Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / drivers / net / ethernet / smsc / smc91x.c
blobf47f81e25322942d18abd0c929cb17ca2730a7db
1 /*
2 * smc91x.c
3 * This is a driver for SMSC's 91C9x/91C1xx single-chip Ethernet devices.
5 * Copyright (C) 1996 by Erik Stahlman
6 * Copyright (C) 2001 Standard Microsystems Corporation
7 * Developed by Simple Network Magic Corporation
8 * Copyright (C) 2003 Monta Vista Software, Inc.
9 * Unified SMC91x driver by Nicolas Pitre
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 * Arguments:
26 * io = for the base address
27 * irq = for the IRQ
28 * nowait = 0 for normal wait states, 1 eliminates additional wait states
30 * original author:
31 * Erik Stahlman <erik@vt.edu>
33 * hardware multicast code:
34 * Peter Cammaert <pc@denkart.be>
36 * contributors:
37 * Daris A Nevil <dnevil@snmc.com>
38 * Nicolas Pitre <nico@fluxnic.net>
39 * Russell King <rmk@arm.linux.org.uk>
41 * History:
42 * 08/20/00 Arnaldo Melo fix kfree(skb) in smc_hardware_send_packet
43 * 12/15/00 Christian Jullien fix "Warning: kfree_skb on hard IRQ"
44 * 03/16/01 Daris A Nevil modified smc9194.c for use with LAN91C111
45 * 08/22/01 Scott Anderson merge changes from smc9194 to smc91111
46 * 08/21/01 Pramod B Bhardwaj added support for RevB of LAN91C111
47 * 12/20/01 Jeff Sutherland initial port to Xscale PXA with DMA support
48 * 04/07/03 Nicolas Pitre unified SMC91x driver, killed irq races,
49 * more bus abstraction, big cleanup, etc.
50 * 29/09/03 Russell King - add driver model support
51 * - ethtool support
52 * - convert to use generic MII interface
53 * - add link up/down notification
54 * - don't try to handle full negotiation in
55 * smc_phy_configure
56 * - clean up (and fix stack overrun) in PHY
57 * MII read/write functions
58 * 22/09/04 Nicolas Pitre big update (see commit log for details)
60 static const char version[] =
61 "smc91x.c: v1.1, sep 22 2004 by Nicolas Pitre <nico@fluxnic.net>\n";
63 /* Debugging level */
64 #ifndef SMC_DEBUG
65 #define SMC_DEBUG 0
66 #endif
69 #include <linux/init.h>
70 #include <linux/module.h>
71 #include <linux/kernel.h>
72 #include <linux/sched.h>
73 #include <linux/delay.h>
74 #include <linux/interrupt.h>
75 #include <linux/irq.h>
76 #include <linux/errno.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/platform_device.h>
80 #include <linux/spinlock.h>
81 #include <linux/ethtool.h>
82 #include <linux/mii.h>
83 #include <linux/workqueue.h>
84 #include <linux/of.h>
86 #include <linux/netdevice.h>
87 #include <linux/etherdevice.h>
88 #include <linux/skbuff.h>
90 #include <asm/io.h>
92 #include "smc91x.h"
94 #ifndef SMC_NOWAIT
95 # define SMC_NOWAIT 0
96 #endif
97 static int nowait = SMC_NOWAIT;
98 module_param(nowait, int, 0400);
99 MODULE_PARM_DESC(nowait, "set to 1 for no wait state");
102 * Transmit timeout, default 5 seconds.
104 static int watchdog = 1000;
105 module_param(watchdog, int, 0400);
106 MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds");
108 MODULE_LICENSE("GPL");
109 MODULE_ALIAS("platform:smc91x");
112 * The internal workings of the driver. If you are changing anything
113 * here with the SMC stuff, you should have the datasheet and know
114 * what you are doing.
116 #define CARDNAME "smc91x"
119 * Use power-down feature of the chip
121 #define POWER_DOWN 1
124 * Wait time for memory to be free. This probably shouldn't be
125 * tuned that much, as waiting for this means nothing else happens
126 * in the system
128 #define MEMORY_WAIT_TIME 16
131 * The maximum number of processing loops allowed for each call to the
132 * IRQ handler.
134 #define MAX_IRQ_LOOPS 8
137 * This selects whether TX packets are sent one by one to the SMC91x internal
138 * memory and throttled until transmission completes. This may prevent
139 * RX overruns a litle by keeping much of the memory free for RX packets
140 * but to the expense of reduced TX throughput and increased IRQ overhead.
141 * Note this is not a cure for a too slow data bus or too high IRQ latency.
143 #define THROTTLE_TX_PKTS 0
146 * The MII clock high/low times. 2x this number gives the MII clock period
147 * in microseconds. (was 50, but this gives 6.4ms for each MII transaction!)
149 #define MII_DELAY 1
151 #if SMC_DEBUG > 0
152 #define DBG(n, args...) \
153 do { \
154 if (SMC_DEBUG >= (n)) \
155 printk(args); \
156 } while (0)
158 #define PRINTK(args...) printk(args)
159 #else
160 #define DBG(n, args...) do { } while(0)
161 #define PRINTK(args...) printk(KERN_DEBUG args)
162 #endif
164 #if SMC_DEBUG > 3
165 static void PRINT_PKT(u_char *buf, int length)
167 int i;
168 int remainder;
169 int lines;
171 lines = length / 16;
172 remainder = length % 16;
174 for (i = 0; i < lines ; i ++) {
175 int cur;
176 for (cur = 0; cur < 8; cur++) {
177 u_char a, b;
178 a = *buf++;
179 b = *buf++;
180 printk("%02x%02x ", a, b);
182 printk("\n");
184 for (i = 0; i < remainder/2 ; i++) {
185 u_char a, b;
186 a = *buf++;
187 b = *buf++;
188 printk("%02x%02x ", a, b);
190 printk("\n");
192 #else
193 #define PRINT_PKT(x...) do { } while(0)
194 #endif
197 /* this enables an interrupt in the interrupt mask register */
198 #define SMC_ENABLE_INT(lp, x) do { \
199 unsigned char mask; \
200 unsigned long smc_enable_flags; \
201 spin_lock_irqsave(&lp->lock, smc_enable_flags); \
202 mask = SMC_GET_INT_MASK(lp); \
203 mask |= (x); \
204 SMC_SET_INT_MASK(lp, mask); \
205 spin_unlock_irqrestore(&lp->lock, smc_enable_flags); \
206 } while (0)
208 /* this disables an interrupt from the interrupt mask register */
209 #define SMC_DISABLE_INT(lp, x) do { \
210 unsigned char mask; \
211 unsigned long smc_disable_flags; \
212 spin_lock_irqsave(&lp->lock, smc_disable_flags); \
213 mask = SMC_GET_INT_MASK(lp); \
214 mask &= ~(x); \
215 SMC_SET_INT_MASK(lp, mask); \
216 spin_unlock_irqrestore(&lp->lock, smc_disable_flags); \
217 } while (0)
220 * Wait while MMU is busy. This is usually in the order of a few nanosecs
221 * if at all, but let's avoid deadlocking the system if the hardware
222 * decides to go south.
224 #define SMC_WAIT_MMU_BUSY(lp) do { \
225 if (unlikely(SMC_GET_MMU_CMD(lp) & MC_BUSY)) { \
226 unsigned long timeout = jiffies + 2; \
227 while (SMC_GET_MMU_CMD(lp) & MC_BUSY) { \
228 if (time_after(jiffies, timeout)) { \
229 printk("%s: timeout %s line %d\n", \
230 dev->name, __FILE__, __LINE__); \
231 break; \
233 cpu_relax(); \
236 } while (0)
240 * this does a soft reset on the device
242 static void smc_reset(struct net_device *dev)
244 struct smc_local *lp = netdev_priv(dev);
245 void __iomem *ioaddr = lp->base;
246 unsigned int ctl, cfg;
247 struct sk_buff *pending_skb;
249 DBG(2, "%s: %s\n", dev->name, __func__);
251 /* Disable all interrupts, block TX tasklet */
252 spin_lock_irq(&lp->lock);
253 SMC_SELECT_BANK(lp, 2);
254 SMC_SET_INT_MASK(lp, 0);
255 pending_skb = lp->pending_tx_skb;
256 lp->pending_tx_skb = NULL;
257 spin_unlock_irq(&lp->lock);
259 /* free any pending tx skb */
260 if (pending_skb) {
261 dev_kfree_skb(pending_skb);
262 dev->stats.tx_errors++;
263 dev->stats.tx_aborted_errors++;
267 * This resets the registers mostly to defaults, but doesn't
268 * affect EEPROM. That seems unnecessary
270 SMC_SELECT_BANK(lp, 0);
271 SMC_SET_RCR(lp, RCR_SOFTRST);
274 * Setup the Configuration Register
275 * This is necessary because the CONFIG_REG is not affected
276 * by a soft reset
278 SMC_SELECT_BANK(lp, 1);
280 cfg = CONFIG_DEFAULT;
283 * Setup for fast accesses if requested. If the card/system
284 * can't handle it then there will be no recovery except for
285 * a hard reset or power cycle
287 if (lp->cfg.flags & SMC91X_NOWAIT)
288 cfg |= CONFIG_NO_WAIT;
291 * Release from possible power-down state
292 * Configuration register is not affected by Soft Reset
294 cfg |= CONFIG_EPH_POWER_EN;
296 SMC_SET_CONFIG(lp, cfg);
298 /* this should pause enough for the chip to be happy */
300 * elaborate? What does the chip _need_? --jgarzik
302 * This seems to be undocumented, but something the original
303 * driver(s) have always done. Suspect undocumented timing
304 * info/determined empirically. --rmk
306 udelay(1);
308 /* Disable transmit and receive functionality */
309 SMC_SELECT_BANK(lp, 0);
310 SMC_SET_RCR(lp, RCR_CLEAR);
311 SMC_SET_TCR(lp, TCR_CLEAR);
313 SMC_SELECT_BANK(lp, 1);
314 ctl = SMC_GET_CTL(lp) | CTL_LE_ENABLE;
317 * Set the control register to automatically release successfully
318 * transmitted packets, to make the best use out of our limited
319 * memory
321 if(!THROTTLE_TX_PKTS)
322 ctl |= CTL_AUTO_RELEASE;
323 else
324 ctl &= ~CTL_AUTO_RELEASE;
325 SMC_SET_CTL(lp, ctl);
327 /* Reset the MMU */
328 SMC_SELECT_BANK(lp, 2);
329 SMC_SET_MMU_CMD(lp, MC_RESET);
330 SMC_WAIT_MMU_BUSY(lp);
334 * Enable Interrupts, Receive, and Transmit
336 static void smc_enable(struct net_device *dev)
338 struct smc_local *lp = netdev_priv(dev);
339 void __iomem *ioaddr = lp->base;
340 int mask;
342 DBG(2, "%s: %s\n", dev->name, __func__);
344 /* see the header file for options in TCR/RCR DEFAULT */
345 SMC_SELECT_BANK(lp, 0);
346 SMC_SET_TCR(lp, lp->tcr_cur_mode);
347 SMC_SET_RCR(lp, lp->rcr_cur_mode);
349 SMC_SELECT_BANK(lp, 1);
350 SMC_SET_MAC_ADDR(lp, dev->dev_addr);
352 /* now, enable interrupts */
353 mask = IM_EPH_INT|IM_RX_OVRN_INT|IM_RCV_INT;
354 if (lp->version >= (CHIP_91100 << 4))
355 mask |= IM_MDINT;
356 SMC_SELECT_BANK(lp, 2);
357 SMC_SET_INT_MASK(lp, mask);
360 * From this point the register bank must _NOT_ be switched away
361 * to something else than bank 2 without proper locking against
362 * races with any tasklet or interrupt handlers until smc_shutdown()
363 * or smc_reset() is called.
368 * this puts the device in an inactive state
370 static void smc_shutdown(struct net_device *dev)
372 struct smc_local *lp = netdev_priv(dev);
373 void __iomem *ioaddr = lp->base;
374 struct sk_buff *pending_skb;
376 DBG(2, "%s: %s\n", CARDNAME, __func__);
378 /* no more interrupts for me */
379 spin_lock_irq(&lp->lock);
380 SMC_SELECT_BANK(lp, 2);
381 SMC_SET_INT_MASK(lp, 0);
382 pending_skb = lp->pending_tx_skb;
383 lp->pending_tx_skb = NULL;
384 spin_unlock_irq(&lp->lock);
385 if (pending_skb)
386 dev_kfree_skb(pending_skb);
388 /* and tell the card to stay away from that nasty outside world */
389 SMC_SELECT_BANK(lp, 0);
390 SMC_SET_RCR(lp, RCR_CLEAR);
391 SMC_SET_TCR(lp, TCR_CLEAR);
393 #ifdef POWER_DOWN
394 /* finally, shut the chip down */
395 SMC_SELECT_BANK(lp, 1);
396 SMC_SET_CONFIG(lp, SMC_GET_CONFIG(lp) & ~CONFIG_EPH_POWER_EN);
397 #endif
401 * This is the procedure to handle the receipt of a packet.
403 static inline void smc_rcv(struct net_device *dev)
405 struct smc_local *lp = netdev_priv(dev);
406 void __iomem *ioaddr = lp->base;
407 unsigned int packet_number, status, packet_len;
409 DBG(3, "%s: %s\n", dev->name, __func__);
411 packet_number = SMC_GET_RXFIFO(lp);
412 if (unlikely(packet_number & RXFIFO_REMPTY)) {
413 PRINTK("%s: smc_rcv with nothing on FIFO.\n", dev->name);
414 return;
417 /* read from start of packet */
418 SMC_SET_PTR(lp, PTR_READ | PTR_RCV | PTR_AUTOINC);
420 /* First two words are status and packet length */
421 SMC_GET_PKT_HDR(lp, status, packet_len);
422 packet_len &= 0x07ff; /* mask off top bits */
423 DBG(2, "%s: RX PNR 0x%x STATUS 0x%04x LENGTH 0x%04x (%d)\n",
424 dev->name, packet_number, status,
425 packet_len, packet_len);
427 back:
428 if (unlikely(packet_len < 6 || status & RS_ERRORS)) {
429 if (status & RS_TOOLONG && packet_len <= (1514 + 4 + 6)) {
430 /* accept VLAN packets */
431 status &= ~RS_TOOLONG;
432 goto back;
434 if (packet_len < 6) {
435 /* bloody hardware */
436 printk(KERN_ERR "%s: fubar (rxlen %u status %x\n",
437 dev->name, packet_len, status);
438 status |= RS_TOOSHORT;
440 SMC_WAIT_MMU_BUSY(lp);
441 SMC_SET_MMU_CMD(lp, MC_RELEASE);
442 dev->stats.rx_errors++;
443 if (status & RS_ALGNERR)
444 dev->stats.rx_frame_errors++;
445 if (status & (RS_TOOSHORT | RS_TOOLONG))
446 dev->stats.rx_length_errors++;
447 if (status & RS_BADCRC)
448 dev->stats.rx_crc_errors++;
449 } else {
450 struct sk_buff *skb;
451 unsigned char *data;
452 unsigned int data_len;
454 /* set multicast stats */
455 if (status & RS_MULTICAST)
456 dev->stats.multicast++;
459 * Actual payload is packet_len - 6 (or 5 if odd byte).
460 * We want skb_reserve(2) and the final ctrl word
461 * (2 bytes, possibly containing the payload odd byte).
462 * Furthermore, we add 2 bytes to allow rounding up to
463 * multiple of 4 bytes on 32 bit buses.
464 * Hence packet_len - 6 + 2 + 2 + 2.
466 skb = dev_alloc_skb(packet_len);
467 if (unlikely(skb == NULL)) {
468 printk(KERN_NOTICE "%s: Low memory, packet dropped.\n",
469 dev->name);
470 SMC_WAIT_MMU_BUSY(lp);
471 SMC_SET_MMU_CMD(lp, MC_RELEASE);
472 dev->stats.rx_dropped++;
473 return;
476 /* Align IP header to 32 bits */
477 skb_reserve(skb, 2);
479 /* BUG: the LAN91C111 rev A never sets this bit. Force it. */
480 if (lp->version == 0x90)
481 status |= RS_ODDFRAME;
484 * If odd length: packet_len - 5,
485 * otherwise packet_len - 6.
486 * With the trailing ctrl byte it's packet_len - 4.
488 data_len = packet_len - ((status & RS_ODDFRAME) ? 5 : 6);
489 data = skb_put(skb, data_len);
490 SMC_PULL_DATA(lp, data, packet_len - 4);
492 SMC_WAIT_MMU_BUSY(lp);
493 SMC_SET_MMU_CMD(lp, MC_RELEASE);
495 PRINT_PKT(data, packet_len - 4);
497 skb->protocol = eth_type_trans(skb, dev);
498 netif_rx(skb);
499 dev->stats.rx_packets++;
500 dev->stats.rx_bytes += data_len;
504 #ifdef CONFIG_SMP
506 * On SMP we have the following problem:
508 * A = smc_hardware_send_pkt()
509 * B = smc_hard_start_xmit()
510 * C = smc_interrupt()
512 * A and B can never be executed simultaneously. However, at least on UP,
513 * it is possible (and even desirable) for C to interrupt execution of
514 * A or B in order to have better RX reliability and avoid overruns.
515 * C, just like A and B, must have exclusive access to the chip and
516 * each of them must lock against any other concurrent access.
517 * Unfortunately this is not possible to have C suspend execution of A or
518 * B taking place on another CPU. On UP this is no an issue since A and B
519 * are run from softirq context and C from hard IRQ context, and there is
520 * no other CPU where concurrent access can happen.
521 * If ever there is a way to force at least B and C to always be executed
522 * on the same CPU then we could use read/write locks to protect against
523 * any other concurrent access and C would always interrupt B. But life
524 * isn't that easy in a SMP world...
526 #define smc_special_trylock(lock, flags) \
527 ({ \
528 int __ret; \
529 local_irq_save(flags); \
530 __ret = spin_trylock(lock); \
531 if (!__ret) \
532 local_irq_restore(flags); \
533 __ret; \
535 #define smc_special_lock(lock, flags) spin_lock_irqsave(lock, flags)
536 #define smc_special_unlock(lock, flags) spin_unlock_irqrestore(lock, flags)
537 #else
538 #define smc_special_trylock(lock, flags) (flags == flags)
539 #define smc_special_lock(lock, flags) do { flags = 0; } while (0)
540 #define smc_special_unlock(lock, flags) do { flags = 0; } while (0)
541 #endif
544 * This is called to actually send a packet to the chip.
546 static void smc_hardware_send_pkt(unsigned long data)
548 struct net_device *dev = (struct net_device *)data;
549 struct smc_local *lp = netdev_priv(dev);
550 void __iomem *ioaddr = lp->base;
551 struct sk_buff *skb;
552 unsigned int packet_no, len;
553 unsigned char *buf;
554 unsigned long flags;
556 DBG(3, "%s: %s\n", dev->name, __func__);
558 if (!smc_special_trylock(&lp->lock, flags)) {
559 netif_stop_queue(dev);
560 tasklet_schedule(&lp->tx_task);
561 return;
564 skb = lp->pending_tx_skb;
565 if (unlikely(!skb)) {
566 smc_special_unlock(&lp->lock, flags);
567 return;
569 lp->pending_tx_skb = NULL;
571 packet_no = SMC_GET_AR(lp);
572 if (unlikely(packet_no & AR_FAILED)) {
573 printk("%s: Memory allocation failed.\n", dev->name);
574 dev->stats.tx_errors++;
575 dev->stats.tx_fifo_errors++;
576 smc_special_unlock(&lp->lock, flags);
577 goto done;
580 /* point to the beginning of the packet */
581 SMC_SET_PN(lp, packet_no);
582 SMC_SET_PTR(lp, PTR_AUTOINC);
584 buf = skb->data;
585 len = skb->len;
586 DBG(2, "%s: TX PNR 0x%x LENGTH 0x%04x (%d) BUF 0x%p\n",
587 dev->name, packet_no, len, len, buf);
588 PRINT_PKT(buf, len);
591 * Send the packet length (+6 for status words, length, and ctl.
592 * The card will pad to 64 bytes with zeroes if packet is too small.
594 SMC_PUT_PKT_HDR(lp, 0, len + 6);
596 /* send the actual data */
597 SMC_PUSH_DATA(lp, buf, len & ~1);
599 /* Send final ctl word with the last byte if there is one */
600 SMC_outw(((len & 1) ? (0x2000 | buf[len-1]) : 0), ioaddr, DATA_REG(lp));
603 * If THROTTLE_TX_PKTS is set, we stop the queue here. This will
604 * have the effect of having at most one packet queued for TX
605 * in the chip's memory at all time.
607 * If THROTTLE_TX_PKTS is not set then the queue is stopped only
608 * when memory allocation (MC_ALLOC) does not succeed right away.
610 if (THROTTLE_TX_PKTS)
611 netif_stop_queue(dev);
613 /* queue the packet for TX */
614 SMC_SET_MMU_CMD(lp, MC_ENQUEUE);
615 smc_special_unlock(&lp->lock, flags);
617 dev->trans_start = jiffies;
618 dev->stats.tx_packets++;
619 dev->stats.tx_bytes += len;
621 SMC_ENABLE_INT(lp, IM_TX_INT | IM_TX_EMPTY_INT);
623 done: if (!THROTTLE_TX_PKTS)
624 netif_wake_queue(dev);
626 dev_kfree_skb(skb);
630 * Since I am not sure if I will have enough room in the chip's ram
631 * to store the packet, I call this routine which either sends it
632 * now, or set the card to generates an interrupt when ready
633 * for the packet.
635 static int smc_hard_start_xmit(struct sk_buff *skb, struct net_device *dev)
637 struct smc_local *lp = netdev_priv(dev);
638 void __iomem *ioaddr = lp->base;
639 unsigned int numPages, poll_count, status;
640 unsigned long flags;
642 DBG(3, "%s: %s\n", dev->name, __func__);
644 BUG_ON(lp->pending_tx_skb != NULL);
647 * The MMU wants the number of pages to be the number of 256 bytes
648 * 'pages', minus 1 (since a packet can't ever have 0 pages :))
650 * The 91C111 ignores the size bits, but earlier models don't.
652 * Pkt size for allocating is data length +6 (for additional status
653 * words, length and ctl)
655 * If odd size then last byte is included in ctl word.
657 numPages = ((skb->len & ~1) + (6 - 1)) >> 8;
658 if (unlikely(numPages > 7)) {
659 printk("%s: Far too big packet error.\n", dev->name);
660 dev->stats.tx_errors++;
661 dev->stats.tx_dropped++;
662 dev_kfree_skb(skb);
663 return NETDEV_TX_OK;
666 smc_special_lock(&lp->lock, flags);
668 /* now, try to allocate the memory */
669 SMC_SET_MMU_CMD(lp, MC_ALLOC | numPages);
672 * Poll the chip for a short amount of time in case the
673 * allocation succeeds quickly.
675 poll_count = MEMORY_WAIT_TIME;
676 do {
677 status = SMC_GET_INT(lp);
678 if (status & IM_ALLOC_INT) {
679 SMC_ACK_INT(lp, IM_ALLOC_INT);
680 break;
682 } while (--poll_count);
684 smc_special_unlock(&lp->lock, flags);
686 lp->pending_tx_skb = skb;
687 if (!poll_count) {
688 /* oh well, wait until the chip finds memory later */
689 netif_stop_queue(dev);
690 DBG(2, "%s: TX memory allocation deferred.\n", dev->name);
691 SMC_ENABLE_INT(lp, IM_ALLOC_INT);
692 } else {
694 * Allocation succeeded: push packet to the chip's own memory
695 * immediately.
697 smc_hardware_send_pkt((unsigned long)dev);
700 return NETDEV_TX_OK;
704 * This handles a TX interrupt, which is only called when:
705 * - a TX error occurred, or
706 * - CTL_AUTO_RELEASE is not set and TX of a packet completed.
708 static void smc_tx(struct net_device *dev)
710 struct smc_local *lp = netdev_priv(dev);
711 void __iomem *ioaddr = lp->base;
712 unsigned int saved_packet, packet_no, tx_status, pkt_len;
714 DBG(3, "%s: %s\n", dev->name, __func__);
716 /* If the TX FIFO is empty then nothing to do */
717 packet_no = SMC_GET_TXFIFO(lp);
718 if (unlikely(packet_no & TXFIFO_TEMPTY)) {
719 PRINTK("%s: smc_tx with nothing on FIFO.\n", dev->name);
720 return;
723 /* select packet to read from */
724 saved_packet = SMC_GET_PN(lp);
725 SMC_SET_PN(lp, packet_no);
727 /* read the first word (status word) from this packet */
728 SMC_SET_PTR(lp, PTR_AUTOINC | PTR_READ);
729 SMC_GET_PKT_HDR(lp, tx_status, pkt_len);
730 DBG(2, "%s: TX STATUS 0x%04x PNR 0x%02x\n",
731 dev->name, tx_status, packet_no);
733 if (!(tx_status & ES_TX_SUC))
734 dev->stats.tx_errors++;
736 if (tx_status & ES_LOSTCARR)
737 dev->stats.tx_carrier_errors++;
739 if (tx_status & (ES_LATCOL | ES_16COL)) {
740 PRINTK("%s: %s occurred on last xmit\n", dev->name,
741 (tx_status & ES_LATCOL) ?
742 "late collision" : "too many collisions");
743 dev->stats.tx_window_errors++;
744 if (!(dev->stats.tx_window_errors & 63) && net_ratelimit()) {
745 printk(KERN_INFO "%s: unexpectedly large number of "
746 "bad collisions. Please check duplex "
747 "setting.\n", dev->name);
751 /* kill the packet */
752 SMC_WAIT_MMU_BUSY(lp);
753 SMC_SET_MMU_CMD(lp, MC_FREEPKT);
755 /* Don't restore Packet Number Reg until busy bit is cleared */
756 SMC_WAIT_MMU_BUSY(lp);
757 SMC_SET_PN(lp, saved_packet);
759 /* re-enable transmit */
760 SMC_SELECT_BANK(lp, 0);
761 SMC_SET_TCR(lp, lp->tcr_cur_mode);
762 SMC_SELECT_BANK(lp, 2);
766 /*---PHY CONTROL AND CONFIGURATION-----------------------------------------*/
768 static void smc_mii_out(struct net_device *dev, unsigned int val, int bits)
770 struct smc_local *lp = netdev_priv(dev);
771 void __iomem *ioaddr = lp->base;
772 unsigned int mii_reg, mask;
774 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
775 mii_reg |= MII_MDOE;
777 for (mask = 1 << (bits - 1); mask; mask >>= 1) {
778 if (val & mask)
779 mii_reg |= MII_MDO;
780 else
781 mii_reg &= ~MII_MDO;
783 SMC_SET_MII(lp, mii_reg);
784 udelay(MII_DELAY);
785 SMC_SET_MII(lp, mii_reg | MII_MCLK);
786 udelay(MII_DELAY);
790 static unsigned int smc_mii_in(struct net_device *dev, int bits)
792 struct smc_local *lp = netdev_priv(dev);
793 void __iomem *ioaddr = lp->base;
794 unsigned int mii_reg, mask, val;
796 mii_reg = SMC_GET_MII(lp) & ~(MII_MCLK | MII_MDOE | MII_MDO);
797 SMC_SET_MII(lp, mii_reg);
799 for (mask = 1 << (bits - 1), val = 0; mask; mask >>= 1) {
800 if (SMC_GET_MII(lp) & MII_MDI)
801 val |= mask;
803 SMC_SET_MII(lp, mii_reg);
804 udelay(MII_DELAY);
805 SMC_SET_MII(lp, mii_reg | MII_MCLK);
806 udelay(MII_DELAY);
809 return val;
813 * Reads a register from the MII Management serial interface
815 static int smc_phy_read(struct net_device *dev, int phyaddr, int phyreg)
817 struct smc_local *lp = netdev_priv(dev);
818 void __iomem *ioaddr = lp->base;
819 unsigned int phydata;
821 SMC_SELECT_BANK(lp, 3);
823 /* Idle - 32 ones */
824 smc_mii_out(dev, 0xffffffff, 32);
826 /* Start code (01) + read (10) + phyaddr + phyreg */
827 smc_mii_out(dev, 6 << 10 | phyaddr << 5 | phyreg, 14);
829 /* Turnaround (2bits) + phydata */
830 phydata = smc_mii_in(dev, 18);
832 /* Return to idle state */
833 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
835 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
836 __func__, phyaddr, phyreg, phydata);
838 SMC_SELECT_BANK(lp, 2);
839 return phydata;
843 * Writes a register to the MII Management serial interface
845 static void smc_phy_write(struct net_device *dev, int phyaddr, int phyreg,
846 int phydata)
848 struct smc_local *lp = netdev_priv(dev);
849 void __iomem *ioaddr = lp->base;
851 SMC_SELECT_BANK(lp, 3);
853 /* Idle - 32 ones */
854 smc_mii_out(dev, 0xffffffff, 32);
856 /* Start code (01) + write (01) + phyaddr + phyreg + turnaround + phydata */
857 smc_mii_out(dev, 5 << 28 | phyaddr << 23 | phyreg << 18 | 2 << 16 | phydata, 32);
859 /* Return to idle state */
860 SMC_SET_MII(lp, SMC_GET_MII(lp) & ~(MII_MCLK|MII_MDOE|MII_MDO));
862 DBG(3, "%s: phyaddr=0x%x, phyreg=0x%x, phydata=0x%x\n",
863 __func__, phyaddr, phyreg, phydata);
865 SMC_SELECT_BANK(lp, 2);
869 * Finds and reports the PHY address
871 static void smc_phy_detect(struct net_device *dev)
873 struct smc_local *lp = netdev_priv(dev);
874 int phyaddr;
876 DBG(2, "%s: %s\n", dev->name, __func__);
878 lp->phy_type = 0;
881 * Scan all 32 PHY addresses if necessary, starting at
882 * PHY#1 to PHY#31, and then PHY#0 last.
884 for (phyaddr = 1; phyaddr < 33; ++phyaddr) {
885 unsigned int id1, id2;
887 /* Read the PHY identifiers */
888 id1 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID1);
889 id2 = smc_phy_read(dev, phyaddr & 31, MII_PHYSID2);
891 DBG(3, "%s: phy_id1=0x%x, phy_id2=0x%x\n",
892 dev->name, id1, id2);
894 /* Make sure it is a valid identifier */
895 if (id1 != 0x0000 && id1 != 0xffff && id1 != 0x8000 &&
896 id2 != 0x0000 && id2 != 0xffff && id2 != 0x8000) {
897 /* Save the PHY's address */
898 lp->mii.phy_id = phyaddr & 31;
899 lp->phy_type = id1 << 16 | id2;
900 break;
906 * Sets the PHY to a configuration as determined by the user
908 static int smc_phy_fixed(struct net_device *dev)
910 struct smc_local *lp = netdev_priv(dev);
911 void __iomem *ioaddr = lp->base;
912 int phyaddr = lp->mii.phy_id;
913 int bmcr, cfg1;
915 DBG(3, "%s: %s\n", dev->name, __func__);
917 /* Enter Link Disable state */
918 cfg1 = smc_phy_read(dev, phyaddr, PHY_CFG1_REG);
919 cfg1 |= PHY_CFG1_LNKDIS;
920 smc_phy_write(dev, phyaddr, PHY_CFG1_REG, cfg1);
923 * Set our fixed capabilities
924 * Disable auto-negotiation
926 bmcr = 0;
928 if (lp->ctl_rfduplx)
929 bmcr |= BMCR_FULLDPLX;
931 if (lp->ctl_rspeed == 100)
932 bmcr |= BMCR_SPEED100;
934 /* Write our capabilities to the phy control register */
935 smc_phy_write(dev, phyaddr, MII_BMCR, bmcr);
937 /* Re-Configure the Receive/Phy Control register */
938 SMC_SELECT_BANK(lp, 0);
939 SMC_SET_RPC(lp, lp->rpc_cur_mode);
940 SMC_SELECT_BANK(lp, 2);
942 return 1;
946 * smc_phy_reset - reset the phy
947 * @dev: net device
948 * @phy: phy address
950 * Issue a software reset for the specified PHY and
951 * wait up to 100ms for the reset to complete. We should
952 * not access the PHY for 50ms after issuing the reset.
954 * The time to wait appears to be dependent on the PHY.
956 * Must be called with lp->lock locked.
958 static int smc_phy_reset(struct net_device *dev, int phy)
960 struct smc_local *lp = netdev_priv(dev);
961 unsigned int bmcr;
962 int timeout;
964 smc_phy_write(dev, phy, MII_BMCR, BMCR_RESET);
966 for (timeout = 2; timeout; timeout--) {
967 spin_unlock_irq(&lp->lock);
968 msleep(50);
969 spin_lock_irq(&lp->lock);
971 bmcr = smc_phy_read(dev, phy, MII_BMCR);
972 if (!(bmcr & BMCR_RESET))
973 break;
976 return bmcr & BMCR_RESET;
980 * smc_phy_powerdown - powerdown phy
981 * @dev: net device
983 * Power down the specified PHY
985 static void smc_phy_powerdown(struct net_device *dev)
987 struct smc_local *lp = netdev_priv(dev);
988 unsigned int bmcr;
989 int phy = lp->mii.phy_id;
991 if (lp->phy_type == 0)
992 return;
994 /* We need to ensure that no calls to smc_phy_configure are
995 pending.
997 cancel_work_sync(&lp->phy_configure);
999 bmcr = smc_phy_read(dev, phy, MII_BMCR);
1000 smc_phy_write(dev, phy, MII_BMCR, bmcr | BMCR_PDOWN);
1004 * smc_phy_check_media - check the media status and adjust TCR
1005 * @dev: net device
1006 * @init: set true for initialisation
1008 * Select duplex mode depending on negotiation state. This
1009 * also updates our carrier state.
1011 static void smc_phy_check_media(struct net_device *dev, int init)
1013 struct smc_local *lp = netdev_priv(dev);
1014 void __iomem *ioaddr = lp->base;
1016 if (mii_check_media(&lp->mii, netif_msg_link(lp), init)) {
1017 /* duplex state has changed */
1018 if (lp->mii.full_duplex) {
1019 lp->tcr_cur_mode |= TCR_SWFDUP;
1020 } else {
1021 lp->tcr_cur_mode &= ~TCR_SWFDUP;
1024 SMC_SELECT_BANK(lp, 0);
1025 SMC_SET_TCR(lp, lp->tcr_cur_mode);
1030 * Configures the specified PHY through the MII management interface
1031 * using Autonegotiation.
1032 * Calls smc_phy_fixed() if the user has requested a certain config.
1033 * If RPC ANEG bit is set, the media selection is dependent purely on
1034 * the selection by the MII (either in the MII BMCR reg or the result
1035 * of autonegotiation.) If the RPC ANEG bit is cleared, the selection
1036 * is controlled by the RPC SPEED and RPC DPLX bits.
1038 static void smc_phy_configure(struct work_struct *work)
1040 struct smc_local *lp =
1041 container_of(work, struct smc_local, phy_configure);
1042 struct net_device *dev = lp->dev;
1043 void __iomem *ioaddr = lp->base;
1044 int phyaddr = lp->mii.phy_id;
1045 int my_phy_caps; /* My PHY capabilities */
1046 int my_ad_caps; /* My Advertised capabilities */
1047 int status;
1049 DBG(3, "%s:smc_program_phy()\n", dev->name);
1051 spin_lock_irq(&lp->lock);
1054 * We should not be called if phy_type is zero.
1056 if (lp->phy_type == 0)
1057 goto smc_phy_configure_exit;
1059 if (smc_phy_reset(dev, phyaddr)) {
1060 printk("%s: PHY reset timed out\n", dev->name);
1061 goto smc_phy_configure_exit;
1065 * Enable PHY Interrupts (for register 18)
1066 * Interrupts listed here are disabled
1068 smc_phy_write(dev, phyaddr, PHY_MASK_REG,
1069 PHY_INT_LOSSSYNC | PHY_INT_CWRD | PHY_INT_SSD |
1070 PHY_INT_ESD | PHY_INT_RPOL | PHY_INT_JAB |
1071 PHY_INT_SPDDET | PHY_INT_DPLXDET);
1073 /* Configure the Receive/Phy Control register */
1074 SMC_SELECT_BANK(lp, 0);
1075 SMC_SET_RPC(lp, lp->rpc_cur_mode);
1077 /* If the user requested no auto neg, then go set his request */
1078 if (lp->mii.force_media) {
1079 smc_phy_fixed(dev);
1080 goto smc_phy_configure_exit;
1083 /* Copy our capabilities from MII_BMSR to MII_ADVERTISE */
1084 my_phy_caps = smc_phy_read(dev, phyaddr, MII_BMSR);
1086 if (!(my_phy_caps & BMSR_ANEGCAPABLE)) {
1087 printk(KERN_INFO "Auto negotiation NOT supported\n");
1088 smc_phy_fixed(dev);
1089 goto smc_phy_configure_exit;
1092 my_ad_caps = ADVERTISE_CSMA; /* I am CSMA capable */
1094 if (my_phy_caps & BMSR_100BASE4)
1095 my_ad_caps |= ADVERTISE_100BASE4;
1096 if (my_phy_caps & BMSR_100FULL)
1097 my_ad_caps |= ADVERTISE_100FULL;
1098 if (my_phy_caps & BMSR_100HALF)
1099 my_ad_caps |= ADVERTISE_100HALF;
1100 if (my_phy_caps & BMSR_10FULL)
1101 my_ad_caps |= ADVERTISE_10FULL;
1102 if (my_phy_caps & BMSR_10HALF)
1103 my_ad_caps |= ADVERTISE_10HALF;
1105 /* Disable capabilities not selected by our user */
1106 if (lp->ctl_rspeed != 100)
1107 my_ad_caps &= ~(ADVERTISE_100BASE4|ADVERTISE_100FULL|ADVERTISE_100HALF);
1109 if (!lp->ctl_rfduplx)
1110 my_ad_caps &= ~(ADVERTISE_100FULL|ADVERTISE_10FULL);
1112 /* Update our Auto-Neg Advertisement Register */
1113 smc_phy_write(dev, phyaddr, MII_ADVERTISE, my_ad_caps);
1114 lp->mii.advertising = my_ad_caps;
1117 * Read the register back. Without this, it appears that when
1118 * auto-negotiation is restarted, sometimes it isn't ready and
1119 * the link does not come up.
1121 status = smc_phy_read(dev, phyaddr, MII_ADVERTISE);
1123 DBG(2, "%s: phy caps=%x\n", dev->name, my_phy_caps);
1124 DBG(2, "%s: phy advertised caps=%x\n", dev->name, my_ad_caps);
1126 /* Restart auto-negotiation process in order to advertise my caps */
1127 smc_phy_write(dev, phyaddr, MII_BMCR, BMCR_ANENABLE | BMCR_ANRESTART);
1129 smc_phy_check_media(dev, 1);
1131 smc_phy_configure_exit:
1132 SMC_SELECT_BANK(lp, 2);
1133 spin_unlock_irq(&lp->lock);
1137 * smc_phy_interrupt
1139 * Purpose: Handle interrupts relating to PHY register 18. This is
1140 * called from the "hard" interrupt handler under our private spinlock.
1142 static void smc_phy_interrupt(struct net_device *dev)
1144 struct smc_local *lp = netdev_priv(dev);
1145 int phyaddr = lp->mii.phy_id;
1146 int phy18;
1148 DBG(2, "%s: %s\n", dev->name, __func__);
1150 if (lp->phy_type == 0)
1151 return;
1153 for(;;) {
1154 smc_phy_check_media(dev, 0);
1156 /* Read PHY Register 18, Status Output */
1157 phy18 = smc_phy_read(dev, phyaddr, PHY_INT_REG);
1158 if ((phy18 & PHY_INT_INT) == 0)
1159 break;
1163 /*--- END PHY CONTROL AND CONFIGURATION-------------------------------------*/
1165 static void smc_10bt_check_media(struct net_device *dev, int init)
1167 struct smc_local *lp = netdev_priv(dev);
1168 void __iomem *ioaddr = lp->base;
1169 unsigned int old_carrier, new_carrier;
1171 old_carrier = netif_carrier_ok(dev) ? 1 : 0;
1173 SMC_SELECT_BANK(lp, 0);
1174 new_carrier = (SMC_GET_EPH_STATUS(lp) & ES_LINK_OK) ? 1 : 0;
1175 SMC_SELECT_BANK(lp, 2);
1177 if (init || (old_carrier != new_carrier)) {
1178 if (!new_carrier) {
1179 netif_carrier_off(dev);
1180 } else {
1181 netif_carrier_on(dev);
1183 if (netif_msg_link(lp))
1184 printk(KERN_INFO "%s: link %s\n", dev->name,
1185 new_carrier ? "up" : "down");
1189 static void smc_eph_interrupt(struct net_device *dev)
1191 struct smc_local *lp = netdev_priv(dev);
1192 void __iomem *ioaddr = lp->base;
1193 unsigned int ctl;
1195 smc_10bt_check_media(dev, 0);
1197 SMC_SELECT_BANK(lp, 1);
1198 ctl = SMC_GET_CTL(lp);
1199 SMC_SET_CTL(lp, ctl & ~CTL_LE_ENABLE);
1200 SMC_SET_CTL(lp, ctl);
1201 SMC_SELECT_BANK(lp, 2);
1205 * This is the main routine of the driver, to handle the device when
1206 * it needs some attention.
1208 static irqreturn_t smc_interrupt(int irq, void *dev_id)
1210 struct net_device *dev = dev_id;
1211 struct smc_local *lp = netdev_priv(dev);
1212 void __iomem *ioaddr = lp->base;
1213 int status, mask, timeout, card_stats;
1214 int saved_pointer;
1216 DBG(3, "%s: %s\n", dev->name, __func__);
1218 spin_lock(&lp->lock);
1220 /* A preamble may be used when there is a potential race
1221 * between the interruptible transmit functions and this
1222 * ISR. */
1223 SMC_INTERRUPT_PREAMBLE;
1225 saved_pointer = SMC_GET_PTR(lp);
1226 mask = SMC_GET_INT_MASK(lp);
1227 SMC_SET_INT_MASK(lp, 0);
1229 /* set a timeout value, so I don't stay here forever */
1230 timeout = MAX_IRQ_LOOPS;
1232 do {
1233 status = SMC_GET_INT(lp);
1235 DBG(2, "%s: INT 0x%02x MASK 0x%02x MEM 0x%04x FIFO 0x%04x\n",
1236 dev->name, status, mask,
1237 ({ int meminfo; SMC_SELECT_BANK(lp, 0);
1238 meminfo = SMC_GET_MIR(lp);
1239 SMC_SELECT_BANK(lp, 2); meminfo; }),
1240 SMC_GET_FIFO(lp));
1242 status &= mask;
1243 if (!status)
1244 break;
1246 if (status & IM_TX_INT) {
1247 /* do this before RX as it will free memory quickly */
1248 DBG(3, "%s: TX int\n", dev->name);
1249 smc_tx(dev);
1250 SMC_ACK_INT(lp, IM_TX_INT);
1251 if (THROTTLE_TX_PKTS)
1252 netif_wake_queue(dev);
1253 } else if (status & IM_RCV_INT) {
1254 DBG(3, "%s: RX irq\n", dev->name);
1255 smc_rcv(dev);
1256 } else if (status & IM_ALLOC_INT) {
1257 DBG(3, "%s: Allocation irq\n", dev->name);
1258 tasklet_hi_schedule(&lp->tx_task);
1259 mask &= ~IM_ALLOC_INT;
1260 } else if (status & IM_TX_EMPTY_INT) {
1261 DBG(3, "%s: TX empty\n", dev->name);
1262 mask &= ~IM_TX_EMPTY_INT;
1264 /* update stats */
1265 SMC_SELECT_BANK(lp, 0);
1266 card_stats = SMC_GET_COUNTER(lp);
1267 SMC_SELECT_BANK(lp, 2);
1269 /* single collisions */
1270 dev->stats.collisions += card_stats & 0xF;
1271 card_stats >>= 4;
1273 /* multiple collisions */
1274 dev->stats.collisions += card_stats & 0xF;
1275 } else if (status & IM_RX_OVRN_INT) {
1276 DBG(1, "%s: RX overrun (EPH_ST 0x%04x)\n", dev->name,
1277 ({ int eph_st; SMC_SELECT_BANK(lp, 0);
1278 eph_st = SMC_GET_EPH_STATUS(lp);
1279 SMC_SELECT_BANK(lp, 2); eph_st; }));
1280 SMC_ACK_INT(lp, IM_RX_OVRN_INT);
1281 dev->stats.rx_errors++;
1282 dev->stats.rx_fifo_errors++;
1283 } else if (status & IM_EPH_INT) {
1284 smc_eph_interrupt(dev);
1285 } else if (status & IM_MDINT) {
1286 SMC_ACK_INT(lp, IM_MDINT);
1287 smc_phy_interrupt(dev);
1288 } else if (status & IM_ERCV_INT) {
1289 SMC_ACK_INT(lp, IM_ERCV_INT);
1290 PRINTK("%s: UNSUPPORTED: ERCV INTERRUPT\n", dev->name);
1292 } while (--timeout);
1294 /* restore register states */
1295 SMC_SET_PTR(lp, saved_pointer);
1296 SMC_SET_INT_MASK(lp, mask);
1297 spin_unlock(&lp->lock);
1299 #ifndef CONFIG_NET_POLL_CONTROLLER
1300 if (timeout == MAX_IRQ_LOOPS)
1301 PRINTK("%s: spurious interrupt (mask = 0x%02x)\n",
1302 dev->name, mask);
1303 #endif
1304 DBG(3, "%s: Interrupt done (%d loops)\n",
1305 dev->name, MAX_IRQ_LOOPS - timeout);
1308 * We return IRQ_HANDLED unconditionally here even if there was
1309 * nothing to do. There is a possibility that a packet might
1310 * get enqueued into the chip right after TX_EMPTY_INT is raised
1311 * but just before the CPU acknowledges the IRQ.
1312 * Better take an unneeded IRQ in some occasions than complexifying
1313 * the code for all cases.
1315 return IRQ_HANDLED;
1318 #ifdef CONFIG_NET_POLL_CONTROLLER
1320 * Polling receive - used by netconsole and other diagnostic tools
1321 * to allow network i/o with interrupts disabled.
1323 static void smc_poll_controller(struct net_device *dev)
1325 disable_irq(dev->irq);
1326 smc_interrupt(dev->irq, dev);
1327 enable_irq(dev->irq);
1329 #endif
1331 /* Our watchdog timed out. Called by the networking layer */
1332 static void smc_timeout(struct net_device *dev)
1334 struct smc_local *lp = netdev_priv(dev);
1335 void __iomem *ioaddr = lp->base;
1336 int status, mask, eph_st, meminfo, fifo;
1338 DBG(2, "%s: %s\n", dev->name, __func__);
1340 spin_lock_irq(&lp->lock);
1341 status = SMC_GET_INT(lp);
1342 mask = SMC_GET_INT_MASK(lp);
1343 fifo = SMC_GET_FIFO(lp);
1344 SMC_SELECT_BANK(lp, 0);
1345 eph_st = SMC_GET_EPH_STATUS(lp);
1346 meminfo = SMC_GET_MIR(lp);
1347 SMC_SELECT_BANK(lp, 2);
1348 spin_unlock_irq(&lp->lock);
1349 PRINTK( "%s: TX timeout (INT 0x%02x INTMASK 0x%02x "
1350 "MEM 0x%04x FIFO 0x%04x EPH_ST 0x%04x)\n",
1351 dev->name, status, mask, meminfo, fifo, eph_st );
1353 smc_reset(dev);
1354 smc_enable(dev);
1357 * Reconfiguring the PHY doesn't seem like a bad idea here, but
1358 * smc_phy_configure() calls msleep() which calls schedule_timeout()
1359 * which calls schedule(). Hence we use a work queue.
1361 if (lp->phy_type != 0)
1362 schedule_work(&lp->phy_configure);
1364 /* We can accept TX packets again */
1365 dev->trans_start = jiffies; /* prevent tx timeout */
1366 netif_wake_queue(dev);
1370 * This routine will, depending on the values passed to it,
1371 * either make it accept multicast packets, go into
1372 * promiscuous mode (for TCPDUMP and cousins) or accept
1373 * a select set of multicast packets
1375 static void smc_set_multicast_list(struct net_device *dev)
1377 struct smc_local *lp = netdev_priv(dev);
1378 void __iomem *ioaddr = lp->base;
1379 unsigned char multicast_table[8];
1380 int update_multicast = 0;
1382 DBG(2, "%s: %s\n", dev->name, __func__);
1384 if (dev->flags & IFF_PROMISC) {
1385 DBG(2, "%s: RCR_PRMS\n", dev->name);
1386 lp->rcr_cur_mode |= RCR_PRMS;
1389 /* BUG? I never disable promiscuous mode if multicasting was turned on.
1390 Now, I turn off promiscuous mode, but I don't do anything to multicasting
1391 when promiscuous mode is turned on.
1395 * Here, I am setting this to accept all multicast packets.
1396 * I don't need to zero the multicast table, because the flag is
1397 * checked before the table is
1399 else if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > 16) {
1400 DBG(2, "%s: RCR_ALMUL\n", dev->name);
1401 lp->rcr_cur_mode |= RCR_ALMUL;
1405 * This sets the internal hardware table to filter out unwanted
1406 * multicast packets before they take up memory.
1408 * The SMC chip uses a hash table where the high 6 bits of the CRC of
1409 * address are the offset into the table. If that bit is 1, then the
1410 * multicast packet is accepted. Otherwise, it's dropped silently.
1412 * To use the 6 bits as an offset into the table, the high 3 bits are
1413 * the number of the 8 bit register, while the low 3 bits are the bit
1414 * within that register.
1416 else if (!netdev_mc_empty(dev)) {
1417 struct netdev_hw_addr *ha;
1419 /* table for flipping the order of 3 bits */
1420 static const unsigned char invert3[] = {0, 4, 2, 6, 1, 5, 3, 7};
1422 /* start with a table of all zeros: reject all */
1423 memset(multicast_table, 0, sizeof(multicast_table));
1425 netdev_for_each_mc_addr(ha, dev) {
1426 int position;
1428 /* only use the low order bits */
1429 position = crc32_le(~0, ha->addr, 6) & 0x3f;
1431 /* do some messy swapping to put the bit in the right spot */
1432 multicast_table[invert3[position&7]] |=
1433 (1<<invert3[(position>>3)&7]);
1436 /* be sure I get rid of flags I might have set */
1437 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1439 /* now, the table can be loaded into the chipset */
1440 update_multicast = 1;
1441 } else {
1442 DBG(2, "%s: ~(RCR_PRMS|RCR_ALMUL)\n", dev->name);
1443 lp->rcr_cur_mode &= ~(RCR_PRMS | RCR_ALMUL);
1446 * since I'm disabling all multicast entirely, I need to
1447 * clear the multicast list
1449 memset(multicast_table, 0, sizeof(multicast_table));
1450 update_multicast = 1;
1453 spin_lock_irq(&lp->lock);
1454 SMC_SELECT_BANK(lp, 0);
1455 SMC_SET_RCR(lp, lp->rcr_cur_mode);
1456 if (update_multicast) {
1457 SMC_SELECT_BANK(lp, 3);
1458 SMC_SET_MCAST(lp, multicast_table);
1460 SMC_SELECT_BANK(lp, 2);
1461 spin_unlock_irq(&lp->lock);
1466 * Open and Initialize the board
1468 * Set up everything, reset the card, etc..
1470 static int
1471 smc_open(struct net_device *dev)
1473 struct smc_local *lp = netdev_priv(dev);
1475 DBG(2, "%s: %s\n", dev->name, __func__);
1478 * Check that the address is valid. If its not, refuse
1479 * to bring the device up. The user must specify an
1480 * address using ifconfig eth0 hw ether xx:xx:xx:xx:xx:xx
1482 if (!is_valid_ether_addr(dev->dev_addr)) {
1483 PRINTK("%s: no valid ethernet hw addr\n", __func__);
1484 return -EINVAL;
1487 /* Setup the default Register Modes */
1488 lp->tcr_cur_mode = TCR_DEFAULT;
1489 lp->rcr_cur_mode = RCR_DEFAULT;
1490 lp->rpc_cur_mode = RPC_DEFAULT |
1491 lp->cfg.leda << RPC_LSXA_SHFT |
1492 lp->cfg.ledb << RPC_LSXB_SHFT;
1495 * If we are not using a MII interface, we need to
1496 * monitor our own carrier signal to detect faults.
1498 if (lp->phy_type == 0)
1499 lp->tcr_cur_mode |= TCR_MON_CSN;
1501 /* reset the hardware */
1502 smc_reset(dev);
1503 smc_enable(dev);
1505 /* Configure the PHY, initialize the link state */
1506 if (lp->phy_type != 0)
1507 smc_phy_configure(&lp->phy_configure);
1508 else {
1509 spin_lock_irq(&lp->lock);
1510 smc_10bt_check_media(dev, 1);
1511 spin_unlock_irq(&lp->lock);
1514 netif_start_queue(dev);
1515 return 0;
1519 * smc_close
1521 * this makes the board clean up everything that it can
1522 * and not talk to the outside world. Caused by
1523 * an 'ifconfig ethX down'
1525 static int smc_close(struct net_device *dev)
1527 struct smc_local *lp = netdev_priv(dev);
1529 DBG(2, "%s: %s\n", dev->name, __func__);
1531 netif_stop_queue(dev);
1532 netif_carrier_off(dev);
1534 /* clear everything */
1535 smc_shutdown(dev);
1536 tasklet_kill(&lp->tx_task);
1537 smc_phy_powerdown(dev);
1538 return 0;
1542 * Ethtool support
1544 static int
1545 smc_ethtool_getsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1547 struct smc_local *lp = netdev_priv(dev);
1548 int ret;
1550 cmd->maxtxpkt = 1;
1551 cmd->maxrxpkt = 1;
1553 if (lp->phy_type != 0) {
1554 spin_lock_irq(&lp->lock);
1555 ret = mii_ethtool_gset(&lp->mii, cmd);
1556 spin_unlock_irq(&lp->lock);
1557 } else {
1558 cmd->supported = SUPPORTED_10baseT_Half |
1559 SUPPORTED_10baseT_Full |
1560 SUPPORTED_TP | SUPPORTED_AUI;
1562 if (lp->ctl_rspeed == 10)
1563 ethtool_cmd_speed_set(cmd, SPEED_10);
1564 else if (lp->ctl_rspeed == 100)
1565 ethtool_cmd_speed_set(cmd, SPEED_100);
1567 cmd->autoneg = AUTONEG_DISABLE;
1568 cmd->transceiver = XCVR_INTERNAL;
1569 cmd->port = 0;
1570 cmd->duplex = lp->tcr_cur_mode & TCR_SWFDUP ? DUPLEX_FULL : DUPLEX_HALF;
1572 ret = 0;
1575 return ret;
1578 static int
1579 smc_ethtool_setsettings(struct net_device *dev, struct ethtool_cmd *cmd)
1581 struct smc_local *lp = netdev_priv(dev);
1582 int ret;
1584 if (lp->phy_type != 0) {
1585 spin_lock_irq(&lp->lock);
1586 ret = mii_ethtool_sset(&lp->mii, cmd);
1587 spin_unlock_irq(&lp->lock);
1588 } else {
1589 if (cmd->autoneg != AUTONEG_DISABLE ||
1590 cmd->speed != SPEED_10 ||
1591 (cmd->duplex != DUPLEX_HALF && cmd->duplex != DUPLEX_FULL) ||
1592 (cmd->port != PORT_TP && cmd->port != PORT_AUI))
1593 return -EINVAL;
1595 // lp->port = cmd->port;
1596 lp->ctl_rfduplx = cmd->duplex == DUPLEX_FULL;
1598 // if (netif_running(dev))
1599 // smc_set_port(dev);
1601 ret = 0;
1604 return ret;
1607 static void
1608 smc_ethtool_getdrvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1610 strncpy(info->driver, CARDNAME, sizeof(info->driver));
1611 strncpy(info->version, version, sizeof(info->version));
1612 strncpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info));
1615 static int smc_ethtool_nwayreset(struct net_device *dev)
1617 struct smc_local *lp = netdev_priv(dev);
1618 int ret = -EINVAL;
1620 if (lp->phy_type != 0) {
1621 spin_lock_irq(&lp->lock);
1622 ret = mii_nway_restart(&lp->mii);
1623 spin_unlock_irq(&lp->lock);
1626 return ret;
1629 static u32 smc_ethtool_getmsglevel(struct net_device *dev)
1631 struct smc_local *lp = netdev_priv(dev);
1632 return lp->msg_enable;
1635 static void smc_ethtool_setmsglevel(struct net_device *dev, u32 level)
1637 struct smc_local *lp = netdev_priv(dev);
1638 lp->msg_enable = level;
1641 static int smc_write_eeprom_word(struct net_device *dev, u16 addr, u16 word)
1643 u16 ctl;
1644 struct smc_local *lp = netdev_priv(dev);
1645 void __iomem *ioaddr = lp->base;
1647 spin_lock_irq(&lp->lock);
1648 /* load word into GP register */
1649 SMC_SELECT_BANK(lp, 1);
1650 SMC_SET_GP(lp, word);
1651 /* set the address to put the data in EEPROM */
1652 SMC_SELECT_BANK(lp, 2);
1653 SMC_SET_PTR(lp, addr);
1654 /* tell it to write */
1655 SMC_SELECT_BANK(lp, 1);
1656 ctl = SMC_GET_CTL(lp);
1657 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_STORE));
1658 /* wait for it to finish */
1659 do {
1660 udelay(1);
1661 } while (SMC_GET_CTL(lp) & CTL_STORE);
1662 /* clean up */
1663 SMC_SET_CTL(lp, ctl);
1664 SMC_SELECT_BANK(lp, 2);
1665 spin_unlock_irq(&lp->lock);
1666 return 0;
1669 static int smc_read_eeprom_word(struct net_device *dev, u16 addr, u16 *word)
1671 u16 ctl;
1672 struct smc_local *lp = netdev_priv(dev);
1673 void __iomem *ioaddr = lp->base;
1675 spin_lock_irq(&lp->lock);
1676 /* set the EEPROM address to get the data from */
1677 SMC_SELECT_BANK(lp, 2);
1678 SMC_SET_PTR(lp, addr | PTR_READ);
1679 /* tell it to load */
1680 SMC_SELECT_BANK(lp, 1);
1681 SMC_SET_GP(lp, 0xffff); /* init to known */
1682 ctl = SMC_GET_CTL(lp);
1683 SMC_SET_CTL(lp, ctl | (CTL_EEPROM_SELECT | CTL_RELOAD));
1684 /* wait for it to finish */
1685 do {
1686 udelay(1);
1687 } while (SMC_GET_CTL(lp) & CTL_RELOAD);
1688 /* read word from GP register */
1689 *word = SMC_GET_GP(lp);
1690 /* clean up */
1691 SMC_SET_CTL(lp, ctl);
1692 SMC_SELECT_BANK(lp, 2);
1693 spin_unlock_irq(&lp->lock);
1694 return 0;
1697 static int smc_ethtool_geteeprom_len(struct net_device *dev)
1699 return 0x23 * 2;
1702 static int smc_ethtool_geteeprom(struct net_device *dev,
1703 struct ethtool_eeprom *eeprom, u8 *data)
1705 int i;
1706 int imax;
1708 DBG(1, "Reading %d bytes at %d(0x%x)\n",
1709 eeprom->len, eeprom->offset, eeprom->offset);
1710 imax = smc_ethtool_geteeprom_len(dev);
1711 for (i = 0; i < eeprom->len; i += 2) {
1712 int ret;
1713 u16 wbuf;
1714 int offset = i + eeprom->offset;
1715 if (offset > imax)
1716 break;
1717 ret = smc_read_eeprom_word(dev, offset >> 1, &wbuf);
1718 if (ret != 0)
1719 return ret;
1720 DBG(2, "Read 0x%x from 0x%x\n", wbuf, offset >> 1);
1721 data[i] = (wbuf >> 8) & 0xff;
1722 data[i+1] = wbuf & 0xff;
1724 return 0;
1727 static int smc_ethtool_seteeprom(struct net_device *dev,
1728 struct ethtool_eeprom *eeprom, u8 *data)
1730 int i;
1731 int imax;
1733 DBG(1, "Writing %d bytes to %d(0x%x)\n",
1734 eeprom->len, eeprom->offset, eeprom->offset);
1735 imax = smc_ethtool_geteeprom_len(dev);
1736 for (i = 0; i < eeprom->len; i += 2) {
1737 int ret;
1738 u16 wbuf;
1739 int offset = i + eeprom->offset;
1740 if (offset > imax)
1741 break;
1742 wbuf = (data[i] << 8) | data[i + 1];
1743 DBG(2, "Writing 0x%x to 0x%x\n", wbuf, offset >> 1);
1744 ret = smc_write_eeprom_word(dev, offset >> 1, wbuf);
1745 if (ret != 0)
1746 return ret;
1748 return 0;
1752 static const struct ethtool_ops smc_ethtool_ops = {
1753 .get_settings = smc_ethtool_getsettings,
1754 .set_settings = smc_ethtool_setsettings,
1755 .get_drvinfo = smc_ethtool_getdrvinfo,
1757 .get_msglevel = smc_ethtool_getmsglevel,
1758 .set_msglevel = smc_ethtool_setmsglevel,
1759 .nway_reset = smc_ethtool_nwayreset,
1760 .get_link = ethtool_op_get_link,
1761 .get_eeprom_len = smc_ethtool_geteeprom_len,
1762 .get_eeprom = smc_ethtool_geteeprom,
1763 .set_eeprom = smc_ethtool_seteeprom,
1766 static const struct net_device_ops smc_netdev_ops = {
1767 .ndo_open = smc_open,
1768 .ndo_stop = smc_close,
1769 .ndo_start_xmit = smc_hard_start_xmit,
1770 .ndo_tx_timeout = smc_timeout,
1771 .ndo_set_rx_mode = smc_set_multicast_list,
1772 .ndo_change_mtu = eth_change_mtu,
1773 .ndo_validate_addr = eth_validate_addr,
1774 .ndo_set_mac_address = eth_mac_addr,
1775 #ifdef CONFIG_NET_POLL_CONTROLLER
1776 .ndo_poll_controller = smc_poll_controller,
1777 #endif
1781 * smc_findirq
1783 * This routine has a simple purpose -- make the SMC chip generate an
1784 * interrupt, so an auto-detect routine can detect it, and find the IRQ,
1787 * does this still work?
1789 * I just deleted auto_irq.c, since it was never built...
1790 * --jgarzik
1792 static int __devinit smc_findirq(struct smc_local *lp)
1794 void __iomem *ioaddr = lp->base;
1795 int timeout = 20;
1796 unsigned long cookie;
1798 DBG(2, "%s: %s\n", CARDNAME, __func__);
1800 cookie = probe_irq_on();
1803 * What I try to do here is trigger an ALLOC_INT. This is done
1804 * by allocating a small chunk of memory, which will give an interrupt
1805 * when done.
1807 /* enable ALLOCation interrupts ONLY */
1808 SMC_SELECT_BANK(lp, 2);
1809 SMC_SET_INT_MASK(lp, IM_ALLOC_INT);
1812 * Allocate 512 bytes of memory. Note that the chip was just
1813 * reset so all the memory is available
1815 SMC_SET_MMU_CMD(lp, MC_ALLOC | 1);
1818 * Wait until positive that the interrupt has been generated
1820 do {
1821 int int_status;
1822 udelay(10);
1823 int_status = SMC_GET_INT(lp);
1824 if (int_status & IM_ALLOC_INT)
1825 break; /* got the interrupt */
1826 } while (--timeout);
1829 * there is really nothing that I can do here if timeout fails,
1830 * as autoirq_report will return a 0 anyway, which is what I
1831 * want in this case. Plus, the clean up is needed in both
1832 * cases.
1835 /* and disable all interrupts again */
1836 SMC_SET_INT_MASK(lp, 0);
1838 /* and return what I found */
1839 return probe_irq_off(cookie);
1843 * Function: smc_probe(unsigned long ioaddr)
1845 * Purpose:
1846 * Tests to see if a given ioaddr points to an SMC91x chip.
1847 * Returns a 0 on success
1849 * Algorithm:
1850 * (1) see if the high byte of BANK_SELECT is 0x33
1851 * (2) compare the ioaddr with the base register's address
1852 * (3) see if I recognize the chip ID in the appropriate register
1854 * Here I do typical initialization tasks.
1856 * o Initialize the structure if needed
1857 * o print out my vanity message if not done so already
1858 * o print out what type of hardware is detected
1859 * o print out the ethernet address
1860 * o find the IRQ
1861 * o set up my private data
1862 * o configure the dev structure with my subroutines
1863 * o actually GRAB the irq.
1864 * o GRAB the region
1866 static int __devinit smc_probe(struct net_device *dev, void __iomem *ioaddr,
1867 unsigned long irq_flags)
1869 struct smc_local *lp = netdev_priv(dev);
1870 static int version_printed = 0;
1871 int retval;
1872 unsigned int val, revision_register;
1873 const char *version_string;
1875 DBG(2, "%s: %s\n", CARDNAME, __func__);
1877 /* First, see if the high byte is 0x33 */
1878 val = SMC_CURRENT_BANK(lp);
1879 DBG(2, "%s: bank signature probe returned 0x%04x\n", CARDNAME, val);
1880 if ((val & 0xFF00) != 0x3300) {
1881 if ((val & 0xFF) == 0x33) {
1882 printk(KERN_WARNING
1883 "%s: Detected possible byte-swapped interface"
1884 " at IOADDR %p\n", CARDNAME, ioaddr);
1886 retval = -ENODEV;
1887 goto err_out;
1891 * The above MIGHT indicate a device, but I need to write to
1892 * further test this.
1894 SMC_SELECT_BANK(lp, 0);
1895 val = SMC_CURRENT_BANK(lp);
1896 if ((val & 0xFF00) != 0x3300) {
1897 retval = -ENODEV;
1898 goto err_out;
1902 * well, we've already written once, so hopefully another
1903 * time won't hurt. This time, I need to switch the bank
1904 * register to bank 1, so I can access the base address
1905 * register
1907 SMC_SELECT_BANK(lp, 1);
1908 val = SMC_GET_BASE(lp);
1909 val = ((val & 0x1F00) >> 3) << SMC_IO_SHIFT;
1910 if (((unsigned int)ioaddr & (0x3e0 << SMC_IO_SHIFT)) != val) {
1911 printk("%s: IOADDR %p doesn't match configuration (%x).\n",
1912 CARDNAME, ioaddr, val);
1916 * check if the revision register is something that I
1917 * recognize. These might need to be added to later,
1918 * as future revisions could be added.
1920 SMC_SELECT_BANK(lp, 3);
1921 revision_register = SMC_GET_REV(lp);
1922 DBG(2, "%s: revision = 0x%04x\n", CARDNAME, revision_register);
1923 version_string = chip_ids[ (revision_register >> 4) & 0xF];
1924 if (!version_string || (revision_register & 0xff00) != 0x3300) {
1925 /* I don't recognize this chip, so... */
1926 printk("%s: IO %p: Unrecognized revision register 0x%04x"
1927 ", Contact author.\n", CARDNAME,
1928 ioaddr, revision_register);
1930 retval = -ENODEV;
1931 goto err_out;
1934 /* At this point I'll assume that the chip is an SMC91x. */
1935 if (version_printed++ == 0)
1936 printk("%s", version);
1938 /* fill in some of the fields */
1939 dev->base_addr = (unsigned long)ioaddr;
1940 lp->base = ioaddr;
1941 lp->version = revision_register & 0xff;
1942 spin_lock_init(&lp->lock);
1944 /* Get the MAC address */
1945 SMC_SELECT_BANK(lp, 1);
1946 SMC_GET_MAC_ADDR(lp, dev->dev_addr);
1948 /* now, reset the chip, and put it into a known state */
1949 smc_reset(dev);
1952 * If dev->irq is 0, then the device has to be banged on to see
1953 * what the IRQ is.
1955 * This banging doesn't always detect the IRQ, for unknown reasons.
1956 * a workaround is to reset the chip and try again.
1958 * Interestingly, the DOS packet driver *SETS* the IRQ on the card to
1959 * be what is requested on the command line. I don't do that, mostly
1960 * because the card that I have uses a non-standard method of accessing
1961 * the IRQs, and because this _should_ work in most configurations.
1963 * Specifying an IRQ is done with the assumption that the user knows
1964 * what (s)he is doing. No checking is done!!!!
1966 if (dev->irq < 1) {
1967 int trials;
1969 trials = 3;
1970 while (trials--) {
1971 dev->irq = smc_findirq(lp);
1972 if (dev->irq)
1973 break;
1974 /* kick the card and try again */
1975 smc_reset(dev);
1978 if (dev->irq == 0) {
1979 printk("%s: Couldn't autodetect your IRQ. Use irq=xx.\n",
1980 dev->name);
1981 retval = -ENODEV;
1982 goto err_out;
1984 dev->irq = irq_canonicalize(dev->irq);
1986 /* Fill in the fields of the device structure with ethernet values. */
1987 ether_setup(dev);
1989 dev->watchdog_timeo = msecs_to_jiffies(watchdog);
1990 dev->netdev_ops = &smc_netdev_ops;
1991 dev->ethtool_ops = &smc_ethtool_ops;
1993 tasklet_init(&lp->tx_task, smc_hardware_send_pkt, (unsigned long)dev);
1994 INIT_WORK(&lp->phy_configure, smc_phy_configure);
1995 lp->dev = dev;
1996 lp->mii.phy_id_mask = 0x1f;
1997 lp->mii.reg_num_mask = 0x1f;
1998 lp->mii.force_media = 0;
1999 lp->mii.full_duplex = 0;
2000 lp->mii.dev = dev;
2001 lp->mii.mdio_read = smc_phy_read;
2002 lp->mii.mdio_write = smc_phy_write;
2005 * Locate the phy, if any.
2007 if (lp->version >= (CHIP_91100 << 4))
2008 smc_phy_detect(dev);
2010 /* then shut everything down to save power */
2011 smc_shutdown(dev);
2012 smc_phy_powerdown(dev);
2014 /* Set default parameters */
2015 lp->msg_enable = NETIF_MSG_LINK;
2016 lp->ctl_rfduplx = 0;
2017 lp->ctl_rspeed = 10;
2019 if (lp->version >= (CHIP_91100 << 4)) {
2020 lp->ctl_rfduplx = 1;
2021 lp->ctl_rspeed = 100;
2024 /* Grab the IRQ */
2025 retval = request_irq(dev->irq, smc_interrupt, irq_flags, dev->name, dev);
2026 if (retval)
2027 goto err_out;
2029 #ifdef CONFIG_ARCH_PXA
2030 # ifdef SMC_USE_PXA_DMA
2031 lp->cfg.flags |= SMC91X_USE_DMA;
2032 # endif
2033 if (lp->cfg.flags & SMC91X_USE_DMA) {
2034 int dma = pxa_request_dma(dev->name, DMA_PRIO_LOW,
2035 smc_pxa_dma_irq, NULL);
2036 if (dma >= 0)
2037 dev->dma = dma;
2039 #endif
2041 retval = register_netdev(dev);
2042 if (retval == 0) {
2043 /* now, print out the card info, in a short format.. */
2044 printk("%s: %s (rev %d) at %p IRQ %d",
2045 dev->name, version_string, revision_register & 0x0f,
2046 lp->base, dev->irq);
2048 if (dev->dma != (unsigned char)-1)
2049 printk(" DMA %d", dev->dma);
2051 printk("%s%s\n",
2052 lp->cfg.flags & SMC91X_NOWAIT ? " [nowait]" : "",
2053 THROTTLE_TX_PKTS ? " [throttle_tx]" : "");
2055 if (!is_valid_ether_addr(dev->dev_addr)) {
2056 printk("%s: Invalid ethernet MAC address. Please "
2057 "set using ifconfig\n", dev->name);
2058 } else {
2059 /* Print the Ethernet address */
2060 printk("%s: Ethernet addr: %pM\n",
2061 dev->name, dev->dev_addr);
2064 if (lp->phy_type == 0) {
2065 PRINTK("%s: No PHY found\n", dev->name);
2066 } else if ((lp->phy_type & 0xfffffff0) == 0x0016f840) {
2067 PRINTK("%s: PHY LAN83C183 (LAN91C111 Internal)\n", dev->name);
2068 } else if ((lp->phy_type & 0xfffffff0) == 0x02821c50) {
2069 PRINTK("%s: PHY LAN83C180\n", dev->name);
2073 err_out:
2074 #ifdef CONFIG_ARCH_PXA
2075 if (retval && dev->dma != (unsigned char)-1)
2076 pxa_free_dma(dev->dma);
2077 #endif
2078 return retval;
2081 static int smc_enable_device(struct platform_device *pdev)
2083 struct net_device *ndev = platform_get_drvdata(pdev);
2084 struct smc_local *lp = netdev_priv(ndev);
2085 unsigned long flags;
2086 unsigned char ecor, ecsr;
2087 void __iomem *addr;
2088 struct resource * res;
2090 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2091 if (!res)
2092 return 0;
2095 * Map the attribute space. This is overkill, but clean.
2097 addr = ioremap(res->start, ATTRIB_SIZE);
2098 if (!addr)
2099 return -ENOMEM;
2102 * Reset the device. We must disable IRQs around this
2103 * since a reset causes the IRQ line become active.
2105 local_irq_save(flags);
2106 ecor = readb(addr + (ECOR << SMC_IO_SHIFT)) & ~ECOR_RESET;
2107 writeb(ecor | ECOR_RESET, addr + (ECOR << SMC_IO_SHIFT));
2108 readb(addr + (ECOR << SMC_IO_SHIFT));
2111 * Wait 100us for the chip to reset.
2113 udelay(100);
2116 * The device will ignore all writes to the enable bit while
2117 * reset is asserted, even if the reset bit is cleared in the
2118 * same write. Must clear reset first, then enable the device.
2120 writeb(ecor, addr + (ECOR << SMC_IO_SHIFT));
2121 writeb(ecor | ECOR_ENABLE, addr + (ECOR << SMC_IO_SHIFT));
2124 * Set the appropriate byte/word mode.
2126 ecsr = readb(addr + (ECSR << SMC_IO_SHIFT)) & ~ECSR_IOIS8;
2127 if (!SMC_16BIT(lp))
2128 ecsr |= ECSR_IOIS8;
2129 writeb(ecsr, addr + (ECSR << SMC_IO_SHIFT));
2130 local_irq_restore(flags);
2132 iounmap(addr);
2135 * Wait for the chip to wake up. We could poll the control
2136 * register in the main register space, but that isn't mapped
2137 * yet. We know this is going to take 750us.
2139 msleep(1);
2141 return 0;
2144 static int smc_request_attrib(struct platform_device *pdev,
2145 struct net_device *ndev)
2147 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2148 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2150 if (!res)
2151 return 0;
2153 if (!request_mem_region(res->start, ATTRIB_SIZE, CARDNAME))
2154 return -EBUSY;
2156 return 0;
2159 static void smc_release_attrib(struct platform_device *pdev,
2160 struct net_device *ndev)
2162 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-attrib");
2163 struct smc_local *lp __maybe_unused = netdev_priv(ndev);
2165 if (res)
2166 release_mem_region(res->start, ATTRIB_SIZE);
2169 static inline void smc_request_datacs(struct platform_device *pdev, struct net_device *ndev)
2171 if (SMC_CAN_USE_DATACS) {
2172 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2173 struct smc_local *lp = netdev_priv(ndev);
2175 if (!res)
2176 return;
2178 if(!request_mem_region(res->start, SMC_DATA_EXTENT, CARDNAME)) {
2179 printk(KERN_INFO "%s: failed to request datacs memory region.\n", CARDNAME);
2180 return;
2183 lp->datacs = ioremap(res->start, SMC_DATA_EXTENT);
2187 static void smc_release_datacs(struct platform_device *pdev, struct net_device *ndev)
2189 if (SMC_CAN_USE_DATACS) {
2190 struct smc_local *lp = netdev_priv(ndev);
2191 struct resource * res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-data32");
2193 if (lp->datacs)
2194 iounmap(lp->datacs);
2196 lp->datacs = NULL;
2198 if (res)
2199 release_mem_region(res->start, SMC_DATA_EXTENT);
2204 * smc_init(void)
2205 * Input parameters:
2206 * dev->base_addr == 0, try to find all possible locations
2207 * dev->base_addr > 0x1ff, this is the address to check
2208 * dev->base_addr == <anything else>, return failure code
2210 * Output:
2211 * 0 --> there is a device
2212 * anything else, error
2214 static int __devinit smc_drv_probe(struct platform_device *pdev)
2216 struct smc91x_platdata *pd = pdev->dev.platform_data;
2217 struct smc_local *lp;
2218 struct net_device *ndev;
2219 struct resource *res, *ires;
2220 unsigned int __iomem *addr;
2221 unsigned long irq_flags = SMC_IRQ_FLAGS;
2222 int ret;
2224 ndev = alloc_etherdev(sizeof(struct smc_local));
2225 if (!ndev) {
2226 printk("%s: could not allocate device.\n", CARDNAME);
2227 ret = -ENOMEM;
2228 goto out;
2230 SET_NETDEV_DEV(ndev, &pdev->dev);
2232 /* get configuration from platform data, only allow use of
2233 * bus width if both SMC_CAN_USE_xxx and SMC91X_USE_xxx are set.
2236 lp = netdev_priv(ndev);
2238 if (pd) {
2239 memcpy(&lp->cfg, pd, sizeof(lp->cfg));
2240 lp->io_shift = SMC91X_IO_SHIFT(lp->cfg.flags);
2241 } else {
2242 lp->cfg.flags |= (SMC_CAN_USE_8BIT) ? SMC91X_USE_8BIT : 0;
2243 lp->cfg.flags |= (SMC_CAN_USE_16BIT) ? SMC91X_USE_16BIT : 0;
2244 lp->cfg.flags |= (SMC_CAN_USE_32BIT) ? SMC91X_USE_32BIT : 0;
2245 lp->cfg.flags |= (nowait) ? SMC91X_NOWAIT : 0;
2248 if (!lp->cfg.leda && !lp->cfg.ledb) {
2249 lp->cfg.leda = RPC_LSA_DEFAULT;
2250 lp->cfg.ledb = RPC_LSB_DEFAULT;
2253 ndev->dma = (unsigned char)-1;
2255 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2256 if (!res)
2257 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2258 if (!res) {
2259 ret = -ENODEV;
2260 goto out_free_netdev;
2264 if (!request_mem_region(res->start, SMC_IO_EXTENT, CARDNAME)) {
2265 ret = -EBUSY;
2266 goto out_free_netdev;
2269 ires = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
2270 if (!ires) {
2271 ret = -ENODEV;
2272 goto out_release_io;
2275 ndev->irq = ires->start;
2277 if (irq_flags == -1 || ires->flags & IRQF_TRIGGER_MASK)
2278 irq_flags = ires->flags & IRQF_TRIGGER_MASK;
2280 ret = smc_request_attrib(pdev, ndev);
2281 if (ret)
2282 goto out_release_io;
2283 #if defined(CONFIG_SA1100_ASSABET)
2284 NCR_0 |= NCR_ENET_OSC_EN;
2285 #endif
2286 platform_set_drvdata(pdev, ndev);
2287 ret = smc_enable_device(pdev);
2288 if (ret)
2289 goto out_release_attrib;
2291 addr = ioremap(res->start, SMC_IO_EXTENT);
2292 if (!addr) {
2293 ret = -ENOMEM;
2294 goto out_release_attrib;
2297 #ifdef CONFIG_ARCH_PXA
2299 struct smc_local *lp = netdev_priv(ndev);
2300 lp->device = &pdev->dev;
2301 lp->physaddr = res->start;
2303 #endif
2305 ret = smc_probe(ndev, addr, irq_flags);
2306 if (ret != 0)
2307 goto out_iounmap;
2309 smc_request_datacs(pdev, ndev);
2311 return 0;
2313 out_iounmap:
2314 platform_set_drvdata(pdev, NULL);
2315 iounmap(addr);
2316 out_release_attrib:
2317 smc_release_attrib(pdev, ndev);
2318 out_release_io:
2319 release_mem_region(res->start, SMC_IO_EXTENT);
2320 out_free_netdev:
2321 free_netdev(ndev);
2322 out:
2323 printk("%s: not found (%d).\n", CARDNAME, ret);
2325 return ret;
2328 static int __devexit smc_drv_remove(struct platform_device *pdev)
2330 struct net_device *ndev = platform_get_drvdata(pdev);
2331 struct smc_local *lp = netdev_priv(ndev);
2332 struct resource *res;
2334 platform_set_drvdata(pdev, NULL);
2336 unregister_netdev(ndev);
2338 free_irq(ndev->irq, ndev);
2340 #ifdef CONFIG_ARCH_PXA
2341 if (ndev->dma != (unsigned char)-1)
2342 pxa_free_dma(ndev->dma);
2343 #endif
2344 iounmap(lp->base);
2346 smc_release_datacs(pdev,ndev);
2347 smc_release_attrib(pdev,ndev);
2349 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "smc91x-regs");
2350 if (!res)
2351 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2352 release_mem_region(res->start, SMC_IO_EXTENT);
2354 free_netdev(ndev);
2356 return 0;
2359 static int smc_drv_suspend(struct device *dev)
2361 struct platform_device *pdev = to_platform_device(dev);
2362 struct net_device *ndev = platform_get_drvdata(pdev);
2364 if (ndev) {
2365 if (netif_running(ndev)) {
2366 netif_device_detach(ndev);
2367 smc_shutdown(ndev);
2368 smc_phy_powerdown(ndev);
2371 return 0;
2374 static int smc_drv_resume(struct device *dev)
2376 struct platform_device *pdev = to_platform_device(dev);
2377 struct net_device *ndev = platform_get_drvdata(pdev);
2379 if (ndev) {
2380 struct smc_local *lp = netdev_priv(ndev);
2381 smc_enable_device(pdev);
2382 if (netif_running(ndev)) {
2383 smc_reset(ndev);
2384 smc_enable(ndev);
2385 if (lp->phy_type != 0)
2386 smc_phy_configure(&lp->phy_configure);
2387 netif_device_attach(ndev);
2390 return 0;
2393 #ifdef CONFIG_OF
2394 static const struct of_device_id smc91x_match[] = {
2395 { .compatible = "smsc,lan91c94", },
2396 { .compatible = "smsc,lan91c111", },
2399 MODULE_DEVICE_TABLE(of, smc91x_match);
2400 #else
2401 #define smc91x_match NULL
2402 #endif
2404 static struct dev_pm_ops smc_drv_pm_ops = {
2405 .suspend = smc_drv_suspend,
2406 .resume = smc_drv_resume,
2409 static struct platform_driver smc_driver = {
2410 .probe = smc_drv_probe,
2411 .remove = __devexit_p(smc_drv_remove),
2412 .driver = {
2413 .name = CARDNAME,
2414 .owner = THIS_MODULE,
2415 .pm = &smc_drv_pm_ops,
2416 .of_match_table = smc91x_match,
2420 static int __init smc_init(void)
2422 return platform_driver_register(&smc_driver);
2425 static void __exit smc_cleanup(void)
2427 platform_driver_unregister(&smc_driver);
2430 module_init(smc_init);
2431 module_exit(smc_cleanup);