1 /* sunhme.c: Sparc HME/BigMac 10/100baseT half/full duplex auto switching,
2 * auto carrier detecting ethernet driver. Also known as the
3 * "Happy Meal Ethernet" found on SunSwift SBUS cards.
5 * Copyright (C) 1996, 1998, 1999, 2002, 2003,
6 * 2006, 2008 David S. Miller (davem@davemloft.net)
9 * 2000/11/11 Willy Tarreau <willy AT meta-x.org>
10 * - port to non-sparc architectures. Tested only on x86 and
11 * only currently works with QFE PCI cards.
12 * - ability to specify the MAC address at module load time by passing this
13 * argument : macaddr=0x00,0x10,0x20,0x30,0x40,0x50
16 #include <linux/module.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/fcntl.h>
20 #include <linux/interrupt.h>
21 #include <linux/ioport.h>
23 #include <linux/slab.h>
24 #include <linux/string.h>
25 #include <linux/delay.h>
26 #include <linux/init.h>
27 #include <linux/ethtool.h>
28 #include <linux/mii.h>
29 #include <linux/crc32.h>
30 #include <linux/random.h>
31 #include <linux/errno.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/skbuff.h>
36 #include <linux/bitops.h>
37 #include <linux/dma-mapping.h>
39 #include <asm/system.h>
42 #include <asm/byteorder.h>
46 #include <linux/of_device.h>
47 #include <asm/idprom.h>
48 #include <asm/openprom.h>
49 #include <asm/oplib.h>
51 #include <asm/auxio.h>
53 #include <asm/uaccess.h>
55 #include <asm/pgtable.h>
59 #include <linux/pci.h>
64 #define DRV_NAME "sunhme"
65 #define DRV_VERSION "3.10"
66 #define DRV_RELDATE "August 26, 2008"
67 #define DRV_AUTHOR "David S. Miller (davem@davemloft.net)"
69 static char version
[] =
70 DRV_NAME
".c:v" DRV_VERSION
" " DRV_RELDATE
" " DRV_AUTHOR
"\n";
72 MODULE_VERSION(DRV_VERSION
);
73 MODULE_AUTHOR(DRV_AUTHOR
);
74 MODULE_DESCRIPTION("Sun HappyMealEthernet(HME) 10/100baseT ethernet driver");
75 MODULE_LICENSE("GPL");
77 static int macaddr
[6];
79 /* accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */
80 module_param_array(macaddr
, int, NULL
, 0);
81 MODULE_PARM_DESC(macaddr
, "Happy Meal MAC address to set");
84 static struct quattro
*qfe_sbus_list
;
88 static struct quattro
*qfe_pci_list
;
98 struct hme_tx_logent
{
102 #define TXLOG_ACTION_IRQ 0x01
103 #define TXLOG_ACTION_TXMIT 0x02
104 #define TXLOG_ACTION_TBUSY 0x04
105 #define TXLOG_ACTION_NBUFS 0x08
108 #define TX_LOG_LEN 128
109 static struct hme_tx_logent tx_log
[TX_LOG_LEN
];
110 static int txlog_cur_entry
;
111 static __inline__
void tx_add_log(struct happy_meal
*hp
, unsigned int a
, unsigned int s
)
113 struct hme_tx_logent
*tlp
;
116 local_irq_save(flags
);
117 tlp
= &tx_log
[txlog_cur_entry
];
118 tlp
->tstamp
= (unsigned int)jiffies
;
119 tlp
->tx_new
= hp
->tx_new
;
120 tlp
->tx_old
= hp
->tx_old
;
123 txlog_cur_entry
= (txlog_cur_entry
+ 1) & (TX_LOG_LEN
- 1);
124 local_irq_restore(flags
);
126 static __inline__
void tx_dump_log(void)
130 this = txlog_cur_entry
;
131 for (i
= 0; i
< TX_LOG_LEN
; i
++) {
132 printk("TXLOG[%d]: j[%08x] tx[N(%d)O(%d)] action[%08x] stat[%08x]\n", i
,
134 tx_log
[this].tx_new
, tx_log
[this].tx_old
,
135 tx_log
[this].action
, tx_log
[this].status
);
136 this = (this + 1) & (TX_LOG_LEN
- 1);
139 static __inline__
void tx_dump_ring(struct happy_meal
*hp
)
141 struct hmeal_init_block
*hb
= hp
->happy_block
;
142 struct happy_meal_txd
*tp
= &hb
->happy_meal_txd
[0];
145 for (i
= 0; i
< TX_RING_SIZE
; i
+=4) {
146 printk("TXD[%d..%d]: [%08x:%08x] [%08x:%08x] [%08x:%08x] [%08x:%08x]\n",
148 le32_to_cpu(tp
[i
].tx_flags
), le32_to_cpu(tp
[i
].tx_addr
),
149 le32_to_cpu(tp
[i
+ 1].tx_flags
), le32_to_cpu(tp
[i
+ 1].tx_addr
),
150 le32_to_cpu(tp
[i
+ 2].tx_flags
), le32_to_cpu(tp
[i
+ 2].tx_addr
),
151 le32_to_cpu(tp
[i
+ 3].tx_flags
), le32_to_cpu(tp
[i
+ 3].tx_addr
));
155 #define tx_add_log(hp, a, s) do { } while(0)
156 #define tx_dump_log() do { } while(0)
157 #define tx_dump_ring(hp) do { } while(0)
161 #define HMD(x) printk x
166 /* #define AUTO_SWITCH_DEBUG */
168 #ifdef AUTO_SWITCH_DEBUG
169 #define ASD(x) printk x
174 #define DEFAULT_IPG0 16 /* For lance-mode only */
175 #define DEFAULT_IPG1 8 /* For all modes */
176 #define DEFAULT_IPG2 4 /* For all modes */
177 #define DEFAULT_JAMSIZE 4 /* Toe jam */
179 /* NOTE: In the descriptor writes one _must_ write the address
180 * member _first_. The card must not be allowed to see
181 * the updated descriptor flags until the address is
182 * correct. I've added a write memory barrier between
183 * the two stores so that I can sleep well at night... -DaveM
186 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
187 static void sbus_hme_write32(void __iomem
*reg
, u32 val
)
189 sbus_writel(val
, reg
);
192 static u32
sbus_hme_read32(void __iomem
*reg
)
194 return sbus_readl(reg
);
197 static void sbus_hme_write_rxd(struct happy_meal_rxd
*rxd
, u32 flags
, u32 addr
)
199 rxd
->rx_addr
= (__force hme32
)addr
;
201 rxd
->rx_flags
= (__force hme32
)flags
;
204 static void sbus_hme_write_txd(struct happy_meal_txd
*txd
, u32 flags
, u32 addr
)
206 txd
->tx_addr
= (__force hme32
)addr
;
208 txd
->tx_flags
= (__force hme32
)flags
;
211 static u32
sbus_hme_read_desc32(hme32
*p
)
213 return (__force u32
)*p
;
216 static void pci_hme_write32(void __iomem
*reg
, u32 val
)
221 static u32
pci_hme_read32(void __iomem
*reg
)
226 static void pci_hme_write_rxd(struct happy_meal_rxd
*rxd
, u32 flags
, u32 addr
)
228 rxd
->rx_addr
= (__force hme32
)cpu_to_le32(addr
);
230 rxd
->rx_flags
= (__force hme32
)cpu_to_le32(flags
);
233 static void pci_hme_write_txd(struct happy_meal_txd
*txd
, u32 flags
, u32 addr
)
235 txd
->tx_addr
= (__force hme32
)cpu_to_le32(addr
);
237 txd
->tx_flags
= (__force hme32
)cpu_to_le32(flags
);
240 static u32
pci_hme_read_desc32(hme32
*p
)
242 return le32_to_cpup((__le32
*)p
);
245 #define hme_write32(__hp, __reg, __val) \
246 ((__hp)->write32((__reg), (__val)))
247 #define hme_read32(__hp, __reg) \
248 ((__hp)->read32(__reg))
249 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
250 ((__hp)->write_rxd((__rxd), (__flags), (__addr)))
251 #define hme_write_txd(__hp, __txd, __flags, __addr) \
252 ((__hp)->write_txd((__txd), (__flags), (__addr)))
253 #define hme_read_desc32(__hp, __p) \
254 ((__hp)->read_desc32(__p))
255 #define hme_dma_map(__hp, __ptr, __size, __dir) \
256 ((__hp)->dma_map((__hp)->dma_dev, (__ptr), (__size), (__dir)))
257 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
258 ((__hp)->dma_unmap((__hp)->dma_dev, (__addr), (__size), (__dir)))
259 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
260 ((__hp)->dma_sync_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir)))
261 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
262 ((__hp)->dma_sync_for_device((__hp)->dma_dev, (__addr), (__size), (__dir)))
265 /* SBUS only compilation */
266 #define hme_write32(__hp, __reg, __val) \
267 sbus_writel((__val), (__reg))
268 #define hme_read32(__hp, __reg) \
270 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
271 do { (__rxd)->rx_addr = (__force hme32)(u32)(__addr); \
273 (__rxd)->rx_flags = (__force hme32)(u32)(__flags); \
275 #define hme_write_txd(__hp, __txd, __flags, __addr) \
276 do { (__txd)->tx_addr = (__force hme32)(u32)(__addr); \
278 (__txd)->tx_flags = (__force hme32)(u32)(__flags); \
280 #define hme_read_desc32(__hp, __p) ((__force u32)(hme32)*(__p))
281 #define hme_dma_map(__hp, __ptr, __size, __dir) \
282 dma_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
283 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
284 dma_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
285 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
286 dma_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
287 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
288 dma_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
290 /* PCI only compilation */
291 #define hme_write32(__hp, __reg, __val) \
292 writel((__val), (__reg))
293 #define hme_read32(__hp, __reg) \
295 #define hme_write_rxd(__hp, __rxd, __flags, __addr) \
296 do { (__rxd)->rx_addr = (__force hme32)cpu_to_le32(__addr); \
298 (__rxd)->rx_flags = (__force hme32)cpu_to_le32(__flags); \
300 #define hme_write_txd(__hp, __txd, __flags, __addr) \
301 do { (__txd)->tx_addr = (__force hme32)cpu_to_le32(__addr); \
303 (__txd)->tx_flags = (__force hme32)cpu_to_le32(__flags); \
305 static inline u32
hme_read_desc32(struct happy_meal
*hp
, hme32
*p
)
307 return le32_to_cpup((__le32
*)p
);
309 #define hme_dma_map(__hp, __ptr, __size, __dir) \
310 pci_map_single((__hp)->dma_dev, (__ptr), (__size), (__dir))
311 #define hme_dma_unmap(__hp, __addr, __size, __dir) \
312 pci_unmap_single((__hp)->dma_dev, (__addr), (__size), (__dir))
313 #define hme_dma_sync_for_cpu(__hp, __addr, __size, __dir) \
314 pci_dma_sync_single_for_cpu((__hp)->dma_dev, (__addr), (__size), (__dir))
315 #define hme_dma_sync_for_device(__hp, __addr, __size, __dir) \
316 pci_dma_sync_single_for_device((__hp)->dma_dev, (__addr), (__size), (__dir))
321 /* Oh yes, the MIF BitBang is mighty fun to program. BitBucket is more like it. */
322 static void BB_PUT_BIT(struct happy_meal
*hp
, void __iomem
*tregs
, int bit
)
324 hme_write32(hp
, tregs
+ TCVR_BBDATA
, bit
);
325 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
326 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
330 static u32
BB_GET_BIT(struct happy_meal
*hp
, void __iomem
*tregs
, int internal
)
334 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
335 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
336 ret
= hme_read32(hp
, tregs
+ TCVR_CFG
);
338 ret
&= TCV_CFG_MDIO0
;
340 ret
&= TCV_CFG_MDIO1
;
346 static u32
BB_GET_BIT2(struct happy_meal
*hp
, void __iomem
*tregs
, int internal
)
350 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 0);
352 retval
= hme_read32(hp
, tregs
+ TCVR_CFG
);
354 retval
&= TCV_CFG_MDIO0
;
356 retval
&= TCV_CFG_MDIO1
;
357 hme_write32(hp
, tregs
+ TCVR_BBCLOCK
, 1);
362 #define TCVR_FAILURE 0x80000000 /* Impossible MIF read value */
364 static int happy_meal_bb_read(struct happy_meal
*hp
,
365 void __iomem
*tregs
, int reg
)
371 ASD(("happy_meal_bb_read: reg=%d ", reg
));
373 /* Enable the MIF BitBang outputs. */
374 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 1);
376 /* Force BitBang into the idle state. */
377 for (i
= 0; i
< 32; i
++)
378 BB_PUT_BIT(hp
, tregs
, 1);
380 /* Give it the read sequence. */
381 BB_PUT_BIT(hp
, tregs
, 0);
382 BB_PUT_BIT(hp
, tregs
, 1);
383 BB_PUT_BIT(hp
, tregs
, 1);
384 BB_PUT_BIT(hp
, tregs
, 0);
386 /* Give it the PHY address. */
387 tmp
= hp
->paddr
& 0xff;
388 for (i
= 4; i
>= 0; i
--)
389 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
391 /* Tell it what register we want to read. */
393 for (i
= 4; i
>= 0; i
--)
394 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
396 /* Close down the MIF BitBang outputs. */
397 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 0);
399 /* Now read in the value. */
400 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
401 for (i
= 15; i
>= 0; i
--)
402 retval
|= BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
403 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
404 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
405 (void) BB_GET_BIT2(hp
, tregs
, (hp
->tcvr_type
== internal
));
406 ASD(("value=%x\n", retval
));
410 static void happy_meal_bb_write(struct happy_meal
*hp
,
411 void __iomem
*tregs
, int reg
,
412 unsigned short value
)
417 ASD(("happy_meal_bb_write: reg=%d value=%x\n", reg
, value
));
419 /* Enable the MIF BitBang outputs. */
420 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 1);
422 /* Force BitBang into the idle state. */
423 for (i
= 0; i
< 32; i
++)
424 BB_PUT_BIT(hp
, tregs
, 1);
426 /* Give it write sequence. */
427 BB_PUT_BIT(hp
, tregs
, 0);
428 BB_PUT_BIT(hp
, tregs
, 1);
429 BB_PUT_BIT(hp
, tregs
, 0);
430 BB_PUT_BIT(hp
, tregs
, 1);
432 /* Give it the PHY address. */
433 tmp
= (hp
->paddr
& 0xff);
434 for (i
= 4; i
>= 0; i
--)
435 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
437 /* Tell it what register we will be writing. */
439 for (i
= 4; i
>= 0; i
--)
440 BB_PUT_BIT(hp
, tregs
, ((tmp
>> i
) & 1));
442 /* Tell it to become ready for the bits. */
443 BB_PUT_BIT(hp
, tregs
, 1);
444 BB_PUT_BIT(hp
, tregs
, 0);
446 for (i
= 15; i
>= 0; i
--)
447 BB_PUT_BIT(hp
, tregs
, ((value
>> i
) & 1));
449 /* Close down the MIF BitBang outputs. */
450 hme_write32(hp
, tregs
+ TCVR_BBOENAB
, 0);
453 #define TCVR_READ_TRIES 16
455 static int happy_meal_tcvr_read(struct happy_meal
*hp
,
456 void __iomem
*tregs
, int reg
)
458 int tries
= TCVR_READ_TRIES
;
461 ASD(("happy_meal_tcvr_read: reg=0x%02x ", reg
));
462 if (hp
->tcvr_type
== none
) {
463 ASD(("no transceiver, value=TCVR_FAILURE\n"));
467 if (!(hp
->happy_flags
& HFLAG_FENABLE
)) {
468 ASD(("doing bit bang\n"));
469 return happy_meal_bb_read(hp
, tregs
, reg
);
472 hme_write32(hp
, tregs
+ TCVR_FRAME
,
473 (FRAME_READ
| (hp
->paddr
<< 23) | ((reg
& 0xff) << 18)));
474 while (!(hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0x10000) && --tries
)
477 printk(KERN_ERR
"happy meal: Aieee, transceiver MIF read bolixed\n");
480 retval
= hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0xffff;
481 ASD(("value=%04x\n", retval
));
485 #define TCVR_WRITE_TRIES 16
487 static void happy_meal_tcvr_write(struct happy_meal
*hp
,
488 void __iomem
*tregs
, int reg
,
489 unsigned short value
)
491 int tries
= TCVR_WRITE_TRIES
;
493 ASD(("happy_meal_tcvr_write: reg=0x%02x value=%04x\n", reg
, value
));
495 /* Welcome to Sun Microsystems, can I take your order please? */
496 if (!(hp
->happy_flags
& HFLAG_FENABLE
)) {
497 happy_meal_bb_write(hp
, tregs
, reg
, value
);
501 /* Would you like fries with that? */
502 hme_write32(hp
, tregs
+ TCVR_FRAME
,
503 (FRAME_WRITE
| (hp
->paddr
<< 23) |
504 ((reg
& 0xff) << 18) | (value
& 0xffff)));
505 while (!(hme_read32(hp
, tregs
+ TCVR_FRAME
) & 0x10000) && --tries
)
510 printk(KERN_ERR
"happy meal: Aieee, transceiver MIF write bolixed\n");
512 /* Fifty-two cents is your change, have a nice day. */
515 /* Auto negotiation. The scheme is very simple. We have a timer routine
516 * that keeps watching the auto negotiation process as it progresses.
517 * The DP83840 is first told to start doing it's thing, we set up the time
518 * and place the timer state machine in it's initial state.
520 * Here the timer peeks at the DP83840 status registers at each click to see
521 * if the auto negotiation has completed, we assume here that the DP83840 PHY
522 * will time out at some point and just tell us what (didn't) happen. For
523 * complete coverage we only allow so many of the ticks at this level to run,
524 * when this has expired we print a warning message and try another strategy.
525 * This "other" strategy is to force the interface into various speed/duplex
526 * configurations and we stop when we see a link-up condition before the
527 * maximum number of "peek" ticks have occurred.
529 * Once a valid link status has been detected we configure the BigMAC and
530 * the rest of the Happy Meal to speak the most efficient protocol we could
531 * get a clean link for. The priority for link configurations, highest first
533 * 100 Base-T Full Duplex
534 * 100 Base-T Half Duplex
535 * 10 Base-T Full Duplex
536 * 10 Base-T Half Duplex
538 * We start a new timer now, after a successful auto negotiation status has
539 * been detected. This timer just waits for the link-up bit to get set in
540 * the BMCR of the DP83840. When this occurs we print a kernel log message
541 * describing the link type in use and the fact that it is up.
543 * If a fatal error of some sort is signalled and detected in the interrupt
544 * service routine, and the chip is reset, or the link is ifconfig'd down
545 * and then back up, this entire process repeats itself all over again.
547 static int try_next_permutation(struct happy_meal
*hp
, void __iomem
*tregs
)
549 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
551 /* Downgrade from full to half duplex. Only possible
554 if (hp
->sw_bmcr
& BMCR_FULLDPLX
) {
555 hp
->sw_bmcr
&= ~(BMCR_FULLDPLX
);
556 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
560 /* Downgrade from 100 to 10. */
561 if (hp
->sw_bmcr
& BMCR_SPEED100
) {
562 hp
->sw_bmcr
&= ~(BMCR_SPEED100
);
563 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
567 /* We've tried everything. */
571 static void display_link_mode(struct happy_meal
*hp
, void __iomem
*tregs
)
573 printk(KERN_INFO
"%s: Link is up using ", hp
->dev
->name
);
574 if (hp
->tcvr_type
== external
)
578 printk("transceiver at ");
579 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
580 if (hp
->sw_lpa
& (LPA_100HALF
| LPA_100FULL
)) {
581 if (hp
->sw_lpa
& LPA_100FULL
)
582 printk("100Mb/s, Full Duplex.\n");
584 printk("100Mb/s, Half Duplex.\n");
586 if (hp
->sw_lpa
& LPA_10FULL
)
587 printk("10Mb/s, Full Duplex.\n");
589 printk("10Mb/s, Half Duplex.\n");
593 static void display_forced_link_mode(struct happy_meal
*hp
, void __iomem
*tregs
)
595 printk(KERN_INFO
"%s: Link has been forced up using ", hp
->dev
->name
);
596 if (hp
->tcvr_type
== external
)
600 printk("transceiver at ");
601 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
602 if (hp
->sw_bmcr
& BMCR_SPEED100
)
606 if (hp
->sw_bmcr
& BMCR_FULLDPLX
)
607 printk("Full Duplex.\n");
609 printk("Half Duplex.\n");
612 static int set_happy_link_modes(struct happy_meal
*hp
, void __iomem
*tregs
)
616 /* All we care about is making sure the bigmac tx_cfg has a
617 * proper duplex setting.
619 if (hp
->timer_state
== arbwait
) {
620 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
621 if (!(hp
->sw_lpa
& (LPA_10HALF
| LPA_10FULL
| LPA_100HALF
| LPA_100FULL
)))
623 if (hp
->sw_lpa
& LPA_100FULL
)
625 else if (hp
->sw_lpa
& LPA_100HALF
)
627 else if (hp
->sw_lpa
& LPA_10FULL
)
632 /* Forcing a link mode. */
633 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
634 if (hp
->sw_bmcr
& BMCR_FULLDPLX
)
640 /* Before changing other bits in the tx_cfg register, and in
641 * general any of other the TX config registers too, you
644 * 2) Poll with reads until that bit reads back as zero
645 * 3) Make TX configuration changes
646 * 4) Set Enable once more
648 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
649 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) &
650 ~(BIGMAC_TXCFG_ENABLE
));
651 while (hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) & BIGMAC_TXCFG_ENABLE
)
654 hp
->happy_flags
|= HFLAG_FULL
;
655 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
656 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) |
657 BIGMAC_TXCFG_FULLDPLX
);
659 hp
->happy_flags
&= ~(HFLAG_FULL
);
660 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
661 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) &
662 ~(BIGMAC_TXCFG_FULLDPLX
));
664 hme_write32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
,
665 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
) |
666 BIGMAC_TXCFG_ENABLE
);
672 static int happy_meal_init(struct happy_meal
*hp
);
674 static int is_lucent_phy(struct happy_meal
*hp
)
676 void __iomem
*tregs
= hp
->tcvregs
;
677 unsigned short mr2
, mr3
;
680 mr2
= happy_meal_tcvr_read(hp
, tregs
, 2);
681 mr3
= happy_meal_tcvr_read(hp
, tregs
, 3);
682 if ((mr2
& 0xffff) == 0x0180 &&
683 ((mr3
& 0xffff) >> 10) == 0x1d)
689 static void happy_meal_timer(unsigned long data
)
691 struct happy_meal
*hp
= (struct happy_meal
*) data
;
692 void __iomem
*tregs
= hp
->tcvregs
;
693 int restart_timer
= 0;
695 spin_lock_irq(&hp
->happy_lock
);
698 switch(hp
->timer_state
) {
700 /* Only allow for 5 ticks, thats 10 seconds and much too
701 * long to wait for arbitration to complete.
703 if (hp
->timer_ticks
>= 10) {
704 /* Enter force mode. */
706 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
707 printk(KERN_NOTICE
"%s: Auto-Negotiation unsuccessful, trying force link mode\n",
709 hp
->sw_bmcr
= BMCR_SPEED100
;
710 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
712 if (!is_lucent_phy(hp
)) {
713 /* OK, seems we need do disable the transceiver for the first
714 * tick to make sure we get an accurate link state at the
717 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
, DP83840_CSCONFIG
);
718 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
719 happy_meal_tcvr_write(hp
, tregs
, DP83840_CSCONFIG
, hp
->sw_csconfig
);
721 hp
->timer_state
= ltrywait
;
725 /* Anything interesting happen? */
726 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
727 if (hp
->sw_bmsr
& BMSR_ANEGCOMPLETE
) {
730 /* Just what we've been waiting for... */
731 ret
= set_happy_link_modes(hp
, tregs
);
733 /* Ooops, something bad happened, go to force
736 * XXX Broken hubs which don't support 802.3u
737 * XXX auto-negotiation make this happen as well.
742 /* Success, at least so far, advance our state engine. */
743 hp
->timer_state
= lupwait
;
752 /* Auto negotiation was successful and we are awaiting a
753 * link up status. I have decided to let this timer run
754 * forever until some sort of error is signalled, reporting
755 * a message to the user at 10 second intervals.
757 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
758 if (hp
->sw_bmsr
& BMSR_LSTATUS
) {
759 /* Wheee, it's up, display the link mode in use and put
760 * the timer to sleep.
762 display_link_mode(hp
, tregs
);
763 hp
->timer_state
= asleep
;
766 if (hp
->timer_ticks
>= 10) {
767 printk(KERN_NOTICE
"%s: Auto negotiation successful, link still "
768 "not completely up.\n", hp
->dev
->name
);
778 /* Making the timeout here too long can make it take
779 * annoyingly long to attempt all of the link mode
780 * permutations, but then again this is essentially
781 * error recovery code for the most part.
783 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
784 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
, DP83840_CSCONFIG
);
785 if (hp
->timer_ticks
== 1) {
786 if (!is_lucent_phy(hp
)) {
787 /* Re-enable transceiver, we'll re-enable the transceiver next
788 * tick, then check link state on the following tick.
790 hp
->sw_csconfig
|= CSCONFIG_TCVDISAB
;
791 happy_meal_tcvr_write(hp
, tregs
,
792 DP83840_CSCONFIG
, hp
->sw_csconfig
);
797 if (hp
->timer_ticks
== 2) {
798 if (!is_lucent_phy(hp
)) {
799 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
800 happy_meal_tcvr_write(hp
, tregs
,
801 DP83840_CSCONFIG
, hp
->sw_csconfig
);
806 if (hp
->sw_bmsr
& BMSR_LSTATUS
) {
807 /* Force mode selection success. */
808 display_forced_link_mode(hp
, tregs
);
809 set_happy_link_modes(hp
, tregs
); /* XXX error? then what? */
810 hp
->timer_state
= asleep
;
813 if (hp
->timer_ticks
>= 4) { /* 6 seconds or so... */
816 ret
= try_next_permutation(hp
, tregs
);
818 /* Aieee, tried them all, reset the
819 * chip and try all over again.
822 /* Let the user know... */
823 printk(KERN_NOTICE
"%s: Link down, cable problem?\n",
826 ret
= happy_meal_init(hp
);
829 printk(KERN_ERR
"%s: Error, cannot re-init the "
830 "Happy Meal.\n", hp
->dev
->name
);
834 if (!is_lucent_phy(hp
)) {
835 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
,
837 hp
->sw_csconfig
|= CSCONFIG_TCVDISAB
;
838 happy_meal_tcvr_write(hp
, tregs
,
839 DP83840_CSCONFIG
, hp
->sw_csconfig
);
851 /* Can't happens.... */
852 printk(KERN_ERR
"%s: Aieee, link timer is asleep but we got one anyways!\n",
856 hp
->timer_state
= asleep
; /* foo on you */
861 hp
->happy_timer
.expires
= jiffies
+ ((12 * HZ
)/10); /* 1.2 sec. */
862 add_timer(&hp
->happy_timer
);
866 spin_unlock_irq(&hp
->happy_lock
);
869 #define TX_RESET_TRIES 32
870 #define RX_RESET_TRIES 32
872 /* hp->happy_lock must be held */
873 static void happy_meal_tx_reset(struct happy_meal
*hp
, void __iomem
*bregs
)
875 int tries
= TX_RESET_TRIES
;
877 HMD(("happy_meal_tx_reset: reset, "));
879 /* Would you like to try our SMCC Delux? */
880 hme_write32(hp
, bregs
+ BMAC_TXSWRESET
, 0);
881 while ((hme_read32(hp
, bregs
+ BMAC_TXSWRESET
) & 1) && --tries
)
884 /* Lettuce, tomato, buggy hardware (no extra charge)? */
886 printk(KERN_ERR
"happy meal: Transceiver BigMac ATTACK!");
892 /* hp->happy_lock must be held */
893 static void happy_meal_rx_reset(struct happy_meal
*hp
, void __iomem
*bregs
)
895 int tries
= RX_RESET_TRIES
;
897 HMD(("happy_meal_rx_reset: reset, "));
899 /* We have a special on GNU/Viking hardware bugs today. */
900 hme_write32(hp
, bregs
+ BMAC_RXSWRESET
, 0);
901 while ((hme_read32(hp
, bregs
+ BMAC_RXSWRESET
) & 1) && --tries
)
904 /* Will that be all? */
906 printk(KERN_ERR
"happy meal: Receiver BigMac ATTACK!");
908 /* Don't forget your vik_1137125_wa. Have a nice day. */
912 #define STOP_TRIES 16
914 /* hp->happy_lock must be held */
915 static void happy_meal_stop(struct happy_meal
*hp
, void __iomem
*gregs
)
917 int tries
= STOP_TRIES
;
919 HMD(("happy_meal_stop: reset, "));
921 /* We're consolidating our STB products, it's your lucky day. */
922 hme_write32(hp
, gregs
+ GREG_SWRESET
, GREG_RESET_ALL
);
923 while (hme_read32(hp
, gregs
+ GREG_SWRESET
) && --tries
)
926 /* Come back next week when we are "Sun Microelectronics". */
928 printk(KERN_ERR
"happy meal: Fry guys.");
930 /* Remember: "Different name, same old buggy as shit hardware." */
934 /* hp->happy_lock must be held */
935 static void happy_meal_get_counters(struct happy_meal
*hp
, void __iomem
*bregs
)
937 struct net_device_stats
*stats
= &hp
->net_stats
;
939 stats
->rx_crc_errors
+= hme_read32(hp
, bregs
+ BMAC_RCRCECTR
);
940 hme_write32(hp
, bregs
+ BMAC_RCRCECTR
, 0);
942 stats
->rx_frame_errors
+= hme_read32(hp
, bregs
+ BMAC_UNALECTR
);
943 hme_write32(hp
, bregs
+ BMAC_UNALECTR
, 0);
945 stats
->rx_length_errors
+= hme_read32(hp
, bregs
+ BMAC_GLECTR
);
946 hme_write32(hp
, bregs
+ BMAC_GLECTR
, 0);
948 stats
->tx_aborted_errors
+= hme_read32(hp
, bregs
+ BMAC_EXCTR
);
951 (hme_read32(hp
, bregs
+ BMAC_EXCTR
) +
952 hme_read32(hp
, bregs
+ BMAC_LTCTR
));
953 hme_write32(hp
, bregs
+ BMAC_EXCTR
, 0);
954 hme_write32(hp
, bregs
+ BMAC_LTCTR
, 0);
957 /* hp->happy_lock must be held */
958 static void happy_meal_poll_stop(struct happy_meal
*hp
, void __iomem
*tregs
)
960 ASD(("happy_meal_poll_stop: "));
962 /* If polling disabled or not polling already, nothing to do. */
963 if ((hp
->happy_flags
& (HFLAG_POLLENABLE
| HFLAG_POLL
)) !=
964 (HFLAG_POLLENABLE
| HFLAG_POLL
)) {
965 HMD(("not polling, return\n"));
969 /* Shut up the MIF. */
970 ASD(("were polling, mif ints off, "));
971 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
973 /* Turn off polling. */
974 ASD(("polling off, "));
975 hme_write32(hp
, tregs
+ TCVR_CFG
,
976 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_PENABLE
));
978 /* We are no longer polling. */
979 hp
->happy_flags
&= ~(HFLAG_POLL
);
981 /* Let the bits set. */
986 /* Only Sun can take such nice parts and fuck up the programming interface
987 * like this. Good job guys...
989 #define TCVR_RESET_TRIES 16 /* It should reset quickly */
990 #define TCVR_UNISOLATE_TRIES 32 /* Dis-isolation can take longer. */
992 /* hp->happy_lock must be held */
993 static int happy_meal_tcvr_reset(struct happy_meal
*hp
, void __iomem
*tregs
)
996 int result
, tries
= TCVR_RESET_TRIES
;
998 tconfig
= hme_read32(hp
, tregs
+ TCVR_CFG
);
999 ASD(("happy_meal_tcvr_reset: tcfg<%08lx> ", tconfig
));
1000 if (hp
->tcvr_type
== external
) {
1002 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
& ~(TCV_CFG_PSELECT
));
1003 hp
->tcvr_type
= internal
;
1004 hp
->paddr
= TCV_PADDR_ITX
;
1006 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
,
1007 (BMCR_LOOPBACK
|BMCR_PDOWN
|BMCR_ISOLATE
));
1008 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1009 if (result
== TCVR_FAILURE
) {
1010 ASD(("phyread_fail>\n"));
1013 ASD(("phyread_ok,PSELECT>"));
1014 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
| TCV_CFG_PSELECT
);
1015 hp
->tcvr_type
= external
;
1016 hp
->paddr
= TCV_PADDR_ETX
;
1018 if (tconfig
& TCV_CFG_MDIO1
) {
1019 ASD(("internal<PSELECT,"));
1020 hme_write32(hp
, tregs
+ TCVR_CFG
, (tconfig
| TCV_CFG_PSELECT
));
1022 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
,
1023 (BMCR_LOOPBACK
|BMCR_PDOWN
|BMCR_ISOLATE
));
1024 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1025 if (result
== TCVR_FAILURE
) {
1026 ASD(("phyread_fail>\n"));
1029 ASD(("phyread_ok,~PSELECT>"));
1030 hme_write32(hp
, tregs
+ TCVR_CFG
, (tconfig
& ~(TCV_CFG_PSELECT
)));
1031 hp
->tcvr_type
= internal
;
1032 hp
->paddr
= TCV_PADDR_ITX
;
1036 ASD(("BMCR_RESET "));
1037 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, BMCR_RESET
);
1040 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1041 if (result
== TCVR_FAILURE
)
1043 hp
->sw_bmcr
= result
;
1044 if (!(result
& BMCR_RESET
))
1049 ASD(("BMCR RESET FAILED!\n"));
1052 ASD(("RESET_OK\n"));
1054 /* Get fresh copies of the PHY registers. */
1055 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1056 hp
->sw_physid1
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID1
);
1057 hp
->sw_physid2
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID2
);
1058 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1061 hp
->sw_bmcr
&= ~(BMCR_ISOLATE
);
1062 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1064 tries
= TCVR_UNISOLATE_TRIES
;
1066 result
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1067 if (result
== TCVR_FAILURE
)
1069 if (!(result
& BMCR_ISOLATE
))
1074 ASD((" FAILED!\n"));
1077 ASD((" SUCCESS and CSCONFIG_DFBYPASS\n"));
1078 if (!is_lucent_phy(hp
)) {
1079 result
= happy_meal_tcvr_read(hp
, tregs
,
1081 happy_meal_tcvr_write(hp
, tregs
,
1082 DP83840_CSCONFIG
, (result
| CSCONFIG_DFBYPASS
));
1087 /* Figure out whether we have an internal or external transceiver.
1089 * hp->happy_lock must be held
1091 static void happy_meal_transceiver_check(struct happy_meal
*hp
, void __iomem
*tregs
)
1093 unsigned long tconfig
= hme_read32(hp
, tregs
+ TCVR_CFG
);
1095 ASD(("happy_meal_transceiver_check: tcfg=%08lx ", tconfig
));
1096 if (hp
->happy_flags
& HFLAG_POLL
) {
1097 /* If we are polling, we must stop to get the transceiver type. */
1098 ASD(("<polling> "));
1099 if (hp
->tcvr_type
== internal
) {
1100 if (tconfig
& TCV_CFG_MDIO1
) {
1101 ASD(("<internal> <poll stop> "));
1102 happy_meal_poll_stop(hp
, tregs
);
1103 hp
->paddr
= TCV_PADDR_ETX
;
1104 hp
->tcvr_type
= external
;
1105 ASD(("<external>\n"));
1106 tconfig
&= ~(TCV_CFG_PENABLE
);
1107 tconfig
|= TCV_CFG_PSELECT
;
1108 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
);
1111 if (hp
->tcvr_type
== external
) {
1112 ASD(("<external> "));
1113 if (!(hme_read32(hp
, tregs
+ TCVR_STATUS
) >> 16)) {
1114 ASD(("<poll stop> "));
1115 happy_meal_poll_stop(hp
, tregs
);
1116 hp
->paddr
= TCV_PADDR_ITX
;
1117 hp
->tcvr_type
= internal
;
1118 ASD(("<internal>\n"));
1119 hme_write32(hp
, tregs
+ TCVR_CFG
,
1120 hme_read32(hp
, tregs
+ TCVR_CFG
) &
1121 ~(TCV_CFG_PSELECT
));
1129 u32 reread
= hme_read32(hp
, tregs
+ TCVR_CFG
);
1131 /* Else we can just work off of the MDIO bits. */
1132 ASD(("<not polling> "));
1133 if (reread
& TCV_CFG_MDIO1
) {
1134 hme_write32(hp
, tregs
+ TCVR_CFG
, tconfig
| TCV_CFG_PSELECT
);
1135 hp
->paddr
= TCV_PADDR_ETX
;
1136 hp
->tcvr_type
= external
;
1137 ASD(("<external>\n"));
1139 if (reread
& TCV_CFG_MDIO0
) {
1140 hme_write32(hp
, tregs
+ TCVR_CFG
,
1141 tconfig
& ~(TCV_CFG_PSELECT
));
1142 hp
->paddr
= TCV_PADDR_ITX
;
1143 hp
->tcvr_type
= internal
;
1144 ASD(("<internal>\n"));
1146 printk(KERN_ERR
"happy meal: Transceiver and a coke please.");
1147 hp
->tcvr_type
= none
; /* Grrr... */
1154 /* The receive ring buffers are a bit tricky to get right. Here goes...
1156 * The buffers we dma into must be 64 byte aligned. So we use a special
1157 * alloc_skb() routine for the happy meal to allocate 64 bytes more than
1160 * We use skb_reserve() to align the data block we get in the skb. We
1161 * also program the etxregs->cfg register to use an offset of 2. This
1162 * imperical constant plus the ethernet header size will always leave
1163 * us with a nicely aligned ip header once we pass things up to the
1166 * The numbers work out to:
1168 * Max ethernet frame size 1518
1169 * Ethernet header size 14
1170 * Happy Meal base offset 2
1172 * Say a skb data area is at 0xf001b010, and its size alloced is
1173 * (ETH_FRAME_LEN + 64 + 2) = (1514 + 64 + 2) = 1580 bytes.
1175 * First our alloc_skb() routine aligns the data base to a 64 byte
1176 * boundary. We now have 0xf001b040 as our skb data address. We
1177 * plug this into the receive descriptor address.
1179 * Next, we skb_reserve() 2 bytes to account for the Happy Meal offset.
1180 * So now the data we will end up looking at starts at 0xf001b042. When
1181 * the packet arrives, we will check out the size received and subtract
1182 * this from the skb->length. Then we just pass the packet up to the
1183 * protocols as is, and allocate a new skb to replace this slot we have
1184 * just received from.
1186 * The ethernet layer will strip the ether header from the front of the
1187 * skb we just sent to it, this leaves us with the ip header sitting
1188 * nicely aligned at 0xf001b050. Also, for tcp and udp packets the
1189 * Happy Meal has even checksummed the tcp/udp data for us. The 16
1190 * bit checksum is obtained from the low bits of the receive descriptor
1193 * skb->csum = rxd->rx_flags & 0xffff;
1194 * skb->ip_summed = CHECKSUM_COMPLETE;
1196 * before sending off the skb to the protocols, and we are good as gold.
1198 static void happy_meal_clean_rings(struct happy_meal
*hp
)
1202 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1203 if (hp
->rx_skbs
[i
] != NULL
) {
1204 struct sk_buff
*skb
= hp
->rx_skbs
[i
];
1205 struct happy_meal_rxd
*rxd
;
1208 rxd
= &hp
->happy_block
->happy_meal_rxd
[i
];
1209 dma_addr
= hme_read_desc32(hp
, &rxd
->rx_addr
);
1210 dma_unmap_single(hp
->dma_dev
, dma_addr
,
1211 RX_BUF_ALLOC_SIZE
, DMA_FROM_DEVICE
);
1212 dev_kfree_skb_any(skb
);
1213 hp
->rx_skbs
[i
] = NULL
;
1217 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1218 if (hp
->tx_skbs
[i
] != NULL
) {
1219 struct sk_buff
*skb
= hp
->tx_skbs
[i
];
1220 struct happy_meal_txd
*txd
;
1224 hp
->tx_skbs
[i
] = NULL
;
1226 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1227 txd
= &hp
->happy_block
->happy_meal_txd
[i
];
1228 dma_addr
= hme_read_desc32(hp
, &txd
->tx_addr
);
1230 dma_unmap_single(hp
->dma_dev
, dma_addr
,
1231 (hme_read_desc32(hp
, &txd
->tx_flags
)
1235 dma_unmap_page(hp
->dma_dev
, dma_addr
,
1236 (hme_read_desc32(hp
, &txd
->tx_flags
)
1240 if (frag
!= skb_shinfo(skb
)->nr_frags
)
1244 dev_kfree_skb_any(skb
);
1249 /* hp->happy_lock must be held */
1250 static void happy_meal_init_rings(struct happy_meal
*hp
)
1252 struct hmeal_init_block
*hb
= hp
->happy_block
;
1253 struct net_device
*dev
= hp
->dev
;
1256 HMD(("happy_meal_init_rings: counters to zero, "));
1257 hp
->rx_new
= hp
->rx_old
= hp
->tx_new
= hp
->tx_old
= 0;
1259 /* Free any skippy bufs left around in the rings. */
1261 happy_meal_clean_rings(hp
);
1263 /* Now get new skippy bufs for the receive ring. */
1264 HMD(("init rxring, "));
1265 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1266 struct sk_buff
*skb
;
1268 skb
= happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE
, GFP_ATOMIC
);
1270 hme_write_rxd(hp
, &hb
->happy_meal_rxd
[i
], 0, 0);
1273 hp
->rx_skbs
[i
] = skb
;
1276 /* Because we reserve afterwards. */
1277 skb_put(skb
, (ETH_FRAME_LEN
+ RX_OFFSET
+ 4));
1278 hme_write_rxd(hp
, &hb
->happy_meal_rxd
[i
],
1279 (RXFLAG_OWN
| ((RX_BUF_ALLOC_SIZE
- RX_OFFSET
) << 16)),
1280 dma_map_single(hp
->dma_dev
, skb
->data
, RX_BUF_ALLOC_SIZE
,
1282 skb_reserve(skb
, RX_OFFSET
);
1285 HMD(("init txring, "));
1286 for (i
= 0; i
< TX_RING_SIZE
; i
++)
1287 hme_write_txd(hp
, &hb
->happy_meal_txd
[i
], 0, 0);
1292 /* hp->happy_lock must be held */
1293 static void happy_meal_begin_auto_negotiation(struct happy_meal
*hp
,
1294 void __iomem
*tregs
,
1295 struct ethtool_cmd
*ep
)
1299 /* Read all of the registers we are interested in now. */
1300 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1301 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1302 hp
->sw_physid1
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID1
);
1303 hp
->sw_physid2
= happy_meal_tcvr_read(hp
, tregs
, MII_PHYSID2
);
1305 /* XXX Check BMSR_ANEGCAPABLE, should not be necessary though. */
1307 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1308 if (ep
== NULL
|| ep
->autoneg
== AUTONEG_ENABLE
) {
1309 /* Advertise everything we can support. */
1310 if (hp
->sw_bmsr
& BMSR_10HALF
)
1311 hp
->sw_advertise
|= (ADVERTISE_10HALF
);
1313 hp
->sw_advertise
&= ~(ADVERTISE_10HALF
);
1315 if (hp
->sw_bmsr
& BMSR_10FULL
)
1316 hp
->sw_advertise
|= (ADVERTISE_10FULL
);
1318 hp
->sw_advertise
&= ~(ADVERTISE_10FULL
);
1319 if (hp
->sw_bmsr
& BMSR_100HALF
)
1320 hp
->sw_advertise
|= (ADVERTISE_100HALF
);
1322 hp
->sw_advertise
&= ~(ADVERTISE_100HALF
);
1323 if (hp
->sw_bmsr
& BMSR_100FULL
)
1324 hp
->sw_advertise
|= (ADVERTISE_100FULL
);
1326 hp
->sw_advertise
&= ~(ADVERTISE_100FULL
);
1327 happy_meal_tcvr_write(hp
, tregs
, MII_ADVERTISE
, hp
->sw_advertise
);
1329 /* XXX Currently no Happy Meal cards I know off support 100BaseT4,
1330 * XXX and this is because the DP83840 does not support it, changes
1331 * XXX would need to be made to the tx/rx logic in the driver as well
1332 * XXX so I completely skip checking for it in the BMSR for now.
1335 #ifdef AUTO_SWITCH_DEBUG
1336 ASD(("%s: Advertising [ ", hp
->dev
->name
));
1337 if (hp
->sw_advertise
& ADVERTISE_10HALF
)
1339 if (hp
->sw_advertise
& ADVERTISE_10FULL
)
1341 if (hp
->sw_advertise
& ADVERTISE_100HALF
)
1343 if (hp
->sw_advertise
& ADVERTISE_100FULL
)
1347 /* Enable Auto-Negotiation, this is usually on already... */
1348 hp
->sw_bmcr
|= BMCR_ANENABLE
;
1349 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1351 /* Restart it to make sure it is going. */
1352 hp
->sw_bmcr
|= BMCR_ANRESTART
;
1353 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1355 /* BMCR_ANRESTART self clears when the process has begun. */
1357 timeout
= 64; /* More than enough. */
1359 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1360 if (!(hp
->sw_bmcr
& BMCR_ANRESTART
))
1361 break; /* got it. */
1365 printk(KERN_ERR
"%s: Happy Meal would not start auto negotiation "
1366 "BMCR=0x%04x\n", hp
->dev
->name
, hp
->sw_bmcr
);
1367 printk(KERN_NOTICE
"%s: Performing force link detection.\n",
1371 hp
->timer_state
= arbwait
;
1375 /* Force the link up, trying first a particular mode.
1376 * Either we are here at the request of ethtool or
1377 * because the Happy Meal would not start to autoneg.
1380 /* Disable auto-negotiation in BMCR, enable the duplex and
1381 * speed setting, init the timer state machine, and fire it off.
1383 if (ep
== NULL
|| ep
->autoneg
== AUTONEG_ENABLE
) {
1384 hp
->sw_bmcr
= BMCR_SPEED100
;
1386 if (ethtool_cmd_speed(ep
) == SPEED_100
)
1387 hp
->sw_bmcr
= BMCR_SPEED100
;
1390 if (ep
->duplex
== DUPLEX_FULL
)
1391 hp
->sw_bmcr
|= BMCR_FULLDPLX
;
1393 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1395 if (!is_lucent_phy(hp
)) {
1396 /* OK, seems we need do disable the transceiver for the first
1397 * tick to make sure we get an accurate link state at the
1400 hp
->sw_csconfig
= happy_meal_tcvr_read(hp
, tregs
,
1402 hp
->sw_csconfig
&= ~(CSCONFIG_TCVDISAB
);
1403 happy_meal_tcvr_write(hp
, tregs
, DP83840_CSCONFIG
,
1406 hp
->timer_state
= ltrywait
;
1409 hp
->timer_ticks
= 0;
1410 hp
->happy_timer
.expires
= jiffies
+ (12 * HZ
)/10; /* 1.2 sec. */
1411 hp
->happy_timer
.data
= (unsigned long) hp
;
1412 hp
->happy_timer
.function
= happy_meal_timer
;
1413 add_timer(&hp
->happy_timer
);
1416 /* hp->happy_lock must be held */
1417 static int happy_meal_init(struct happy_meal
*hp
)
1419 void __iomem
*gregs
= hp
->gregs
;
1420 void __iomem
*etxregs
= hp
->etxregs
;
1421 void __iomem
*erxregs
= hp
->erxregs
;
1422 void __iomem
*bregs
= hp
->bigmacregs
;
1423 void __iomem
*tregs
= hp
->tcvregs
;
1425 unsigned char *e
= &hp
->dev
->dev_addr
[0];
1427 /* If auto-negotiation timer is running, kill it. */
1428 del_timer(&hp
->happy_timer
);
1430 HMD(("happy_meal_init: happy_flags[%08x] ",
1432 if (!(hp
->happy_flags
& HFLAG_INIT
)) {
1433 HMD(("set HFLAG_INIT, "));
1434 hp
->happy_flags
|= HFLAG_INIT
;
1435 happy_meal_get_counters(hp
, bregs
);
1439 HMD(("to happy_meal_poll_stop\n"));
1440 happy_meal_poll_stop(hp
, tregs
);
1442 /* Stop transmitter and receiver. */
1443 HMD(("happy_meal_init: to happy_meal_stop\n"));
1444 happy_meal_stop(hp
, gregs
);
1446 /* Alloc and reset the tx/rx descriptor chains. */
1447 HMD(("happy_meal_init: to happy_meal_init_rings\n"));
1448 happy_meal_init_rings(hp
);
1450 /* Shut up the MIF. */
1451 HMD(("happy_meal_init: Disable all MIF irqs (old[%08x]), ",
1452 hme_read32(hp
, tregs
+ TCVR_IMASK
)));
1453 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
1455 /* See if we can enable the MIF frame on this card to speak to the DP83840. */
1456 if (hp
->happy_flags
& HFLAG_FENABLE
) {
1457 HMD(("use frame old[%08x], ",
1458 hme_read32(hp
, tregs
+ TCVR_CFG
)));
1459 hme_write32(hp
, tregs
+ TCVR_CFG
,
1460 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_BENABLE
));
1462 HMD(("use bitbang old[%08x], ",
1463 hme_read32(hp
, tregs
+ TCVR_CFG
)));
1464 hme_write32(hp
, tregs
+ TCVR_CFG
,
1465 hme_read32(hp
, tregs
+ TCVR_CFG
) | TCV_CFG_BENABLE
);
1468 /* Check the state of the transceiver. */
1469 HMD(("to happy_meal_transceiver_check\n"));
1470 happy_meal_transceiver_check(hp
, tregs
);
1472 /* Put the Big Mac into a sane state. */
1473 HMD(("happy_meal_init: "));
1474 switch(hp
->tcvr_type
) {
1476 /* Cannot operate if we don't know the transceiver type! */
1477 HMD(("AAIEEE no transceiver type, EAGAIN"));
1481 /* Using the MII buffers. */
1482 HMD(("internal, using MII, "));
1483 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, 0);
1487 /* Not using the MII, disable it. */
1488 HMD(("external, disable MII, "));
1489 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, BIGMAC_XCFG_MIIDISAB
);
1493 if (happy_meal_tcvr_reset(hp
, tregs
))
1496 /* Reset the Happy Meal Big Mac transceiver and the receiver. */
1497 HMD(("tx/rx reset, "));
1498 happy_meal_tx_reset(hp
, bregs
);
1499 happy_meal_rx_reset(hp
, bregs
);
1501 /* Set jam size and inter-packet gaps to reasonable defaults. */
1502 HMD(("jsize/ipg1/ipg2, "));
1503 hme_write32(hp
, bregs
+ BMAC_JSIZE
, DEFAULT_JAMSIZE
);
1504 hme_write32(hp
, bregs
+ BMAC_IGAP1
, DEFAULT_IPG1
);
1505 hme_write32(hp
, bregs
+ BMAC_IGAP2
, DEFAULT_IPG2
);
1507 /* Load up the MAC address and random seed. */
1508 HMD(("rseed/macaddr, "));
1510 /* The docs recommend to use the 10LSB of our MAC here. */
1511 hme_write32(hp
, bregs
+ BMAC_RSEED
, ((e
[5] | e
[4]<<8)&0x3ff));
1513 hme_write32(hp
, bregs
+ BMAC_MACADDR2
, ((e
[4] << 8) | e
[5]));
1514 hme_write32(hp
, bregs
+ BMAC_MACADDR1
, ((e
[2] << 8) | e
[3]));
1515 hme_write32(hp
, bregs
+ BMAC_MACADDR0
, ((e
[0] << 8) | e
[1]));
1518 if ((hp
->dev
->flags
& IFF_ALLMULTI
) ||
1519 (netdev_mc_count(hp
->dev
) > 64)) {
1520 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0xffff);
1521 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0xffff);
1522 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0xffff);
1523 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0xffff);
1524 } else if ((hp
->dev
->flags
& IFF_PROMISC
) == 0) {
1526 struct netdev_hw_addr
*ha
;
1529 memset(hash_table
, 0, sizeof(hash_table
));
1530 netdev_for_each_mc_addr(ha
, hp
->dev
) {
1531 crc
= ether_crc_le(6, ha
->addr
);
1533 hash_table
[crc
>> 4] |= 1 << (crc
& 0xf);
1535 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, hash_table
[0]);
1536 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, hash_table
[1]);
1537 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, hash_table
[2]);
1538 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, hash_table
[3]);
1540 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0);
1541 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0);
1542 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0);
1543 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0);
1546 /* Set the RX and TX ring ptrs. */
1547 HMD(("ring ptrs rxr[%08x] txr[%08x]\n",
1548 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)),
1549 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_txd
, 0))));
1550 hme_write32(hp
, erxregs
+ ERX_RING
,
1551 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)));
1552 hme_write32(hp
, etxregs
+ ETX_RING
,
1553 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_txd
, 0)));
1555 /* Parity issues in the ERX unit of some HME revisions can cause some
1556 * registers to not be written unless their parity is even. Detect such
1557 * lost writes and simply rewrite with a low bit set (which will be ignored
1558 * since the rxring needs to be 2K aligned).
1560 if (hme_read32(hp
, erxregs
+ ERX_RING
) !=
1561 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0)))
1562 hme_write32(hp
, erxregs
+ ERX_RING
,
1563 ((__u32
)hp
->hblock_dvma
+ hblock_offset(happy_meal_rxd
, 0))
1566 /* Set the supported burst sizes. */
1567 HMD(("happy_meal_init: old[%08x] bursts<",
1568 hme_read32(hp
, gregs
+ GREG_CFG
)));
1570 #ifndef CONFIG_SPARC
1571 /* It is always PCI and can handle 64byte bursts. */
1572 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST64
);
1574 if ((hp
->happy_bursts
& DMA_BURST64
) &&
1575 ((hp
->happy_flags
& HFLAG_PCI
) != 0
1577 || sbus_can_burst64()
1580 u32 gcfg
= GREG_CFG_BURST64
;
1582 /* I have no idea if I should set the extended
1583 * transfer mode bit for Cheerio, so for now I
1587 if ((hp
->happy_flags
& HFLAG_PCI
) == 0) {
1588 struct platform_device
*op
= hp
->happy_dev
;
1589 if (sbus_can_dma_64bit()) {
1590 sbus_set_sbus64(&op
->dev
,
1592 gcfg
|= GREG_CFG_64BIT
;
1598 hme_write32(hp
, gregs
+ GREG_CFG
, gcfg
);
1599 } else if (hp
->happy_bursts
& DMA_BURST32
) {
1601 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST32
);
1602 } else if (hp
->happy_bursts
& DMA_BURST16
) {
1604 hme_write32(hp
, gregs
+ GREG_CFG
, GREG_CFG_BURST16
);
1607 hme_write32(hp
, gregs
+ GREG_CFG
, 0);
1609 #endif /* CONFIG_SPARC */
1611 /* Turn off interrupts we do not want to hear. */
1612 HMD((", enable global interrupts, "));
1613 hme_write32(hp
, gregs
+ GREG_IMASK
,
1614 (GREG_IMASK_GOTFRAME
| GREG_IMASK_RCNTEXP
|
1615 GREG_IMASK_SENTFRAME
| GREG_IMASK_TXPERR
));
1617 /* Set the transmit ring buffer size. */
1618 HMD(("tx rsize=%d oreg[%08x], ", (int)TX_RING_SIZE
,
1619 hme_read32(hp
, etxregs
+ ETX_RSIZE
)));
1620 hme_write32(hp
, etxregs
+ ETX_RSIZE
, (TX_RING_SIZE
>> ETX_RSIZE_SHIFT
) - 1);
1622 /* Enable transmitter DVMA. */
1623 HMD(("tx dma enable old[%08x], ",
1624 hme_read32(hp
, etxregs
+ ETX_CFG
)));
1625 hme_write32(hp
, etxregs
+ ETX_CFG
,
1626 hme_read32(hp
, etxregs
+ ETX_CFG
) | ETX_CFG_DMAENABLE
);
1628 /* This chip really rots, for the receiver sometimes when you
1629 * write to its control registers not all the bits get there
1630 * properly. I cannot think of a sane way to provide complete
1631 * coverage for this hardware bug yet.
1633 HMD(("erx regs bug old[%08x]\n",
1634 hme_read32(hp
, erxregs
+ ERX_CFG
)));
1635 hme_write32(hp
, erxregs
+ ERX_CFG
, ERX_CFG_DEFAULT(RX_OFFSET
));
1636 regtmp
= hme_read32(hp
, erxregs
+ ERX_CFG
);
1637 hme_write32(hp
, erxregs
+ ERX_CFG
, ERX_CFG_DEFAULT(RX_OFFSET
));
1638 if (hme_read32(hp
, erxregs
+ ERX_CFG
) != ERX_CFG_DEFAULT(RX_OFFSET
)) {
1639 printk(KERN_ERR
"happy meal: Eieee, rx config register gets greasy fries.\n");
1640 printk(KERN_ERR
"happy meal: Trying to set %08x, reread gives %08x\n",
1641 ERX_CFG_DEFAULT(RX_OFFSET
), regtmp
);
1642 /* XXX Should return failure here... */
1645 /* Enable Big Mac hash table filter. */
1646 HMD(("happy_meal_init: enable hash rx_cfg_old[%08x], ",
1647 hme_read32(hp
, bregs
+ BMAC_RXCFG
)));
1648 rxcfg
= BIGMAC_RXCFG_HENABLE
| BIGMAC_RXCFG_REJME
;
1649 if (hp
->dev
->flags
& IFF_PROMISC
)
1650 rxcfg
|= BIGMAC_RXCFG_PMISC
;
1651 hme_write32(hp
, bregs
+ BMAC_RXCFG
, rxcfg
);
1653 /* Let the bits settle in the chip. */
1656 /* Ok, configure the Big Mac transmitter. */
1657 HMD(("BIGMAC init, "));
1659 if (hp
->happy_flags
& HFLAG_FULL
)
1660 regtmp
|= BIGMAC_TXCFG_FULLDPLX
;
1662 /* Don't turn on the "don't give up" bit for now. It could cause hme
1663 * to deadlock with the PHY if a Jabber occurs.
1665 hme_write32(hp
, bregs
+ BMAC_TXCFG
, regtmp
/*| BIGMAC_TXCFG_DGIVEUP*/);
1667 /* Give up after 16 TX attempts. */
1668 hme_write32(hp
, bregs
+ BMAC_ALIMIT
, 16);
1670 /* Enable the output drivers no matter what. */
1671 regtmp
= BIGMAC_XCFG_ODENABLE
;
1673 /* If card can do lance mode, enable it. */
1674 if (hp
->happy_flags
& HFLAG_LANCE
)
1675 regtmp
|= (DEFAULT_IPG0
<< 5) | BIGMAC_XCFG_LANCE
;
1677 /* Disable the MII buffers if using external transceiver. */
1678 if (hp
->tcvr_type
== external
)
1679 regtmp
|= BIGMAC_XCFG_MIIDISAB
;
1681 HMD(("XIF config old[%08x], ",
1682 hme_read32(hp
, bregs
+ BMAC_XIFCFG
)));
1683 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, regtmp
);
1685 /* Start things up. */
1686 HMD(("tx old[%08x] and rx [%08x] ON!\n",
1687 hme_read32(hp
, bregs
+ BMAC_TXCFG
),
1688 hme_read32(hp
, bregs
+ BMAC_RXCFG
)));
1690 /* Set larger TX/RX size to allow for 802.1q */
1691 hme_write32(hp
, bregs
+ BMAC_TXMAX
, ETH_FRAME_LEN
+ 8);
1692 hme_write32(hp
, bregs
+ BMAC_RXMAX
, ETH_FRAME_LEN
+ 8);
1694 hme_write32(hp
, bregs
+ BMAC_TXCFG
,
1695 hme_read32(hp
, bregs
+ BMAC_TXCFG
) | BIGMAC_TXCFG_ENABLE
);
1696 hme_write32(hp
, bregs
+ BMAC_RXCFG
,
1697 hme_read32(hp
, bregs
+ BMAC_RXCFG
) | BIGMAC_RXCFG_ENABLE
);
1699 /* Get the autonegotiation started, and the watch timer ticking. */
1700 happy_meal_begin_auto_negotiation(hp
, tregs
, NULL
);
1706 /* hp->happy_lock must be held */
1707 static void happy_meal_set_initial_advertisement(struct happy_meal
*hp
)
1709 void __iomem
*tregs
= hp
->tcvregs
;
1710 void __iomem
*bregs
= hp
->bigmacregs
;
1711 void __iomem
*gregs
= hp
->gregs
;
1713 happy_meal_stop(hp
, gregs
);
1714 hme_write32(hp
, tregs
+ TCVR_IMASK
, 0xffff);
1715 if (hp
->happy_flags
& HFLAG_FENABLE
)
1716 hme_write32(hp
, tregs
+ TCVR_CFG
,
1717 hme_read32(hp
, tregs
+ TCVR_CFG
) & ~(TCV_CFG_BENABLE
));
1719 hme_write32(hp
, tregs
+ TCVR_CFG
,
1720 hme_read32(hp
, tregs
+ TCVR_CFG
) | TCV_CFG_BENABLE
);
1721 happy_meal_transceiver_check(hp
, tregs
);
1722 switch(hp
->tcvr_type
) {
1726 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, 0);
1729 hme_write32(hp
, bregs
+ BMAC_XIFCFG
, BIGMAC_XCFG_MIIDISAB
);
1732 if (happy_meal_tcvr_reset(hp
, tregs
))
1735 /* Latch PHY registers as of now. */
1736 hp
->sw_bmsr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMSR
);
1737 hp
->sw_advertise
= happy_meal_tcvr_read(hp
, tregs
, MII_ADVERTISE
);
1739 /* Advertise everything we can support. */
1740 if (hp
->sw_bmsr
& BMSR_10HALF
)
1741 hp
->sw_advertise
|= (ADVERTISE_10HALF
);
1743 hp
->sw_advertise
&= ~(ADVERTISE_10HALF
);
1745 if (hp
->sw_bmsr
& BMSR_10FULL
)
1746 hp
->sw_advertise
|= (ADVERTISE_10FULL
);
1748 hp
->sw_advertise
&= ~(ADVERTISE_10FULL
);
1749 if (hp
->sw_bmsr
& BMSR_100HALF
)
1750 hp
->sw_advertise
|= (ADVERTISE_100HALF
);
1752 hp
->sw_advertise
&= ~(ADVERTISE_100HALF
);
1753 if (hp
->sw_bmsr
& BMSR_100FULL
)
1754 hp
->sw_advertise
|= (ADVERTISE_100FULL
);
1756 hp
->sw_advertise
&= ~(ADVERTISE_100FULL
);
1758 /* Update the PHY advertisement register. */
1759 happy_meal_tcvr_write(hp
, tregs
, MII_ADVERTISE
, hp
->sw_advertise
);
1762 /* Once status is latched (by happy_meal_interrupt) it is cleared by
1763 * the hardware, so we cannot re-read it and get a correct value.
1765 * hp->happy_lock must be held
1767 static int happy_meal_is_not_so_happy(struct happy_meal
*hp
, u32 status
)
1771 /* Only print messages for non-counter related interrupts. */
1772 if (status
& (GREG_STAT_STSTERR
| GREG_STAT_TFIFO_UND
|
1773 GREG_STAT_MAXPKTERR
| GREG_STAT_RXERR
|
1774 GREG_STAT_RXPERR
| GREG_STAT_RXTERR
| GREG_STAT_EOPERR
|
1775 GREG_STAT_MIFIRQ
| GREG_STAT_TXEACK
| GREG_STAT_TXLERR
|
1776 GREG_STAT_TXPERR
| GREG_STAT_TXTERR
| GREG_STAT_SLVERR
|
1778 printk(KERN_ERR
"%s: Error interrupt for happy meal, status = %08x\n",
1779 hp
->dev
->name
, status
);
1781 if (status
& GREG_STAT_RFIFOVF
) {
1782 /* Receive FIFO overflow is harmless and the hardware will take
1783 care of it, just some packets are lost. Who cares. */
1784 printk(KERN_DEBUG
"%s: Happy Meal receive FIFO overflow.\n", hp
->dev
->name
);
1787 if (status
& GREG_STAT_STSTERR
) {
1788 /* BigMAC SQE link test failed. */
1789 printk(KERN_ERR
"%s: Happy Meal BigMAC SQE test failed.\n", hp
->dev
->name
);
1793 if (status
& GREG_STAT_TFIFO_UND
) {
1794 /* Transmit FIFO underrun, again DMA error likely. */
1795 printk(KERN_ERR
"%s: Happy Meal transmitter FIFO underrun, DMA error.\n",
1800 if (status
& GREG_STAT_MAXPKTERR
) {
1801 /* Driver error, tried to transmit something larger
1802 * than ethernet max mtu.
1804 printk(KERN_ERR
"%s: Happy Meal MAX Packet size error.\n", hp
->dev
->name
);
1808 if (status
& GREG_STAT_NORXD
) {
1809 /* This is harmless, it just means the system is
1810 * quite loaded and the incoming packet rate was
1811 * faster than the interrupt handler could keep up
1814 printk(KERN_INFO
"%s: Happy Meal out of receive "
1815 "descriptors, packet dropped.\n",
1819 if (status
& (GREG_STAT_RXERR
|GREG_STAT_RXPERR
|GREG_STAT_RXTERR
)) {
1820 /* All sorts of DMA receive errors. */
1821 printk(KERN_ERR
"%s: Happy Meal rx DMA errors [ ", hp
->dev
->name
);
1822 if (status
& GREG_STAT_RXERR
)
1823 printk("GenericError ");
1824 if (status
& GREG_STAT_RXPERR
)
1825 printk("ParityError ");
1826 if (status
& GREG_STAT_RXTERR
)
1827 printk("RxTagBotch ");
1832 if (status
& GREG_STAT_EOPERR
) {
1833 /* Driver bug, didn't set EOP bit in tx descriptor given
1834 * to the happy meal.
1836 printk(KERN_ERR
"%s: EOP not set in happy meal transmit descriptor!\n",
1841 if (status
& GREG_STAT_MIFIRQ
) {
1842 /* MIF signalled an interrupt, were we polling it? */
1843 printk(KERN_ERR
"%s: Happy Meal MIF interrupt.\n", hp
->dev
->name
);
1847 (GREG_STAT_TXEACK
|GREG_STAT_TXLERR
|GREG_STAT_TXPERR
|GREG_STAT_TXTERR
)) {
1848 /* All sorts of transmit DMA errors. */
1849 printk(KERN_ERR
"%s: Happy Meal tx DMA errors [ ", hp
->dev
->name
);
1850 if (status
& GREG_STAT_TXEACK
)
1851 printk("GenericError ");
1852 if (status
& GREG_STAT_TXLERR
)
1853 printk("LateError ");
1854 if (status
& GREG_STAT_TXPERR
)
1855 printk("ParityErro ");
1856 if (status
& GREG_STAT_TXTERR
)
1857 printk("TagBotch ");
1862 if (status
& (GREG_STAT_SLVERR
|GREG_STAT_SLVPERR
)) {
1863 /* Bus or parity error when cpu accessed happy meal registers
1864 * or it's internal FIFO's. Should never see this.
1866 printk(KERN_ERR
"%s: Happy Meal register access SBUS slave (%s) error.\n",
1868 (status
& GREG_STAT_SLVPERR
) ? "parity" : "generic");
1873 printk(KERN_NOTICE
"%s: Resetting...\n", hp
->dev
->name
);
1874 happy_meal_init(hp
);
1880 /* hp->happy_lock must be held */
1881 static void happy_meal_mif_interrupt(struct happy_meal
*hp
)
1883 void __iomem
*tregs
= hp
->tcvregs
;
1885 printk(KERN_INFO
"%s: Link status change.\n", hp
->dev
->name
);
1886 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, tregs
, MII_BMCR
);
1887 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, tregs
, MII_LPA
);
1889 /* Use the fastest transmission protocol possible. */
1890 if (hp
->sw_lpa
& LPA_100FULL
) {
1891 printk(KERN_INFO
"%s: Switching to 100Mbps at full duplex.", hp
->dev
->name
);
1892 hp
->sw_bmcr
|= (BMCR_FULLDPLX
| BMCR_SPEED100
);
1893 } else if (hp
->sw_lpa
& LPA_100HALF
) {
1894 printk(KERN_INFO
"%s: Switching to 100MBps at half duplex.", hp
->dev
->name
);
1895 hp
->sw_bmcr
|= BMCR_SPEED100
;
1896 } else if (hp
->sw_lpa
& LPA_10FULL
) {
1897 printk(KERN_INFO
"%s: Switching to 10MBps at full duplex.", hp
->dev
->name
);
1898 hp
->sw_bmcr
|= BMCR_FULLDPLX
;
1900 printk(KERN_INFO
"%s: Using 10Mbps at half duplex.", hp
->dev
->name
);
1902 happy_meal_tcvr_write(hp
, tregs
, MII_BMCR
, hp
->sw_bmcr
);
1904 /* Finally stop polling and shut up the MIF. */
1905 happy_meal_poll_stop(hp
, tregs
);
1909 #define TXD(x) printk x
1914 /* hp->happy_lock must be held */
1915 static void happy_meal_tx(struct happy_meal
*hp
)
1917 struct happy_meal_txd
*txbase
= &hp
->happy_block
->happy_meal_txd
[0];
1918 struct happy_meal_txd
*this;
1919 struct net_device
*dev
= hp
->dev
;
1924 while (elem
!= hp
->tx_new
) {
1925 struct sk_buff
*skb
;
1926 u32 flags
, dma_addr
, dma_len
;
1929 TXD(("[%d]", elem
));
1930 this = &txbase
[elem
];
1931 flags
= hme_read_desc32(hp
, &this->tx_flags
);
1932 if (flags
& TXFLAG_OWN
)
1934 skb
= hp
->tx_skbs
[elem
];
1935 if (skb_shinfo(skb
)->nr_frags
) {
1938 last
= elem
+ skb_shinfo(skb
)->nr_frags
;
1939 last
&= (TX_RING_SIZE
- 1);
1940 flags
= hme_read_desc32(hp
, &txbase
[last
].tx_flags
);
1941 if (flags
& TXFLAG_OWN
)
1944 hp
->tx_skbs
[elem
] = NULL
;
1945 hp
->net_stats
.tx_bytes
+= skb
->len
;
1947 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1948 dma_addr
= hme_read_desc32(hp
, &this->tx_addr
);
1949 dma_len
= hme_read_desc32(hp
, &this->tx_flags
);
1951 dma_len
&= TXFLAG_SIZE
;
1953 dma_unmap_single(hp
->dma_dev
, dma_addr
, dma_len
, DMA_TO_DEVICE
);
1955 dma_unmap_page(hp
->dma_dev
, dma_addr
, dma_len
, DMA_TO_DEVICE
);
1957 elem
= NEXT_TX(elem
);
1958 this = &txbase
[elem
];
1961 dev_kfree_skb_irq(skb
);
1962 hp
->net_stats
.tx_packets
++;
1967 if (netif_queue_stopped(dev
) &&
1968 TX_BUFFS_AVAIL(hp
) > (MAX_SKB_FRAGS
+ 1))
1969 netif_wake_queue(dev
);
1973 #define RXD(x) printk x
1978 /* Originally I used to handle the allocation failure by just giving back just
1979 * that one ring buffer to the happy meal. Problem is that usually when that
1980 * condition is triggered, the happy meal expects you to do something reasonable
1981 * with all of the packets it has DMA'd in. So now I just drop the entire
1982 * ring when we cannot get a new skb and give them all back to the happy meal,
1983 * maybe things will be "happier" now.
1985 * hp->happy_lock must be held
1987 static void happy_meal_rx(struct happy_meal
*hp
, struct net_device
*dev
)
1989 struct happy_meal_rxd
*rxbase
= &hp
->happy_block
->happy_meal_rxd
[0];
1990 struct happy_meal_rxd
*this;
1991 int elem
= hp
->rx_new
, drops
= 0;
1995 this = &rxbase
[elem
];
1996 while (!((flags
= hme_read_desc32(hp
, &this->rx_flags
)) & RXFLAG_OWN
)) {
1997 struct sk_buff
*skb
;
1998 int len
= flags
>> 16;
1999 u16 csum
= flags
& RXFLAG_CSUM
;
2000 u32 dma_addr
= hme_read_desc32(hp
, &this->rx_addr
);
2002 RXD(("[%d ", elem
));
2004 /* Check for errors. */
2005 if ((len
< ETH_ZLEN
) || (flags
& RXFLAG_OVERFLOW
)) {
2006 RXD(("ERR(%08x)]", flags
));
2007 hp
->net_stats
.rx_errors
++;
2009 hp
->net_stats
.rx_length_errors
++;
2010 if (len
& (RXFLAG_OVERFLOW
>> 16)) {
2011 hp
->net_stats
.rx_over_errors
++;
2012 hp
->net_stats
.rx_fifo_errors
++;
2015 /* Return it to the Happy meal. */
2017 hp
->net_stats
.rx_dropped
++;
2018 hme_write_rxd(hp
, this,
2019 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2023 skb
= hp
->rx_skbs
[elem
];
2024 if (len
> RX_COPY_THRESHOLD
) {
2025 struct sk_buff
*new_skb
;
2027 /* Now refill the entry, if we can. */
2028 new_skb
= happy_meal_alloc_skb(RX_BUF_ALLOC_SIZE
, GFP_ATOMIC
);
2029 if (new_skb
== NULL
) {
2033 dma_unmap_single(hp
->dma_dev
, dma_addr
, RX_BUF_ALLOC_SIZE
, DMA_FROM_DEVICE
);
2034 hp
->rx_skbs
[elem
] = new_skb
;
2036 skb_put(new_skb
, (ETH_FRAME_LEN
+ RX_OFFSET
+ 4));
2037 hme_write_rxd(hp
, this,
2038 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2039 dma_map_single(hp
->dma_dev
, new_skb
->data
, RX_BUF_ALLOC_SIZE
,
2041 skb_reserve(new_skb
, RX_OFFSET
);
2043 /* Trim the original skb for the netif. */
2046 struct sk_buff
*copy_skb
= dev_alloc_skb(len
+ 2);
2048 if (copy_skb
== NULL
) {
2053 skb_reserve(copy_skb
, 2);
2054 skb_put(copy_skb
, len
);
2055 dma_sync_single_for_cpu(hp
->dma_dev
, dma_addr
, len
, DMA_FROM_DEVICE
);
2056 skb_copy_from_linear_data(skb
, copy_skb
->data
, len
);
2057 dma_sync_single_for_device(hp
->dma_dev
, dma_addr
, len
, DMA_FROM_DEVICE
);
2058 /* Reuse original ring buffer. */
2059 hme_write_rxd(hp
, this,
2060 (RXFLAG_OWN
|((RX_BUF_ALLOC_SIZE
-RX_OFFSET
)<<16)),
2066 /* This card is _fucking_ hot... */
2067 skb
->csum
= csum_unfold(~(__force __sum16
)htons(csum
));
2068 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2070 RXD(("len=%d csum=%4x]", len
, csum
));
2071 skb
->protocol
= eth_type_trans(skb
, dev
);
2074 hp
->net_stats
.rx_packets
++;
2075 hp
->net_stats
.rx_bytes
+= len
;
2077 elem
= NEXT_RX(elem
);
2078 this = &rxbase
[elem
];
2082 printk(KERN_INFO
"%s: Memory squeeze, deferring packet.\n", hp
->dev
->name
);
2086 static irqreturn_t
happy_meal_interrupt(int irq
, void *dev_id
)
2088 struct net_device
*dev
= dev_id
;
2089 struct happy_meal
*hp
= netdev_priv(dev
);
2090 u32 happy_status
= hme_read32(hp
, hp
->gregs
+ GREG_STAT
);
2092 HMD(("happy_meal_interrupt: status=%08x ", happy_status
));
2094 spin_lock(&hp
->happy_lock
);
2096 if (happy_status
& GREG_STAT_ERRORS
) {
2098 if (happy_meal_is_not_so_happy(hp
, /* un- */ happy_status
))
2102 if (happy_status
& GREG_STAT_MIFIRQ
) {
2104 happy_meal_mif_interrupt(hp
);
2107 if (happy_status
& GREG_STAT_TXALL
) {
2112 if (happy_status
& GREG_STAT_RXTOHOST
) {
2114 happy_meal_rx(hp
, dev
);
2119 spin_unlock(&hp
->happy_lock
);
2125 static irqreturn_t
quattro_sbus_interrupt(int irq
, void *cookie
)
2127 struct quattro
*qp
= (struct quattro
*) cookie
;
2130 for (i
= 0; i
< 4; i
++) {
2131 struct net_device
*dev
= qp
->happy_meals
[i
];
2132 struct happy_meal
*hp
= netdev_priv(dev
);
2133 u32 happy_status
= hme_read32(hp
, hp
->gregs
+ GREG_STAT
);
2135 HMD(("quattro_interrupt: status=%08x ", happy_status
));
2137 if (!(happy_status
& (GREG_STAT_ERRORS
|
2140 GREG_STAT_RXTOHOST
)))
2143 spin_lock(&hp
->happy_lock
);
2145 if (happy_status
& GREG_STAT_ERRORS
) {
2147 if (happy_meal_is_not_so_happy(hp
, happy_status
))
2151 if (happy_status
& GREG_STAT_MIFIRQ
) {
2153 happy_meal_mif_interrupt(hp
);
2156 if (happy_status
& GREG_STAT_TXALL
) {
2161 if (happy_status
& GREG_STAT_RXTOHOST
) {
2163 happy_meal_rx(hp
, dev
);
2167 spin_unlock(&hp
->happy_lock
);
2175 static int happy_meal_open(struct net_device
*dev
)
2177 struct happy_meal
*hp
= netdev_priv(dev
);
2180 HMD(("happy_meal_open: "));
2182 /* On SBUS Quattro QFE cards, all hme interrupts are concentrated
2183 * into a single source which we register handling at probe time.
2185 if ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
) {
2186 if (request_irq(dev
->irq
, happy_meal_interrupt
,
2187 IRQF_SHARED
, dev
->name
, (void *)dev
)) {
2189 printk(KERN_ERR
"happy_meal(SBUS): Can't order irq %d to go.\n",
2196 HMD(("to happy_meal_init\n"));
2198 spin_lock_irq(&hp
->happy_lock
);
2199 res
= happy_meal_init(hp
);
2200 spin_unlock_irq(&hp
->happy_lock
);
2202 if (res
&& ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
))
2203 free_irq(dev
->irq
, dev
);
2207 static int happy_meal_close(struct net_device
*dev
)
2209 struct happy_meal
*hp
= netdev_priv(dev
);
2211 spin_lock_irq(&hp
->happy_lock
);
2212 happy_meal_stop(hp
, hp
->gregs
);
2213 happy_meal_clean_rings(hp
);
2215 /* If auto-negotiation timer is running, kill it. */
2216 del_timer(&hp
->happy_timer
);
2218 spin_unlock_irq(&hp
->happy_lock
);
2220 /* On Quattro QFE cards, all hme interrupts are concentrated
2221 * into a single source which we register handling at probe
2222 * time and never unregister.
2224 if ((hp
->happy_flags
& (HFLAG_QUATTRO
|HFLAG_PCI
)) != HFLAG_QUATTRO
)
2225 free_irq(dev
->irq
, dev
);
2231 #define SXD(x) printk x
2236 static void happy_meal_tx_timeout(struct net_device
*dev
)
2238 struct happy_meal
*hp
= netdev_priv(dev
);
2240 printk (KERN_ERR
"%s: transmit timed out, resetting\n", dev
->name
);
2242 printk (KERN_ERR
"%s: Happy Status %08x TX[%08x:%08x]\n", dev
->name
,
2243 hme_read32(hp
, hp
->gregs
+ GREG_STAT
),
2244 hme_read32(hp
, hp
->etxregs
+ ETX_CFG
),
2245 hme_read32(hp
, hp
->bigmacregs
+ BMAC_TXCFG
));
2247 spin_lock_irq(&hp
->happy_lock
);
2248 happy_meal_init(hp
);
2249 spin_unlock_irq(&hp
->happy_lock
);
2251 netif_wake_queue(dev
);
2254 static netdev_tx_t
happy_meal_start_xmit(struct sk_buff
*skb
,
2255 struct net_device
*dev
)
2257 struct happy_meal
*hp
= netdev_priv(dev
);
2261 tx_flags
= TXFLAG_OWN
;
2262 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2263 const u32 csum_start_off
= skb_checksum_start_offset(skb
);
2264 const u32 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2266 tx_flags
= (TXFLAG_OWN
| TXFLAG_CSENABLE
|
2267 ((csum_start_off
<< 14) & TXFLAG_CSBUFBEGIN
) |
2268 ((csum_stuff_off
<< 20) & TXFLAG_CSLOCATION
));
2271 spin_lock_irq(&hp
->happy_lock
);
2273 if (TX_BUFFS_AVAIL(hp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
2274 netif_stop_queue(dev
);
2275 spin_unlock_irq(&hp
->happy_lock
);
2276 printk(KERN_ERR
"%s: BUG! Tx Ring full when queue awake!\n",
2278 return NETDEV_TX_BUSY
;
2282 SXD(("SX<l[%d]e[%d]>", len
, entry
));
2283 hp
->tx_skbs
[entry
] = skb
;
2285 if (skb_shinfo(skb
)->nr_frags
== 0) {
2289 mapping
= dma_map_single(hp
->dma_dev
, skb
->data
, len
, DMA_TO_DEVICE
);
2290 tx_flags
|= (TXFLAG_SOP
| TXFLAG_EOP
);
2291 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[entry
],
2292 (tx_flags
| (len
& TXFLAG_SIZE
)),
2294 entry
= NEXT_TX(entry
);
2296 u32 first_len
, first_mapping
;
2297 int frag
, first_entry
= entry
;
2299 /* We must give this initial chunk to the device last.
2300 * Otherwise we could race with the device.
2302 first_len
= skb_headlen(skb
);
2303 first_mapping
= dma_map_single(hp
->dma_dev
, skb
->data
, first_len
,
2305 entry
= NEXT_TX(entry
);
2307 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
2308 const skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
2309 u32 len
, mapping
, this_txflags
;
2311 len
= skb_frag_size(this_frag
);
2312 mapping
= skb_frag_dma_map(hp
->dma_dev
, this_frag
,
2313 0, len
, DMA_TO_DEVICE
);
2314 this_txflags
= tx_flags
;
2315 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
2316 this_txflags
|= TXFLAG_EOP
;
2317 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[entry
],
2318 (this_txflags
| (len
& TXFLAG_SIZE
)),
2320 entry
= NEXT_TX(entry
);
2322 hme_write_txd(hp
, &hp
->happy_block
->happy_meal_txd
[first_entry
],
2323 (tx_flags
| TXFLAG_SOP
| (first_len
& TXFLAG_SIZE
)),
2329 if (TX_BUFFS_AVAIL(hp
) <= (MAX_SKB_FRAGS
+ 1))
2330 netif_stop_queue(dev
);
2333 hme_write32(hp
, hp
->etxregs
+ ETX_PENDING
, ETX_TP_DMAWAKEUP
);
2335 spin_unlock_irq(&hp
->happy_lock
);
2337 tx_add_log(hp
, TXLOG_ACTION_TXMIT
, 0);
2338 return NETDEV_TX_OK
;
2341 static struct net_device_stats
*happy_meal_get_stats(struct net_device
*dev
)
2343 struct happy_meal
*hp
= netdev_priv(dev
);
2345 spin_lock_irq(&hp
->happy_lock
);
2346 happy_meal_get_counters(hp
, hp
->bigmacregs
);
2347 spin_unlock_irq(&hp
->happy_lock
);
2349 return &hp
->net_stats
;
2352 static void happy_meal_set_multicast(struct net_device
*dev
)
2354 struct happy_meal
*hp
= netdev_priv(dev
);
2355 void __iomem
*bregs
= hp
->bigmacregs
;
2356 struct netdev_hw_addr
*ha
;
2359 spin_lock_irq(&hp
->happy_lock
);
2361 if ((dev
->flags
& IFF_ALLMULTI
) || (netdev_mc_count(dev
) > 64)) {
2362 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, 0xffff);
2363 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, 0xffff);
2364 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, 0xffff);
2365 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, 0xffff);
2366 } else if (dev
->flags
& IFF_PROMISC
) {
2367 hme_write32(hp
, bregs
+ BMAC_RXCFG
,
2368 hme_read32(hp
, bregs
+ BMAC_RXCFG
) | BIGMAC_RXCFG_PMISC
);
2372 memset(hash_table
, 0, sizeof(hash_table
));
2373 netdev_for_each_mc_addr(ha
, dev
) {
2374 crc
= ether_crc_le(6, ha
->addr
);
2376 hash_table
[crc
>> 4] |= 1 << (crc
& 0xf);
2378 hme_write32(hp
, bregs
+ BMAC_HTABLE0
, hash_table
[0]);
2379 hme_write32(hp
, bregs
+ BMAC_HTABLE1
, hash_table
[1]);
2380 hme_write32(hp
, bregs
+ BMAC_HTABLE2
, hash_table
[2]);
2381 hme_write32(hp
, bregs
+ BMAC_HTABLE3
, hash_table
[3]);
2384 spin_unlock_irq(&hp
->happy_lock
);
2387 /* Ethtool support... */
2388 static int hme_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2390 struct happy_meal
*hp
= netdev_priv(dev
);
2394 (SUPPORTED_10baseT_Half
| SUPPORTED_10baseT_Full
|
2395 SUPPORTED_100baseT_Half
| SUPPORTED_100baseT_Full
|
2396 SUPPORTED_Autoneg
| SUPPORTED_TP
| SUPPORTED_MII
);
2398 /* XXX hardcoded stuff for now */
2399 cmd
->port
= PORT_TP
; /* XXX no MII support */
2400 cmd
->transceiver
= XCVR_INTERNAL
; /* XXX no external xcvr support */
2401 cmd
->phy_address
= 0; /* XXX fixed PHYAD */
2403 /* Record PHY settings. */
2404 spin_lock_irq(&hp
->happy_lock
);
2405 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_BMCR
);
2406 hp
->sw_lpa
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_LPA
);
2407 spin_unlock_irq(&hp
->happy_lock
);
2409 if (hp
->sw_bmcr
& BMCR_ANENABLE
) {
2410 cmd
->autoneg
= AUTONEG_ENABLE
;
2411 speed
= ((hp
->sw_lpa
& (LPA_100HALF
| LPA_100FULL
)) ?
2412 SPEED_100
: SPEED_10
);
2413 if (speed
== SPEED_100
)
2415 (hp
->sw_lpa
& (LPA_100FULL
)) ?
2416 DUPLEX_FULL
: DUPLEX_HALF
;
2419 (hp
->sw_lpa
& (LPA_10FULL
)) ?
2420 DUPLEX_FULL
: DUPLEX_HALF
;
2422 cmd
->autoneg
= AUTONEG_DISABLE
;
2423 speed
= (hp
->sw_bmcr
& BMCR_SPEED100
) ? SPEED_100
: SPEED_10
;
2425 (hp
->sw_bmcr
& BMCR_FULLDPLX
) ?
2426 DUPLEX_FULL
: DUPLEX_HALF
;
2428 ethtool_cmd_speed_set(cmd
, speed
);
2432 static int hme_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
2434 struct happy_meal
*hp
= netdev_priv(dev
);
2436 /* Verify the settings we care about. */
2437 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
2438 cmd
->autoneg
!= AUTONEG_DISABLE
)
2440 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
2441 ((ethtool_cmd_speed(cmd
) != SPEED_100
&&
2442 ethtool_cmd_speed(cmd
) != SPEED_10
) ||
2443 (cmd
->duplex
!= DUPLEX_HALF
&&
2444 cmd
->duplex
!= DUPLEX_FULL
)))
2447 /* Ok, do it to it. */
2448 spin_lock_irq(&hp
->happy_lock
);
2449 del_timer(&hp
->happy_timer
);
2450 happy_meal_begin_auto_negotiation(hp
, hp
->tcvregs
, cmd
);
2451 spin_unlock_irq(&hp
->happy_lock
);
2456 static void hme_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
2458 struct happy_meal
*hp
= netdev_priv(dev
);
2460 strcpy(info
->driver
, "sunhme");
2461 strcpy(info
->version
, "2.02");
2462 if (hp
->happy_flags
& HFLAG_PCI
) {
2463 struct pci_dev
*pdev
= hp
->happy_dev
;
2464 strcpy(info
->bus_info
, pci_name(pdev
));
2468 const struct linux_prom_registers
*regs
;
2469 struct platform_device
*op
= hp
->happy_dev
;
2470 regs
= of_get_property(op
->dev
.of_node
, "regs", NULL
);
2472 sprintf(info
->bus_info
, "SBUS:%d",
2478 static u32
hme_get_link(struct net_device
*dev
)
2480 struct happy_meal
*hp
= netdev_priv(dev
);
2482 spin_lock_irq(&hp
->happy_lock
);
2483 hp
->sw_bmcr
= happy_meal_tcvr_read(hp
, hp
->tcvregs
, MII_BMCR
);
2484 spin_unlock_irq(&hp
->happy_lock
);
2486 return hp
->sw_bmsr
& BMSR_LSTATUS
;
2489 static const struct ethtool_ops hme_ethtool_ops
= {
2490 .get_settings
= hme_get_settings
,
2491 .set_settings
= hme_set_settings
,
2492 .get_drvinfo
= hme_get_drvinfo
,
2493 .get_link
= hme_get_link
,
2496 static int hme_version_printed
;
2499 /* Given a happy meal sbus device, find it's quattro parent.
2500 * If none exist, allocate and return a new one.
2502 * Return NULL on failure.
2504 static struct quattro
* __devinit
quattro_sbus_find(struct platform_device
*child
)
2506 struct device
*parent
= child
->dev
.parent
;
2507 struct platform_device
*op
;
2510 op
= to_platform_device(parent
);
2511 qp
= dev_get_drvdata(&op
->dev
);
2515 qp
= kmalloc(sizeof(struct quattro
), GFP_KERNEL
);
2519 for (i
= 0; i
< 4; i
++)
2520 qp
->happy_meals
[i
] = NULL
;
2522 qp
->quattro_dev
= child
;
2523 qp
->next
= qfe_sbus_list
;
2526 dev_set_drvdata(&op
->dev
, qp
);
2531 /* After all quattro cards have been probed, we call these functions
2532 * to register the IRQ handlers for the cards that have been
2533 * successfully probed and skip the cards that failed to initialize
2535 static int __init
quattro_sbus_register_irqs(void)
2539 for (qp
= qfe_sbus_list
; qp
!= NULL
; qp
= qp
->next
) {
2540 struct platform_device
*op
= qp
->quattro_dev
;
2541 int err
, qfe_slot
, skip
= 0;
2543 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++) {
2544 if (!qp
->happy_meals
[qfe_slot
])
2550 err
= request_irq(op
->archdata
.irqs
[0],
2551 quattro_sbus_interrupt
,
2552 IRQF_SHARED
, "Quattro",
2555 printk(KERN_ERR
"Quattro HME: IRQ registration "
2556 "error %d.\n", err
);
2564 static void quattro_sbus_free_irqs(void)
2568 for (qp
= qfe_sbus_list
; qp
!= NULL
; qp
= qp
->next
) {
2569 struct platform_device
*op
= qp
->quattro_dev
;
2570 int qfe_slot
, skip
= 0;
2572 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++) {
2573 if (!qp
->happy_meals
[qfe_slot
])
2579 free_irq(op
->archdata
.irqs
[0], qp
);
2582 #endif /* CONFIG_SBUS */
2585 static struct quattro
* __devinit
quattro_pci_find(struct pci_dev
*pdev
)
2587 struct pci_dev
*bdev
= pdev
->bus
->self
;
2590 if (!bdev
) return NULL
;
2591 for (qp
= qfe_pci_list
; qp
!= NULL
; qp
= qp
->next
) {
2592 struct pci_dev
*qpdev
= qp
->quattro_dev
;
2597 qp
= kmalloc(sizeof(struct quattro
), GFP_KERNEL
);
2601 for (i
= 0; i
< 4; i
++)
2602 qp
->happy_meals
[i
] = NULL
;
2604 qp
->quattro_dev
= bdev
;
2605 qp
->next
= qfe_pci_list
;
2608 /* No range tricks necessary on PCI. */
2613 #endif /* CONFIG_PCI */
2615 static const struct net_device_ops hme_netdev_ops
= {
2616 .ndo_open
= happy_meal_open
,
2617 .ndo_stop
= happy_meal_close
,
2618 .ndo_start_xmit
= happy_meal_start_xmit
,
2619 .ndo_tx_timeout
= happy_meal_tx_timeout
,
2620 .ndo_get_stats
= happy_meal_get_stats
,
2621 .ndo_set_rx_mode
= happy_meal_set_multicast
,
2622 .ndo_change_mtu
= eth_change_mtu
,
2623 .ndo_set_mac_address
= eth_mac_addr
,
2624 .ndo_validate_addr
= eth_validate_addr
,
2628 static int __devinit
happy_meal_sbus_probe_one(struct platform_device
*op
, int is_qfe
)
2630 struct device_node
*dp
= op
->dev
.of_node
, *sbus_dp
;
2631 struct quattro
*qp
= NULL
;
2632 struct happy_meal
*hp
;
2633 struct net_device
*dev
;
2634 int i
, qfe_slot
= -1;
2637 sbus_dp
= op
->dev
.parent
->of_node
;
2639 /* We can match PCI devices too, do not accept those here. */
2640 if (strcmp(sbus_dp
->name
, "sbus"))
2644 qp
= quattro_sbus_find(op
);
2647 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++)
2648 if (qp
->happy_meals
[qfe_slot
] == NULL
)
2655 dev
= alloc_etherdev(sizeof(struct happy_meal
));
2658 SET_NETDEV_DEV(dev
, &op
->dev
);
2660 if (hme_version_printed
++ == 0)
2661 printk(KERN_INFO
"%s", version
);
2663 /* If user did not specify a MAC address specifically, use
2664 * the Quattro local-mac-address property...
2666 for (i
= 0; i
< 6; i
++) {
2667 if (macaddr
[i
] != 0)
2670 if (i
< 6) { /* a mac address was given */
2671 for (i
= 0; i
< 6; i
++)
2672 dev
->dev_addr
[i
] = macaddr
[i
];
2675 const unsigned char *addr
;
2678 addr
= of_get_property(dp
, "local-mac-address", &len
);
2680 if (qfe_slot
!= -1 && addr
&& len
== 6)
2681 memcpy(dev
->dev_addr
, addr
, 6);
2683 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, 6);
2686 hp
= netdev_priv(dev
);
2689 hp
->dma_dev
= &op
->dev
;
2691 spin_lock_init(&hp
->happy_lock
);
2695 hp
->qfe_parent
= qp
;
2696 hp
->qfe_ent
= qfe_slot
;
2697 qp
->happy_meals
[qfe_slot
] = dev
;
2700 hp
->gregs
= of_ioremap(&op
->resource
[0], 0,
2701 GREG_REG_SIZE
, "HME Global Regs");
2703 printk(KERN_ERR
"happymeal: Cannot map global registers.\n");
2704 goto err_out_free_netdev
;
2707 hp
->etxregs
= of_ioremap(&op
->resource
[1], 0,
2708 ETX_REG_SIZE
, "HME TX Regs");
2710 printk(KERN_ERR
"happymeal: Cannot map MAC TX registers.\n");
2711 goto err_out_iounmap
;
2714 hp
->erxregs
= of_ioremap(&op
->resource
[2], 0,
2715 ERX_REG_SIZE
, "HME RX Regs");
2717 printk(KERN_ERR
"happymeal: Cannot map MAC RX registers.\n");
2718 goto err_out_iounmap
;
2721 hp
->bigmacregs
= of_ioremap(&op
->resource
[3], 0,
2722 BMAC_REG_SIZE
, "HME BIGMAC Regs");
2723 if (!hp
->bigmacregs
) {
2724 printk(KERN_ERR
"happymeal: Cannot map BIGMAC registers.\n");
2725 goto err_out_iounmap
;
2728 hp
->tcvregs
= of_ioremap(&op
->resource
[4], 0,
2729 TCVR_REG_SIZE
, "HME Tranceiver Regs");
2731 printk(KERN_ERR
"happymeal: Cannot map TCVR registers.\n");
2732 goto err_out_iounmap
;
2735 hp
->hm_revision
= of_getintprop_default(dp
, "hm-rev", 0xff);
2736 if (hp
->hm_revision
== 0xff)
2737 hp
->hm_revision
= 0xa0;
2739 /* Now enable the feature flags we can. */
2740 if (hp
->hm_revision
== 0x20 || hp
->hm_revision
== 0x21)
2741 hp
->happy_flags
= HFLAG_20_21
;
2742 else if (hp
->hm_revision
!= 0xa0)
2743 hp
->happy_flags
= HFLAG_NOT_A0
;
2746 hp
->happy_flags
|= HFLAG_QUATTRO
;
2748 /* Get the supported DVMA burst sizes from our Happy SBUS. */
2749 hp
->happy_bursts
= of_getintprop_default(sbus_dp
,
2750 "burst-sizes", 0x00);
2752 hp
->happy_block
= dma_alloc_coherent(hp
->dma_dev
,
2757 if (!hp
->happy_block
) {
2758 printk(KERN_ERR
"happymeal: Cannot allocate descriptors.\n");
2759 goto err_out_iounmap
;
2762 /* Force check of the link first time we are brought up. */
2765 /* Force timer state to 'asleep' with count of zero. */
2766 hp
->timer_state
= asleep
;
2767 hp
->timer_ticks
= 0;
2769 init_timer(&hp
->happy_timer
);
2772 dev
->netdev_ops
= &hme_netdev_ops
;
2773 dev
->watchdog_timeo
= 5*HZ
;
2774 dev
->ethtool_ops
= &hme_ethtool_ops
;
2776 /* Happy Meal can do it all... */
2777 dev
->hw_features
= NETIF_F_SG
| NETIF_F_HW_CSUM
;
2778 dev
->features
|= dev
->hw_features
| NETIF_F_RXCSUM
;
2780 dev
->irq
= op
->archdata
.irqs
[0];
2782 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
2783 /* Hook up SBUS register/descriptor accessors. */
2784 hp
->read_desc32
= sbus_hme_read_desc32
;
2785 hp
->write_txd
= sbus_hme_write_txd
;
2786 hp
->write_rxd
= sbus_hme_write_rxd
;
2787 hp
->read32
= sbus_hme_read32
;
2788 hp
->write32
= sbus_hme_write32
;
2791 /* Grrr, Happy Meal comes up by default not advertising
2792 * full duplex 100baseT capabilities, fix this.
2794 spin_lock_irq(&hp
->happy_lock
);
2795 happy_meal_set_initial_advertisement(hp
);
2796 spin_unlock_irq(&hp
->happy_lock
);
2798 err
= register_netdev(hp
->dev
);
2800 printk(KERN_ERR
"happymeal: Cannot register net device, "
2802 goto err_out_free_coherent
;
2805 dev_set_drvdata(&op
->dev
, hp
);
2808 printk(KERN_INFO
"%s: Quattro HME slot %d (SBUS) 10/100baseT Ethernet ",
2809 dev
->name
, qfe_slot
);
2811 printk(KERN_INFO
"%s: HAPPY MEAL (SBUS) 10/100baseT Ethernet ",
2814 printk("%pM\n", dev
->dev_addr
);
2818 err_out_free_coherent
:
2819 dma_free_coherent(hp
->dma_dev
,
2826 of_iounmap(&op
->resource
[0], hp
->gregs
, GREG_REG_SIZE
);
2828 of_iounmap(&op
->resource
[1], hp
->etxregs
, ETX_REG_SIZE
);
2830 of_iounmap(&op
->resource
[2], hp
->erxregs
, ERX_REG_SIZE
);
2832 of_iounmap(&op
->resource
[3], hp
->bigmacregs
, BMAC_REG_SIZE
);
2834 of_iounmap(&op
->resource
[4], hp
->tcvregs
, TCVR_REG_SIZE
);
2837 qp
->happy_meals
[qfe_slot
] = NULL
;
2839 err_out_free_netdev
:
2848 #ifndef CONFIG_SPARC
2849 static int is_quattro_p(struct pci_dev
*pdev
)
2851 struct pci_dev
*busdev
= pdev
->bus
->self
;
2852 struct list_head
*tmp
;
2855 if (busdev
== NULL
||
2856 busdev
->vendor
!= PCI_VENDOR_ID_DEC
||
2857 busdev
->device
!= PCI_DEVICE_ID_DEC_21153
)
2861 tmp
= pdev
->bus
->devices
.next
;
2862 while (tmp
!= &pdev
->bus
->devices
) {
2863 struct pci_dev
*this_pdev
= pci_dev_b(tmp
);
2865 if (this_pdev
->vendor
== PCI_VENDOR_ID_SUN
&&
2866 this_pdev
->device
== PCI_DEVICE_ID_SUN_HAPPYMEAL
)
2878 /* Fetch MAC address from vital product data of PCI ROM. */
2879 static int find_eth_addr_in_vpd(void __iomem
*rom_base
, int len
, int index
, unsigned char *dev_addr
)
2883 for (this_offset
= 0x20; this_offset
< len
; this_offset
++) {
2884 void __iomem
*p
= rom_base
+ this_offset
;
2886 if (readb(p
+ 0) != 0x90 ||
2887 readb(p
+ 1) != 0x00 ||
2888 readb(p
+ 2) != 0x09 ||
2889 readb(p
+ 3) != 0x4e ||
2890 readb(p
+ 4) != 0x41 ||
2891 readb(p
+ 5) != 0x06)
2900 for (i
= 0; i
< 6; i
++)
2901 dev_addr
[i
] = readb(p
+ i
);
2909 static void get_hme_mac_nonsparc(struct pci_dev
*pdev
, unsigned char *dev_addr
)
2912 void __iomem
*p
= pci_map_rom(pdev
, &size
);
2918 if (is_quattro_p(pdev
))
2919 index
= PCI_SLOT(pdev
->devfn
);
2921 found
= readb(p
) == 0x55 &&
2922 readb(p
+ 1) == 0xaa &&
2923 find_eth_addr_in_vpd(p
, (64 * 1024), index
, dev_addr
);
2924 pci_unmap_rom(pdev
, p
);
2929 /* Sun MAC prefix then 3 random bytes. */
2933 get_random_bytes(&dev_addr
[3], 3);
2935 #endif /* !(CONFIG_SPARC) */
2937 static int __devinit
happy_meal_pci_probe(struct pci_dev
*pdev
,
2938 const struct pci_device_id
*ent
)
2940 struct quattro
*qp
= NULL
;
2942 struct device_node
*dp
;
2944 struct happy_meal
*hp
;
2945 struct net_device
*dev
;
2946 void __iomem
*hpreg_base
;
2947 unsigned long hpreg_res
;
2948 int i
, qfe_slot
= -1;
2952 /* Now make sure pci_dev cookie is there. */
2954 dp
= pci_device_to_OF_node(pdev
);
2955 strcpy(prom_name
, dp
->name
);
2957 if (is_quattro_p(pdev
))
2958 strcpy(prom_name
, "SUNW,qfe");
2960 strcpy(prom_name
, "SUNW,hme");
2965 if (pci_enable_device(pdev
))
2967 pci_set_master(pdev
);
2969 if (!strcmp(prom_name
, "SUNW,qfe") || !strcmp(prom_name
, "qfe")) {
2970 qp
= quattro_pci_find(pdev
);
2973 for (qfe_slot
= 0; qfe_slot
< 4; qfe_slot
++)
2974 if (qp
->happy_meals
[qfe_slot
] == NULL
)
2980 dev
= alloc_etherdev(sizeof(struct happy_meal
));
2984 SET_NETDEV_DEV(dev
, &pdev
->dev
);
2986 if (hme_version_printed
++ == 0)
2987 printk(KERN_INFO
"%s", version
);
2989 dev
->base_addr
= (long) pdev
;
2991 hp
= netdev_priv(dev
);
2993 hp
->happy_dev
= pdev
;
2994 hp
->dma_dev
= &pdev
->dev
;
2996 spin_lock_init(&hp
->happy_lock
);
2999 hp
->qfe_parent
= qp
;
3000 hp
->qfe_ent
= qfe_slot
;
3001 qp
->happy_meals
[qfe_slot
] = dev
;
3004 hpreg_res
= pci_resource_start(pdev
, 0);
3006 if ((pci_resource_flags(pdev
, 0) & IORESOURCE_IO
) != 0) {
3007 printk(KERN_ERR
"happymeal(PCI): Cannot find proper PCI device base address.\n");
3008 goto err_out_clear_quattro
;
3010 if (pci_request_regions(pdev
, DRV_NAME
)) {
3011 printk(KERN_ERR
"happymeal(PCI): Cannot obtain PCI resources, "
3013 goto err_out_clear_quattro
;
3016 if ((hpreg_base
= ioremap(hpreg_res
, 0x8000)) == NULL
) {
3017 printk(KERN_ERR
"happymeal(PCI): Unable to remap card memory.\n");
3018 goto err_out_free_res
;
3021 for (i
= 0; i
< 6; i
++) {
3022 if (macaddr
[i
] != 0)
3025 if (i
< 6) { /* a mac address was given */
3026 for (i
= 0; i
< 6; i
++)
3027 dev
->dev_addr
[i
] = macaddr
[i
];
3031 const unsigned char *addr
;
3034 if (qfe_slot
!= -1 &&
3035 (addr
= of_get_property(dp
, "local-mac-address", &len
))
3038 memcpy(dev
->dev_addr
, addr
, 6);
3040 memcpy(dev
->dev_addr
, idprom
->id_ethaddr
, 6);
3043 get_hme_mac_nonsparc(pdev
, &dev
->dev_addr
[0]);
3047 /* Layout registers. */
3048 hp
->gregs
= (hpreg_base
+ 0x0000UL
);
3049 hp
->etxregs
= (hpreg_base
+ 0x2000UL
);
3050 hp
->erxregs
= (hpreg_base
+ 0x4000UL
);
3051 hp
->bigmacregs
= (hpreg_base
+ 0x6000UL
);
3052 hp
->tcvregs
= (hpreg_base
+ 0x7000UL
);
3055 hp
->hm_revision
= of_getintprop_default(dp
, "hm-rev", 0xff);
3056 if (hp
->hm_revision
== 0xff)
3057 hp
->hm_revision
= 0xc0 | (pdev
->revision
& 0x0f);
3059 /* works with this on non-sparc hosts */
3060 hp
->hm_revision
= 0x20;
3063 /* Now enable the feature flags we can. */
3064 if (hp
->hm_revision
== 0x20 || hp
->hm_revision
== 0x21)
3065 hp
->happy_flags
= HFLAG_20_21
;
3066 else if (hp
->hm_revision
!= 0xa0 && hp
->hm_revision
!= 0xc0)
3067 hp
->happy_flags
= HFLAG_NOT_A0
;
3070 hp
->happy_flags
|= HFLAG_QUATTRO
;
3072 /* And of course, indicate this is PCI. */
3073 hp
->happy_flags
|= HFLAG_PCI
;
3076 /* Assume PCI happy meals can handle all burst sizes. */
3077 hp
->happy_bursts
= DMA_BURSTBITS
;
3080 hp
->happy_block
= (struct hmeal_init_block
*)
3081 dma_alloc_coherent(&pdev
->dev
, PAGE_SIZE
, &hp
->hblock_dvma
, GFP_KERNEL
);
3084 if (!hp
->happy_block
) {
3085 printk(KERN_ERR
"happymeal(PCI): Cannot get hme init block.\n");
3086 goto err_out_iounmap
;
3090 hp
->timer_state
= asleep
;
3091 hp
->timer_ticks
= 0;
3093 init_timer(&hp
->happy_timer
);
3096 dev
->netdev_ops
= &hme_netdev_ops
;
3097 dev
->watchdog_timeo
= 5*HZ
;
3098 dev
->ethtool_ops
= &hme_ethtool_ops
;
3099 dev
->irq
= pdev
->irq
;
3102 /* Happy Meal can do it all... */
3103 dev
->hw_features
= NETIF_F_SG
| NETIF_F_HW_CSUM
;
3104 dev
->features
|= dev
->hw_features
| NETIF_F_RXCSUM
;
3106 #if defined(CONFIG_SBUS) && defined(CONFIG_PCI)
3107 /* Hook up PCI register/descriptor accessors. */
3108 hp
->read_desc32
= pci_hme_read_desc32
;
3109 hp
->write_txd
= pci_hme_write_txd
;
3110 hp
->write_rxd
= pci_hme_write_rxd
;
3111 hp
->read32
= pci_hme_read32
;
3112 hp
->write32
= pci_hme_write32
;
3115 /* Grrr, Happy Meal comes up by default not advertising
3116 * full duplex 100baseT capabilities, fix this.
3118 spin_lock_irq(&hp
->happy_lock
);
3119 happy_meal_set_initial_advertisement(hp
);
3120 spin_unlock_irq(&hp
->happy_lock
);
3122 err
= register_netdev(hp
->dev
);
3124 printk(KERN_ERR
"happymeal(PCI): Cannot register net device, "
3126 goto err_out_iounmap
;
3129 dev_set_drvdata(&pdev
->dev
, hp
);
3132 struct pci_dev
*qpdev
= qp
->quattro_dev
;
3135 if (!strncmp(dev
->name
, "eth", 3)) {
3136 int i
= simple_strtoul(dev
->name
+ 3, NULL
, 10);
3137 sprintf(prom_name
, "-%d", i
+ 3);
3139 printk(KERN_INFO
"%s%s: Quattro HME (PCI/CheerIO) 10/100baseT Ethernet ", dev
->name
, prom_name
);
3140 if (qpdev
->vendor
== PCI_VENDOR_ID_DEC
&&
3141 qpdev
->device
== PCI_DEVICE_ID_DEC_21153
)
3142 printk("DEC 21153 PCI Bridge\n");
3144 printk("unknown bridge %04x.%04x\n",
3145 qpdev
->vendor
, qpdev
->device
);
3149 printk(KERN_INFO
"%s: Quattro HME slot %d (PCI/CheerIO) 10/100baseT Ethernet ",
3150 dev
->name
, qfe_slot
);
3152 printk(KERN_INFO
"%s: HAPPY MEAL (PCI/CheerIO) 10/100BaseT Ethernet ",
3155 printk("%pM\n", dev
->dev_addr
);
3163 pci_release_regions(pdev
);
3165 err_out_clear_quattro
:
3167 qp
->happy_meals
[qfe_slot
] = NULL
;
3175 static void __devexit
happy_meal_pci_remove(struct pci_dev
*pdev
)
3177 struct happy_meal
*hp
= dev_get_drvdata(&pdev
->dev
);
3178 struct net_device
*net_dev
= hp
->dev
;
3180 unregister_netdev(net_dev
);
3182 dma_free_coherent(hp
->dma_dev
, PAGE_SIZE
,
3183 hp
->happy_block
, hp
->hblock_dvma
);
3185 pci_release_regions(hp
->happy_dev
);
3187 free_netdev(net_dev
);
3189 dev_set_drvdata(&pdev
->dev
, NULL
);
3192 static DEFINE_PCI_DEVICE_TABLE(happymeal_pci_ids
) = {
3193 { PCI_DEVICE(PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_HAPPYMEAL
) },
3194 { } /* Terminating entry */
3197 MODULE_DEVICE_TABLE(pci
, happymeal_pci_ids
);
3199 static struct pci_driver hme_pci_driver
= {
3201 .id_table
= happymeal_pci_ids
,
3202 .probe
= happy_meal_pci_probe
,
3203 .remove
= __devexit_p(happy_meal_pci_remove
),
3206 static int __init
happy_meal_pci_init(void)
3208 return pci_register_driver(&hme_pci_driver
);
3211 static void happy_meal_pci_exit(void)
3213 pci_unregister_driver(&hme_pci_driver
);
3215 while (qfe_pci_list
) {
3216 struct quattro
*qfe
= qfe_pci_list
;
3217 struct quattro
*next
= qfe
->next
;
3221 qfe_pci_list
= next
;
3228 static const struct of_device_id hme_sbus_match
[];
3229 static int __devinit
hme_sbus_probe(struct platform_device
*op
)
3231 const struct of_device_id
*match
;
3232 struct device_node
*dp
= op
->dev
.of_node
;
3233 const char *model
= of_get_property(dp
, "model", NULL
);
3236 match
= of_match_device(hme_sbus_match
, &op
->dev
);
3239 is_qfe
= (match
->data
!= NULL
);
3241 if (!is_qfe
&& model
&& !strcmp(model
, "SUNW,sbus-qfe"))
3244 return happy_meal_sbus_probe_one(op
, is_qfe
);
3247 static int __devexit
hme_sbus_remove(struct platform_device
*op
)
3249 struct happy_meal
*hp
= dev_get_drvdata(&op
->dev
);
3250 struct net_device
*net_dev
= hp
->dev
;
3252 unregister_netdev(net_dev
);
3254 /* XXX qfe parent interrupt... */
3256 of_iounmap(&op
->resource
[0], hp
->gregs
, GREG_REG_SIZE
);
3257 of_iounmap(&op
->resource
[1], hp
->etxregs
, ETX_REG_SIZE
);
3258 of_iounmap(&op
->resource
[2], hp
->erxregs
, ERX_REG_SIZE
);
3259 of_iounmap(&op
->resource
[3], hp
->bigmacregs
, BMAC_REG_SIZE
);
3260 of_iounmap(&op
->resource
[4], hp
->tcvregs
, TCVR_REG_SIZE
);
3261 dma_free_coherent(hp
->dma_dev
,
3266 free_netdev(net_dev
);
3268 dev_set_drvdata(&op
->dev
, NULL
);
3273 static const struct of_device_id hme_sbus_match
[] = {
3288 MODULE_DEVICE_TABLE(of
, hme_sbus_match
);
3290 static struct platform_driver hme_sbus_driver
= {
3293 .owner
= THIS_MODULE
,
3294 .of_match_table
= hme_sbus_match
,
3296 .probe
= hme_sbus_probe
,
3297 .remove
= __devexit_p(hme_sbus_remove
),
3300 static int __init
happy_meal_sbus_init(void)
3304 err
= platform_driver_register(&hme_sbus_driver
);
3306 err
= quattro_sbus_register_irqs();
3311 static void happy_meal_sbus_exit(void)
3313 platform_driver_unregister(&hme_sbus_driver
);
3314 quattro_sbus_free_irqs();
3316 while (qfe_sbus_list
) {
3317 struct quattro
*qfe
= qfe_sbus_list
;
3318 struct quattro
*next
= qfe
->next
;
3322 qfe_sbus_list
= next
;
3327 static int __init
happy_meal_probe(void)
3332 err
= happy_meal_sbus_init();
3336 err
= happy_meal_pci_init();
3339 happy_meal_sbus_exit();
3348 static void __exit
happy_meal_exit(void)
3351 happy_meal_sbus_exit();
3354 happy_meal_pci_exit();
3358 module_init(happy_meal_probe
);
3359 module_exit(happy_meal_exit
);