Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / drivers / staging / zram / zram_drv.c
blobb9926ee0052c37bc5d6f68cada276f010ea6bad9
1 /*
2 * Compressed RAM block device
4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
6 * This code is released using a dual license strategy: BSD/GPL
7 * You can choose the licence that better fits your requirements.
9 * Released under the terms of 3-clause BSD License
10 * Released under the terms of GNU General Public License Version 2.0
12 * Project home: http://compcache.googlecode.com
15 #define KMSG_COMPONENT "zram"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
18 #ifdef CONFIG_ZRAM_DEBUG
19 #define DEBUG
20 #endif
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/bio.h>
25 #include <linux/bitops.h>
26 #include <linux/blkdev.h>
27 #include <linux/buffer_head.h>
28 #include <linux/device.h>
29 #include <linux/genhd.h>
30 #include <linux/highmem.h>
31 #include <linux/slab.h>
32 #include <linux/lzo.h>
33 #include <linux/string.h>
34 #include <linux/vmalloc.h>
36 #include "zram_drv.h"
38 /* Globals */
39 static int zram_major;
40 struct zram *zram_devices;
42 /* Module params (documentation at end) */
43 unsigned int zram_num_devices;
45 static void zram_stat_inc(u32 *v)
47 *v = *v + 1;
50 static void zram_stat_dec(u32 *v)
52 *v = *v - 1;
55 static void zram_stat64_add(struct zram *zram, u64 *v, u64 inc)
57 spin_lock(&zram->stat64_lock);
58 *v = *v + inc;
59 spin_unlock(&zram->stat64_lock);
62 static void zram_stat64_sub(struct zram *zram, u64 *v, u64 dec)
64 spin_lock(&zram->stat64_lock);
65 *v = *v - dec;
66 spin_unlock(&zram->stat64_lock);
69 static void zram_stat64_inc(struct zram *zram, u64 *v)
71 zram_stat64_add(zram, v, 1);
74 static int zram_test_flag(struct zram *zram, u32 index,
75 enum zram_pageflags flag)
77 return zram->table[index].flags & BIT(flag);
80 static void zram_set_flag(struct zram *zram, u32 index,
81 enum zram_pageflags flag)
83 zram->table[index].flags |= BIT(flag);
86 static void zram_clear_flag(struct zram *zram, u32 index,
87 enum zram_pageflags flag)
89 zram->table[index].flags &= ~BIT(flag);
92 static int page_zero_filled(void *ptr)
94 unsigned int pos;
95 unsigned long *page;
97 page = (unsigned long *)ptr;
99 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
100 if (page[pos])
101 return 0;
104 return 1;
107 static void zram_set_disksize(struct zram *zram, size_t totalram_bytes)
109 if (!zram->disksize) {
110 pr_info(
111 "disk size not provided. You can use disksize_kb module "
112 "param to specify size.\nUsing default: (%u%% of RAM).\n",
113 default_disksize_perc_ram
115 zram->disksize = default_disksize_perc_ram *
116 (totalram_bytes / 100);
119 if (zram->disksize > 2 * (totalram_bytes)) {
120 pr_info(
121 "There is little point creating a zram of greater than "
122 "twice the size of memory since we expect a 2:1 compression "
123 "ratio. Note that zram uses about 0.1%% of the size of "
124 "the disk when not in use so a huge zram is "
125 "wasteful.\n"
126 "\tMemory Size: %zu kB\n"
127 "\tSize you selected: %llu kB\n"
128 "Continuing anyway ...\n",
129 totalram_bytes >> 10, zram->disksize
133 zram->disksize &= PAGE_MASK;
136 static void zram_free_page(struct zram *zram, size_t index)
138 u32 clen;
139 void *obj;
141 struct page *page = zram->table[index].page;
142 u32 offset = zram->table[index].offset;
144 if (unlikely(!page)) {
146 * No memory is allocated for zero filled pages.
147 * Simply clear zero page flag.
149 if (zram_test_flag(zram, index, ZRAM_ZERO)) {
150 zram_clear_flag(zram, index, ZRAM_ZERO);
151 zram_stat_dec(&zram->stats.pages_zero);
153 return;
156 if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
157 clen = PAGE_SIZE;
158 __free_page(page);
159 zram_clear_flag(zram, index, ZRAM_UNCOMPRESSED);
160 zram_stat_dec(&zram->stats.pages_expand);
161 goto out;
164 obj = kmap_atomic(page, KM_USER0) + offset;
165 clen = xv_get_object_size(obj) - sizeof(struct zobj_header);
166 kunmap_atomic(obj, KM_USER0);
168 xv_free(zram->mem_pool, page, offset);
169 if (clen <= PAGE_SIZE / 2)
170 zram_stat_dec(&zram->stats.good_compress);
172 out:
173 zram_stat64_sub(zram, &zram->stats.compr_size, clen);
174 zram_stat_dec(&zram->stats.pages_stored);
176 zram->table[index].page = NULL;
177 zram->table[index].offset = 0;
180 static void handle_zero_page(struct bio_vec *bvec)
182 struct page *page = bvec->bv_page;
183 void *user_mem;
185 user_mem = kmap_atomic(page, KM_USER0);
186 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
187 kunmap_atomic(user_mem, KM_USER0);
189 flush_dcache_page(page);
192 static void handle_uncompressed_page(struct zram *zram, struct bio_vec *bvec,
193 u32 index, int offset)
195 struct page *page = bvec->bv_page;
196 unsigned char *user_mem, *cmem;
198 user_mem = kmap_atomic(page, KM_USER0);
199 cmem = kmap_atomic(zram->table[index].page, KM_USER1);
201 memcpy(user_mem + bvec->bv_offset, cmem + offset, bvec->bv_len);
202 kunmap_atomic(cmem, KM_USER1);
203 kunmap_atomic(user_mem, KM_USER0);
205 flush_dcache_page(page);
208 static inline int is_partial_io(struct bio_vec *bvec)
210 return bvec->bv_len != PAGE_SIZE;
213 static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
214 u32 index, int offset, struct bio *bio)
216 int ret;
217 size_t clen;
218 struct page *page;
219 struct zobj_header *zheader;
220 unsigned char *user_mem, *cmem, *uncmem = NULL;
222 page = bvec->bv_page;
224 if (zram_test_flag(zram, index, ZRAM_ZERO)) {
225 handle_zero_page(bvec);
226 return 0;
229 /* Requested page is not present in compressed area */
230 if (unlikely(!zram->table[index].page)) {
231 pr_debug("Read before write: sector=%lu, size=%u",
232 (ulong)(bio->bi_sector), bio->bi_size);
233 handle_zero_page(bvec);
234 return 0;
237 /* Page is stored uncompressed since it's incompressible */
238 if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
239 handle_uncompressed_page(zram, bvec, index, offset);
240 return 0;
243 if (is_partial_io(bvec)) {
244 /* Use a temporary buffer to decompress the page */
245 uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
246 if (!uncmem) {
247 pr_info("Error allocating temp memory!\n");
248 return -ENOMEM;
252 user_mem = kmap_atomic(page, KM_USER0);
253 if (!is_partial_io(bvec))
254 uncmem = user_mem;
255 clen = PAGE_SIZE;
257 cmem = kmap_atomic(zram->table[index].page, KM_USER1) +
258 zram->table[index].offset;
260 ret = lzo1x_decompress_safe(cmem + sizeof(*zheader),
261 xv_get_object_size(cmem) - sizeof(*zheader),
262 uncmem, &clen);
264 if (is_partial_io(bvec)) {
265 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
266 bvec->bv_len);
267 kfree(uncmem);
270 kunmap_atomic(cmem, KM_USER1);
271 kunmap_atomic(user_mem, KM_USER0);
273 /* Should NEVER happen. Return bio error if it does. */
274 if (unlikely(ret != LZO_E_OK)) {
275 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
276 zram_stat64_inc(zram, &zram->stats.failed_reads);
277 return ret;
280 flush_dcache_page(page);
282 return 0;
285 static int zram_read_before_write(struct zram *zram, char *mem, u32 index)
287 int ret;
288 size_t clen = PAGE_SIZE;
289 struct zobj_header *zheader;
290 unsigned char *cmem;
292 if (zram_test_flag(zram, index, ZRAM_ZERO) ||
293 !zram->table[index].page) {
294 memset(mem, 0, PAGE_SIZE);
295 return 0;
298 cmem = kmap_atomic(zram->table[index].page, KM_USER0) +
299 zram->table[index].offset;
301 /* Page is stored uncompressed since it's incompressible */
302 if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED))) {
303 memcpy(mem, cmem, PAGE_SIZE);
304 kunmap_atomic(cmem, KM_USER0);
305 return 0;
308 ret = lzo1x_decompress_safe(cmem + sizeof(*zheader),
309 xv_get_object_size(cmem) - sizeof(*zheader),
310 mem, &clen);
311 kunmap_atomic(cmem, KM_USER0);
313 /* Should NEVER happen. Return bio error if it does. */
314 if (unlikely(ret != LZO_E_OK)) {
315 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
316 zram_stat64_inc(zram, &zram->stats.failed_reads);
317 return ret;
320 return 0;
323 static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
324 int offset)
326 int ret;
327 u32 store_offset;
328 size_t clen;
329 struct zobj_header *zheader;
330 struct page *page, *page_store;
331 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
333 page = bvec->bv_page;
334 src = zram->compress_buffer;
336 if (is_partial_io(bvec)) {
338 * This is a partial IO. We need to read the full page
339 * before to write the changes.
341 uncmem = kmalloc(PAGE_SIZE, GFP_KERNEL);
342 if (!uncmem) {
343 pr_info("Error allocating temp memory!\n");
344 ret = -ENOMEM;
345 goto out;
347 ret = zram_read_before_write(zram, uncmem, index);
348 if (ret) {
349 kfree(uncmem);
350 goto out;
355 * System overwrites unused sectors. Free memory associated
356 * with this sector now.
358 if (zram->table[index].page ||
359 zram_test_flag(zram, index, ZRAM_ZERO))
360 zram_free_page(zram, index);
362 user_mem = kmap_atomic(page, KM_USER0);
364 if (is_partial_io(bvec))
365 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
366 bvec->bv_len);
367 else
368 uncmem = user_mem;
370 if (page_zero_filled(uncmem)) {
371 kunmap_atomic(user_mem, KM_USER0);
372 if (is_partial_io(bvec))
373 kfree(uncmem);
374 zram_stat_inc(&zram->stats.pages_zero);
375 zram_set_flag(zram, index, ZRAM_ZERO);
376 ret = 0;
377 goto out;
380 ret = lzo1x_1_compress(uncmem, PAGE_SIZE, src, &clen,
381 zram->compress_workmem);
383 kunmap_atomic(user_mem, KM_USER0);
384 if (is_partial_io(bvec))
385 kfree(uncmem);
387 if (unlikely(ret != LZO_E_OK)) {
388 pr_err("Compression failed! err=%d\n", ret);
389 goto out;
393 * Page is incompressible. Store it as-is (uncompressed)
394 * since we do not want to return too many disk write
395 * errors which has side effect of hanging the system.
397 if (unlikely(clen > max_zpage_size)) {
398 clen = PAGE_SIZE;
399 page_store = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
400 if (unlikely(!page_store)) {
401 pr_info("Error allocating memory for "
402 "incompressible page: %u\n", index);
403 ret = -ENOMEM;
404 goto out;
407 store_offset = 0;
408 zram_set_flag(zram, index, ZRAM_UNCOMPRESSED);
409 zram_stat_inc(&zram->stats.pages_expand);
410 zram->table[index].page = page_store;
411 src = kmap_atomic(page, KM_USER0);
412 goto memstore;
415 if (xv_malloc(zram->mem_pool, clen + sizeof(*zheader),
416 &zram->table[index].page, &store_offset,
417 GFP_NOIO | __GFP_HIGHMEM)) {
418 pr_info("Error allocating memory for compressed "
419 "page: %u, size=%zu\n", index, clen);
420 ret = -ENOMEM;
421 goto out;
424 memstore:
425 zram->table[index].offset = store_offset;
427 cmem = kmap_atomic(zram->table[index].page, KM_USER1) +
428 zram->table[index].offset;
430 #if 0
431 /* Back-reference needed for memory defragmentation */
432 if (!zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)) {
433 zheader = (struct zobj_header *)cmem;
434 zheader->table_idx = index;
435 cmem += sizeof(*zheader);
437 #endif
439 memcpy(cmem, src, clen);
441 kunmap_atomic(cmem, KM_USER1);
442 if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)))
443 kunmap_atomic(src, KM_USER0);
445 /* Update stats */
446 zram_stat64_add(zram, &zram->stats.compr_size, clen);
447 zram_stat_inc(&zram->stats.pages_stored);
448 if (clen <= PAGE_SIZE / 2)
449 zram_stat_inc(&zram->stats.good_compress);
451 return 0;
453 out:
454 if (ret)
455 zram_stat64_inc(zram, &zram->stats.failed_writes);
456 return ret;
459 static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
460 int offset, struct bio *bio, int rw)
462 int ret;
464 if (rw == READ) {
465 down_read(&zram->lock);
466 ret = zram_bvec_read(zram, bvec, index, offset, bio);
467 up_read(&zram->lock);
468 } else {
469 down_write(&zram->lock);
470 ret = zram_bvec_write(zram, bvec, index, offset);
471 up_write(&zram->lock);
474 return ret;
477 static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
479 if (*offset + bvec->bv_len >= PAGE_SIZE)
480 (*index)++;
481 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
484 static void __zram_make_request(struct zram *zram, struct bio *bio, int rw)
486 int i, offset;
487 u32 index;
488 struct bio_vec *bvec;
490 switch (rw) {
491 case READ:
492 zram_stat64_inc(zram, &zram->stats.num_reads);
493 break;
494 case WRITE:
495 zram_stat64_inc(zram, &zram->stats.num_writes);
496 break;
499 index = bio->bi_sector >> SECTORS_PER_PAGE_SHIFT;
500 offset = (bio->bi_sector & (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
502 bio_for_each_segment(bvec, bio, i) {
503 int max_transfer_size = PAGE_SIZE - offset;
505 if (bvec->bv_len > max_transfer_size) {
507 * zram_bvec_rw() can only make operation on a single
508 * zram page. Split the bio vector.
510 struct bio_vec bv;
512 bv.bv_page = bvec->bv_page;
513 bv.bv_len = max_transfer_size;
514 bv.bv_offset = bvec->bv_offset;
516 if (zram_bvec_rw(zram, &bv, index, offset, bio, rw) < 0)
517 goto out;
519 bv.bv_len = bvec->bv_len - max_transfer_size;
520 bv.bv_offset += max_transfer_size;
521 if (zram_bvec_rw(zram, &bv, index+1, 0, bio, rw) < 0)
522 goto out;
523 } else
524 if (zram_bvec_rw(zram, bvec, index, offset, bio, rw)
525 < 0)
526 goto out;
528 update_position(&index, &offset, bvec);
531 set_bit(BIO_UPTODATE, &bio->bi_flags);
532 bio_endio(bio, 0);
533 return;
535 out:
536 bio_io_error(bio);
540 * Check if request is within bounds and aligned on zram logical blocks.
542 static inline int valid_io_request(struct zram *zram, struct bio *bio)
544 if (unlikely(
545 (bio->bi_sector >= (zram->disksize >> SECTOR_SHIFT)) ||
546 (bio->bi_sector & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)) ||
547 (bio->bi_size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))) {
549 return 0;
552 /* I/O request is valid */
553 return 1;
557 * Handler function for all zram I/O requests.
559 static int zram_make_request(struct request_queue *queue, struct bio *bio)
561 struct zram *zram = queue->queuedata;
563 if (unlikely(!zram->init_done) && zram_init_device(zram))
564 goto error;
566 down_read(&zram->init_lock);
567 if (unlikely(!zram->init_done))
568 goto error_unlock;
570 if (!valid_io_request(zram, bio)) {
571 zram_stat64_inc(zram, &zram->stats.invalid_io);
572 goto error_unlock;
575 __zram_make_request(zram, bio, bio_data_dir(bio));
576 up_read(&zram->init_lock);
578 return 0;
580 error_unlock:
581 up_read(&zram->init_lock);
582 error:
583 bio_io_error(bio);
584 return 0;
587 void __zram_reset_device(struct zram *zram)
589 size_t index;
591 zram->init_done = 0;
593 /* Free various per-device buffers */
594 kfree(zram->compress_workmem);
595 free_pages((unsigned long)zram->compress_buffer, 1);
597 zram->compress_workmem = NULL;
598 zram->compress_buffer = NULL;
600 /* Free all pages that are still in this zram device */
601 for (index = 0; index < zram->disksize >> PAGE_SHIFT; index++) {
602 struct page *page;
603 u16 offset;
605 page = zram->table[index].page;
606 offset = zram->table[index].offset;
608 if (!page)
609 continue;
611 if (unlikely(zram_test_flag(zram, index, ZRAM_UNCOMPRESSED)))
612 __free_page(page);
613 else
614 xv_free(zram->mem_pool, page, offset);
617 vfree(zram->table);
618 zram->table = NULL;
620 xv_destroy_pool(zram->mem_pool);
621 zram->mem_pool = NULL;
623 /* Reset stats */
624 memset(&zram->stats, 0, sizeof(zram->stats));
626 zram->disksize = 0;
629 void zram_reset_device(struct zram *zram)
631 down_write(&zram->init_lock);
632 __zram_reset_device(zram);
633 up_write(&zram->init_lock);
636 int zram_init_device(struct zram *zram)
638 int ret;
639 size_t num_pages;
641 down_write(&zram->init_lock);
643 if (zram->init_done) {
644 up_write(&zram->init_lock);
645 return 0;
648 zram_set_disksize(zram, totalram_pages << PAGE_SHIFT);
650 zram->compress_workmem = kzalloc(LZO1X_MEM_COMPRESS, GFP_KERNEL);
651 if (!zram->compress_workmem) {
652 pr_err("Error allocating compressor working memory!\n");
653 ret = -ENOMEM;
654 goto fail_no_table;
657 zram->compress_buffer = (void *)__get_free_pages(__GFP_ZERO, 1);
658 if (!zram->compress_buffer) {
659 pr_err("Error allocating compressor buffer space\n");
660 ret = -ENOMEM;
661 goto fail_no_table;
664 num_pages = zram->disksize >> PAGE_SHIFT;
665 zram->table = vzalloc(num_pages * sizeof(*zram->table));
666 if (!zram->table) {
667 pr_err("Error allocating zram address table\n");
668 ret = -ENOMEM;
669 goto fail_no_table;
672 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
674 /* zram devices sort of resembles non-rotational disks */
675 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
677 zram->mem_pool = xv_create_pool();
678 if (!zram->mem_pool) {
679 pr_err("Error creating memory pool\n");
680 ret = -ENOMEM;
681 goto fail;
684 zram->init_done = 1;
685 up_write(&zram->init_lock);
687 pr_debug("Initialization done!\n");
688 return 0;
690 fail_no_table:
691 /* To prevent accessing table entries during cleanup */
692 zram->disksize = 0;
693 fail:
694 __zram_reset_device(zram);
695 up_write(&zram->init_lock);
696 pr_err("Initialization failed: err=%d\n", ret);
697 return ret;
700 static void zram_slot_free_notify(struct block_device *bdev,
701 unsigned long index)
703 struct zram *zram;
705 zram = bdev->bd_disk->private_data;
706 zram_free_page(zram, index);
707 zram_stat64_inc(zram, &zram->stats.notify_free);
710 static const struct block_device_operations zram_devops = {
711 .swap_slot_free_notify = zram_slot_free_notify,
712 .owner = THIS_MODULE
715 static int create_device(struct zram *zram, int device_id)
717 int ret = 0;
719 init_rwsem(&zram->lock);
720 init_rwsem(&zram->init_lock);
721 spin_lock_init(&zram->stat64_lock);
723 zram->queue = blk_alloc_queue(GFP_KERNEL);
724 if (!zram->queue) {
725 pr_err("Error allocating disk queue for device %d\n",
726 device_id);
727 ret = -ENOMEM;
728 goto out;
731 blk_queue_make_request(zram->queue, zram_make_request);
732 zram->queue->queuedata = zram;
734 /* gendisk structure */
735 zram->disk = alloc_disk(1);
736 if (!zram->disk) {
737 blk_cleanup_queue(zram->queue);
738 pr_warning("Error allocating disk structure for device %d\n",
739 device_id);
740 ret = -ENOMEM;
741 goto out;
744 zram->disk->major = zram_major;
745 zram->disk->first_minor = device_id;
746 zram->disk->fops = &zram_devops;
747 zram->disk->queue = zram->queue;
748 zram->disk->private_data = zram;
749 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
751 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
752 set_capacity(zram->disk, 0);
755 * To ensure that we always get PAGE_SIZE aligned
756 * and n*PAGE_SIZED sized I/O requests.
758 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
759 blk_queue_logical_block_size(zram->disk->queue,
760 ZRAM_LOGICAL_BLOCK_SIZE);
761 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
762 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
764 add_disk(zram->disk);
766 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
767 &zram_disk_attr_group);
768 if (ret < 0) {
769 pr_warning("Error creating sysfs group");
770 goto out;
773 zram->init_done = 0;
775 out:
776 return ret;
779 static void destroy_device(struct zram *zram)
781 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
782 &zram_disk_attr_group);
784 if (zram->disk) {
785 del_gendisk(zram->disk);
786 put_disk(zram->disk);
789 if (zram->queue)
790 blk_cleanup_queue(zram->queue);
793 static int __init zram_init(void)
795 int ret, dev_id;
797 if (zram_num_devices > max_num_devices) {
798 pr_warning("Invalid value for num_devices: %u\n",
799 zram_num_devices);
800 ret = -EINVAL;
801 goto out;
804 zram_major = register_blkdev(0, "zram");
805 if (zram_major <= 0) {
806 pr_warning("Unable to get major number\n");
807 ret = -EBUSY;
808 goto out;
811 if (!zram_num_devices) {
812 pr_info("num_devices not specified. Using default: 1\n");
813 zram_num_devices = 1;
816 /* Allocate the device array and initialize each one */
817 pr_info("Creating %u devices ...\n", zram_num_devices);
818 zram_devices = kzalloc(zram_num_devices * sizeof(struct zram), GFP_KERNEL);
819 if (!zram_devices) {
820 ret = -ENOMEM;
821 goto unregister;
824 for (dev_id = 0; dev_id < zram_num_devices; dev_id++) {
825 ret = create_device(&zram_devices[dev_id], dev_id);
826 if (ret)
827 goto free_devices;
830 return 0;
832 free_devices:
833 while (dev_id)
834 destroy_device(&zram_devices[--dev_id]);
835 kfree(zram_devices);
836 unregister:
837 unregister_blkdev(zram_major, "zram");
838 out:
839 return ret;
842 static void __exit zram_exit(void)
844 int i;
845 struct zram *zram;
847 for (i = 0; i < zram_num_devices; i++) {
848 zram = &zram_devices[i];
850 destroy_device(zram);
851 if (zram->init_done)
852 zram_reset_device(zram);
855 unregister_blkdev(zram_major, "zram");
857 kfree(zram_devices);
858 pr_debug("Cleanup done!\n");
861 module_param(zram_num_devices, uint, 0);
862 MODULE_PARM_DESC(zram_num_devices, "Number of zram devices");
864 module_init(zram_init);
865 module_exit(zram_exit);
867 MODULE_LICENSE("Dual BSD/GPL");
868 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
869 MODULE_DESCRIPTION("Compressed RAM Block Device");