_port
*skge
= netdev_priv(dev
);
2521 struct skge_hw
*hw
= skge
->hw
;
2522 int port
= skge
->port
;
2523 u32 chunk
, ram_addr
;
2524 size_t rx_size
, tx_size
;
2527 if (!is_valid_ether_addr(dev
->dev_addr
))
2530 netif_info(skge
, ifup
, skge
->netdev
, "enabling interface\n");
2532 if (dev
->mtu
> RX_BUF_SIZE
)
2533 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2535 skge
->rx_buf_size
= RX_BUF_SIZE
;
2538 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2539 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2540 skge
->mem_size
= tx_size
+ rx_size
;
2541 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2545 BUG_ON(skge
->dma
& 7);
2547 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2548 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2553 memset(skge
->mem
, 0, skge
->mem_size
);
2555 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2559 err
= skge_rx_fill(dev
);
2563 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2564 skge
->dma
+ rx_size
);
2568 if (hw
->ports
== 1) {
2569 err
= request_irq(hw
->pdev
->irq
, skge_intr
, IRQF_SHARED
,
2572 netdev_err(dev
, "Unable to allocate interrupt %d error: %d\n",
2573 hw
->pdev
->irq
, err
);
2578 /* Initialize MAC */
2579 spin_lock_bh(&hw
->phy_lock
);
2581 genesis_mac_init(hw
, port
);
2583 yukon_mac_init(hw
, port
);
2584 spin_unlock_bh(&hw
->phy_lock
);
2586 /* Configure RAMbuffers - equally between ports and tx/rx */
2587 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2588 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2590 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2591 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2593 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2594 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2595 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2597 /* Start receiver BMU */
2599 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2600 skge_led(skge
, LED_MODE_ON
);
2602 spin_lock_irq(&hw
->hw_lock
);
2603 hw
->intr_mask
|= portmask
[port
];
2604 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2605 skge_read32(hw
, B0_IMSK
);
2606 spin_unlock_irq(&hw
->hw_lock
);
2608 napi_enable(&skge
->napi
);
2612 kfree(skge
->tx_ring
.start
);
2614 skge_rx_clean(skge
);
2615 kfree(skge
->rx_ring
.start
);
2617 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2624 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2626 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2627 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2628 RB_RST_SET
|RB_DIS_OP_MD
);
2629 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2632 static int skge_down(struct net_device
*dev
)
2634 struct skge_port
*skge
= netdev_priv(dev
);
2635 struct skge_hw
*hw
= skge
->hw
;
2636 int port
= skge
->port
;
2638 if (skge
->mem
== NULL
)
2641 netif_info(skge
, ifdown
, skge
->netdev
, "disabling interface\n");
2643 netif_tx_disable(dev
);
2645 if (is_genesis(hw
) && hw
->phy_type
== SK_PHY_XMAC
)
2646 del_timer_sync(&skge
->link_timer
);
2648 napi_disable(&skge
->napi
);
2649 netif_carrier_off(dev
);
2651 spin_lock_irq(&hw
->hw_lock
);
2652 hw
->intr_mask
&= ~portmask
[port
];
2653 skge_write32(hw
, B0_IMSK
, (hw
->ports
== 1) ? 0 : hw
->intr_mask
);
2654 skge_read32(hw
, B0_IMSK
);
2655 spin_unlock_irq(&hw
->hw_lock
);
2658 free_irq(hw
->pdev
->irq
, hw
);
2660 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2666 /* Stop transmitter */
2667 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2668 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2669 RB_RST_SET
|RB_DIS_OP_MD
);
2672 /* Disable Force Sync bit and Enable Alloc bit */
2673 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2674 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2676 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2677 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2678 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2680 /* Reset PCI FIFO */
2681 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2682 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2684 /* Reset the RAM Buffer async Tx queue */
2685 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2687 skge_rx_stop(hw
, port
);
2689 if (is_genesis(hw
)) {
2690 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2691 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2693 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2694 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2697 skge_led(skge
, LED_MODE_OFF
);
2699 netif_tx_lock_bh(dev
);
2701 netif_tx_unlock_bh(dev
);
2703 skge_rx_clean(skge
);
2705 kfree(skge
->rx_ring
.start
);
2706 kfree(skge
->tx_ring
.start
);
2707 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2712 static inline int skge_avail(const struct skge_ring
*ring
)
2715 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2716 + (ring
->to_clean
- ring
->to_use
) - 1;
2719 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2720 struct net_device
*dev
)
2722 struct skge_port
*skge
= netdev_priv(dev
);
2723 struct skge_hw
*hw
= skge
->hw
;
2724 struct skge_element
*e
;
2725 struct skge_tx_desc
*td
;
2730 if (skb_padto(skb
, ETH_ZLEN
))
2731 return NETDEV_TX_OK
;
2733 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2734 return NETDEV_TX_BUSY
;
2736 e
= skge
->tx_ring
.to_use
;
2738 BUG_ON(td
->control
& BMU_OWN
);
2740 len
= skb_headlen(skb
);
2741 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2742 dma_unmap_addr_set(e
, mapaddr
, map
);
2743 dma_unmap_len_set(e
, maplen
, len
);
2746 td
->dma_hi
= map
>> 32;
2748 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2749 const int offset
= skb_checksum_start_offset(skb
);
2751 /* This seems backwards, but it is what the sk98lin
2752 * does. Looks like hardware is wrong?
2754 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
&&
2755 hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2756 control
= BMU_TCP_CHECK
;
2758 control
= BMU_UDP_CHECK
;
2761 td
->csum_start
= offset
;
2762 td
->csum_write
= offset
+ skb
->csum_offset
;
2764 control
= BMU_CHECK
;
2766 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2767 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2769 struct skge_tx_desc
*tf
= td
;
2771 control
|= BMU_STFWD
;
2772 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2773 const skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2775 map
= skb_frag_dma_map(&hw
->pdev
->dev
, frag
, 0,
2776 skb_frag_size(frag
), DMA_TO_DEVICE
);
2781 BUG_ON(tf
->control
& BMU_OWN
);
2784 tf
->dma_hi
= (u64
) map
>> 32;
2785 dma_unmap_addr_set(e
, mapaddr
, map
);
2786 dma_unmap_len_set(e
, maplen
, skb_frag_size(frag
));
2788 tf
->control
= BMU_OWN
| BMU_SW
| control
| skb_frag_size(frag
);
2790 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2792 /* Make sure all the descriptors written */
2794 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2797 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2799 netif_printk(skge
, tx_queued
, KERN_DEBUG
, skge
->netdev
,
2800 "tx queued, slot %td, len %d\n",
2801 e
- skge
->tx_ring
.start
, skb
->len
);
2803 skge
->tx_ring
.to_use
= e
->next
;
2806 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2807 netdev_dbg(dev
, "transmit queue full\n");
2808 netif_stop_queue(dev
);
2811 return NETDEV_TX_OK
;
2815 /* Free resources associated with this reing element */
2816 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2819 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2821 /* skb header vs. fragment */
2822 if (control
& BMU_STF
)
2823 pci_unmap_single(pdev
, dma_unmap_addr(e
, mapaddr
),
2824 dma_unmap_len(e
, maplen
),
2827 pci_unmap_page(pdev
, dma_unmap_addr(e
, mapaddr
),
2828 dma_unmap_len(e
, maplen
),
2831 if (control
& BMU_EOF
) {
2832 netif_printk(skge
, tx_done
, KERN_DEBUG
, skge
->netdev
,
2833 "tx done slot %td\n", e
- skge
->tx_ring
.start
);
2835 dev_kfree_skb(e
->skb
);
2839 /* Free all buffers in transmit ring */
2840 static void skge_tx_clean(struct net_device
*dev
)
2842 struct skge_port
*skge
= netdev_priv(dev
);
2843 struct skge_element
*e
;
2845 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2846 struct skge_tx_desc
*td
= e
->desc
;
2847 skge_tx_free(skge
, e
, td
->control
);
2851 skge
->tx_ring
.to_clean
= e
;
2854 static void skge_tx_timeout(struct net_device
*dev
)
2856 struct skge_port
*skge
= netdev_priv(dev
);
2858 netif_printk(skge
, timer
, KERN_DEBUG
, skge
->netdev
, "tx timeout\n");
2860 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2862 netif_wake_queue(dev
);
2865 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2869 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2872 if (!netif_running(dev
)) {
2888 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2890 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2894 crc
= ether_crc_le(ETH_ALEN
, addr
);
2896 filter
[bit
/8] |= 1 << (bit
%8);
2899 static void genesis_set_multicast(struct net_device
*dev
)
2901 struct skge_port
*skge
= netdev_priv(dev
);
2902 struct skge_hw
*hw
= skge
->hw
;
2903 int port
= skge
->port
;
2904 struct netdev_hw_addr
*ha
;
2908 mode
= xm_read32(hw
, port
, XM_MODE
);
2909 mode
|= XM_MD_ENA_HASH
;
2910 if (dev
->flags
& IFF_PROMISC
)
2911 mode
|= XM_MD_ENA_PROM
;
2913 mode
&= ~XM_MD_ENA_PROM
;
2915 if (dev
->flags
& IFF_ALLMULTI
)
2916 memset(filter
, 0xff, sizeof(filter
));
2918 memset(filter
, 0, sizeof(filter
));
2920 if (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2921 skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2922 genesis_add_filter(filter
, pause_mc_addr
);
2924 netdev_for_each_mc_addr(ha
, dev
)
2925 genesis_add_filter(filter
, ha
->addr
);
2928 xm_write32(hw
, port
, XM_MODE
, mode
);
2929 xm_outhash(hw
, port
, XM_HSM
, filter
);
2932 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2934 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2935 filter
[bit
/8] |= 1 << (bit
%8);
2938 static void yukon_set_multicast(struct net_device
*dev
)
2940 struct skge_port
*skge
= netdev_priv(dev
);
2941 struct skge_hw
*hw
= skge
->hw
;
2942 int port
= skge
->port
;
2943 struct netdev_hw_addr
*ha
;
2944 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
||
2945 skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2949 memset(filter
, 0, sizeof(filter
));
2951 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2952 reg
|= GM_RXCR_UCF_ENA
;
2954 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2955 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2956 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2957 memset(filter
, 0xff, sizeof(filter
));
2958 else if (netdev_mc_empty(dev
) && !rx_pause
)/* no multicast */
2959 reg
&= ~GM_RXCR_MCF_ENA
;
2961 reg
|= GM_RXCR_MCF_ENA
;
2964 yukon_add_filter(filter
, pause_mc_addr
);
2966 netdev_for_each_mc_addr(ha
, dev
)
2967 yukon_add_filter(filter
, ha
->addr
);
2971 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
2972 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
2973 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
2974 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
2975 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
2976 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
2977 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
2978 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
2980 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
2983 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
2986 return status
>> XMR_FS_LEN_SHIFT
;
2988 return status
>> GMR_FS_LEN_SHIFT
;
2991 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
2994 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
2996 return (status
& GMR_FS_ANY_ERR
) ||
2997 (status
& GMR_FS_RX_OK
) == 0;
3000 static void skge_set_multicast(struct net_device
*dev
)
3002 struct skge_port
*skge
= netdev_priv(dev
);
3004 if (is_genesis(skge
->hw
))
3005 genesis_set_multicast(dev
);
3007 yukon_set_multicast(dev
);
3012 /* Get receive buffer from descriptor.
3013 * Handles copy of small buffers and reallocation failures
3015 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3016 struct skge_element
*e
,
3017 u32 control
, u32 status
, u16 csum
)
3019 struct skge_port
*skge
= netdev_priv(dev
);
3020 struct sk_buff
*skb
;
3021 u16 len
= control
& BMU_BBC
;
3023 netif_printk(skge
, rx_status
, KERN_DEBUG
, skge
->netdev
,
3024 "rx slot %td status 0x%x len %d\n",
3025 e
- skge
->rx_ring
.start
, status
, len
);
3027 if (len
> skge
->rx_buf_size
)
3030 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3033 if (bad_phy_status(skge
->hw
, status
))
3036 if (phy_length(skge
->hw
, status
) != len
)
3039 if (len
< RX_COPY_THRESHOLD
) {
3040 skb
= netdev_alloc_skb_ip_align(dev
, len
);
3044 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3045 dma_unmap_addr(e
, mapaddr
),
3046 len
, PCI_DMA_FROMDEVICE
);
3047 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3048 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3049 dma_unmap_addr(e
, mapaddr
),
3050 len
, PCI_DMA_FROMDEVICE
);
3051 skge_rx_reuse(e
, skge
->rx_buf_size
);
3053 struct sk_buff
*nskb
;
3055 nskb
= netdev_alloc_skb_ip_align(dev
, skge
->rx_buf_size
);
3059 pci_unmap_single(skge
->hw
->pdev
,
3060 dma_unmap_addr(e
, mapaddr
),
3061 dma_unmap_len(e
, maplen
),
3062 PCI_DMA_FROMDEVICE
);
3064 prefetch(skb
->data
);
3065 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
3070 if (dev
->features
& NETIF_F_RXCSUM
) {
3072 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3075 skb
->protocol
= eth_type_trans(skb
, dev
);
3080 netif_printk(skge
, rx_err
, KERN_DEBUG
, skge
->netdev
,
3081 "rx err, slot %td control 0x%x status 0x%x\n",
3082 e
- skge
->rx_ring
.start
, control
, status
);
3084 if (is_genesis(skge
->hw
)) {
3085 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3086 dev
->stats
.rx_length_errors
++;
3087 if (status
& XMR_FS_FRA_ERR
)
3088 dev
->stats
.rx_frame_errors
++;
3089 if (status
& XMR_FS_FCS_ERR
)
3090 dev
->stats
.rx_crc_errors
++;
3092 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3093 dev
->stats
.rx_length_errors
++;
3094 if (status
& GMR_FS_FRAGMENT
)
3095 dev
->stats
.rx_frame_errors
++;
3096 if (status
& GMR_FS_CRC_ERR
)
3097 dev
->stats
.rx_crc_errors
++;
3101 skge_rx_reuse(e
, skge
->rx_buf_size
);
3105 /* Free all buffers in Tx ring which are no longer owned by device */
3106 static void skge_tx_done(struct net_device
*dev
)
3108 struct skge_port
*skge
= netdev_priv(dev
);
3109 struct skge_ring
*ring
= &skge
->tx_ring
;
3110 struct skge_element
*e
;
3112 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3114 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3115 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3117 if (control
& BMU_OWN
)
3120 skge_tx_free(skge
, e
, control
);
3122 skge
->tx_ring
.to_clean
= e
;
3124 /* Can run lockless until we need to synchronize to restart queue. */
3127 if (unlikely(netif_queue_stopped(dev
) &&
3128 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3130 if (unlikely(netif_queue_stopped(dev
) &&
3131 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3132 netif_wake_queue(dev
);
3135 netif_tx_unlock(dev
);
3139 static int skge_poll(struct napi_struct
*napi
, int to_do
)
3141 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3142 struct net_device
*dev
= skge
->netdev
;
3143 struct skge_hw
*hw
= skge
->hw
;
3144 struct skge_ring
*ring
= &skge
->rx_ring
;
3145 struct skge_element
*e
;
3150 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3152 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3153 struct skge_rx_desc
*rd
= e
->desc
;
3154 struct sk_buff
*skb
;
3158 control
= rd
->control
;
3159 if (control
& BMU_OWN
)
3162 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3164 napi_gro_receive(napi
, skb
);
3170 /* restart receiver */
3172 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3174 if (work_done
< to_do
) {
3175 unsigned long flags
;
3177 napi_gro_flush(napi
);
3178 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3179 __napi_complete(napi
);
3180 hw
->intr_mask
|= napimask
[skge
->port
];
3181 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3182 skge_read32(hw
, B0_IMSK
);
3183 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3189 /* Parity errors seem to happen when Genesis is connected to a switch
3190 * with no other ports present. Heartbeat error??
3192 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3194 struct net_device
*dev
= hw
->dev
[port
];
3196 ++dev
->stats
.tx_heartbeat_errors
;
3199 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3202 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3203 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3204 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3205 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3208 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3211 genesis_mac_intr(hw
, port
);
3213 yukon_mac_intr(hw
, port
);
3216 /* Handle device specific framing and timeout interrupts */
3217 static void skge_error_irq(struct skge_hw
*hw
)
3219 struct pci_dev
*pdev
= hw
->pdev
;
3220 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3222 if (is_genesis(hw
)) {
3223 /* clear xmac errors */
3224 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3225 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3226 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3227 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3229 /* Timestamp (unused) overflow */
3230 if (hwstatus
& IS_IRQ_TIST_OV
)
3231 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3234 if (hwstatus
& IS_RAM_RD_PAR
) {
3235 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3236 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3239 if (hwstatus
& IS_RAM_WR_PAR
) {
3240 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3241 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3244 if (hwstatus
& IS_M1_PAR_ERR
)
3245 skge_mac_parity(hw
, 0);
3247 if (hwstatus
& IS_M2_PAR_ERR
)
3248 skge_mac_parity(hw
, 1);
3250 if (hwstatus
& IS_R1_PAR_ERR
) {
3251 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3253 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3256 if (hwstatus
& IS_R2_PAR_ERR
) {
3257 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3259 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3262 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3263 u16 pci_status
, pci_cmd
;
3265 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3266 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3268 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3269 pci_cmd
, pci_status
);
3271 /* Write the error bits back to clear them. */
3272 pci_status
&= PCI_STATUS_ERROR_BITS
;
3273 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3274 pci_write_config_word(pdev
, PCI_COMMAND
,
3275 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3276 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3277 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3279 /* if error still set then just ignore it */
3280 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3281 if (hwstatus
& IS_IRQ_STAT
) {
3282 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3283 hw
->intr_mask
&= ~IS_HW_ERR
;
3289 * Interrupt from PHY are handled in tasklet (softirq)
3290 * because accessing phy registers requires spin wait which might
3291 * cause excess interrupt latency.
3293 static void skge_extirq(unsigned long arg
)
3295 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3298 for (port
= 0; port
< hw
->ports
; port
++) {
3299 struct net_device
*dev
= hw
->dev
[port
];
3301 if (netif_running(dev
)) {
3302 struct skge_port
*skge
= netdev_priv(dev
);
3304 spin_lock(&hw
->phy_lock
);
3305 if (!is_genesis(hw
))
3306 yukon_phy_intr(skge
);
3307 else if (hw
->phy_type
== SK_PHY_BCOM
)
3308 bcom_phy_intr(skge
);
3309 spin_unlock(&hw
->phy_lock
);
3313 spin_lock_irq(&hw
->hw_lock
);
3314 hw
->intr_mask
|= IS_EXT_REG
;
3315 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3316 skge_read32(hw
, B0_IMSK
);
3317 spin_unlock_irq(&hw
->hw_lock
);
3320 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3322 struct skge_hw
*hw
= dev_id
;
3326 spin_lock(&hw
->hw_lock
);
3327 /* Reading this register masks IRQ */
3328 status
= skge_read32(hw
, B0_SP_ISRC
);
3329 if (status
== 0 || status
== ~0)
3333 status
&= hw
->intr_mask
;
3334 if (status
& IS_EXT_REG
) {
3335 hw
->intr_mask
&= ~IS_EXT_REG
;
3336 tasklet_schedule(&hw
->phy_task
);
3339 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3340 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3341 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3342 napi_schedule(&skge
->napi
);
3345 if (status
& IS_PA_TO_TX1
)
3346 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3348 if (status
& IS_PA_TO_RX1
) {
3349 ++hw
->dev
[0]->stats
.rx_over_errors
;
3350 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3354 if (status
& IS_MAC1
)
3355 skge_mac_intr(hw
, 0);
3358 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3360 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3361 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3362 napi_schedule(&skge
->napi
);
3365 if (status
& IS_PA_TO_RX2
) {
3366 ++hw
->dev
[1]->stats
.rx_over_errors
;
3367 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3370 if (status
& IS_PA_TO_TX2
)
3371 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3373 if (status
& IS_MAC2
)
3374 skge_mac_intr(hw
, 1);
3377 if (status
& IS_HW_ERR
)
3380 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3381 skge_read32(hw
, B0_IMSK
);
3383 spin_unlock(&hw
->hw_lock
);
3385 return IRQ_RETVAL(handled
);
3388 #ifdef CONFIG_NET_POLL_CONTROLLER
3389 static void skge_netpoll(struct net_device
*dev
)
3391 struct skge_port
*skge
= netdev_priv(dev
);
3393 disable_irq(dev
->irq
);
3394 skge_intr(dev
->irq
, skge
->hw
);
3395 enable_irq(dev
->irq
);
3399 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3401 struct skge_port
*skge
= netdev_priv(dev
);
3402 struct skge_hw
*hw
= skge
->hw
;
3403 unsigned port
= skge
->port
;
3404 const struct sockaddr
*addr
= p
;
3407 if (!is_valid_ether_addr(addr
->sa_data
))
3408 return -EADDRNOTAVAIL
;
3410 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3412 if (!netif_running(dev
)) {
3413 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3414 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3417 spin_lock_bh(&hw
->phy_lock
);
3418 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3419 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3421 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3422 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3425 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3427 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3428 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3431 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3432 spin_unlock_bh(&hw
->phy_lock
);
3438 static const struct {
3442 { CHIP_ID_GENESIS
, "Genesis" },
3443 { CHIP_ID_YUKON
, "Yukon" },
3444 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3445 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3448 static const char *skge_board_name(const struct skge_hw
*hw
)
3451 static char buf
[16];
3453 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3454 if (skge_chips
[i
].id
== hw
->chip_id
)
3455 return skge_chips
[i
].name
;
3457 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3463 * Setup the board data structure, but don't bring up
3466 static int skge_reset(struct skge_hw
*hw
)
3469 u16 ctst
, pci_status
;
3470 u8 t8
, mac_cfg
, pmd_type
;
3473 ctst
= skge_read16(hw
, B0_CTST
);
3476 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3477 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3479 /* clear PCI errors, if any */
3480 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3481 skge_write8(hw
, B2_TST_CTRL2
, 0);
3483 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3484 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3485 pci_status
| PCI_STATUS_ERROR_BITS
);
3486 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3487 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3489 /* restore CLK_RUN bits (for Yukon-Lite) */
3490 skge_write16(hw
, B0_CTST
,
3491 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3493 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3494 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3495 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3496 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3498 switch (hw
->chip_id
) {
3499 case CHIP_ID_GENESIS
:
3500 #ifdef CONFIG_SKGE_GENESIS
3501 switch (hw
->phy_type
) {
3503 hw
->phy_addr
= PHY_ADDR_XMAC
;
3506 hw
->phy_addr
= PHY_ADDR_BCOM
;
3509 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3515 dev_err(&hw
->pdev
->dev
, "Genesis chip detected but not configured\n");
3520 case CHIP_ID_YUKON_LITE
:
3521 case CHIP_ID_YUKON_LP
:
3522 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3525 hw
->phy_addr
= PHY_ADDR_MARV
;
3529 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3534 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3535 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3536 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3538 /* read the adapters RAM size */
3539 t8
= skge_read8(hw
, B2_E_0
);
3540 if (is_genesis(hw
)) {
3542 /* special case: 4 x 64k x 36, offset = 0x80000 */
3543 hw
->ram_size
= 0x100000;
3544 hw
->ram_offset
= 0x80000;
3546 hw
->ram_size
= t8
* 512;
3548 hw
->ram_size
= 0x20000;
3550 hw
->ram_size
= t8
* 4096;
3552 hw
->intr_mask
= IS_HW_ERR
;
3554 /* Use PHY IRQ for all but fiber based Genesis board */
3555 if (!(is_genesis(hw
) && hw
->phy_type
== SK_PHY_XMAC
))
3556 hw
->intr_mask
|= IS_EXT_REG
;
3561 /* switch power to VCC (WA for VAUX problem) */
3562 skge_write8(hw
, B0_POWER_CTRL
,
3563 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3565 /* avoid boards with stuck Hardware error bits */
3566 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3567 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3568 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3569 hw
->intr_mask
&= ~IS_HW_ERR
;
3572 /* Clear PHY COMA */
3573 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3574 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3575 reg
&= ~PCI_PHY_COMA
;
3576 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3577 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3580 for (i
= 0; i
< hw
->ports
; i
++) {
3581 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3582 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3586 /* turn off hardware timer (unused) */
3587 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3588 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3589 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3591 /* enable the Tx Arbiters */
3592 for (i
= 0; i
< hw
->ports
; i
++)
3593 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3595 /* Initialize ram interface */
3596 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3598 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3599 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3600 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3601 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3602 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3603 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3604 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3605 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3606 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3607 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3608 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3609 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3611 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3613 /* Set interrupt moderation for Transmit only
3614 * Receive interrupts avoided by NAPI
3616 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3617 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3618 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3620 /* Leave irq disabled until first port is brought up. */
3621 skge_write32(hw
, B0_IMSK
, 0);
3623 for (i
= 0; i
< hw
->ports
; i
++) {
3625 genesis_reset(hw
, i
);
3634 #ifdef CONFIG_SKGE_DEBUG
3636 static struct dentry
*skge_debug
;
3638 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3640 struct net_device
*dev
= seq
->private;
3641 const struct skge_port
*skge
= netdev_priv(dev
);
3642 const struct skge_hw
*hw
= skge
->hw
;
3643 const struct skge_element
*e
;
3645 if (!netif_running(dev
))
3648 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3649 skge_read32(hw
, B0_IMSK
));
3651 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3652 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3653 const struct skge_tx_desc
*t
= e
->desc
;
3654 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3655 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3656 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3659 seq_printf(seq
, "\nRx Ring:\n");
3660 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3661 const struct skge_rx_desc
*r
= e
->desc
;
3663 if (r
->control
& BMU_OWN
)
3666 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3667 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3668 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3674 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3676 return single_open(file
, skge_debug_show
, inode
->i_private
);
3679 static const struct file_operations skge_debug_fops
= {
3680 .owner
= THIS_MODULE
,
3681 .open
= skge_debug_open
,
3683 .llseek
= seq_lseek
,
3684 .release
= single_release
,
3688 * Use network device events to create/remove/rename
3689 * debugfs file entries
3691 static int skge_device_event(struct notifier_block
*unused
,
3692 unsigned long event
, void *ptr
)
3694 struct net_device
*dev
= ptr
;
3695 struct skge_port
*skge
;
3698 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3701 skge
= netdev_priv(dev
);
3703 case NETDEV_CHANGENAME
:
3704 if (skge
->debugfs
) {
3705 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3706 skge_debug
, dev
->name
);
3710 netdev_info(dev
, "rename failed\n");
3711 debugfs_remove(skge
->debugfs
);
3716 case NETDEV_GOING_DOWN
:
3717 if (skge
->debugfs
) {
3718 debugfs_remove(skge
->debugfs
);
3719 skge
->debugfs
= NULL
;
3724 d
= debugfs_create_file(dev
->name
, S_IRUGO
,
3727 if (!d
|| IS_ERR(d
))
3728 netdev_info(dev
, "debugfs create failed\n");
3738 static struct notifier_block skge_notifier
= {
3739 .notifier_call
= skge_device_event
,
3743 static __init
void skge_debug_init(void)
3747 ent
= debugfs_create_dir("skge", NULL
);
3748 if (!ent
|| IS_ERR(ent
)) {
3749 pr_info("debugfs create directory failed\n");
3754 register_netdevice_notifier(&skge_notifier
);
3757 static __exit
void skge_debug_cleanup(void)
3760 unregister_netdevice_notifier(&skge_notifier
);
3761 debugfs_remove(skge_debug
);
3767 #define skge_debug_init()
3768 #define skge_debug_cleanup()
3771 static const struct net_device_ops skge_netdev_ops
= {
3772 .ndo_open
= skge_up
,
3773 .ndo_stop
= skge_down
,
3774 .ndo_start_xmit
= skge_xmit_frame
,
3775 .ndo_do_ioctl
= skge_ioctl
,
3776 .ndo_get_stats
= skge_get_stats
,
3777 .ndo_tx_timeout
= skge_tx_timeout
,
3778 .ndo_change_mtu
= skge_change_mtu
,
3779 .ndo_validate_addr
= eth_validate_addr
,
3780 .ndo_set_rx_mode
= skge_set_multicast
,
3781 .ndo_set_mac_address
= skge_set_mac_address
,
3782 #ifdef CONFIG_NET_POLL_CONTROLLER
3783 .ndo_poll_controller
= skge_netpoll
,
3788 /* Initialize network device */
3789 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3792 struct skge_port
*skge
;
3793 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3796 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3800 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3801 dev
->netdev_ops
= &skge_netdev_ops
;
3802 dev
->ethtool_ops
= &skge_ethtool_ops
;
3803 dev
->watchdog_timeo
= TX_WATCHDOG
;
3804 dev
->irq
= hw
->pdev
->irq
;
3807 dev
->features
|= NETIF_F_HIGHDMA
;
3809 skge
= netdev_priv(dev
);
3810 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3813 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3815 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3816 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3818 /* Auto speed and flow control */
3819 skge
->autoneg
= AUTONEG_ENABLE
;
3820 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3823 skge
->advertising
= skge_supported_modes(hw
);
3825 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3826 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3827 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3830 hw
->dev
[port
] = dev
;
3834 /* Only used for Genesis XMAC */
3836 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3838 dev
->hw_features
= NETIF_F_IP_CSUM
| NETIF_F_SG
|
3840 dev
->features
|= dev
->hw_features
;
3843 /* read the mac address */
3844 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3845 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3850 static void __devinit
skge_show_addr(struct net_device
*dev
)
3852 const struct skge_port
*skge
= netdev_priv(dev
);
3854 netif_info(skge
, probe
, skge
->netdev
, "addr %pM\n", dev
->dev_addr
);
3857 static int only_32bit_dma
;
3859 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3860 const struct pci_device_id
*ent
)
3862 struct net_device
*dev
, *dev1
;
3864 int err
, using_dac
= 0;
3866 err
= pci_enable_device(pdev
);
3868 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3872 err
= pci_request_regions(pdev
, DRV_NAME
);
3874 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3875 goto err_out_disable_pdev
;
3878 pci_set_master(pdev
);
3880 if (!only_32bit_dma
&& !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3882 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3883 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
3885 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3889 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3890 goto err_out_free_regions
;
3894 /* byte swap descriptors in hardware */
3898 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3899 reg
|= PCI_REV_DESC
;
3900 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3905 /* space for skge@pci:0000:04:00.0 */
3906 hw
= kzalloc(sizeof(*hw
) + strlen(DRV_NAME
"@pci:")
3907 + strlen(pci_name(pdev
)) + 1, GFP_KERNEL
);
3909 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3910 goto err_out_free_regions
;
3912 sprintf(hw
->irq_name
, DRV_NAME
"@pci:%s", pci_name(pdev
));
3915 spin_lock_init(&hw
->hw_lock
);
3916 spin_lock_init(&hw
->phy_lock
);
3917 tasklet_init(&hw
->phy_task
, skge_extirq
, (unsigned long) hw
);
3919 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3921 dev_err(&pdev
->dev
, "cannot map device registers\n");
3922 goto err_out_free_hw
;
3925 err
= skge_reset(hw
);
3927 goto err_out_iounmap
;
3929 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3931 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3932 skge_board_name(hw
), hw
->chip_rev
);
3934 dev
= skge_devinit(hw
, 0, using_dac
);
3936 goto err_out_led_off
;
3938 /* Some motherboards are broken and has zero in ROM. */
3939 if (!is_valid_ether_addr(dev
->dev_addr
))
3940 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3942 err
= register_netdev(dev
);
3944 dev_err(&pdev
->dev
, "cannot register net device\n");
3945 goto err_out_free_netdev
;
3948 skge_show_addr(dev
);
3950 if (hw
->ports
> 1) {
3951 dev1
= skge_devinit(hw
, 1, using_dac
);
3954 goto err_out_unregister
;
3957 err
= register_netdev(dev1
);
3959 dev_err(&pdev
->dev
, "cannot register second net device\n");
3960 goto err_out_free_dev1
;
3963 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
,
3966 dev_err(&pdev
->dev
, "cannot assign irq %d\n",
3968 goto err_out_unregister_dev1
;
3971 skge_show_addr(dev1
);
3973 pci_set_drvdata(pdev
, hw
);
3977 err_out_unregister_dev1
:
3978 unregister_netdev(dev1
);
3982 unregister_netdev(dev
);
3983 err_out_free_netdev
:
3986 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
3991 err_out_free_regions
:
3992 pci_release_regions(pdev
);
3993 err_out_disable_pdev
:
3994 pci_disable_device(pdev
);
3995 pci_set_drvdata(pdev
, NULL
);
4000 static void __devexit
skge_remove(struct pci_dev
*pdev
)
4002 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4003 struct net_device
*dev0
, *dev1
;
4010 unregister_netdev(dev1
);
4012 unregister_netdev(dev0
);
4014 tasklet_disable(&hw
->phy_task
);
4016 spin_lock_irq(&hw
->hw_lock
);
4019 if (hw
->ports
> 1) {
4020 skge_write32(hw
, B0_IMSK
, 0);
4021 skge_read32(hw
, B0_IMSK
);
4022 free_irq(pdev
->irq
, hw
);
4024 spin_unlock_irq(&hw
->hw_lock
);
4026 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4027 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4030 free_irq(pdev
->irq
, hw
);
4031 pci_release_regions(pdev
);
4032 pci_disable_device(pdev
);
4039 pci_set_drvdata(pdev
, NULL
);
4043 static int skge_suspend(struct device
*dev
)
4045 struct pci_dev
*pdev
= to_pci_dev(dev
);
4046 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4052 for (i
= 0; i
< hw
->ports
; i
++) {
4053 struct net_device
*dev
= hw
->dev
[i
];
4054 struct skge_port
*skge
= netdev_priv(dev
);
4056 if (netif_running(dev
))
4060 skge_wol_init(skge
);
4063 skge_write32(hw
, B0_IMSK
, 0);
4068 static int skge_resume(struct device
*dev
)
4070 struct pci_dev
*pdev
= to_pci_dev(dev
);
4071 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4077 err
= skge_reset(hw
);
4081 for (i
= 0; i
< hw
->ports
; i
++) {
4082 struct net_device
*dev
= hw
->dev
[i
];
4084 if (netif_running(dev
)) {
4088 netdev_err(dev
, "could not up: %d\n", err
);
4098 static SIMPLE_DEV_PM_OPS(skge_pm_ops
, skge_suspend
, skge_resume
);
4099 #define SKGE_PM_OPS (&skge_pm_ops)
4103 #define SKGE_PM_OPS NULL
4106 static void skge_shutdown(struct pci_dev
*pdev
)
4108 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4114 for (i
= 0; i
< hw
->ports
; i
++) {
4115 struct net_device
*dev
= hw
->dev
[i
];
4116 struct skge_port
*skge
= netdev_priv(dev
);
4119 skge_wol_init(skge
);
4122 pci_wake_from_d3(pdev
, device_may_wakeup(&pdev
->dev
));
4123 pci_set_power_state(pdev
, PCI_D3hot
);
4126 static struct pci_driver skge_driver
= {
4128 .id_table
= skge_id_table
,
4129 .probe
= skge_probe
,
4130 .remove
= __devexit_p(skge_remove
),
4131 .shutdown
= skge_shutdown
,
4132 .driver
.pm
= SKGE_PM_OPS
,
4135 static struct dmi_system_id skge_32bit_dma_boards
[] = {
4137 .ident
= "Gigabyte nForce boards",
4139 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co"),
4140 DMI_MATCH(DMI_BOARD_NAME
, "nForce"),
4146 static int __init
skge_init_module(void)
4148 if (dmi_check_system(skge_32bit_dma_boards
))
4151 return pci_register_driver(&skge_driver
);
4154 static void __exit
skge_cleanup_module(void)
4156 pci_unregister_driver(&skge_driver
);
4157 skge_debug_cleanup();
4160 module_init(skge_init_module
);
4161 module_exit(skge_cleanup_module
);