Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / drivers / target / target_core_transport.c
blobd75255804481b8340774e88cf60494eed3c0bd7c
1 /*******************************************************************************
2 * Filename: target_core_transport.c
4 * This file contains the Generic Target Engine Core.
6 * Copyright (c) 2002, 2003, 2004, 2005 PyX Technologies, Inc.
7 * Copyright (c) 2005, 2006, 2007 SBE, Inc.
8 * Copyright (c) 2007-2010 Rising Tide Systems
9 * Copyright (c) 2008-2010 Linux-iSCSI.org
11 * Nicholas A. Bellinger <nab@kernel.org>
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
27 ******************************************************************************/
29 #include <linux/net.h>
30 #include <linux/delay.h>
31 #include <linux/string.h>
32 #include <linux/timer.h>
33 #include <linux/slab.h>
34 #include <linux/blkdev.h>
35 #include <linux/spinlock.h>
36 #include <linux/kthread.h>
37 #include <linux/in.h>
38 #include <linux/cdrom.h>
39 #include <asm/unaligned.h>
40 #include <net/sock.h>
41 #include <net/tcp.h>
42 #include <scsi/scsi.h>
43 #include <scsi/scsi_cmnd.h>
44 #include <scsi/scsi_tcq.h>
46 #include <target/target_core_base.h>
47 #include <target/target_core_device.h>
48 #include <target/target_core_tmr.h>
49 #include <target/target_core_tpg.h>
50 #include <target/target_core_transport.h>
51 #include <target/target_core_fabric_ops.h>
52 #include <target/target_core_configfs.h>
54 #include "target_core_alua.h"
55 #include "target_core_hba.h"
56 #include "target_core_pr.h"
57 #include "target_core_ua.h"
59 static int sub_api_initialized;
61 static struct workqueue_struct *target_completion_wq;
62 static struct kmem_cache *se_cmd_cache;
63 static struct kmem_cache *se_sess_cache;
64 struct kmem_cache *se_tmr_req_cache;
65 struct kmem_cache *se_ua_cache;
66 struct kmem_cache *t10_pr_reg_cache;
67 struct kmem_cache *t10_alua_lu_gp_cache;
68 struct kmem_cache *t10_alua_lu_gp_mem_cache;
69 struct kmem_cache *t10_alua_tg_pt_gp_cache;
70 struct kmem_cache *t10_alua_tg_pt_gp_mem_cache;
72 static int transport_generic_write_pending(struct se_cmd *);
73 static int transport_processing_thread(void *param);
74 static int __transport_execute_tasks(struct se_device *dev);
75 static void transport_complete_task_attr(struct se_cmd *cmd);
76 static void transport_handle_queue_full(struct se_cmd *cmd,
77 struct se_device *dev);
78 static void transport_free_dev_tasks(struct se_cmd *cmd);
79 static int transport_generic_get_mem(struct se_cmd *cmd);
80 static void transport_put_cmd(struct se_cmd *cmd);
81 static void transport_remove_cmd_from_queue(struct se_cmd *cmd);
82 static int transport_set_sense_codes(struct se_cmd *cmd, u8 asc, u8 ascq);
83 static void transport_generic_request_failure(struct se_cmd *, int, int);
84 static void target_complete_ok_work(struct work_struct *work);
86 int init_se_kmem_caches(void)
88 se_cmd_cache = kmem_cache_create("se_cmd_cache",
89 sizeof(struct se_cmd), __alignof__(struct se_cmd), 0, NULL);
90 if (!se_cmd_cache) {
91 pr_err("kmem_cache_create for struct se_cmd failed\n");
92 goto out;
94 se_tmr_req_cache = kmem_cache_create("se_tmr_cache",
95 sizeof(struct se_tmr_req), __alignof__(struct se_tmr_req),
96 0, NULL);
97 if (!se_tmr_req_cache) {
98 pr_err("kmem_cache_create() for struct se_tmr_req"
99 " failed\n");
100 goto out_free_cmd_cache;
102 se_sess_cache = kmem_cache_create("se_sess_cache",
103 sizeof(struct se_session), __alignof__(struct se_session),
104 0, NULL);
105 if (!se_sess_cache) {
106 pr_err("kmem_cache_create() for struct se_session"
107 " failed\n");
108 goto out_free_tmr_req_cache;
110 se_ua_cache = kmem_cache_create("se_ua_cache",
111 sizeof(struct se_ua), __alignof__(struct se_ua),
112 0, NULL);
113 if (!se_ua_cache) {
114 pr_err("kmem_cache_create() for struct se_ua failed\n");
115 goto out_free_sess_cache;
117 t10_pr_reg_cache = kmem_cache_create("t10_pr_reg_cache",
118 sizeof(struct t10_pr_registration),
119 __alignof__(struct t10_pr_registration), 0, NULL);
120 if (!t10_pr_reg_cache) {
121 pr_err("kmem_cache_create() for struct t10_pr_registration"
122 " failed\n");
123 goto out_free_ua_cache;
125 t10_alua_lu_gp_cache = kmem_cache_create("t10_alua_lu_gp_cache",
126 sizeof(struct t10_alua_lu_gp), __alignof__(struct t10_alua_lu_gp),
127 0, NULL);
128 if (!t10_alua_lu_gp_cache) {
129 pr_err("kmem_cache_create() for t10_alua_lu_gp_cache"
130 " failed\n");
131 goto out_free_pr_reg_cache;
133 t10_alua_lu_gp_mem_cache = kmem_cache_create("t10_alua_lu_gp_mem_cache",
134 sizeof(struct t10_alua_lu_gp_member),
135 __alignof__(struct t10_alua_lu_gp_member), 0, NULL);
136 if (!t10_alua_lu_gp_mem_cache) {
137 pr_err("kmem_cache_create() for t10_alua_lu_gp_mem_"
138 "cache failed\n");
139 goto out_free_lu_gp_cache;
141 t10_alua_tg_pt_gp_cache = kmem_cache_create("t10_alua_tg_pt_gp_cache",
142 sizeof(struct t10_alua_tg_pt_gp),
143 __alignof__(struct t10_alua_tg_pt_gp), 0, NULL);
144 if (!t10_alua_tg_pt_gp_cache) {
145 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
146 "cache failed\n");
147 goto out_free_lu_gp_mem_cache;
149 t10_alua_tg_pt_gp_mem_cache = kmem_cache_create(
150 "t10_alua_tg_pt_gp_mem_cache",
151 sizeof(struct t10_alua_tg_pt_gp_member),
152 __alignof__(struct t10_alua_tg_pt_gp_member),
153 0, NULL);
154 if (!t10_alua_tg_pt_gp_mem_cache) {
155 pr_err("kmem_cache_create() for t10_alua_tg_pt_gp_"
156 "mem_t failed\n");
157 goto out_free_tg_pt_gp_cache;
160 target_completion_wq = alloc_workqueue("target_completion",
161 WQ_MEM_RECLAIM, 0);
162 if (!target_completion_wq)
163 goto out_free_tg_pt_gp_mem_cache;
165 return 0;
167 out_free_tg_pt_gp_mem_cache:
168 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
169 out_free_tg_pt_gp_cache:
170 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
171 out_free_lu_gp_mem_cache:
172 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
173 out_free_lu_gp_cache:
174 kmem_cache_destroy(t10_alua_lu_gp_cache);
175 out_free_pr_reg_cache:
176 kmem_cache_destroy(t10_pr_reg_cache);
177 out_free_ua_cache:
178 kmem_cache_destroy(se_ua_cache);
179 out_free_sess_cache:
180 kmem_cache_destroy(se_sess_cache);
181 out_free_tmr_req_cache:
182 kmem_cache_destroy(se_tmr_req_cache);
183 out_free_cmd_cache:
184 kmem_cache_destroy(se_cmd_cache);
185 out:
186 return -ENOMEM;
189 void release_se_kmem_caches(void)
191 destroy_workqueue(target_completion_wq);
192 kmem_cache_destroy(se_cmd_cache);
193 kmem_cache_destroy(se_tmr_req_cache);
194 kmem_cache_destroy(se_sess_cache);
195 kmem_cache_destroy(se_ua_cache);
196 kmem_cache_destroy(t10_pr_reg_cache);
197 kmem_cache_destroy(t10_alua_lu_gp_cache);
198 kmem_cache_destroy(t10_alua_lu_gp_mem_cache);
199 kmem_cache_destroy(t10_alua_tg_pt_gp_cache);
200 kmem_cache_destroy(t10_alua_tg_pt_gp_mem_cache);
203 /* This code ensures unique mib indexes are handed out. */
204 static DEFINE_SPINLOCK(scsi_mib_index_lock);
205 static u32 scsi_mib_index[SCSI_INDEX_TYPE_MAX];
208 * Allocate a new row index for the entry type specified
210 u32 scsi_get_new_index(scsi_index_t type)
212 u32 new_index;
214 BUG_ON((type < 0) || (type >= SCSI_INDEX_TYPE_MAX));
216 spin_lock(&scsi_mib_index_lock);
217 new_index = ++scsi_mib_index[type];
218 spin_unlock(&scsi_mib_index_lock);
220 return new_index;
223 void transport_init_queue_obj(struct se_queue_obj *qobj)
225 atomic_set(&qobj->queue_cnt, 0);
226 INIT_LIST_HEAD(&qobj->qobj_list);
227 init_waitqueue_head(&qobj->thread_wq);
228 spin_lock_init(&qobj->cmd_queue_lock);
230 EXPORT_SYMBOL(transport_init_queue_obj);
232 void transport_subsystem_check_init(void)
234 int ret;
236 if (sub_api_initialized)
237 return;
239 ret = request_module("target_core_iblock");
240 if (ret != 0)
241 pr_err("Unable to load target_core_iblock\n");
243 ret = request_module("target_core_file");
244 if (ret != 0)
245 pr_err("Unable to load target_core_file\n");
247 ret = request_module("target_core_pscsi");
248 if (ret != 0)
249 pr_err("Unable to load target_core_pscsi\n");
251 ret = request_module("target_core_stgt");
252 if (ret != 0)
253 pr_err("Unable to load target_core_stgt\n");
255 sub_api_initialized = 1;
256 return;
259 struct se_session *transport_init_session(void)
261 struct se_session *se_sess;
263 se_sess = kmem_cache_zalloc(se_sess_cache, GFP_KERNEL);
264 if (!se_sess) {
265 pr_err("Unable to allocate struct se_session from"
266 " se_sess_cache\n");
267 return ERR_PTR(-ENOMEM);
269 INIT_LIST_HEAD(&se_sess->sess_list);
270 INIT_LIST_HEAD(&se_sess->sess_acl_list);
272 return se_sess;
274 EXPORT_SYMBOL(transport_init_session);
277 * Called with spin_lock_bh(&struct se_portal_group->session_lock called.
279 void __transport_register_session(
280 struct se_portal_group *se_tpg,
281 struct se_node_acl *se_nacl,
282 struct se_session *se_sess,
283 void *fabric_sess_ptr)
285 unsigned char buf[PR_REG_ISID_LEN];
287 se_sess->se_tpg = se_tpg;
288 se_sess->fabric_sess_ptr = fabric_sess_ptr;
290 * Used by struct se_node_acl's under ConfigFS to locate active se_session-t
292 * Only set for struct se_session's that will actually be moving I/O.
293 * eg: *NOT* discovery sessions.
295 if (se_nacl) {
297 * If the fabric module supports an ISID based TransportID,
298 * save this value in binary from the fabric I_T Nexus now.
300 if (se_tpg->se_tpg_tfo->sess_get_initiator_sid != NULL) {
301 memset(&buf[0], 0, PR_REG_ISID_LEN);
302 se_tpg->se_tpg_tfo->sess_get_initiator_sid(se_sess,
303 &buf[0], PR_REG_ISID_LEN);
304 se_sess->sess_bin_isid = get_unaligned_be64(&buf[0]);
306 spin_lock_irq(&se_nacl->nacl_sess_lock);
308 * The se_nacl->nacl_sess pointer will be set to the
309 * last active I_T Nexus for each struct se_node_acl.
311 se_nacl->nacl_sess = se_sess;
313 list_add_tail(&se_sess->sess_acl_list,
314 &se_nacl->acl_sess_list);
315 spin_unlock_irq(&se_nacl->nacl_sess_lock);
317 list_add_tail(&se_sess->sess_list, &se_tpg->tpg_sess_list);
319 pr_debug("TARGET_CORE[%s]: Registered fabric_sess_ptr: %p\n",
320 se_tpg->se_tpg_tfo->get_fabric_name(), se_sess->fabric_sess_ptr);
322 EXPORT_SYMBOL(__transport_register_session);
324 void transport_register_session(
325 struct se_portal_group *se_tpg,
326 struct se_node_acl *se_nacl,
327 struct se_session *se_sess,
328 void *fabric_sess_ptr)
330 spin_lock_bh(&se_tpg->session_lock);
331 __transport_register_session(se_tpg, se_nacl, se_sess, fabric_sess_ptr);
332 spin_unlock_bh(&se_tpg->session_lock);
334 EXPORT_SYMBOL(transport_register_session);
336 void transport_deregister_session_configfs(struct se_session *se_sess)
338 struct se_node_acl *se_nacl;
339 unsigned long flags;
341 * Used by struct se_node_acl's under ConfigFS to locate active struct se_session
343 se_nacl = se_sess->se_node_acl;
344 if (se_nacl) {
345 spin_lock_irqsave(&se_nacl->nacl_sess_lock, flags);
346 list_del(&se_sess->sess_acl_list);
348 * If the session list is empty, then clear the pointer.
349 * Otherwise, set the struct se_session pointer from the tail
350 * element of the per struct se_node_acl active session list.
352 if (list_empty(&se_nacl->acl_sess_list))
353 se_nacl->nacl_sess = NULL;
354 else {
355 se_nacl->nacl_sess = container_of(
356 se_nacl->acl_sess_list.prev,
357 struct se_session, sess_acl_list);
359 spin_unlock_irqrestore(&se_nacl->nacl_sess_lock, flags);
362 EXPORT_SYMBOL(transport_deregister_session_configfs);
364 void transport_free_session(struct se_session *se_sess)
366 kmem_cache_free(se_sess_cache, se_sess);
368 EXPORT_SYMBOL(transport_free_session);
370 void transport_deregister_session(struct se_session *se_sess)
372 struct se_portal_group *se_tpg = se_sess->se_tpg;
373 struct se_node_acl *se_nacl;
374 unsigned long flags;
376 if (!se_tpg) {
377 transport_free_session(se_sess);
378 return;
381 spin_lock_irqsave(&se_tpg->session_lock, flags);
382 list_del(&se_sess->sess_list);
383 se_sess->se_tpg = NULL;
384 se_sess->fabric_sess_ptr = NULL;
385 spin_unlock_irqrestore(&se_tpg->session_lock, flags);
388 * Determine if we need to do extra work for this initiator node's
389 * struct se_node_acl if it had been previously dynamically generated.
391 se_nacl = se_sess->se_node_acl;
392 if (se_nacl) {
393 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
394 if (se_nacl->dynamic_node_acl) {
395 if (!se_tpg->se_tpg_tfo->tpg_check_demo_mode_cache(
396 se_tpg)) {
397 list_del(&se_nacl->acl_list);
398 se_tpg->num_node_acls--;
399 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
401 core_tpg_wait_for_nacl_pr_ref(se_nacl);
402 core_free_device_list_for_node(se_nacl, se_tpg);
403 se_tpg->se_tpg_tfo->tpg_release_fabric_acl(se_tpg,
404 se_nacl);
405 spin_lock_irqsave(&se_tpg->acl_node_lock, flags);
408 spin_unlock_irqrestore(&se_tpg->acl_node_lock, flags);
411 transport_free_session(se_sess);
413 pr_debug("TARGET_CORE[%s]: Deregistered fabric_sess\n",
414 se_tpg->se_tpg_tfo->get_fabric_name());
416 EXPORT_SYMBOL(transport_deregister_session);
419 * Called with cmd->t_state_lock held.
421 static void transport_all_task_dev_remove_state(struct se_cmd *cmd)
423 struct se_device *dev = cmd->se_dev;
424 struct se_task *task;
425 unsigned long flags;
427 if (!dev)
428 return;
430 list_for_each_entry(task, &cmd->t_task_list, t_list) {
431 if (task->task_flags & TF_ACTIVE)
432 continue;
434 if (!atomic_read(&task->task_state_active))
435 continue;
437 spin_lock_irqsave(&dev->execute_task_lock, flags);
438 list_del(&task->t_state_list);
439 pr_debug("Removed ITT: 0x%08x dev: %p task[%p]\n",
440 cmd->se_tfo->get_task_tag(cmd), dev, task);
441 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
443 atomic_set(&task->task_state_active, 0);
444 atomic_dec(&cmd->t_task_cdbs_ex_left);
448 /* transport_cmd_check_stop():
450 * 'transport_off = 1' determines if t_transport_active should be cleared.
451 * 'transport_off = 2' determines if task_dev_state should be removed.
453 * A non-zero u8 t_state sets cmd->t_state.
454 * Returns 1 when command is stopped, else 0.
456 static int transport_cmd_check_stop(
457 struct se_cmd *cmd,
458 int transport_off,
459 u8 t_state)
461 unsigned long flags;
463 spin_lock_irqsave(&cmd->t_state_lock, flags);
465 * Determine if IOCTL context caller in requesting the stopping of this
466 * command for LUN shutdown purposes.
468 if (atomic_read(&cmd->transport_lun_stop)) {
469 pr_debug("%s:%d atomic_read(&cmd->transport_lun_stop)"
470 " == TRUE for ITT: 0x%08x\n", __func__, __LINE__,
471 cmd->se_tfo->get_task_tag(cmd));
473 atomic_set(&cmd->t_transport_active, 0);
474 if (transport_off == 2)
475 transport_all_task_dev_remove_state(cmd);
476 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
478 complete(&cmd->transport_lun_stop_comp);
479 return 1;
482 * Determine if frontend context caller is requesting the stopping of
483 * this command for frontend exceptions.
485 if (atomic_read(&cmd->t_transport_stop)) {
486 pr_debug("%s:%d atomic_read(&cmd->t_transport_stop) =="
487 " TRUE for ITT: 0x%08x\n", __func__, __LINE__,
488 cmd->se_tfo->get_task_tag(cmd));
490 if (transport_off == 2)
491 transport_all_task_dev_remove_state(cmd);
494 * Clear struct se_cmd->se_lun before the transport_off == 2 handoff
495 * to FE.
497 if (transport_off == 2)
498 cmd->se_lun = NULL;
499 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
501 complete(&cmd->t_transport_stop_comp);
502 return 1;
504 if (transport_off) {
505 atomic_set(&cmd->t_transport_active, 0);
506 if (transport_off == 2) {
507 transport_all_task_dev_remove_state(cmd);
509 * Clear struct se_cmd->se_lun before the transport_off == 2
510 * handoff to fabric module.
512 cmd->se_lun = NULL;
514 * Some fabric modules like tcm_loop can release
515 * their internally allocated I/O reference now and
516 * struct se_cmd now.
518 if (cmd->se_tfo->check_stop_free != NULL) {
519 spin_unlock_irqrestore(
520 &cmd->t_state_lock, flags);
522 cmd->se_tfo->check_stop_free(cmd);
523 return 1;
526 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
528 return 0;
529 } else if (t_state)
530 cmd->t_state = t_state;
531 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
533 return 0;
536 static int transport_cmd_check_stop_to_fabric(struct se_cmd *cmd)
538 return transport_cmd_check_stop(cmd, 2, 0);
541 static void transport_lun_remove_cmd(struct se_cmd *cmd)
543 struct se_lun *lun = cmd->se_lun;
544 unsigned long flags;
546 if (!lun)
547 return;
549 spin_lock_irqsave(&cmd->t_state_lock, flags);
550 if (!atomic_read(&cmd->transport_dev_active)) {
551 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
552 goto check_lun;
554 atomic_set(&cmd->transport_dev_active, 0);
555 transport_all_task_dev_remove_state(cmd);
556 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
559 check_lun:
560 spin_lock_irqsave(&lun->lun_cmd_lock, flags);
561 if (atomic_read(&cmd->transport_lun_active)) {
562 list_del(&cmd->se_lun_node);
563 atomic_set(&cmd->transport_lun_active, 0);
564 #if 0
565 pr_debug("Removed ITT: 0x%08x from LUN LIST[%d]\n"
566 cmd->se_tfo->get_task_tag(cmd), lun->unpacked_lun);
567 #endif
569 spin_unlock_irqrestore(&lun->lun_cmd_lock, flags);
572 void transport_cmd_finish_abort(struct se_cmd *cmd, int remove)
574 if (!cmd->se_tmr_req)
575 transport_lun_remove_cmd(cmd);
577 if (transport_cmd_check_stop_to_fabric(cmd))
578 return;
579 if (remove) {
580 transport_remove_cmd_from_queue(cmd);
581 transport_put_cmd(cmd);
585 static void transport_add_cmd_to_queue(struct se_cmd *cmd, int t_state,
586 bool at_head)
588 struct se_device *dev = cmd->se_dev;
589 struct se_queue_obj *qobj = &dev->dev_queue_obj;
590 unsigned long flags;
592 if (t_state) {
593 spin_lock_irqsave(&cmd->t_state_lock, flags);
594 cmd->t_state = t_state;
595 atomic_set(&cmd->t_transport_active, 1);
596 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
599 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
601 /* If the cmd is already on the list, remove it before we add it */
602 if (!list_empty(&cmd->se_queue_node))
603 list_del(&cmd->se_queue_node);
604 else
605 atomic_inc(&qobj->queue_cnt);
607 if (at_head)
608 list_add(&cmd->se_queue_node, &qobj->qobj_list);
609 else
610 list_add_tail(&cmd->se_queue_node, &qobj->qobj_list);
611 atomic_set(&cmd->t_transport_queue_active, 1);
612 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
614 wake_up_interruptible(&qobj->thread_wq);
617 static struct se_cmd *
618 transport_get_cmd_from_queue(struct se_queue_obj *qobj)
620 struct se_cmd *cmd;
621 unsigned long flags;
623 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
624 if (list_empty(&qobj->qobj_list)) {
625 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
626 return NULL;
628 cmd = list_first_entry(&qobj->qobj_list, struct se_cmd, se_queue_node);
630 atomic_set(&cmd->t_transport_queue_active, 0);
632 list_del_init(&cmd->se_queue_node);
633 atomic_dec(&qobj->queue_cnt);
634 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
636 return cmd;
639 static void transport_remove_cmd_from_queue(struct se_cmd *cmd)
641 struct se_queue_obj *qobj = &cmd->se_dev->dev_queue_obj;
642 unsigned long flags;
644 spin_lock_irqsave(&qobj->cmd_queue_lock, flags);
645 if (!atomic_read(&cmd->t_transport_queue_active)) {
646 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
647 return;
649 atomic_set(&cmd->t_transport_queue_active, 0);
650 atomic_dec(&qobj->queue_cnt);
651 list_del_init(&cmd->se_queue_node);
652 spin_unlock_irqrestore(&qobj->cmd_queue_lock, flags);
654 if (atomic_read(&cmd->t_transport_queue_active)) {
655 pr_err("ITT: 0x%08x t_transport_queue_active: %d\n",
656 cmd->se_tfo->get_task_tag(cmd),
657 atomic_read(&cmd->t_transport_queue_active));
662 * Completion function used by TCM subsystem plugins (such as FILEIO)
663 * for queueing up response from struct se_subsystem_api->do_task()
665 void transport_complete_sync_cache(struct se_cmd *cmd, int good)
667 struct se_task *task = list_entry(cmd->t_task_list.next,
668 struct se_task, t_list);
670 if (good) {
671 cmd->scsi_status = SAM_STAT_GOOD;
672 task->task_scsi_status = GOOD;
673 } else {
674 task->task_scsi_status = SAM_STAT_CHECK_CONDITION;
675 task->task_error_status = PYX_TRANSPORT_ILLEGAL_REQUEST;
676 task->task_se_cmd->transport_error_status =
677 PYX_TRANSPORT_ILLEGAL_REQUEST;
680 transport_complete_task(task, good);
682 EXPORT_SYMBOL(transport_complete_sync_cache);
684 static void target_complete_failure_work(struct work_struct *work)
686 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
688 transport_generic_request_failure(cmd, 1, 1);
691 /* transport_complete_task():
693 * Called from interrupt and non interrupt context depending
694 * on the transport plugin.
696 void transport_complete_task(struct se_task *task, int success)
698 struct se_cmd *cmd = task->task_se_cmd;
699 struct se_device *dev = cmd->se_dev;
700 unsigned long flags;
701 #if 0
702 pr_debug("task: %p CDB: 0x%02x obj_ptr: %p\n", task,
703 cmd->t_task_cdb[0], dev);
704 #endif
705 if (dev)
706 atomic_inc(&dev->depth_left);
708 spin_lock_irqsave(&cmd->t_state_lock, flags);
709 task->task_flags &= ~TF_ACTIVE;
712 * See if any sense data exists, if so set the TASK_SENSE flag.
713 * Also check for any other post completion work that needs to be
714 * done by the plugins.
716 if (dev && dev->transport->transport_complete) {
717 if (dev->transport->transport_complete(task) != 0) {
718 cmd->se_cmd_flags |= SCF_TRANSPORT_TASK_SENSE;
719 task->task_sense = 1;
720 success = 1;
725 * See if we are waiting for outstanding struct se_task
726 * to complete for an exception condition
728 if (task->task_flags & TF_REQUEST_STOP) {
729 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
730 complete(&task->task_stop_comp);
731 return;
734 * Decrement the outstanding t_task_cdbs_left count. The last
735 * struct se_task from struct se_cmd will complete itself into the
736 * device queue depending upon int success.
738 if (!atomic_dec_and_test(&cmd->t_task_cdbs_left)) {
739 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
740 return;
743 if (!success || cmd->t_tasks_failed) {
744 if (!task->task_error_status) {
745 task->task_error_status =
746 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
747 cmd->transport_error_status =
748 PYX_TRANSPORT_UNKNOWN_SAM_OPCODE;
750 INIT_WORK(&cmd->work, target_complete_failure_work);
751 } else {
752 atomic_set(&cmd->t_transport_complete, 1);
753 INIT_WORK(&cmd->work, target_complete_ok_work);
756 cmd->t_state = TRANSPORT_COMPLETE;
757 atomic_set(&cmd->t_transport_active, 1);
758 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
760 queue_work(target_completion_wq, &cmd->work);
762 EXPORT_SYMBOL(transport_complete_task);
765 * Called by transport_add_tasks_from_cmd() once a struct se_cmd's
766 * struct se_task list are ready to be added to the active execution list
767 * struct se_device
769 * Called with se_dev_t->execute_task_lock called.
771 static inline int transport_add_task_check_sam_attr(
772 struct se_task *task,
773 struct se_task *task_prev,
774 struct se_device *dev)
777 * No SAM Task attribute emulation enabled, add to tail of
778 * execution queue
780 if (dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED) {
781 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
782 return 0;
785 * HEAD_OF_QUEUE attribute for received CDB, which means
786 * the first task that is associated with a struct se_cmd goes to
787 * head of the struct se_device->execute_task_list, and task_prev
788 * after that for each subsequent task
790 if (task->task_se_cmd->sam_task_attr == MSG_HEAD_TAG) {
791 list_add(&task->t_execute_list,
792 (task_prev != NULL) ?
793 &task_prev->t_execute_list :
794 &dev->execute_task_list);
796 pr_debug("Set HEAD_OF_QUEUE for task CDB: 0x%02x"
797 " in execution queue\n",
798 task->task_se_cmd->t_task_cdb[0]);
799 return 1;
802 * For ORDERED, SIMPLE or UNTAGGED attribute tasks once they have been
803 * transitioned from Dermant -> Active state, and are added to the end
804 * of the struct se_device->execute_task_list
806 list_add_tail(&task->t_execute_list, &dev->execute_task_list);
807 return 0;
810 /* __transport_add_task_to_execute_queue():
812 * Called with se_dev_t->execute_task_lock called.
814 static void __transport_add_task_to_execute_queue(
815 struct se_task *task,
816 struct se_task *task_prev,
817 struct se_device *dev)
819 int head_of_queue;
821 head_of_queue = transport_add_task_check_sam_attr(task, task_prev, dev);
822 atomic_inc(&dev->execute_tasks);
824 if (atomic_read(&task->task_state_active))
825 return;
827 * Determine if this task needs to go to HEAD_OF_QUEUE for the
828 * state list as well. Running with SAM Task Attribute emulation
829 * will always return head_of_queue == 0 here
831 if (head_of_queue)
832 list_add(&task->t_state_list, (task_prev) ?
833 &task_prev->t_state_list :
834 &dev->state_task_list);
835 else
836 list_add_tail(&task->t_state_list, &dev->state_task_list);
838 atomic_set(&task->task_state_active, 1);
840 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
841 task->task_se_cmd->se_tfo->get_task_tag(task->task_se_cmd),
842 task, dev);
845 static void transport_add_tasks_to_state_queue(struct se_cmd *cmd)
847 struct se_device *dev = cmd->se_dev;
848 struct se_task *task;
849 unsigned long flags;
851 spin_lock_irqsave(&cmd->t_state_lock, flags);
852 list_for_each_entry(task, &cmd->t_task_list, t_list) {
853 if (atomic_read(&task->task_state_active))
854 continue;
856 spin_lock(&dev->execute_task_lock);
857 list_add_tail(&task->t_state_list, &dev->state_task_list);
858 atomic_set(&task->task_state_active, 1);
860 pr_debug("Added ITT: 0x%08x task[%p] to dev: %p\n",
861 task->task_se_cmd->se_tfo->get_task_tag(
862 task->task_se_cmd), task, dev);
864 spin_unlock(&dev->execute_task_lock);
866 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
869 static void transport_add_tasks_from_cmd(struct se_cmd *cmd)
871 struct se_device *dev = cmd->se_dev;
872 struct se_task *task, *task_prev = NULL;
873 unsigned long flags;
875 spin_lock_irqsave(&dev->execute_task_lock, flags);
876 list_for_each_entry(task, &cmd->t_task_list, t_list) {
877 if (!list_empty(&task->t_execute_list))
878 continue;
880 * __transport_add_task_to_execute_queue() handles the
881 * SAM Task Attribute emulation if enabled
883 __transport_add_task_to_execute_queue(task, task_prev, dev);
884 task_prev = task;
886 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
889 void __transport_remove_task_from_execute_queue(struct se_task *task,
890 struct se_device *dev)
892 list_del_init(&task->t_execute_list);
893 atomic_dec(&dev->execute_tasks);
896 void transport_remove_task_from_execute_queue(
897 struct se_task *task,
898 struct se_device *dev)
900 unsigned long flags;
902 if (WARN_ON(list_empty(&task->t_execute_list)))
903 return;
905 spin_lock_irqsave(&dev->execute_task_lock, flags);
906 __transport_remove_task_from_execute_queue(task, dev);
907 spin_unlock_irqrestore(&dev->execute_task_lock, flags);
911 * Handle QUEUE_FULL / -EAGAIN status
914 static void target_qf_do_work(struct work_struct *work)
916 struct se_device *dev = container_of(work, struct se_device,
917 qf_work_queue);
918 LIST_HEAD(qf_cmd_list);
919 struct se_cmd *cmd, *cmd_tmp;
921 spin_lock_irq(&dev->qf_cmd_lock);
922 list_splice_init(&dev->qf_cmd_list, &qf_cmd_list);
923 spin_unlock_irq(&dev->qf_cmd_lock);
925 list_for_each_entry_safe(cmd, cmd_tmp, &qf_cmd_list, se_qf_node) {
926 list_del(&cmd->se_qf_node);
927 atomic_dec(&dev->dev_qf_count);
928 smp_mb__after_atomic_dec();
930 pr_debug("Processing %s cmd: %p QUEUE_FULL in work queue"
931 " context: %s\n", cmd->se_tfo->get_fabric_name(), cmd,
932 (cmd->t_state == TRANSPORT_COMPLETE_QF_OK) ? "COMPLETE_OK" :
933 (cmd->t_state == TRANSPORT_COMPLETE_QF_WP) ? "WRITE_PENDING"
934 : "UNKNOWN");
936 transport_add_cmd_to_queue(cmd, cmd->t_state, true);
940 unsigned char *transport_dump_cmd_direction(struct se_cmd *cmd)
942 switch (cmd->data_direction) {
943 case DMA_NONE:
944 return "NONE";
945 case DMA_FROM_DEVICE:
946 return "READ";
947 case DMA_TO_DEVICE:
948 return "WRITE";
949 case DMA_BIDIRECTIONAL:
950 return "BIDI";
951 default:
952 break;
955 return "UNKNOWN";
958 void transport_dump_dev_state(
959 struct se_device *dev,
960 char *b,
961 int *bl)
963 *bl += sprintf(b + *bl, "Status: ");
964 switch (dev->dev_status) {
965 case TRANSPORT_DEVICE_ACTIVATED:
966 *bl += sprintf(b + *bl, "ACTIVATED");
967 break;
968 case TRANSPORT_DEVICE_DEACTIVATED:
969 *bl += sprintf(b + *bl, "DEACTIVATED");
970 break;
971 case TRANSPORT_DEVICE_SHUTDOWN:
972 *bl += sprintf(b + *bl, "SHUTDOWN");
973 break;
974 case TRANSPORT_DEVICE_OFFLINE_ACTIVATED:
975 case TRANSPORT_DEVICE_OFFLINE_DEACTIVATED:
976 *bl += sprintf(b + *bl, "OFFLINE");
977 break;
978 default:
979 *bl += sprintf(b + *bl, "UNKNOWN=%d", dev->dev_status);
980 break;
983 *bl += sprintf(b + *bl, " Execute/Left/Max Queue Depth: %d/%d/%d",
984 atomic_read(&dev->execute_tasks), atomic_read(&dev->depth_left),
985 dev->queue_depth);
986 *bl += sprintf(b + *bl, " SectorSize: %u MaxSectors: %u\n",
987 dev->se_sub_dev->se_dev_attrib.block_size, dev->se_sub_dev->se_dev_attrib.max_sectors);
988 *bl += sprintf(b + *bl, " ");
991 void transport_dump_vpd_proto_id(
992 struct t10_vpd *vpd,
993 unsigned char *p_buf,
994 int p_buf_len)
996 unsigned char buf[VPD_TMP_BUF_SIZE];
997 int len;
999 memset(buf, 0, VPD_TMP_BUF_SIZE);
1000 len = sprintf(buf, "T10 VPD Protocol Identifier: ");
1002 switch (vpd->protocol_identifier) {
1003 case 0x00:
1004 sprintf(buf+len, "Fibre Channel\n");
1005 break;
1006 case 0x10:
1007 sprintf(buf+len, "Parallel SCSI\n");
1008 break;
1009 case 0x20:
1010 sprintf(buf+len, "SSA\n");
1011 break;
1012 case 0x30:
1013 sprintf(buf+len, "IEEE 1394\n");
1014 break;
1015 case 0x40:
1016 sprintf(buf+len, "SCSI Remote Direct Memory Access"
1017 " Protocol\n");
1018 break;
1019 case 0x50:
1020 sprintf(buf+len, "Internet SCSI (iSCSI)\n");
1021 break;
1022 case 0x60:
1023 sprintf(buf+len, "SAS Serial SCSI Protocol\n");
1024 break;
1025 case 0x70:
1026 sprintf(buf+len, "Automation/Drive Interface Transport"
1027 " Protocol\n");
1028 break;
1029 case 0x80:
1030 sprintf(buf+len, "AT Attachment Interface ATA/ATAPI\n");
1031 break;
1032 default:
1033 sprintf(buf+len, "Unknown 0x%02x\n",
1034 vpd->protocol_identifier);
1035 break;
1038 if (p_buf)
1039 strncpy(p_buf, buf, p_buf_len);
1040 else
1041 pr_debug("%s", buf);
1044 void
1045 transport_set_vpd_proto_id(struct t10_vpd *vpd, unsigned char *page_83)
1048 * Check if the Protocol Identifier Valid (PIV) bit is set..
1050 * from spc3r23.pdf section 7.5.1
1052 if (page_83[1] & 0x80) {
1053 vpd->protocol_identifier = (page_83[0] & 0xf0);
1054 vpd->protocol_identifier_set = 1;
1055 transport_dump_vpd_proto_id(vpd, NULL, 0);
1058 EXPORT_SYMBOL(transport_set_vpd_proto_id);
1060 int transport_dump_vpd_assoc(
1061 struct t10_vpd *vpd,
1062 unsigned char *p_buf,
1063 int p_buf_len)
1065 unsigned char buf[VPD_TMP_BUF_SIZE];
1066 int ret = 0;
1067 int len;
1069 memset(buf, 0, VPD_TMP_BUF_SIZE);
1070 len = sprintf(buf, "T10 VPD Identifier Association: ");
1072 switch (vpd->association) {
1073 case 0x00:
1074 sprintf(buf+len, "addressed logical unit\n");
1075 break;
1076 case 0x10:
1077 sprintf(buf+len, "target port\n");
1078 break;
1079 case 0x20:
1080 sprintf(buf+len, "SCSI target device\n");
1081 break;
1082 default:
1083 sprintf(buf+len, "Unknown 0x%02x\n", vpd->association);
1084 ret = -EINVAL;
1085 break;
1088 if (p_buf)
1089 strncpy(p_buf, buf, p_buf_len);
1090 else
1091 pr_debug("%s", buf);
1093 return ret;
1096 int transport_set_vpd_assoc(struct t10_vpd *vpd, unsigned char *page_83)
1099 * The VPD identification association..
1101 * from spc3r23.pdf Section 7.6.3.1 Table 297
1103 vpd->association = (page_83[1] & 0x30);
1104 return transport_dump_vpd_assoc(vpd, NULL, 0);
1106 EXPORT_SYMBOL(transport_set_vpd_assoc);
1108 int transport_dump_vpd_ident_type(
1109 struct t10_vpd *vpd,
1110 unsigned char *p_buf,
1111 int p_buf_len)
1113 unsigned char buf[VPD_TMP_BUF_SIZE];
1114 int ret = 0;
1115 int len;
1117 memset(buf, 0, VPD_TMP_BUF_SIZE);
1118 len = sprintf(buf, "T10 VPD Identifier Type: ");
1120 switch (vpd->device_identifier_type) {
1121 case 0x00:
1122 sprintf(buf+len, "Vendor specific\n");
1123 break;
1124 case 0x01:
1125 sprintf(buf+len, "T10 Vendor ID based\n");
1126 break;
1127 case 0x02:
1128 sprintf(buf+len, "EUI-64 based\n");
1129 break;
1130 case 0x03:
1131 sprintf(buf+len, "NAA\n");
1132 break;
1133 case 0x04:
1134 sprintf(buf+len, "Relative target port identifier\n");
1135 break;
1136 case 0x08:
1137 sprintf(buf+len, "SCSI name string\n");
1138 break;
1139 default:
1140 sprintf(buf+len, "Unsupported: 0x%02x\n",
1141 vpd->device_identifier_type);
1142 ret = -EINVAL;
1143 break;
1146 if (p_buf) {
1147 if (p_buf_len < strlen(buf)+1)
1148 return -EINVAL;
1149 strncpy(p_buf, buf, p_buf_len);
1150 } else {
1151 pr_debug("%s", buf);
1154 return ret;
1157 int transport_set_vpd_ident_type(struct t10_vpd *vpd, unsigned char *page_83)
1160 * The VPD identifier type..
1162 * from spc3r23.pdf Section 7.6.3.1 Table 298
1164 vpd->device_identifier_type = (page_83[1] & 0x0f);
1165 return transport_dump_vpd_ident_type(vpd, NULL, 0);
1167 EXPORT_SYMBOL(transport_set_vpd_ident_type);
1169 int transport_dump_vpd_ident(
1170 struct t10_vpd *vpd,
1171 unsigned char *p_buf,
1172 int p_buf_len)
1174 unsigned char buf[VPD_TMP_BUF_SIZE];
1175 int ret = 0;
1177 memset(buf, 0, VPD_TMP_BUF_SIZE);
1179 switch (vpd->device_identifier_code_set) {
1180 case 0x01: /* Binary */
1181 sprintf(buf, "T10 VPD Binary Device Identifier: %s\n",
1182 &vpd->device_identifier[0]);
1183 break;
1184 case 0x02: /* ASCII */
1185 sprintf(buf, "T10 VPD ASCII Device Identifier: %s\n",
1186 &vpd->device_identifier[0]);
1187 break;
1188 case 0x03: /* UTF-8 */
1189 sprintf(buf, "T10 VPD UTF-8 Device Identifier: %s\n",
1190 &vpd->device_identifier[0]);
1191 break;
1192 default:
1193 sprintf(buf, "T10 VPD Device Identifier encoding unsupported:"
1194 " 0x%02x", vpd->device_identifier_code_set);
1195 ret = -EINVAL;
1196 break;
1199 if (p_buf)
1200 strncpy(p_buf, buf, p_buf_len);
1201 else
1202 pr_debug("%s", buf);
1204 return ret;
1208 transport_set_vpd_ident(struct t10_vpd *vpd, unsigned char *page_83)
1210 static const char hex_str[] = "0123456789abcdef";
1211 int j = 0, i = 4; /* offset to start of the identifer */
1214 * The VPD Code Set (encoding)
1216 * from spc3r23.pdf Section 7.6.3.1 Table 296
1218 vpd->device_identifier_code_set = (page_83[0] & 0x0f);
1219 switch (vpd->device_identifier_code_set) {
1220 case 0x01: /* Binary */
1221 vpd->device_identifier[j++] =
1222 hex_str[vpd->device_identifier_type];
1223 while (i < (4 + page_83[3])) {
1224 vpd->device_identifier[j++] =
1225 hex_str[(page_83[i] & 0xf0) >> 4];
1226 vpd->device_identifier[j++] =
1227 hex_str[page_83[i] & 0x0f];
1228 i++;
1230 break;
1231 case 0x02: /* ASCII */
1232 case 0x03: /* UTF-8 */
1233 while (i < (4 + page_83[3]))
1234 vpd->device_identifier[j++] = page_83[i++];
1235 break;
1236 default:
1237 break;
1240 return transport_dump_vpd_ident(vpd, NULL, 0);
1242 EXPORT_SYMBOL(transport_set_vpd_ident);
1244 static void core_setup_task_attr_emulation(struct se_device *dev)
1247 * If this device is from Target_Core_Mod/pSCSI, disable the
1248 * SAM Task Attribute emulation.
1250 * This is currently not available in upsream Linux/SCSI Target
1251 * mode code, and is assumed to be disabled while using TCM/pSCSI.
1253 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV) {
1254 dev->dev_task_attr_type = SAM_TASK_ATTR_PASSTHROUGH;
1255 return;
1258 dev->dev_task_attr_type = SAM_TASK_ATTR_EMULATED;
1259 pr_debug("%s: Using SAM_TASK_ATTR_EMULATED for SPC: 0x%02x"
1260 " device\n", dev->transport->name,
1261 dev->transport->get_device_rev(dev));
1264 static void scsi_dump_inquiry(struct se_device *dev)
1266 struct t10_wwn *wwn = &dev->se_sub_dev->t10_wwn;
1267 int i, device_type;
1269 * Print Linux/SCSI style INQUIRY formatting to the kernel ring buffer
1271 pr_debug(" Vendor: ");
1272 for (i = 0; i < 8; i++)
1273 if (wwn->vendor[i] >= 0x20)
1274 pr_debug("%c", wwn->vendor[i]);
1275 else
1276 pr_debug(" ");
1278 pr_debug(" Model: ");
1279 for (i = 0; i < 16; i++)
1280 if (wwn->model[i] >= 0x20)
1281 pr_debug("%c", wwn->model[i]);
1282 else
1283 pr_debug(" ");
1285 pr_debug(" Revision: ");
1286 for (i = 0; i < 4; i++)
1287 if (wwn->revision[i] >= 0x20)
1288 pr_debug("%c", wwn->revision[i]);
1289 else
1290 pr_debug(" ");
1292 pr_debug("\n");
1294 device_type = dev->transport->get_device_type(dev);
1295 pr_debug(" Type: %s ", scsi_device_type(device_type));
1296 pr_debug(" ANSI SCSI revision: %02x\n",
1297 dev->transport->get_device_rev(dev));
1300 struct se_device *transport_add_device_to_core_hba(
1301 struct se_hba *hba,
1302 struct se_subsystem_api *transport,
1303 struct se_subsystem_dev *se_dev,
1304 u32 device_flags,
1305 void *transport_dev,
1306 struct se_dev_limits *dev_limits,
1307 const char *inquiry_prod,
1308 const char *inquiry_rev)
1310 int force_pt;
1311 struct se_device *dev;
1313 dev = kzalloc(sizeof(struct se_device), GFP_KERNEL);
1314 if (!dev) {
1315 pr_err("Unable to allocate memory for se_dev_t\n");
1316 return NULL;
1319 transport_init_queue_obj(&dev->dev_queue_obj);
1320 dev->dev_flags = device_flags;
1321 dev->dev_status |= TRANSPORT_DEVICE_DEACTIVATED;
1322 dev->dev_ptr = transport_dev;
1323 dev->se_hba = hba;
1324 dev->se_sub_dev = se_dev;
1325 dev->transport = transport;
1326 atomic_set(&dev->active_cmds, 0);
1327 INIT_LIST_HEAD(&dev->dev_list);
1328 INIT_LIST_HEAD(&dev->dev_sep_list);
1329 INIT_LIST_HEAD(&dev->dev_tmr_list);
1330 INIT_LIST_HEAD(&dev->execute_task_list);
1331 INIT_LIST_HEAD(&dev->delayed_cmd_list);
1332 INIT_LIST_HEAD(&dev->ordered_cmd_list);
1333 INIT_LIST_HEAD(&dev->state_task_list);
1334 INIT_LIST_HEAD(&dev->qf_cmd_list);
1335 spin_lock_init(&dev->execute_task_lock);
1336 spin_lock_init(&dev->delayed_cmd_lock);
1337 spin_lock_init(&dev->ordered_cmd_lock);
1338 spin_lock_init(&dev->state_task_lock);
1339 spin_lock_init(&dev->dev_alua_lock);
1340 spin_lock_init(&dev->dev_reservation_lock);
1341 spin_lock_init(&dev->dev_status_lock);
1342 spin_lock_init(&dev->dev_status_thr_lock);
1343 spin_lock_init(&dev->se_port_lock);
1344 spin_lock_init(&dev->se_tmr_lock);
1345 spin_lock_init(&dev->qf_cmd_lock);
1347 dev->queue_depth = dev_limits->queue_depth;
1348 atomic_set(&dev->depth_left, dev->queue_depth);
1349 atomic_set(&dev->dev_ordered_id, 0);
1351 se_dev_set_default_attribs(dev, dev_limits);
1353 dev->dev_index = scsi_get_new_index(SCSI_DEVICE_INDEX);
1354 dev->creation_time = get_jiffies_64();
1355 spin_lock_init(&dev->stats_lock);
1357 spin_lock(&hba->device_lock);
1358 list_add_tail(&dev->dev_list, &hba->hba_dev_list);
1359 hba->dev_count++;
1360 spin_unlock(&hba->device_lock);
1362 * Setup the SAM Task Attribute emulation for struct se_device
1364 core_setup_task_attr_emulation(dev);
1366 * Force PR and ALUA passthrough emulation with internal object use.
1368 force_pt = (hba->hba_flags & HBA_FLAGS_INTERNAL_USE);
1370 * Setup the Reservations infrastructure for struct se_device
1372 core_setup_reservations(dev, force_pt);
1374 * Setup the Asymmetric Logical Unit Assignment for struct se_device
1376 if (core_setup_alua(dev, force_pt) < 0)
1377 goto out;
1380 * Startup the struct se_device processing thread
1382 dev->process_thread = kthread_run(transport_processing_thread, dev,
1383 "LIO_%s", dev->transport->name);
1384 if (IS_ERR(dev->process_thread)) {
1385 pr_err("Unable to create kthread: LIO_%s\n",
1386 dev->transport->name);
1387 goto out;
1390 * Setup work_queue for QUEUE_FULL
1392 INIT_WORK(&dev->qf_work_queue, target_qf_do_work);
1394 * Preload the initial INQUIRY const values if we are doing
1395 * anything virtual (IBLOCK, FILEIO, RAMDISK), but not for TCM/pSCSI
1396 * passthrough because this is being provided by the backend LLD.
1397 * This is required so that transport_get_inquiry() copies these
1398 * originals once back into DEV_T10_WWN(dev) for the virtual device
1399 * setup.
1401 if (dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
1402 if (!inquiry_prod || !inquiry_rev) {
1403 pr_err("All non TCM/pSCSI plugins require"
1404 " INQUIRY consts\n");
1405 goto out;
1408 strncpy(&dev->se_sub_dev->t10_wwn.vendor[0], "LIO-ORG", 8);
1409 strncpy(&dev->se_sub_dev->t10_wwn.model[0], inquiry_prod, 16);
1410 strncpy(&dev->se_sub_dev->t10_wwn.revision[0], inquiry_rev, 4);
1412 scsi_dump_inquiry(dev);
1414 return dev;
1415 out:
1416 kthread_stop(dev->process_thread);
1418 spin_lock(&hba->device_lock);
1419 list_del(&dev->dev_list);
1420 hba->dev_count--;
1421 spin_unlock(&hba->device_lock);
1423 se_release_vpd_for_dev(dev);
1425 kfree(dev);
1427 return NULL;
1429 EXPORT_SYMBOL(transport_add_device_to_core_hba);
1431 /* transport_generic_prepare_cdb():
1433 * Since the Initiator sees iSCSI devices as LUNs, the SCSI CDB will
1434 * contain the iSCSI LUN in bits 7-5 of byte 1 as per SAM-2.
1435 * The point of this is since we are mapping iSCSI LUNs to
1436 * SCSI Target IDs having a non-zero LUN in the CDB will throw the
1437 * devices and HBAs for a loop.
1439 static inline void transport_generic_prepare_cdb(
1440 unsigned char *cdb)
1442 switch (cdb[0]) {
1443 case READ_10: /* SBC - RDProtect */
1444 case READ_12: /* SBC - RDProtect */
1445 case READ_16: /* SBC - RDProtect */
1446 case SEND_DIAGNOSTIC: /* SPC - SELF-TEST Code */
1447 case VERIFY: /* SBC - VRProtect */
1448 case VERIFY_16: /* SBC - VRProtect */
1449 case WRITE_VERIFY: /* SBC - VRProtect */
1450 case WRITE_VERIFY_12: /* SBC - VRProtect */
1451 break;
1452 default:
1453 cdb[1] &= 0x1f; /* clear logical unit number */
1454 break;
1458 static struct se_task *
1459 transport_generic_get_task(struct se_cmd *cmd,
1460 enum dma_data_direction data_direction)
1462 struct se_task *task;
1463 struct se_device *dev = cmd->se_dev;
1465 task = dev->transport->alloc_task(cmd->t_task_cdb);
1466 if (!task) {
1467 pr_err("Unable to allocate struct se_task\n");
1468 return NULL;
1471 INIT_LIST_HEAD(&task->t_list);
1472 INIT_LIST_HEAD(&task->t_execute_list);
1473 INIT_LIST_HEAD(&task->t_state_list);
1474 init_completion(&task->task_stop_comp);
1475 task->task_se_cmd = cmd;
1476 task->task_data_direction = data_direction;
1478 return task;
1481 static int transport_generic_cmd_sequencer(struct se_cmd *, unsigned char *);
1484 * Used by fabric modules containing a local struct se_cmd within their
1485 * fabric dependent per I/O descriptor.
1487 void transport_init_se_cmd(
1488 struct se_cmd *cmd,
1489 struct target_core_fabric_ops *tfo,
1490 struct se_session *se_sess,
1491 u32 data_length,
1492 int data_direction,
1493 int task_attr,
1494 unsigned char *sense_buffer)
1496 INIT_LIST_HEAD(&cmd->se_lun_node);
1497 INIT_LIST_HEAD(&cmd->se_delayed_node);
1498 INIT_LIST_HEAD(&cmd->se_ordered_node);
1499 INIT_LIST_HEAD(&cmd->se_qf_node);
1500 INIT_LIST_HEAD(&cmd->se_queue_node);
1502 INIT_LIST_HEAD(&cmd->t_task_list);
1503 init_completion(&cmd->transport_lun_fe_stop_comp);
1504 init_completion(&cmd->transport_lun_stop_comp);
1505 init_completion(&cmd->t_transport_stop_comp);
1506 spin_lock_init(&cmd->t_state_lock);
1507 atomic_set(&cmd->transport_dev_active, 1);
1509 cmd->se_tfo = tfo;
1510 cmd->se_sess = se_sess;
1511 cmd->data_length = data_length;
1512 cmd->data_direction = data_direction;
1513 cmd->sam_task_attr = task_attr;
1514 cmd->sense_buffer = sense_buffer;
1516 EXPORT_SYMBOL(transport_init_se_cmd);
1518 static int transport_check_alloc_task_attr(struct se_cmd *cmd)
1521 * Check if SAM Task Attribute emulation is enabled for this
1522 * struct se_device storage object
1524 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1525 return 0;
1527 if (cmd->sam_task_attr == MSG_ACA_TAG) {
1528 pr_debug("SAM Task Attribute ACA"
1529 " emulation is not supported\n");
1530 return -EINVAL;
1533 * Used to determine when ORDERED commands should go from
1534 * Dormant to Active status.
1536 cmd->se_ordered_id = atomic_inc_return(&cmd->se_dev->dev_ordered_id);
1537 smp_mb__after_atomic_inc();
1538 pr_debug("Allocated se_ordered_id: %u for Task Attr: 0x%02x on %s\n",
1539 cmd->se_ordered_id, cmd->sam_task_attr,
1540 cmd->se_dev->transport->name);
1541 return 0;
1544 /* transport_generic_allocate_tasks():
1546 * Called from fabric RX Thread.
1548 int transport_generic_allocate_tasks(
1549 struct se_cmd *cmd,
1550 unsigned char *cdb)
1552 int ret;
1554 transport_generic_prepare_cdb(cdb);
1556 * Ensure that the received CDB is less than the max (252 + 8) bytes
1557 * for VARIABLE_LENGTH_CMD
1559 if (scsi_command_size(cdb) > SCSI_MAX_VARLEN_CDB_SIZE) {
1560 pr_err("Received SCSI CDB with command_size: %d that"
1561 " exceeds SCSI_MAX_VARLEN_CDB_SIZE: %d\n",
1562 scsi_command_size(cdb), SCSI_MAX_VARLEN_CDB_SIZE);
1563 return -EINVAL;
1566 * If the received CDB is larger than TCM_MAX_COMMAND_SIZE,
1567 * allocate the additional extended CDB buffer now.. Otherwise
1568 * setup the pointer from __t_task_cdb to t_task_cdb.
1570 if (scsi_command_size(cdb) > sizeof(cmd->__t_task_cdb)) {
1571 cmd->t_task_cdb = kzalloc(scsi_command_size(cdb),
1572 GFP_KERNEL);
1573 if (!cmd->t_task_cdb) {
1574 pr_err("Unable to allocate cmd->t_task_cdb"
1575 " %u > sizeof(cmd->__t_task_cdb): %lu ops\n",
1576 scsi_command_size(cdb),
1577 (unsigned long)sizeof(cmd->__t_task_cdb));
1578 return -ENOMEM;
1580 } else
1581 cmd->t_task_cdb = &cmd->__t_task_cdb[0];
1583 * Copy the original CDB into cmd->
1585 memcpy(cmd->t_task_cdb, cdb, scsi_command_size(cdb));
1587 * Setup the received CDB based on SCSI defined opcodes and
1588 * perform unit attention, persistent reservations and ALUA
1589 * checks for virtual device backends. The cmd->t_task_cdb
1590 * pointer is expected to be setup before we reach this point.
1592 ret = transport_generic_cmd_sequencer(cmd, cdb);
1593 if (ret < 0)
1594 return ret;
1596 * Check for SAM Task Attribute Emulation
1598 if (transport_check_alloc_task_attr(cmd) < 0) {
1599 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
1600 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1601 return -EINVAL;
1603 spin_lock(&cmd->se_lun->lun_sep_lock);
1604 if (cmd->se_lun->lun_sep)
1605 cmd->se_lun->lun_sep->sep_stats.cmd_pdus++;
1606 spin_unlock(&cmd->se_lun->lun_sep_lock);
1607 return 0;
1609 EXPORT_SYMBOL(transport_generic_allocate_tasks);
1612 * Used by fabric module frontends to queue tasks directly.
1613 * Many only be used from process context only
1615 int transport_handle_cdb_direct(
1616 struct se_cmd *cmd)
1618 int ret;
1620 if (!cmd->se_lun) {
1621 dump_stack();
1622 pr_err("cmd->se_lun is NULL\n");
1623 return -EINVAL;
1625 if (in_interrupt()) {
1626 dump_stack();
1627 pr_err("transport_generic_handle_cdb cannot be called"
1628 " from interrupt context\n");
1629 return -EINVAL;
1632 * Set TRANSPORT_NEW_CMD state and cmd->t_transport_active=1 following
1633 * transport_generic_handle_cdb*() -> transport_add_cmd_to_queue()
1634 * in existing usage to ensure that outstanding descriptors are handled
1635 * correctly during shutdown via transport_wait_for_tasks()
1637 * Also, we don't take cmd->t_state_lock here as we only expect
1638 * this to be called for initial descriptor submission.
1640 cmd->t_state = TRANSPORT_NEW_CMD;
1641 atomic_set(&cmd->t_transport_active, 1);
1643 * transport_generic_new_cmd() is already handling QUEUE_FULL,
1644 * so follow TRANSPORT_NEW_CMD processing thread context usage
1645 * and call transport_generic_request_failure() if necessary..
1647 ret = transport_generic_new_cmd(cmd);
1648 if (ret == -EAGAIN)
1649 return 0;
1650 else if (ret < 0) {
1651 cmd->transport_error_status = ret;
1652 transport_generic_request_failure(cmd, 0,
1653 (cmd->data_direction != DMA_TO_DEVICE));
1655 return 0;
1657 EXPORT_SYMBOL(transport_handle_cdb_direct);
1660 * Used by fabric module frontends defining a TFO->new_cmd_map() caller
1661 * to queue up a newly setup se_cmd w/ TRANSPORT_NEW_CMD_MAP in order to
1662 * complete setup in TCM process context w/ TFO->new_cmd_map().
1664 int transport_generic_handle_cdb_map(
1665 struct se_cmd *cmd)
1667 if (!cmd->se_lun) {
1668 dump_stack();
1669 pr_err("cmd->se_lun is NULL\n");
1670 return -EINVAL;
1673 transport_add_cmd_to_queue(cmd, TRANSPORT_NEW_CMD_MAP, false);
1674 return 0;
1676 EXPORT_SYMBOL(transport_generic_handle_cdb_map);
1678 /* transport_generic_handle_data():
1682 int transport_generic_handle_data(
1683 struct se_cmd *cmd)
1686 * For the software fabric case, then we assume the nexus is being
1687 * failed/shutdown when signals are pending from the kthread context
1688 * caller, so we return a failure. For the HW target mode case running
1689 * in interrupt code, the signal_pending() check is skipped.
1691 if (!in_interrupt() && signal_pending(current))
1692 return -EPERM;
1694 * If the received CDB has aleady been ABORTED by the generic
1695 * target engine, we now call transport_check_aborted_status()
1696 * to queue any delated TASK_ABORTED status for the received CDB to the
1697 * fabric module as we are expecting no further incoming DATA OUT
1698 * sequences at this point.
1700 if (transport_check_aborted_status(cmd, 1) != 0)
1701 return 0;
1703 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_WRITE, false);
1704 return 0;
1706 EXPORT_SYMBOL(transport_generic_handle_data);
1708 /* transport_generic_handle_tmr():
1712 int transport_generic_handle_tmr(
1713 struct se_cmd *cmd)
1715 transport_add_cmd_to_queue(cmd, TRANSPORT_PROCESS_TMR, false);
1716 return 0;
1718 EXPORT_SYMBOL(transport_generic_handle_tmr);
1720 void transport_generic_free_cmd_intr(
1721 struct se_cmd *cmd)
1723 transport_add_cmd_to_queue(cmd, TRANSPORT_FREE_CMD_INTR, false);
1725 EXPORT_SYMBOL(transport_generic_free_cmd_intr);
1728 * If the task is active, request it to be stopped and sleep until it
1729 * has completed.
1731 bool target_stop_task(struct se_task *task, unsigned long *flags)
1733 struct se_cmd *cmd = task->task_se_cmd;
1734 bool was_active = false;
1736 if (task->task_flags & TF_ACTIVE) {
1737 task->task_flags |= TF_REQUEST_STOP;
1738 spin_unlock_irqrestore(&cmd->t_state_lock, *flags);
1740 pr_debug("Task %p waiting to complete\n", task);
1741 wait_for_completion(&task->task_stop_comp);
1742 pr_debug("Task %p stopped successfully\n", task);
1744 spin_lock_irqsave(&cmd->t_state_lock, *flags);
1745 atomic_dec(&cmd->t_task_cdbs_left);
1746 task->task_flags &= ~(TF_ACTIVE | TF_REQUEST_STOP);
1747 was_active = true;
1750 return was_active;
1753 static int transport_stop_tasks_for_cmd(struct se_cmd *cmd)
1755 struct se_task *task, *task_tmp;
1756 unsigned long flags;
1757 int ret = 0;
1759 pr_debug("ITT[0x%08x] - Stopping tasks\n",
1760 cmd->se_tfo->get_task_tag(cmd));
1763 * No tasks remain in the execution queue
1765 spin_lock_irqsave(&cmd->t_state_lock, flags);
1766 list_for_each_entry_safe(task, task_tmp,
1767 &cmd->t_task_list, t_list) {
1768 pr_debug("Processing task %p\n", task);
1770 * If the struct se_task has not been sent and is not active,
1771 * remove the struct se_task from the execution queue.
1773 if (!(task->task_flags & (TF_ACTIVE | TF_SENT))) {
1774 spin_unlock_irqrestore(&cmd->t_state_lock,
1775 flags);
1776 transport_remove_task_from_execute_queue(task,
1777 cmd->se_dev);
1779 pr_debug("Task %p removed from execute queue\n", task);
1780 spin_lock_irqsave(&cmd->t_state_lock, flags);
1781 continue;
1784 if (!target_stop_task(task, &flags)) {
1785 pr_debug("Task %p - did nothing\n", task);
1786 ret++;
1789 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
1791 return ret;
1795 * Handle SAM-esque emulation for generic transport request failures.
1797 static void transport_generic_request_failure(
1798 struct se_cmd *cmd,
1799 int complete,
1800 int sc)
1802 int ret = 0;
1804 pr_debug("-----[ Storage Engine Exception for cmd: %p ITT: 0x%08x"
1805 " CDB: 0x%02x\n", cmd, cmd->se_tfo->get_task_tag(cmd),
1806 cmd->t_task_cdb[0]);
1807 pr_debug("-----[ i_state: %d t_state: %d transport_error_status: %d\n",
1808 cmd->se_tfo->get_cmd_state(cmd),
1809 cmd->t_state,
1810 cmd->transport_error_status);
1811 pr_debug("-----[ t_tasks: %d t_task_cdbs_left: %d"
1812 " t_task_cdbs_sent: %d t_task_cdbs_ex_left: %d --"
1813 " t_transport_active: %d t_transport_stop: %d"
1814 " t_transport_sent: %d\n", cmd->t_task_list_num,
1815 atomic_read(&cmd->t_task_cdbs_left),
1816 atomic_read(&cmd->t_task_cdbs_sent),
1817 atomic_read(&cmd->t_task_cdbs_ex_left),
1818 atomic_read(&cmd->t_transport_active),
1819 atomic_read(&cmd->t_transport_stop),
1820 atomic_read(&cmd->t_transport_sent));
1823 * For SAM Task Attribute emulation for failed struct se_cmd
1825 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
1826 transport_complete_task_attr(cmd);
1828 if (complete) {
1829 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
1832 switch (cmd->transport_error_status) {
1833 case PYX_TRANSPORT_UNKNOWN_SAM_OPCODE:
1834 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1835 break;
1836 case PYX_TRANSPORT_REQ_TOO_MANY_SECTORS:
1837 cmd->scsi_sense_reason = TCM_SECTOR_COUNT_TOO_MANY;
1838 break;
1839 case PYX_TRANSPORT_INVALID_CDB_FIELD:
1840 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
1841 break;
1842 case PYX_TRANSPORT_INVALID_PARAMETER_LIST:
1843 cmd->scsi_sense_reason = TCM_INVALID_PARAMETER_LIST;
1844 break;
1845 case PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES:
1846 if (!sc)
1847 transport_new_cmd_failure(cmd);
1849 * Currently for PYX_TRANSPORT_OUT_OF_MEMORY_RESOURCES,
1850 * we force this session to fall back to session
1851 * recovery.
1853 cmd->se_tfo->fall_back_to_erl0(cmd->se_sess);
1854 cmd->se_tfo->stop_session(cmd->se_sess, 0, 0);
1856 goto check_stop;
1857 case PYX_TRANSPORT_LU_COMM_FAILURE:
1858 case PYX_TRANSPORT_ILLEGAL_REQUEST:
1859 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
1860 break;
1861 case PYX_TRANSPORT_UNKNOWN_MODE_PAGE:
1862 cmd->scsi_sense_reason = TCM_UNKNOWN_MODE_PAGE;
1863 break;
1864 case PYX_TRANSPORT_WRITE_PROTECTED:
1865 cmd->scsi_sense_reason = TCM_WRITE_PROTECTED;
1866 break;
1867 case PYX_TRANSPORT_RESERVATION_CONFLICT:
1869 * No SENSE Data payload for this case, set SCSI Status
1870 * and queue the response to $FABRIC_MOD.
1872 * Uses linux/include/scsi/scsi.h SAM status codes defs
1874 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
1876 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
1877 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
1878 * CONFLICT STATUS.
1880 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
1882 if (cmd->se_sess &&
1883 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
1884 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
1885 cmd->orig_fe_lun, 0x2C,
1886 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
1888 ret = cmd->se_tfo->queue_status(cmd);
1889 if (ret == -EAGAIN)
1890 goto queue_full;
1891 goto check_stop;
1892 case PYX_TRANSPORT_USE_SENSE_REASON:
1894 * struct se_cmd->scsi_sense_reason already set
1896 break;
1897 default:
1898 pr_err("Unknown transport error for CDB 0x%02x: %d\n",
1899 cmd->t_task_cdb[0],
1900 cmd->transport_error_status);
1901 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
1902 break;
1905 * If a fabric does not define a cmd->se_tfo->new_cmd_map caller,
1906 * make the call to transport_send_check_condition_and_sense()
1907 * directly. Otherwise expect the fabric to make the call to
1908 * transport_send_check_condition_and_sense() after handling
1909 * possible unsoliticied write data payloads.
1911 if (!sc && !cmd->se_tfo->new_cmd_map)
1912 transport_new_cmd_failure(cmd);
1913 else {
1914 ret = transport_send_check_condition_and_sense(cmd,
1915 cmd->scsi_sense_reason, 0);
1916 if (ret == -EAGAIN)
1917 goto queue_full;
1920 check_stop:
1921 transport_lun_remove_cmd(cmd);
1922 if (!transport_cmd_check_stop_to_fabric(cmd))
1924 return;
1926 queue_full:
1927 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
1928 transport_handle_queue_full(cmd, cmd->se_dev);
1931 static inline u32 transport_lba_21(unsigned char *cdb)
1933 return ((cdb[1] & 0x1f) << 16) | (cdb[2] << 8) | cdb[3];
1936 static inline u32 transport_lba_32(unsigned char *cdb)
1938 return (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1941 static inline unsigned long long transport_lba_64(unsigned char *cdb)
1943 unsigned int __v1, __v2;
1945 __v1 = (cdb[2] << 24) | (cdb[3] << 16) | (cdb[4] << 8) | cdb[5];
1946 __v2 = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
1948 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1952 * For VARIABLE_LENGTH_CDB w/ 32 byte extended CDBs
1954 static inline unsigned long long transport_lba_64_ext(unsigned char *cdb)
1956 unsigned int __v1, __v2;
1958 __v1 = (cdb[12] << 24) | (cdb[13] << 16) | (cdb[14] << 8) | cdb[15];
1959 __v2 = (cdb[16] << 24) | (cdb[17] << 16) | (cdb[18] << 8) | cdb[19];
1961 return ((unsigned long long)__v2) | (unsigned long long)__v1 << 32;
1964 static void transport_set_supported_SAM_opcode(struct se_cmd *se_cmd)
1966 unsigned long flags;
1968 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
1969 se_cmd->se_cmd_flags |= SCF_SUPPORTED_SAM_OPCODE;
1970 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
1973 static inline int transport_tcq_window_closed(struct se_device *dev)
1975 if (dev->dev_tcq_window_closed++ <
1976 PYX_TRANSPORT_WINDOW_CLOSED_THRESHOLD) {
1977 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_SHORT);
1978 } else
1979 msleep(PYX_TRANSPORT_WINDOW_CLOSED_WAIT_LONG);
1981 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
1982 return 0;
1986 * Called from Fabric Module context from transport_execute_tasks()
1988 * The return of this function determins if the tasks from struct se_cmd
1989 * get added to the execution queue in transport_execute_tasks(),
1990 * or are added to the delayed or ordered lists here.
1992 static inline int transport_execute_task_attr(struct se_cmd *cmd)
1994 if (cmd->se_dev->dev_task_attr_type != SAM_TASK_ATTR_EMULATED)
1995 return 1;
1997 * Check for the existence of HEAD_OF_QUEUE, and if true return 1
1998 * to allow the passed struct se_cmd list of tasks to the front of the list.
2000 if (cmd->sam_task_attr == MSG_HEAD_TAG) {
2001 atomic_inc(&cmd->se_dev->dev_hoq_count);
2002 smp_mb__after_atomic_inc();
2003 pr_debug("Added HEAD_OF_QUEUE for CDB:"
2004 " 0x%02x, se_ordered_id: %u\n",
2005 cmd->t_task_cdb[0],
2006 cmd->se_ordered_id);
2007 return 1;
2008 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
2009 spin_lock(&cmd->se_dev->ordered_cmd_lock);
2010 list_add_tail(&cmd->se_ordered_node,
2011 &cmd->se_dev->ordered_cmd_list);
2012 spin_unlock(&cmd->se_dev->ordered_cmd_lock);
2014 atomic_inc(&cmd->se_dev->dev_ordered_sync);
2015 smp_mb__after_atomic_inc();
2017 pr_debug("Added ORDERED for CDB: 0x%02x to ordered"
2018 " list, se_ordered_id: %u\n",
2019 cmd->t_task_cdb[0],
2020 cmd->se_ordered_id);
2022 * Add ORDERED command to tail of execution queue if
2023 * no other older commands exist that need to be
2024 * completed first.
2026 if (!atomic_read(&cmd->se_dev->simple_cmds))
2027 return 1;
2028 } else {
2030 * For SIMPLE and UNTAGGED Task Attribute commands
2032 atomic_inc(&cmd->se_dev->simple_cmds);
2033 smp_mb__after_atomic_inc();
2036 * Otherwise if one or more outstanding ORDERED task attribute exist,
2037 * add the dormant task(s) built for the passed struct se_cmd to the
2038 * execution queue and become in Active state for this struct se_device.
2040 if (atomic_read(&cmd->se_dev->dev_ordered_sync) != 0) {
2042 * Otherwise, add cmd w/ tasks to delayed cmd queue that
2043 * will be drained upon completion of HEAD_OF_QUEUE task.
2045 spin_lock(&cmd->se_dev->delayed_cmd_lock);
2046 cmd->se_cmd_flags |= SCF_DELAYED_CMD_FROM_SAM_ATTR;
2047 list_add_tail(&cmd->se_delayed_node,
2048 &cmd->se_dev->delayed_cmd_list);
2049 spin_unlock(&cmd->se_dev->delayed_cmd_lock);
2051 pr_debug("Added CDB: 0x%02x Task Attr: 0x%02x to"
2052 " delayed CMD list, se_ordered_id: %u\n",
2053 cmd->t_task_cdb[0], cmd->sam_task_attr,
2054 cmd->se_ordered_id);
2056 * Return zero to let transport_execute_tasks() know
2057 * not to add the delayed tasks to the execution list.
2059 return 0;
2062 * Otherwise, no ORDERED task attributes exist..
2064 return 1;
2068 * Called from fabric module context in transport_generic_new_cmd() and
2069 * transport_generic_process_write()
2071 static int transport_execute_tasks(struct se_cmd *cmd)
2073 int add_tasks;
2075 if (se_dev_check_online(cmd->se_orig_obj_ptr) != 0) {
2076 cmd->transport_error_status = PYX_TRANSPORT_LU_COMM_FAILURE;
2077 transport_generic_request_failure(cmd, 0, 1);
2078 return 0;
2082 * Call transport_cmd_check_stop() to see if a fabric exception
2083 * has occurred that prevents execution.
2085 if (!transport_cmd_check_stop(cmd, 0, TRANSPORT_PROCESSING)) {
2087 * Check for SAM Task Attribute emulation and HEAD_OF_QUEUE
2088 * attribute for the tasks of the received struct se_cmd CDB
2090 add_tasks = transport_execute_task_attr(cmd);
2091 if (!add_tasks)
2092 goto execute_tasks;
2094 * This calls transport_add_tasks_from_cmd() to handle
2095 * HEAD_OF_QUEUE ordering for SAM Task Attribute emulation
2096 * (if enabled) in __transport_add_task_to_execute_queue() and
2097 * transport_add_task_check_sam_attr().
2099 transport_add_tasks_from_cmd(cmd);
2102 * Kick the execution queue for the cmd associated struct se_device
2103 * storage object.
2105 execute_tasks:
2106 __transport_execute_tasks(cmd->se_dev);
2107 return 0;
2111 * Called to check struct se_device tcq depth window, and once open pull struct se_task
2112 * from struct se_device->execute_task_list and
2114 * Called from transport_processing_thread()
2116 static int __transport_execute_tasks(struct se_device *dev)
2118 int error;
2119 struct se_cmd *cmd = NULL;
2120 struct se_task *task = NULL;
2121 unsigned long flags;
2124 * Check if there is enough room in the device and HBA queue to send
2125 * struct se_tasks to the selected transport.
2127 check_depth:
2128 if (!atomic_read(&dev->depth_left))
2129 return transport_tcq_window_closed(dev);
2131 dev->dev_tcq_window_closed = 0;
2133 spin_lock_irq(&dev->execute_task_lock);
2134 if (list_empty(&dev->execute_task_list)) {
2135 spin_unlock_irq(&dev->execute_task_lock);
2136 return 0;
2138 task = list_first_entry(&dev->execute_task_list,
2139 struct se_task, t_execute_list);
2140 __transport_remove_task_from_execute_queue(task, dev);
2141 spin_unlock_irq(&dev->execute_task_lock);
2143 atomic_dec(&dev->depth_left);
2145 cmd = task->task_se_cmd;
2147 spin_lock_irqsave(&cmd->t_state_lock, flags);
2148 task->task_flags |= (TF_ACTIVE | TF_SENT);
2149 atomic_inc(&cmd->t_task_cdbs_sent);
2151 if (atomic_read(&cmd->t_task_cdbs_sent) ==
2152 cmd->t_task_list_num)
2153 atomic_set(&cmd->t_transport_sent, 1);
2155 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2157 * The struct se_cmd->transport_emulate_cdb() function pointer is used
2158 * to grab REPORT_LUNS and other CDBs we want to handle before they hit the
2159 * struct se_subsystem_api->do_task() caller below.
2161 if (cmd->transport_emulate_cdb) {
2162 error = cmd->transport_emulate_cdb(cmd);
2163 if (error != 0) {
2164 cmd->transport_error_status = error;
2165 spin_lock_irqsave(&cmd->t_state_lock, flags);
2166 task->task_flags &= ~TF_ACTIVE;
2167 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2168 atomic_set(&cmd->t_transport_sent, 0);
2169 transport_stop_tasks_for_cmd(cmd);
2170 atomic_inc(&dev->depth_left);
2171 transport_generic_request_failure(cmd, 0, 1);
2172 goto check_depth;
2175 * Handle the successful completion for transport_emulate_cdb()
2176 * for synchronous operation, following SCF_EMULATE_CDB_ASYNC
2177 * Otherwise the caller is expected to complete the task with
2178 * proper status.
2180 if (!(cmd->se_cmd_flags & SCF_EMULATE_CDB_ASYNC)) {
2181 cmd->scsi_status = SAM_STAT_GOOD;
2182 task->task_scsi_status = GOOD;
2183 transport_complete_task(task, 1);
2185 } else {
2187 * Currently for all virtual TCM plugins including IBLOCK, FILEIO and
2188 * RAMDISK we use the internal transport_emulate_control_cdb() logic
2189 * with struct se_subsystem_api callers for the primary SPC-3 TYPE_DISK
2190 * LUN emulation code.
2192 * For TCM/pSCSI and all other SCF_SCSI_DATA_SG_IO_CDB I/O tasks we
2193 * call ->do_task() directly and let the underlying TCM subsystem plugin
2194 * code handle the CDB emulation.
2196 if ((dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) &&
2197 (!(task->task_se_cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB)))
2198 error = transport_emulate_control_cdb(task);
2199 else
2200 error = dev->transport->do_task(task);
2202 if (error != 0) {
2203 cmd->transport_error_status = error;
2204 spin_lock_irqsave(&cmd->t_state_lock, flags);
2205 task->task_flags &= ~TF_ACTIVE;
2206 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2207 atomic_set(&cmd->t_transport_sent, 0);
2208 transport_stop_tasks_for_cmd(cmd);
2209 atomic_inc(&dev->depth_left);
2210 transport_generic_request_failure(cmd, 0, 1);
2214 goto check_depth;
2216 return 0;
2219 void transport_new_cmd_failure(struct se_cmd *se_cmd)
2221 unsigned long flags;
2223 * Any unsolicited data will get dumped for failed command inside of
2224 * the fabric plugin
2226 spin_lock_irqsave(&se_cmd->t_state_lock, flags);
2227 se_cmd->se_cmd_flags |= SCF_SE_CMD_FAILED;
2228 se_cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2229 spin_unlock_irqrestore(&se_cmd->t_state_lock, flags);
2232 static inline u32 transport_get_sectors_6(
2233 unsigned char *cdb,
2234 struct se_cmd *cmd,
2235 int *ret)
2237 struct se_device *dev = cmd->se_dev;
2240 * Assume TYPE_DISK for non struct se_device objects.
2241 * Use 8-bit sector value.
2243 if (!dev)
2244 goto type_disk;
2247 * Use 24-bit allocation length for TYPE_TAPE.
2249 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2250 return (u32)(cdb[2] << 16) + (cdb[3] << 8) + cdb[4];
2253 * Everything else assume TYPE_DISK Sector CDB location.
2254 * Use 8-bit sector value.
2256 type_disk:
2257 return (u32)cdb[4];
2260 static inline u32 transport_get_sectors_10(
2261 unsigned char *cdb,
2262 struct se_cmd *cmd,
2263 int *ret)
2265 struct se_device *dev = cmd->se_dev;
2268 * Assume TYPE_DISK for non struct se_device objects.
2269 * Use 16-bit sector value.
2271 if (!dev)
2272 goto type_disk;
2275 * XXX_10 is not defined in SSC, throw an exception
2277 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2278 *ret = -EINVAL;
2279 return 0;
2283 * Everything else assume TYPE_DISK Sector CDB location.
2284 * Use 16-bit sector value.
2286 type_disk:
2287 return (u32)(cdb[7] << 8) + cdb[8];
2290 static inline u32 transport_get_sectors_12(
2291 unsigned char *cdb,
2292 struct se_cmd *cmd,
2293 int *ret)
2295 struct se_device *dev = cmd->se_dev;
2298 * Assume TYPE_DISK for non struct se_device objects.
2299 * Use 32-bit sector value.
2301 if (!dev)
2302 goto type_disk;
2305 * XXX_12 is not defined in SSC, throw an exception
2307 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2308 *ret = -EINVAL;
2309 return 0;
2313 * Everything else assume TYPE_DISK Sector CDB location.
2314 * Use 32-bit sector value.
2316 type_disk:
2317 return (u32)(cdb[6] << 24) + (cdb[7] << 16) + (cdb[8] << 8) + cdb[9];
2320 static inline u32 transport_get_sectors_16(
2321 unsigned char *cdb,
2322 struct se_cmd *cmd,
2323 int *ret)
2325 struct se_device *dev = cmd->se_dev;
2328 * Assume TYPE_DISK for non struct se_device objects.
2329 * Use 32-bit sector value.
2331 if (!dev)
2332 goto type_disk;
2335 * Use 24-bit allocation length for TYPE_TAPE.
2337 if (dev->transport->get_device_type(dev) == TYPE_TAPE)
2338 return (u32)(cdb[12] << 16) + (cdb[13] << 8) + cdb[14];
2340 type_disk:
2341 return (u32)(cdb[10] << 24) + (cdb[11] << 16) +
2342 (cdb[12] << 8) + cdb[13];
2346 * Used for VARIABLE_LENGTH_CDB WRITE_32 and READ_32 variants
2348 static inline u32 transport_get_sectors_32(
2349 unsigned char *cdb,
2350 struct se_cmd *cmd,
2351 int *ret)
2354 * Assume TYPE_DISK for non struct se_device objects.
2355 * Use 32-bit sector value.
2357 return (u32)(cdb[28] << 24) + (cdb[29] << 16) +
2358 (cdb[30] << 8) + cdb[31];
2362 static inline u32 transport_get_size(
2363 u32 sectors,
2364 unsigned char *cdb,
2365 struct se_cmd *cmd)
2367 struct se_device *dev = cmd->se_dev;
2369 if (dev->transport->get_device_type(dev) == TYPE_TAPE) {
2370 if (cdb[1] & 1) { /* sectors */
2371 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2372 } else /* bytes */
2373 return sectors;
2375 #if 0
2376 pr_debug("Returning block_size: %u, sectors: %u == %u for"
2377 " %s object\n", dev->se_sub_dev->se_dev_attrib.block_size, sectors,
2378 dev->se_sub_dev->se_dev_attrib.block_size * sectors,
2379 dev->transport->name);
2380 #endif
2381 return dev->se_sub_dev->se_dev_attrib.block_size * sectors;
2384 static void transport_xor_callback(struct se_cmd *cmd)
2386 unsigned char *buf, *addr;
2387 struct scatterlist *sg;
2388 unsigned int offset;
2389 int i;
2390 int count;
2392 * From sbc3r22.pdf section 5.48 XDWRITEREAD (10) command
2394 * 1) read the specified logical block(s);
2395 * 2) transfer logical blocks from the data-out buffer;
2396 * 3) XOR the logical blocks transferred from the data-out buffer with
2397 * the logical blocks read, storing the resulting XOR data in a buffer;
2398 * 4) if the DISABLE WRITE bit is set to zero, then write the logical
2399 * blocks transferred from the data-out buffer; and
2400 * 5) transfer the resulting XOR data to the data-in buffer.
2402 buf = kmalloc(cmd->data_length, GFP_KERNEL);
2403 if (!buf) {
2404 pr_err("Unable to allocate xor_callback buf\n");
2405 return;
2408 * Copy the scatterlist WRITE buffer located at cmd->t_data_sg
2409 * into the locally allocated *buf
2411 sg_copy_to_buffer(cmd->t_data_sg,
2412 cmd->t_data_nents,
2413 buf,
2414 cmd->data_length);
2417 * Now perform the XOR against the BIDI read memory located at
2418 * cmd->t_mem_bidi_list
2421 offset = 0;
2422 for_each_sg(cmd->t_bidi_data_sg, sg, cmd->t_bidi_data_nents, count) {
2423 addr = kmap_atomic(sg_page(sg), KM_USER0);
2424 if (!addr)
2425 goto out;
2427 for (i = 0; i < sg->length; i++)
2428 *(addr + sg->offset + i) ^= *(buf + offset + i);
2430 offset += sg->length;
2431 kunmap_atomic(addr, KM_USER0);
2434 out:
2435 kfree(buf);
2439 * Used to obtain Sense Data from underlying Linux/SCSI struct scsi_cmnd
2441 static int transport_get_sense_data(struct se_cmd *cmd)
2443 unsigned char *buffer = cmd->sense_buffer, *sense_buffer = NULL;
2444 struct se_device *dev = cmd->se_dev;
2445 struct se_task *task = NULL, *task_tmp;
2446 unsigned long flags;
2447 u32 offset = 0;
2449 WARN_ON(!cmd->se_lun);
2451 if (!dev)
2452 return 0;
2454 spin_lock_irqsave(&cmd->t_state_lock, flags);
2455 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
2456 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2457 return 0;
2460 list_for_each_entry_safe(task, task_tmp,
2461 &cmd->t_task_list, t_list) {
2462 if (!task->task_sense)
2463 continue;
2465 if (!dev->transport->get_sense_buffer) {
2466 pr_err("dev->transport->get_sense_buffer"
2467 " is NULL\n");
2468 continue;
2471 sense_buffer = dev->transport->get_sense_buffer(task);
2472 if (!sense_buffer) {
2473 pr_err("ITT[0x%08x]_TASK[%p]: Unable to locate"
2474 " sense buffer for task with sense\n",
2475 cmd->se_tfo->get_task_tag(cmd), task);
2476 continue;
2478 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2480 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
2481 TRANSPORT_SENSE_BUFFER);
2483 memcpy(&buffer[offset], sense_buffer,
2484 TRANSPORT_SENSE_BUFFER);
2485 cmd->scsi_status = task->task_scsi_status;
2486 /* Automatically padded */
2487 cmd->scsi_sense_length =
2488 (TRANSPORT_SENSE_BUFFER + offset);
2490 pr_debug("HBA_[%u]_PLUG[%s]: Set SAM STATUS: 0x%02x"
2491 " and sense\n",
2492 dev->se_hba->hba_id, dev->transport->name,
2493 cmd->scsi_status);
2494 return 0;
2496 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
2498 return -1;
2501 static int
2502 transport_handle_reservation_conflict(struct se_cmd *cmd)
2504 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2505 cmd->se_cmd_flags |= SCF_SCSI_RESERVATION_CONFLICT;
2506 cmd->scsi_status = SAM_STAT_RESERVATION_CONFLICT;
2508 * For UA Interlock Code 11b, a RESERVATION CONFLICT will
2509 * establish a UNIT ATTENTION with PREVIOUS RESERVATION
2510 * CONFLICT STATUS.
2512 * See spc4r17, section 7.4.6 Control Mode Page, Table 349
2514 if (cmd->se_sess &&
2515 cmd->se_dev->se_sub_dev->se_dev_attrib.emulate_ua_intlck_ctrl == 2)
2516 core_scsi3_ua_allocate(cmd->se_sess->se_node_acl,
2517 cmd->orig_fe_lun, 0x2C,
2518 ASCQ_2CH_PREVIOUS_RESERVATION_CONFLICT_STATUS);
2519 return -EINVAL;
2522 static inline long long transport_dev_end_lba(struct se_device *dev)
2524 return dev->transport->get_blocks(dev) + 1;
2527 static int transport_cmd_get_valid_sectors(struct se_cmd *cmd)
2529 struct se_device *dev = cmd->se_dev;
2530 u32 sectors;
2532 if (dev->transport->get_device_type(dev) != TYPE_DISK)
2533 return 0;
2535 sectors = (cmd->data_length / dev->se_sub_dev->se_dev_attrib.block_size);
2537 if ((cmd->t_task_lba + sectors) > transport_dev_end_lba(dev)) {
2538 pr_err("LBA: %llu Sectors: %u exceeds"
2539 " transport_dev_end_lba(): %llu\n",
2540 cmd->t_task_lba, sectors,
2541 transport_dev_end_lba(dev));
2542 return -EINVAL;
2545 return 0;
2548 static int target_check_write_same_discard(unsigned char *flags, struct se_device *dev)
2551 * Determine if the received WRITE_SAME is used to for direct
2552 * passthrough into Linux/SCSI with struct request via TCM/pSCSI
2553 * or we are signaling the use of internal WRITE_SAME + UNMAP=1
2554 * emulation for -> Linux/BLOCK disbard with TCM/IBLOCK code.
2556 int passthrough = (dev->transport->transport_type ==
2557 TRANSPORT_PLUGIN_PHBA_PDEV);
2559 if (!passthrough) {
2560 if ((flags[0] & 0x04) || (flags[0] & 0x02)) {
2561 pr_err("WRITE_SAME PBDATA and LBDATA"
2562 " bits not supported for Block Discard"
2563 " Emulation\n");
2564 return -ENOSYS;
2567 * Currently for the emulated case we only accept
2568 * tpws with the UNMAP=1 bit set.
2570 if (!(flags[0] & 0x08)) {
2571 pr_err("WRITE_SAME w/o UNMAP bit not"
2572 " supported for Block Discard Emulation\n");
2573 return -ENOSYS;
2577 return 0;
2580 /* transport_generic_cmd_sequencer():
2582 * Generic Command Sequencer that should work for most DAS transport
2583 * drivers.
2585 * Called from transport_generic_allocate_tasks() in the $FABRIC_MOD
2586 * RX Thread.
2588 * FIXME: Need to support other SCSI OPCODES where as well.
2590 static int transport_generic_cmd_sequencer(
2591 struct se_cmd *cmd,
2592 unsigned char *cdb)
2594 struct se_device *dev = cmd->se_dev;
2595 struct se_subsystem_dev *su_dev = dev->se_sub_dev;
2596 int ret = 0, sector_ret = 0, passthrough;
2597 u32 sectors = 0, size = 0, pr_reg_type = 0;
2598 u16 service_action;
2599 u8 alua_ascq = 0;
2601 * Check for an existing UNIT ATTENTION condition
2603 if (core_scsi3_ua_check(cmd, cdb) < 0) {
2604 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2605 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_UNIT_ATTENTION;
2606 return -EINVAL;
2609 * Check status of Asymmetric Logical Unit Assignment port
2611 ret = su_dev->t10_alua.alua_state_check(cmd, cdb, &alua_ascq);
2612 if (ret != 0) {
2614 * Set SCSI additional sense code (ASC) to 'LUN Not Accessible';
2615 * The ALUA additional sense code qualifier (ASCQ) is determined
2616 * by the ALUA primary or secondary access state..
2618 if (ret > 0) {
2619 #if 0
2620 pr_debug("[%s]: ALUA TG Port not available,"
2621 " SenseKey: NOT_READY, ASC/ASCQ: 0x04/0x%02x\n",
2622 cmd->se_tfo->get_fabric_name(), alua_ascq);
2623 #endif
2624 transport_set_sense_codes(cmd, 0x04, alua_ascq);
2625 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
2626 cmd->scsi_sense_reason = TCM_CHECK_CONDITION_NOT_READY;
2627 return -EINVAL;
2629 goto out_invalid_cdb_field;
2632 * Check status for SPC-3 Persistent Reservations
2634 if (su_dev->t10_pr.pr_ops.t10_reservation_check(cmd, &pr_reg_type) != 0) {
2635 if (su_dev->t10_pr.pr_ops.t10_seq_non_holder(
2636 cmd, cdb, pr_reg_type) != 0)
2637 return transport_handle_reservation_conflict(cmd);
2639 * This means the CDB is allowed for the SCSI Initiator port
2640 * when said port is *NOT* holding the legacy SPC-2 or
2641 * SPC-3 Persistent Reservation.
2645 switch (cdb[0]) {
2646 case READ_6:
2647 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2648 if (sector_ret)
2649 goto out_unsupported_cdb;
2650 size = transport_get_size(sectors, cdb, cmd);
2651 cmd->t_task_lba = transport_lba_21(cdb);
2652 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2653 break;
2654 case READ_10:
2655 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2656 if (sector_ret)
2657 goto out_unsupported_cdb;
2658 size = transport_get_size(sectors, cdb, cmd);
2659 cmd->t_task_lba = transport_lba_32(cdb);
2660 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2661 break;
2662 case READ_12:
2663 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2664 if (sector_ret)
2665 goto out_unsupported_cdb;
2666 size = transport_get_size(sectors, cdb, cmd);
2667 cmd->t_task_lba = transport_lba_32(cdb);
2668 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2669 break;
2670 case READ_16:
2671 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2672 if (sector_ret)
2673 goto out_unsupported_cdb;
2674 size = transport_get_size(sectors, cdb, cmd);
2675 cmd->t_task_lba = transport_lba_64(cdb);
2676 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2677 break;
2678 case WRITE_6:
2679 sectors = transport_get_sectors_6(cdb, cmd, &sector_ret);
2680 if (sector_ret)
2681 goto out_unsupported_cdb;
2682 size = transport_get_size(sectors, cdb, cmd);
2683 cmd->t_task_lba = transport_lba_21(cdb);
2684 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2685 break;
2686 case WRITE_10:
2687 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2688 if (sector_ret)
2689 goto out_unsupported_cdb;
2690 size = transport_get_size(sectors, cdb, cmd);
2691 cmd->t_task_lba = transport_lba_32(cdb);
2692 cmd->t_tasks_fua = (cdb[1] & 0x8);
2693 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2694 break;
2695 case WRITE_12:
2696 sectors = transport_get_sectors_12(cdb, cmd, &sector_ret);
2697 if (sector_ret)
2698 goto out_unsupported_cdb;
2699 size = transport_get_size(sectors, cdb, cmd);
2700 cmd->t_task_lba = transport_lba_32(cdb);
2701 cmd->t_tasks_fua = (cdb[1] & 0x8);
2702 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2703 break;
2704 case WRITE_16:
2705 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2706 if (sector_ret)
2707 goto out_unsupported_cdb;
2708 size = transport_get_size(sectors, cdb, cmd);
2709 cmd->t_task_lba = transport_lba_64(cdb);
2710 cmd->t_tasks_fua = (cdb[1] & 0x8);
2711 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2712 break;
2713 case XDWRITEREAD_10:
2714 if ((cmd->data_direction != DMA_TO_DEVICE) ||
2715 !(cmd->t_tasks_bidi))
2716 goto out_invalid_cdb_field;
2717 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2718 if (sector_ret)
2719 goto out_unsupported_cdb;
2720 size = transport_get_size(sectors, cdb, cmd);
2721 cmd->t_task_lba = transport_lba_32(cdb);
2722 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2724 if (dev->transport->transport_type ==
2725 TRANSPORT_PLUGIN_PHBA_PDEV)
2726 goto out_unsupported_cdb;
2728 * Setup BIDI XOR callback to be run after I/O completion.
2730 cmd->transport_complete_callback = &transport_xor_callback;
2731 cmd->t_tasks_fua = (cdb[1] & 0x8);
2732 break;
2733 case VARIABLE_LENGTH_CMD:
2734 service_action = get_unaligned_be16(&cdb[8]);
2736 * Determine if this is TCM/PSCSI device and we should disable
2737 * internal emulation for this CDB.
2739 passthrough = (dev->transport->transport_type ==
2740 TRANSPORT_PLUGIN_PHBA_PDEV);
2742 switch (service_action) {
2743 case XDWRITEREAD_32:
2744 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2745 if (sector_ret)
2746 goto out_unsupported_cdb;
2747 size = transport_get_size(sectors, cdb, cmd);
2749 * Use WRITE_32 and READ_32 opcodes for the emulated
2750 * XDWRITE_READ_32 logic.
2752 cmd->t_task_lba = transport_lba_64_ext(cdb);
2753 cmd->se_cmd_flags |= SCF_SCSI_DATA_SG_IO_CDB;
2755 if (passthrough)
2756 goto out_unsupported_cdb;
2758 * Setup BIDI XOR callback to be run during after I/O
2759 * completion.
2761 cmd->transport_complete_callback = &transport_xor_callback;
2762 cmd->t_tasks_fua = (cdb[10] & 0x8);
2763 break;
2764 case WRITE_SAME_32:
2765 sectors = transport_get_sectors_32(cdb, cmd, &sector_ret);
2766 if (sector_ret)
2767 goto out_unsupported_cdb;
2769 if (sectors)
2770 size = transport_get_size(1, cdb, cmd);
2771 else {
2772 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not"
2773 " supported\n");
2774 goto out_invalid_cdb_field;
2777 cmd->t_task_lba = get_unaligned_be64(&cdb[12]);
2778 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2780 if (target_check_write_same_discard(&cdb[10], dev) < 0)
2781 goto out_invalid_cdb_field;
2783 break;
2784 default:
2785 pr_err("VARIABLE_LENGTH_CMD service action"
2786 " 0x%04x not supported\n", service_action);
2787 goto out_unsupported_cdb;
2789 break;
2790 case MAINTENANCE_IN:
2791 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2792 /* MAINTENANCE_IN from SCC-2 */
2794 * Check for emulated MI_REPORT_TARGET_PGS.
2796 if (cdb[1] == MI_REPORT_TARGET_PGS) {
2797 cmd->transport_emulate_cdb =
2798 (su_dev->t10_alua.alua_type ==
2799 SPC3_ALUA_EMULATED) ?
2800 core_emulate_report_target_port_groups :
2801 NULL;
2803 size = (cdb[6] << 24) | (cdb[7] << 16) |
2804 (cdb[8] << 8) | cdb[9];
2805 } else {
2806 /* GPCMD_SEND_KEY from multi media commands */
2807 size = (cdb[8] << 8) + cdb[9];
2809 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2810 break;
2811 case MODE_SELECT:
2812 size = cdb[4];
2813 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2814 break;
2815 case MODE_SELECT_10:
2816 size = (cdb[7] << 8) + cdb[8];
2817 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2818 break;
2819 case MODE_SENSE:
2820 size = cdb[4];
2821 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2822 break;
2823 case MODE_SENSE_10:
2824 case GPCMD_READ_BUFFER_CAPACITY:
2825 case GPCMD_SEND_OPC:
2826 case LOG_SELECT:
2827 case LOG_SENSE:
2828 size = (cdb[7] << 8) + cdb[8];
2829 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2830 break;
2831 case READ_BLOCK_LIMITS:
2832 size = READ_BLOCK_LEN;
2833 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2834 break;
2835 case GPCMD_GET_CONFIGURATION:
2836 case GPCMD_READ_FORMAT_CAPACITIES:
2837 case GPCMD_READ_DISC_INFO:
2838 case GPCMD_READ_TRACK_RZONE_INFO:
2839 size = (cdb[7] << 8) + cdb[8];
2840 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2841 break;
2842 case PERSISTENT_RESERVE_IN:
2843 case PERSISTENT_RESERVE_OUT:
2844 cmd->transport_emulate_cdb =
2845 (su_dev->t10_pr.res_type ==
2846 SPC3_PERSISTENT_RESERVATIONS) ?
2847 core_scsi3_emulate_pr : NULL;
2848 size = (cdb[7] << 8) + cdb[8];
2849 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2850 break;
2851 case GPCMD_MECHANISM_STATUS:
2852 case GPCMD_READ_DVD_STRUCTURE:
2853 size = (cdb[8] << 8) + cdb[9];
2854 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2855 break;
2856 case READ_POSITION:
2857 size = READ_POSITION_LEN;
2858 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2859 break;
2860 case MAINTENANCE_OUT:
2861 if (dev->transport->get_device_type(dev) != TYPE_ROM) {
2862 /* MAINTENANCE_OUT from SCC-2
2864 * Check for emulated MO_SET_TARGET_PGS.
2866 if (cdb[1] == MO_SET_TARGET_PGS) {
2867 cmd->transport_emulate_cdb =
2868 (su_dev->t10_alua.alua_type ==
2869 SPC3_ALUA_EMULATED) ?
2870 core_emulate_set_target_port_groups :
2871 NULL;
2874 size = (cdb[6] << 24) | (cdb[7] << 16) |
2875 (cdb[8] << 8) | cdb[9];
2876 } else {
2877 /* GPCMD_REPORT_KEY from multi media commands */
2878 size = (cdb[8] << 8) + cdb[9];
2880 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2881 break;
2882 case INQUIRY:
2883 size = (cdb[3] << 8) + cdb[4];
2885 * Do implict HEAD_OF_QUEUE processing for INQUIRY.
2886 * See spc4r17 section 5.3
2888 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
2889 cmd->sam_task_attr = MSG_HEAD_TAG;
2890 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2891 break;
2892 case READ_BUFFER:
2893 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2894 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2895 break;
2896 case READ_CAPACITY:
2897 size = READ_CAP_LEN;
2898 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2899 break;
2900 case READ_MEDIA_SERIAL_NUMBER:
2901 case SECURITY_PROTOCOL_IN:
2902 case SECURITY_PROTOCOL_OUT:
2903 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
2904 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2905 break;
2906 case SERVICE_ACTION_IN:
2907 case ACCESS_CONTROL_IN:
2908 case ACCESS_CONTROL_OUT:
2909 case EXTENDED_COPY:
2910 case READ_ATTRIBUTE:
2911 case RECEIVE_COPY_RESULTS:
2912 case WRITE_ATTRIBUTE:
2913 size = (cdb[10] << 24) | (cdb[11] << 16) |
2914 (cdb[12] << 8) | cdb[13];
2915 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2916 break;
2917 case RECEIVE_DIAGNOSTIC:
2918 case SEND_DIAGNOSTIC:
2919 size = (cdb[3] << 8) | cdb[4];
2920 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2921 break;
2922 /* #warning FIXME: Figure out correct GPCMD_READ_CD blocksize. */
2923 #if 0
2924 case GPCMD_READ_CD:
2925 sectors = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2926 size = (2336 * sectors);
2927 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2928 break;
2929 #endif
2930 case READ_TOC:
2931 size = cdb[8];
2932 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2933 break;
2934 case REQUEST_SENSE:
2935 size = cdb[4];
2936 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2937 break;
2938 case READ_ELEMENT_STATUS:
2939 size = 65536 * cdb[7] + 256 * cdb[8] + cdb[9];
2940 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2941 break;
2942 case WRITE_BUFFER:
2943 size = (cdb[6] << 16) + (cdb[7] << 8) + cdb[8];
2944 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
2945 break;
2946 case RESERVE:
2947 case RESERVE_10:
2949 * The SPC-2 RESERVE does not contain a size in the SCSI CDB.
2950 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2952 if (cdb[0] == RESERVE_10)
2953 size = (cdb[7] << 8) | cdb[8];
2954 else
2955 size = cmd->data_length;
2958 * Setup the legacy emulated handler for SPC-2 and
2959 * >= SPC-3 compatible reservation handling (CRH=1)
2960 * Otherwise, we assume the underlying SCSI logic is
2961 * is running in SPC_PASSTHROUGH, and wants reservations
2962 * emulation disabled.
2964 cmd->transport_emulate_cdb =
2965 (su_dev->t10_pr.res_type !=
2966 SPC_PASSTHROUGH) ?
2967 core_scsi2_emulate_crh : NULL;
2968 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2969 break;
2970 case RELEASE:
2971 case RELEASE_10:
2973 * The SPC-2 RELEASE does not contain a size in the SCSI CDB.
2974 * Assume the passthrough or $FABRIC_MOD will tell us about it.
2976 if (cdb[0] == RELEASE_10)
2977 size = (cdb[7] << 8) | cdb[8];
2978 else
2979 size = cmd->data_length;
2981 cmd->transport_emulate_cdb =
2982 (su_dev->t10_pr.res_type !=
2983 SPC_PASSTHROUGH) ?
2984 core_scsi2_emulate_crh : NULL;
2985 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
2986 break;
2987 case SYNCHRONIZE_CACHE:
2988 case 0x91: /* SYNCHRONIZE_CACHE_16: */
2990 * Extract LBA and range to be flushed for emulated SYNCHRONIZE_CACHE
2992 if (cdb[0] == SYNCHRONIZE_CACHE) {
2993 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
2994 cmd->t_task_lba = transport_lba_32(cdb);
2995 } else {
2996 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
2997 cmd->t_task_lba = transport_lba_64(cdb);
2999 if (sector_ret)
3000 goto out_unsupported_cdb;
3002 size = transport_get_size(sectors, cdb, cmd);
3003 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3006 * For TCM/pSCSI passthrough, skip cmd->transport_emulate_cdb()
3008 if (dev->transport->transport_type == TRANSPORT_PLUGIN_PHBA_PDEV)
3009 break;
3011 * Set SCF_EMULATE_CDB_ASYNC to ensure asynchronous operation
3012 * for SYNCHRONIZE_CACHE* Immed=1 case in __transport_execute_tasks()
3014 cmd->se_cmd_flags |= SCF_EMULATE_CDB_ASYNC;
3016 * Check to ensure that LBA + Range does not exceed past end of
3017 * device for IBLOCK and FILEIO ->do_sync_cache() backend calls
3019 if ((cmd->t_task_lba != 0) || (sectors != 0)) {
3020 if (transport_cmd_get_valid_sectors(cmd) < 0)
3021 goto out_invalid_cdb_field;
3023 break;
3024 case UNMAP:
3025 size = get_unaligned_be16(&cdb[7]);
3026 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3027 break;
3028 case WRITE_SAME_16:
3029 sectors = transport_get_sectors_16(cdb, cmd, &sector_ret);
3030 if (sector_ret)
3031 goto out_unsupported_cdb;
3033 if (sectors)
3034 size = transport_get_size(1, cdb, cmd);
3035 else {
3036 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3037 goto out_invalid_cdb_field;
3040 cmd->t_task_lba = get_unaligned_be64(&cdb[2]);
3041 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3043 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3044 goto out_invalid_cdb_field;
3045 break;
3046 case WRITE_SAME:
3047 sectors = transport_get_sectors_10(cdb, cmd, &sector_ret);
3048 if (sector_ret)
3049 goto out_unsupported_cdb;
3051 if (sectors)
3052 size = transport_get_size(1, cdb, cmd);
3053 else {
3054 pr_err("WSNZ=1, WRITE_SAME w/sectors=0 not supported\n");
3055 goto out_invalid_cdb_field;
3058 cmd->t_task_lba = get_unaligned_be32(&cdb[2]);
3059 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3061 * Follow sbcr26 with WRITE_SAME (10) and check for the existence
3062 * of byte 1 bit 3 UNMAP instead of original reserved field
3064 if (target_check_write_same_discard(&cdb[1], dev) < 0)
3065 goto out_invalid_cdb_field;
3066 break;
3067 case ALLOW_MEDIUM_REMOVAL:
3068 case GPCMD_CLOSE_TRACK:
3069 case ERASE:
3070 case INITIALIZE_ELEMENT_STATUS:
3071 case GPCMD_LOAD_UNLOAD:
3072 case REZERO_UNIT:
3073 case SEEK_10:
3074 case GPCMD_SET_SPEED:
3075 case SPACE:
3076 case START_STOP:
3077 case TEST_UNIT_READY:
3078 case VERIFY:
3079 case WRITE_FILEMARKS:
3080 case MOVE_MEDIUM:
3081 cmd->se_cmd_flags |= SCF_SCSI_NON_DATA_CDB;
3082 break;
3083 case REPORT_LUNS:
3084 cmd->transport_emulate_cdb =
3085 transport_core_report_lun_response;
3086 size = (cdb[6] << 24) | (cdb[7] << 16) | (cdb[8] << 8) | cdb[9];
3088 * Do implict HEAD_OF_QUEUE processing for REPORT_LUNS
3089 * See spc4r17 section 5.3
3091 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3092 cmd->sam_task_attr = MSG_HEAD_TAG;
3093 cmd->se_cmd_flags |= SCF_SCSI_CONTROL_SG_IO_CDB;
3094 break;
3095 default:
3096 pr_warn("TARGET_CORE[%s]: Unsupported SCSI Opcode"
3097 " 0x%02x, sending CHECK_CONDITION.\n",
3098 cmd->se_tfo->get_fabric_name(), cdb[0]);
3099 goto out_unsupported_cdb;
3102 if (size != cmd->data_length) {
3103 pr_warn("TARGET_CORE[%s]: Expected Transfer Length:"
3104 " %u does not match SCSI CDB Length: %u for SAM Opcode:"
3105 " 0x%02x\n", cmd->se_tfo->get_fabric_name(),
3106 cmd->data_length, size, cdb[0]);
3108 cmd->cmd_spdtl = size;
3110 if (cmd->data_direction == DMA_TO_DEVICE) {
3111 pr_err("Rejecting underflow/overflow"
3112 " WRITE data\n");
3113 goto out_invalid_cdb_field;
3116 * Reject READ_* or WRITE_* with overflow/underflow for
3117 * type SCF_SCSI_DATA_SG_IO_CDB.
3119 if (!ret && (dev->se_sub_dev->se_dev_attrib.block_size != 512)) {
3120 pr_err("Failing OVERFLOW/UNDERFLOW for LBA op"
3121 " CDB on non 512-byte sector setup subsystem"
3122 " plugin: %s\n", dev->transport->name);
3123 /* Returns CHECK_CONDITION + INVALID_CDB_FIELD */
3124 goto out_invalid_cdb_field;
3127 if (size > cmd->data_length) {
3128 cmd->se_cmd_flags |= SCF_OVERFLOW_BIT;
3129 cmd->residual_count = (size - cmd->data_length);
3130 } else {
3131 cmd->se_cmd_flags |= SCF_UNDERFLOW_BIT;
3132 cmd->residual_count = (cmd->data_length - size);
3134 cmd->data_length = size;
3137 /* Let's limit control cdbs to a page, for simplicity's sake. */
3138 if ((cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB) &&
3139 size > PAGE_SIZE)
3140 goto out_invalid_cdb_field;
3142 transport_set_supported_SAM_opcode(cmd);
3143 return ret;
3145 out_unsupported_cdb:
3146 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3147 cmd->scsi_sense_reason = TCM_UNSUPPORTED_SCSI_OPCODE;
3148 return -EINVAL;
3149 out_invalid_cdb_field:
3150 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3151 cmd->scsi_sense_reason = TCM_INVALID_CDB_FIELD;
3152 return -EINVAL;
3156 * Called from I/O completion to determine which dormant/delayed
3157 * and ordered cmds need to have their tasks added to the execution queue.
3159 static void transport_complete_task_attr(struct se_cmd *cmd)
3161 struct se_device *dev = cmd->se_dev;
3162 struct se_cmd *cmd_p, *cmd_tmp;
3163 int new_active_tasks = 0;
3165 if (cmd->sam_task_attr == MSG_SIMPLE_TAG) {
3166 atomic_dec(&dev->simple_cmds);
3167 smp_mb__after_atomic_dec();
3168 dev->dev_cur_ordered_id++;
3169 pr_debug("Incremented dev->dev_cur_ordered_id: %u for"
3170 " SIMPLE: %u\n", dev->dev_cur_ordered_id,
3171 cmd->se_ordered_id);
3172 } else if (cmd->sam_task_attr == MSG_HEAD_TAG) {
3173 atomic_dec(&dev->dev_hoq_count);
3174 smp_mb__after_atomic_dec();
3175 dev->dev_cur_ordered_id++;
3176 pr_debug("Incremented dev_cur_ordered_id: %u for"
3177 " HEAD_OF_QUEUE: %u\n", dev->dev_cur_ordered_id,
3178 cmd->se_ordered_id);
3179 } else if (cmd->sam_task_attr == MSG_ORDERED_TAG) {
3180 spin_lock(&dev->ordered_cmd_lock);
3181 list_del(&cmd->se_ordered_node);
3182 atomic_dec(&dev->dev_ordered_sync);
3183 smp_mb__after_atomic_dec();
3184 spin_unlock(&dev->ordered_cmd_lock);
3186 dev->dev_cur_ordered_id++;
3187 pr_debug("Incremented dev_cur_ordered_id: %u for ORDERED:"
3188 " %u\n", dev->dev_cur_ordered_id, cmd->se_ordered_id);
3191 * Process all commands up to the last received
3192 * ORDERED task attribute which requires another blocking
3193 * boundary
3195 spin_lock(&dev->delayed_cmd_lock);
3196 list_for_each_entry_safe(cmd_p, cmd_tmp,
3197 &dev->delayed_cmd_list, se_delayed_node) {
3199 list_del(&cmd_p->se_delayed_node);
3200 spin_unlock(&dev->delayed_cmd_lock);
3202 pr_debug("Calling add_tasks() for"
3203 " cmd_p: 0x%02x Task Attr: 0x%02x"
3204 " Dormant -> Active, se_ordered_id: %u\n",
3205 cmd_p->t_task_cdb[0],
3206 cmd_p->sam_task_attr, cmd_p->se_ordered_id);
3208 transport_add_tasks_from_cmd(cmd_p);
3209 new_active_tasks++;
3211 spin_lock(&dev->delayed_cmd_lock);
3212 if (cmd_p->sam_task_attr == MSG_ORDERED_TAG)
3213 break;
3215 spin_unlock(&dev->delayed_cmd_lock);
3217 * If new tasks have become active, wake up the transport thread
3218 * to do the processing of the Active tasks.
3220 if (new_active_tasks != 0)
3221 wake_up_interruptible(&dev->dev_queue_obj.thread_wq);
3224 static void transport_complete_qf(struct se_cmd *cmd)
3226 int ret = 0;
3228 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3229 transport_complete_task_attr(cmd);
3231 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3232 ret = cmd->se_tfo->queue_status(cmd);
3233 if (ret)
3234 goto out;
3237 switch (cmd->data_direction) {
3238 case DMA_FROM_DEVICE:
3239 ret = cmd->se_tfo->queue_data_in(cmd);
3240 break;
3241 case DMA_TO_DEVICE:
3242 if (cmd->t_bidi_data_sg) {
3243 ret = cmd->se_tfo->queue_data_in(cmd);
3244 if (ret < 0)
3245 break;
3247 /* Fall through for DMA_TO_DEVICE */
3248 case DMA_NONE:
3249 ret = cmd->se_tfo->queue_status(cmd);
3250 break;
3251 default:
3252 break;
3255 out:
3256 if (ret < 0) {
3257 transport_handle_queue_full(cmd, cmd->se_dev);
3258 return;
3260 transport_lun_remove_cmd(cmd);
3261 transport_cmd_check_stop_to_fabric(cmd);
3264 static void transport_handle_queue_full(
3265 struct se_cmd *cmd,
3266 struct se_device *dev)
3268 spin_lock_irq(&dev->qf_cmd_lock);
3269 list_add_tail(&cmd->se_qf_node, &cmd->se_dev->qf_cmd_list);
3270 atomic_inc(&dev->dev_qf_count);
3271 smp_mb__after_atomic_inc();
3272 spin_unlock_irq(&cmd->se_dev->qf_cmd_lock);
3274 schedule_work(&cmd->se_dev->qf_work_queue);
3277 static void target_complete_ok_work(struct work_struct *work)
3279 struct se_cmd *cmd = container_of(work, struct se_cmd, work);
3280 int reason = 0, ret;
3283 * Check if we need to move delayed/dormant tasks from cmds on the
3284 * delayed execution list after a HEAD_OF_QUEUE or ORDERED Task
3285 * Attribute.
3287 if (cmd->se_dev->dev_task_attr_type == SAM_TASK_ATTR_EMULATED)
3288 transport_complete_task_attr(cmd);
3290 * Check to schedule QUEUE_FULL work, or execute an existing
3291 * cmd->transport_qf_callback()
3293 if (atomic_read(&cmd->se_dev->dev_qf_count) != 0)
3294 schedule_work(&cmd->se_dev->qf_work_queue);
3297 * Check if we need to retrieve a sense buffer from
3298 * the struct se_cmd in question.
3300 if (cmd->se_cmd_flags & SCF_TRANSPORT_TASK_SENSE) {
3301 if (transport_get_sense_data(cmd) < 0)
3302 reason = TCM_NON_EXISTENT_LUN;
3305 * Only set when an struct se_task->task_scsi_status returned
3306 * a non GOOD status.
3308 if (cmd->scsi_status) {
3309 ret = transport_send_check_condition_and_sense(
3310 cmd, reason, 1);
3311 if (ret == -EAGAIN)
3312 goto queue_full;
3314 transport_lun_remove_cmd(cmd);
3315 transport_cmd_check_stop_to_fabric(cmd);
3316 return;
3320 * Check for a callback, used by amongst other things
3321 * XDWRITE_READ_10 emulation.
3323 if (cmd->transport_complete_callback)
3324 cmd->transport_complete_callback(cmd);
3326 switch (cmd->data_direction) {
3327 case DMA_FROM_DEVICE:
3328 spin_lock(&cmd->se_lun->lun_sep_lock);
3329 if (cmd->se_lun->lun_sep) {
3330 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3331 cmd->data_length;
3333 spin_unlock(&cmd->se_lun->lun_sep_lock);
3335 ret = cmd->se_tfo->queue_data_in(cmd);
3336 if (ret == -EAGAIN)
3337 goto queue_full;
3338 break;
3339 case DMA_TO_DEVICE:
3340 spin_lock(&cmd->se_lun->lun_sep_lock);
3341 if (cmd->se_lun->lun_sep) {
3342 cmd->se_lun->lun_sep->sep_stats.rx_data_octets +=
3343 cmd->data_length;
3345 spin_unlock(&cmd->se_lun->lun_sep_lock);
3347 * Check if we need to send READ payload for BIDI-COMMAND
3349 if (cmd->t_bidi_data_sg) {
3350 spin_lock(&cmd->se_lun->lun_sep_lock);
3351 if (cmd->se_lun->lun_sep) {
3352 cmd->se_lun->lun_sep->sep_stats.tx_data_octets +=
3353 cmd->data_length;
3355 spin_unlock(&cmd->se_lun->lun_sep_lock);
3356 ret = cmd->se_tfo->queue_data_in(cmd);
3357 if (ret == -EAGAIN)
3358 goto queue_full;
3359 break;
3361 /* Fall through for DMA_TO_DEVICE */
3362 case DMA_NONE:
3363 ret = cmd->se_tfo->queue_status(cmd);
3364 if (ret == -EAGAIN)
3365 goto queue_full;
3366 break;
3367 default:
3368 break;
3371 transport_lun_remove_cmd(cmd);
3372 transport_cmd_check_stop_to_fabric(cmd);
3373 return;
3375 queue_full:
3376 pr_debug("Handling complete_ok QUEUE_FULL: se_cmd: %p,"
3377 " data_direction: %d\n", cmd, cmd->data_direction);
3378 cmd->t_state = TRANSPORT_COMPLETE_QF_OK;
3379 transport_handle_queue_full(cmd, cmd->se_dev);
3382 static void transport_free_dev_tasks(struct se_cmd *cmd)
3384 struct se_task *task, *task_tmp;
3385 unsigned long flags;
3386 LIST_HEAD(dispose_list);
3388 spin_lock_irqsave(&cmd->t_state_lock, flags);
3389 list_for_each_entry_safe(task, task_tmp,
3390 &cmd->t_task_list, t_list) {
3391 if (!(task->task_flags & TF_ACTIVE))
3392 list_move_tail(&task->t_list, &dispose_list);
3394 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3396 while (!list_empty(&dispose_list)) {
3397 task = list_first_entry(&dispose_list, struct se_task, t_list);
3399 if (task->task_sg != cmd->t_data_sg &&
3400 task->task_sg != cmd->t_bidi_data_sg)
3401 kfree(task->task_sg);
3403 list_del(&task->t_list);
3405 cmd->se_dev->transport->free_task(task);
3409 static inline void transport_free_sgl(struct scatterlist *sgl, int nents)
3411 struct scatterlist *sg;
3412 int count;
3414 for_each_sg(sgl, sg, nents, count)
3415 __free_page(sg_page(sg));
3417 kfree(sgl);
3420 static inline void transport_free_pages(struct se_cmd *cmd)
3422 if (cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC)
3423 return;
3425 transport_free_sgl(cmd->t_data_sg, cmd->t_data_nents);
3426 cmd->t_data_sg = NULL;
3427 cmd->t_data_nents = 0;
3429 transport_free_sgl(cmd->t_bidi_data_sg, cmd->t_bidi_data_nents);
3430 cmd->t_bidi_data_sg = NULL;
3431 cmd->t_bidi_data_nents = 0;
3435 * transport_put_cmd - release a reference to a command
3436 * @cmd: command to release
3438 * This routine releases our reference to the command and frees it if possible.
3440 static void transport_put_cmd(struct se_cmd *cmd)
3442 unsigned long flags;
3443 int free_tasks = 0;
3445 spin_lock_irqsave(&cmd->t_state_lock, flags);
3446 if (atomic_read(&cmd->t_fe_count)) {
3447 if (!atomic_dec_and_test(&cmd->t_fe_count))
3448 goto out_busy;
3451 if (atomic_read(&cmd->t_se_count)) {
3452 if (!atomic_dec_and_test(&cmd->t_se_count))
3453 goto out_busy;
3456 if (atomic_read(&cmd->transport_dev_active)) {
3457 atomic_set(&cmd->transport_dev_active, 0);
3458 transport_all_task_dev_remove_state(cmd);
3459 free_tasks = 1;
3461 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3463 if (free_tasks != 0)
3464 transport_free_dev_tasks(cmd);
3466 transport_free_pages(cmd);
3467 transport_release_cmd(cmd);
3468 return;
3469 out_busy:
3470 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3474 * transport_generic_map_mem_to_cmd - Use fabric-alloced pages instead of
3475 * allocating in the core.
3476 * @cmd: Associated se_cmd descriptor
3477 * @mem: SGL style memory for TCM WRITE / READ
3478 * @sg_mem_num: Number of SGL elements
3479 * @mem_bidi_in: SGL style memory for TCM BIDI READ
3480 * @sg_mem_bidi_num: Number of BIDI READ SGL elements
3482 * Return: nonzero return cmd was rejected for -ENOMEM or inproper usage
3483 * of parameters.
3485 int transport_generic_map_mem_to_cmd(
3486 struct se_cmd *cmd,
3487 struct scatterlist *sgl,
3488 u32 sgl_count,
3489 struct scatterlist *sgl_bidi,
3490 u32 sgl_bidi_count)
3492 if (!sgl || !sgl_count)
3493 return 0;
3495 if ((cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) ||
3496 (cmd->se_cmd_flags & SCF_SCSI_CONTROL_SG_IO_CDB)) {
3498 cmd->t_data_sg = sgl;
3499 cmd->t_data_nents = sgl_count;
3501 if (sgl_bidi && sgl_bidi_count) {
3502 cmd->t_bidi_data_sg = sgl_bidi;
3503 cmd->t_bidi_data_nents = sgl_bidi_count;
3505 cmd->se_cmd_flags |= SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC;
3508 return 0;
3510 EXPORT_SYMBOL(transport_generic_map_mem_to_cmd);
3512 void *transport_kmap_first_data_page(struct se_cmd *cmd)
3514 struct scatterlist *sg = cmd->t_data_sg;
3516 BUG_ON(!sg);
3518 * We need to take into account a possible offset here for fabrics like
3519 * tcm_loop who may be using a contig buffer from the SCSI midlayer for
3520 * control CDBs passed as SGLs via transport_generic_map_mem_to_cmd()
3522 return kmap(sg_page(sg)) + sg->offset;
3524 EXPORT_SYMBOL(transport_kmap_first_data_page);
3526 void transport_kunmap_first_data_page(struct se_cmd *cmd)
3528 kunmap(sg_page(cmd->t_data_sg));
3530 EXPORT_SYMBOL(transport_kunmap_first_data_page);
3532 static int
3533 transport_generic_get_mem(struct se_cmd *cmd)
3535 u32 length = cmd->data_length;
3536 unsigned int nents;
3537 struct page *page;
3538 int i = 0;
3540 nents = DIV_ROUND_UP(length, PAGE_SIZE);
3541 cmd->t_data_sg = kmalloc(sizeof(struct scatterlist) * nents, GFP_KERNEL);
3542 if (!cmd->t_data_sg)
3543 return -ENOMEM;
3545 cmd->t_data_nents = nents;
3546 sg_init_table(cmd->t_data_sg, nents);
3548 while (length) {
3549 u32 page_len = min_t(u32, length, PAGE_SIZE);
3550 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
3551 if (!page)
3552 goto out;
3554 sg_set_page(&cmd->t_data_sg[i], page, page_len, 0);
3555 length -= page_len;
3556 i++;
3558 return 0;
3560 out:
3561 while (i >= 0) {
3562 __free_page(sg_page(&cmd->t_data_sg[i]));
3563 i--;
3565 kfree(cmd->t_data_sg);
3566 cmd->t_data_sg = NULL;
3567 return -ENOMEM;
3570 /* Reduce sectors if they are too long for the device */
3571 static inline sector_t transport_limit_task_sectors(
3572 struct se_device *dev,
3573 unsigned long long lba,
3574 sector_t sectors)
3576 sectors = min_t(sector_t, sectors, dev->se_sub_dev->se_dev_attrib.max_sectors);
3578 if (dev->transport->get_device_type(dev) == TYPE_DISK)
3579 if ((lba + sectors) > transport_dev_end_lba(dev))
3580 sectors = ((transport_dev_end_lba(dev) - lba) + 1);
3582 return sectors;
3587 * This function can be used by HW target mode drivers to create a linked
3588 * scatterlist from all contiguously allocated struct se_task->task_sg[].
3589 * This is intended to be called during the completion path by TCM Core
3590 * when struct target_core_fabric_ops->check_task_sg_chaining is enabled.
3592 void transport_do_task_sg_chain(struct se_cmd *cmd)
3594 struct scatterlist *sg_first = NULL;
3595 struct scatterlist *sg_prev = NULL;
3596 int sg_prev_nents = 0;
3597 struct scatterlist *sg;
3598 struct se_task *task;
3599 u32 chained_nents = 0;
3600 int i;
3602 BUG_ON(!cmd->se_tfo->task_sg_chaining);
3605 * Walk the struct se_task list and setup scatterlist chains
3606 * for each contiguously allocated struct se_task->task_sg[].
3608 list_for_each_entry(task, &cmd->t_task_list, t_list) {
3609 if (!task->task_sg)
3610 continue;
3612 if (!sg_first) {
3613 sg_first = task->task_sg;
3614 chained_nents = task->task_sg_nents;
3615 } else {
3616 sg_chain(sg_prev, sg_prev_nents, task->task_sg);
3617 chained_nents += task->task_sg_nents;
3620 * For the padded tasks, use the extra SGL vector allocated
3621 * in transport_allocate_data_tasks() for the sg_prev_nents
3622 * offset into sg_chain() above.
3624 * We do not need the padding for the last task (or a single
3625 * task), but in that case we will never use the sg_prev_nents
3626 * value below which would be incorrect.
3628 sg_prev_nents = (task->task_sg_nents + 1);
3629 sg_prev = task->task_sg;
3632 * Setup the starting pointer and total t_tasks_sg_linked_no including
3633 * padding SGs for linking and to mark the end.
3635 cmd->t_tasks_sg_chained = sg_first;
3636 cmd->t_tasks_sg_chained_no = chained_nents;
3638 pr_debug("Setup cmd: %p cmd->t_tasks_sg_chained: %p and"
3639 " t_tasks_sg_chained_no: %u\n", cmd, cmd->t_tasks_sg_chained,
3640 cmd->t_tasks_sg_chained_no);
3642 for_each_sg(cmd->t_tasks_sg_chained, sg,
3643 cmd->t_tasks_sg_chained_no, i) {
3645 pr_debug("SG[%d]: %p page: %p length: %d offset: %d\n",
3646 i, sg, sg_page(sg), sg->length, sg->offset);
3647 if (sg_is_chain(sg))
3648 pr_debug("SG: %p sg_is_chain=1\n", sg);
3649 if (sg_is_last(sg))
3650 pr_debug("SG: %p sg_is_last=1\n", sg);
3653 EXPORT_SYMBOL(transport_do_task_sg_chain);
3656 * Break up cmd into chunks transport can handle
3658 static int
3659 transport_allocate_data_tasks(struct se_cmd *cmd,
3660 enum dma_data_direction data_direction,
3661 struct scatterlist *cmd_sg, unsigned int sgl_nents)
3663 struct se_device *dev = cmd->se_dev;
3664 int task_count, i;
3665 unsigned long long lba;
3666 sector_t sectors, dev_max_sectors;
3667 u32 sector_size;
3669 if (transport_cmd_get_valid_sectors(cmd) < 0)
3670 return -EINVAL;
3672 dev_max_sectors = dev->se_sub_dev->se_dev_attrib.max_sectors;
3673 sector_size = dev->se_sub_dev->se_dev_attrib.block_size;
3675 WARN_ON(cmd->data_length % sector_size);
3677 lba = cmd->t_task_lba;
3678 sectors = DIV_ROUND_UP(cmd->data_length, sector_size);
3679 task_count = DIV_ROUND_UP_SECTOR_T(sectors, dev_max_sectors);
3682 * If we need just a single task reuse the SG list in the command
3683 * and avoid a lot of work.
3685 if (task_count == 1) {
3686 struct se_task *task;
3687 unsigned long flags;
3689 task = transport_generic_get_task(cmd, data_direction);
3690 if (!task)
3691 return -ENOMEM;
3693 task->task_sg = cmd_sg;
3694 task->task_sg_nents = sgl_nents;
3696 task->task_lba = lba;
3697 task->task_sectors = sectors;
3698 task->task_size = task->task_sectors * sector_size;
3700 spin_lock_irqsave(&cmd->t_state_lock, flags);
3701 list_add_tail(&task->t_list, &cmd->t_task_list);
3702 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3704 return task_count;
3707 for (i = 0; i < task_count; i++) {
3708 struct se_task *task;
3709 unsigned int task_size, task_sg_nents_padded;
3710 struct scatterlist *sg;
3711 unsigned long flags;
3712 int count;
3714 task = transport_generic_get_task(cmd, data_direction);
3715 if (!task)
3716 return -ENOMEM;
3718 task->task_lba = lba;
3719 task->task_sectors = min(sectors, dev_max_sectors);
3720 task->task_size = task->task_sectors * sector_size;
3723 * This now assumes that passed sg_ents are in PAGE_SIZE chunks
3724 * in order to calculate the number per task SGL entries
3726 task->task_sg_nents = DIV_ROUND_UP(task->task_size, PAGE_SIZE);
3728 * Check if the fabric module driver is requesting that all
3729 * struct se_task->task_sg[] be chained together.. If so,
3730 * then allocate an extra padding SG entry for linking and
3731 * marking the end of the chained SGL for every task except
3732 * the last one for (task_count > 1) operation, or skipping
3733 * the extra padding for the (task_count == 1) case.
3735 if (cmd->se_tfo->task_sg_chaining && (i < (task_count - 1))) {
3736 task_sg_nents_padded = (task->task_sg_nents + 1);
3737 } else
3738 task_sg_nents_padded = task->task_sg_nents;
3740 task->task_sg = kmalloc(sizeof(struct scatterlist) *
3741 task_sg_nents_padded, GFP_KERNEL);
3742 if (!task->task_sg) {
3743 cmd->se_dev->transport->free_task(task);
3744 return -ENOMEM;
3747 sg_init_table(task->task_sg, task_sg_nents_padded);
3749 task_size = task->task_size;
3751 /* Build new sgl, only up to task_size */
3752 for_each_sg(task->task_sg, sg, task->task_sg_nents, count) {
3753 if (cmd_sg->length > task_size)
3754 break;
3756 *sg = *cmd_sg;
3757 task_size -= cmd_sg->length;
3758 cmd_sg = sg_next(cmd_sg);
3761 lba += task->task_sectors;
3762 sectors -= task->task_sectors;
3764 spin_lock_irqsave(&cmd->t_state_lock, flags);
3765 list_add_tail(&task->t_list, &cmd->t_task_list);
3766 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3769 return task_count;
3772 static int
3773 transport_allocate_control_task(struct se_cmd *cmd)
3775 struct se_task *task;
3776 unsigned long flags;
3778 task = transport_generic_get_task(cmd, cmd->data_direction);
3779 if (!task)
3780 return -ENOMEM;
3782 task->task_sg = cmd->t_data_sg;
3783 task->task_size = cmd->data_length;
3784 task->task_sg_nents = cmd->t_data_nents;
3786 spin_lock_irqsave(&cmd->t_state_lock, flags);
3787 list_add_tail(&task->t_list, &cmd->t_task_list);
3788 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3790 /* Success! Return number of tasks allocated */
3791 return 1;
3795 * Allocate any required ressources to execute the command, and either place
3796 * it on the execution queue if possible. For writes we might not have the
3797 * payload yet, thus notify the fabric via a call to ->write_pending instead.
3799 int transport_generic_new_cmd(struct se_cmd *cmd)
3801 struct se_device *dev = cmd->se_dev;
3802 int task_cdbs, task_cdbs_bidi = 0;
3803 int set_counts = 1;
3804 int ret = 0;
3807 * Determine is the TCM fabric module has already allocated physical
3808 * memory, and is directly calling transport_generic_map_mem_to_cmd()
3809 * beforehand.
3811 if (!(cmd->se_cmd_flags & SCF_PASSTHROUGH_SG_TO_MEM_NOALLOC) &&
3812 cmd->data_length) {
3813 ret = transport_generic_get_mem(cmd);
3814 if (ret < 0)
3815 return ret;
3819 * For BIDI command set up the read tasks first.
3821 if (cmd->t_bidi_data_sg &&
3822 dev->transport->transport_type != TRANSPORT_PLUGIN_PHBA_PDEV) {
3823 BUG_ON(!(cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB));
3825 task_cdbs_bidi = transport_allocate_data_tasks(cmd,
3826 DMA_FROM_DEVICE, cmd->t_bidi_data_sg,
3827 cmd->t_bidi_data_nents);
3828 if (task_cdbs_bidi <= 0)
3829 goto out_fail;
3831 atomic_inc(&cmd->t_fe_count);
3832 atomic_inc(&cmd->t_se_count);
3833 set_counts = 0;
3836 if (cmd->se_cmd_flags & SCF_SCSI_DATA_SG_IO_CDB) {
3837 task_cdbs = transport_allocate_data_tasks(cmd,
3838 cmd->data_direction, cmd->t_data_sg,
3839 cmd->t_data_nents);
3840 } else {
3841 task_cdbs = transport_allocate_control_task(cmd);
3844 if (task_cdbs <= 0)
3845 goto out_fail;
3847 if (set_counts) {
3848 atomic_inc(&cmd->t_fe_count);
3849 atomic_inc(&cmd->t_se_count);
3852 cmd->t_task_list_num = (task_cdbs + task_cdbs_bidi);
3853 atomic_set(&cmd->t_task_cdbs_left, cmd->t_task_list_num);
3854 atomic_set(&cmd->t_task_cdbs_ex_left, cmd->t_task_list_num);
3857 * For WRITEs, let the fabric know its buffer is ready..
3858 * This WRITE struct se_cmd (and all of its associated struct se_task's)
3859 * will be added to the struct se_device execution queue after its WRITE
3860 * data has arrived. (ie: It gets handled by the transport processing
3861 * thread a second time)
3863 if (cmd->data_direction == DMA_TO_DEVICE) {
3864 transport_add_tasks_to_state_queue(cmd);
3865 return transport_generic_write_pending(cmd);
3868 * Everything else but a WRITE, add the struct se_cmd's struct se_task's
3869 * to the execution queue.
3871 transport_execute_tasks(cmd);
3872 return 0;
3874 out_fail:
3875 cmd->se_cmd_flags |= SCF_SCSI_CDB_EXCEPTION;
3876 cmd->scsi_sense_reason = TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE;
3877 return -EINVAL;
3879 EXPORT_SYMBOL(transport_generic_new_cmd);
3881 /* transport_generic_process_write():
3885 void transport_generic_process_write(struct se_cmd *cmd)
3887 transport_execute_tasks(cmd);
3889 EXPORT_SYMBOL(transport_generic_process_write);
3891 static void transport_write_pending_qf(struct se_cmd *cmd)
3893 if (cmd->se_tfo->write_pending(cmd) == -EAGAIN) {
3894 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n",
3895 cmd);
3896 transport_handle_queue_full(cmd, cmd->se_dev);
3900 static int transport_generic_write_pending(struct se_cmd *cmd)
3902 unsigned long flags;
3903 int ret;
3905 spin_lock_irqsave(&cmd->t_state_lock, flags);
3906 cmd->t_state = TRANSPORT_WRITE_PENDING;
3907 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3910 * Clear the se_cmd for WRITE_PENDING status in order to set
3911 * cmd->t_transport_active=0 so that transport_generic_handle_data
3912 * can be called from HW target mode interrupt code. This is safe
3913 * to be called with transport_off=1 before the cmd->se_tfo->write_pending
3914 * because the se_cmd->se_lun pointer is not being cleared.
3916 transport_cmd_check_stop(cmd, 1, 0);
3919 * Call the fabric write_pending function here to let the
3920 * frontend know that WRITE buffers are ready.
3922 ret = cmd->se_tfo->write_pending(cmd);
3923 if (ret == -EAGAIN)
3924 goto queue_full;
3925 else if (ret < 0)
3926 return ret;
3928 return PYX_TRANSPORT_WRITE_PENDING;
3930 queue_full:
3931 pr_debug("Handling write_pending QUEUE__FULL: se_cmd: %p\n", cmd);
3932 cmd->t_state = TRANSPORT_COMPLETE_QF_WP;
3933 transport_handle_queue_full(cmd, cmd->se_dev);
3934 return ret;
3938 * transport_release_cmd - free a command
3939 * @cmd: command to free
3941 * This routine unconditionally frees a command, and reference counting
3942 * or list removal must be done in the caller.
3944 void transport_release_cmd(struct se_cmd *cmd)
3946 BUG_ON(!cmd->se_tfo);
3948 if (cmd->se_tmr_req)
3949 core_tmr_release_req(cmd->se_tmr_req);
3950 if (cmd->t_task_cdb != cmd->__t_task_cdb)
3951 kfree(cmd->t_task_cdb);
3952 cmd->se_tfo->release_cmd(cmd);
3954 EXPORT_SYMBOL(transport_release_cmd);
3956 void transport_generic_free_cmd(struct se_cmd *cmd, int wait_for_tasks)
3958 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD)) {
3959 if (wait_for_tasks && cmd->se_tmr_req)
3960 transport_wait_for_tasks(cmd);
3962 transport_release_cmd(cmd);
3963 } else {
3964 if (wait_for_tasks)
3965 transport_wait_for_tasks(cmd);
3967 core_dec_lacl_count(cmd->se_sess->se_node_acl, cmd);
3969 if (cmd->se_lun)
3970 transport_lun_remove_cmd(cmd);
3972 transport_free_dev_tasks(cmd);
3974 transport_put_cmd(cmd);
3977 EXPORT_SYMBOL(transport_generic_free_cmd);
3979 /* transport_lun_wait_for_tasks():
3981 * Called from ConfigFS context to stop the passed struct se_cmd to allow
3982 * an struct se_lun to be successfully shutdown.
3984 static int transport_lun_wait_for_tasks(struct se_cmd *cmd, struct se_lun *lun)
3986 unsigned long flags;
3987 int ret;
3989 * If the frontend has already requested this struct se_cmd to
3990 * be stopped, we can safely ignore this struct se_cmd.
3992 spin_lock_irqsave(&cmd->t_state_lock, flags);
3993 if (atomic_read(&cmd->t_transport_stop)) {
3994 atomic_set(&cmd->transport_lun_stop, 0);
3995 pr_debug("ConfigFS ITT[0x%08x] - t_transport_stop =="
3996 " TRUE, skipping\n", cmd->se_tfo->get_task_tag(cmd));
3997 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
3998 transport_cmd_check_stop(cmd, 1, 0);
3999 return -EPERM;
4001 atomic_set(&cmd->transport_lun_fe_stop, 1);
4002 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4004 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4006 ret = transport_stop_tasks_for_cmd(cmd);
4008 pr_debug("ConfigFS: cmd: %p t_tasks: %d stop tasks ret:"
4009 " %d\n", cmd, cmd->t_task_list_num, ret);
4010 if (!ret) {
4011 pr_debug("ConfigFS: ITT[0x%08x] - stopping cmd....\n",
4012 cmd->se_tfo->get_task_tag(cmd));
4013 wait_for_completion(&cmd->transport_lun_stop_comp);
4014 pr_debug("ConfigFS: ITT[0x%08x] - stopped cmd....\n",
4015 cmd->se_tfo->get_task_tag(cmd));
4017 transport_remove_cmd_from_queue(cmd);
4019 return 0;
4022 static void __transport_clear_lun_from_sessions(struct se_lun *lun)
4024 struct se_cmd *cmd = NULL;
4025 unsigned long lun_flags, cmd_flags;
4027 * Do exception processing and return CHECK_CONDITION status to the
4028 * Initiator Port.
4030 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4031 while (!list_empty(&lun->lun_cmd_list)) {
4032 cmd = list_first_entry(&lun->lun_cmd_list,
4033 struct se_cmd, se_lun_node);
4034 list_del(&cmd->se_lun_node);
4036 atomic_set(&cmd->transport_lun_active, 0);
4038 * This will notify iscsi_target_transport.c:
4039 * transport_cmd_check_stop() that a LUN shutdown is in
4040 * progress for the iscsi_cmd_t.
4042 spin_lock(&cmd->t_state_lock);
4043 pr_debug("SE_LUN[%d] - Setting cmd->transport"
4044 "_lun_stop for ITT: 0x%08x\n",
4045 cmd->se_lun->unpacked_lun,
4046 cmd->se_tfo->get_task_tag(cmd));
4047 atomic_set(&cmd->transport_lun_stop, 1);
4048 spin_unlock(&cmd->t_state_lock);
4050 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4052 if (!cmd->se_lun) {
4053 pr_err("ITT: 0x%08x, [i,t]_state: %u/%u\n",
4054 cmd->se_tfo->get_task_tag(cmd),
4055 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4056 BUG();
4059 * If the Storage engine still owns the iscsi_cmd_t, determine
4060 * and/or stop its context.
4062 pr_debug("SE_LUN[%d] - ITT: 0x%08x before transport"
4063 "_lun_wait_for_tasks()\n", cmd->se_lun->unpacked_lun,
4064 cmd->se_tfo->get_task_tag(cmd));
4066 if (transport_lun_wait_for_tasks(cmd, cmd->se_lun) < 0) {
4067 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4068 continue;
4071 pr_debug("SE_LUN[%d] - ITT: 0x%08x after transport_lun"
4072 "_wait_for_tasks(): SUCCESS\n",
4073 cmd->se_lun->unpacked_lun,
4074 cmd->se_tfo->get_task_tag(cmd));
4076 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4077 if (!atomic_read(&cmd->transport_dev_active)) {
4078 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4079 goto check_cond;
4081 atomic_set(&cmd->transport_dev_active, 0);
4082 transport_all_task_dev_remove_state(cmd);
4083 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4085 transport_free_dev_tasks(cmd);
4087 * The Storage engine stopped this struct se_cmd before it was
4088 * send to the fabric frontend for delivery back to the
4089 * Initiator Node. Return this SCSI CDB back with an
4090 * CHECK_CONDITION status.
4092 check_cond:
4093 transport_send_check_condition_and_sense(cmd,
4094 TCM_NON_EXISTENT_LUN, 0);
4096 * If the fabric frontend is waiting for this iscsi_cmd_t to
4097 * be released, notify the waiting thread now that LU has
4098 * finished accessing it.
4100 spin_lock_irqsave(&cmd->t_state_lock, cmd_flags);
4101 if (atomic_read(&cmd->transport_lun_fe_stop)) {
4102 pr_debug("SE_LUN[%d] - Detected FE stop for"
4103 " struct se_cmd: %p ITT: 0x%08x\n",
4104 lun->unpacked_lun,
4105 cmd, cmd->se_tfo->get_task_tag(cmd));
4107 spin_unlock_irqrestore(&cmd->t_state_lock,
4108 cmd_flags);
4109 transport_cmd_check_stop(cmd, 1, 0);
4110 complete(&cmd->transport_lun_fe_stop_comp);
4111 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4112 continue;
4114 pr_debug("SE_LUN[%d] - ITT: 0x%08x finished processing\n",
4115 lun->unpacked_lun, cmd->se_tfo->get_task_tag(cmd));
4117 spin_unlock_irqrestore(&cmd->t_state_lock, cmd_flags);
4118 spin_lock_irqsave(&lun->lun_cmd_lock, lun_flags);
4120 spin_unlock_irqrestore(&lun->lun_cmd_lock, lun_flags);
4123 static int transport_clear_lun_thread(void *p)
4125 struct se_lun *lun = (struct se_lun *)p;
4127 __transport_clear_lun_from_sessions(lun);
4128 complete(&lun->lun_shutdown_comp);
4130 return 0;
4133 int transport_clear_lun_from_sessions(struct se_lun *lun)
4135 struct task_struct *kt;
4137 kt = kthread_run(transport_clear_lun_thread, lun,
4138 "tcm_cl_%u", lun->unpacked_lun);
4139 if (IS_ERR(kt)) {
4140 pr_err("Unable to start clear_lun thread\n");
4141 return PTR_ERR(kt);
4143 wait_for_completion(&lun->lun_shutdown_comp);
4145 return 0;
4149 * transport_wait_for_tasks - wait for completion to occur
4150 * @cmd: command to wait
4152 * Called from frontend fabric context to wait for storage engine
4153 * to pause and/or release frontend generated struct se_cmd.
4155 void transport_wait_for_tasks(struct se_cmd *cmd)
4157 unsigned long flags;
4159 spin_lock_irqsave(&cmd->t_state_lock, flags);
4160 if (!(cmd->se_cmd_flags & SCF_SE_LUN_CMD) && !(cmd->se_tmr_req)) {
4161 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4162 return;
4165 * Only perform a possible wait_for_tasks if SCF_SUPPORTED_SAM_OPCODE
4166 * has been set in transport_set_supported_SAM_opcode().
4168 if (!(cmd->se_cmd_flags & SCF_SUPPORTED_SAM_OPCODE) && !cmd->se_tmr_req) {
4169 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4170 return;
4173 * If we are already stopped due to an external event (ie: LUN shutdown)
4174 * sleep until the connection can have the passed struct se_cmd back.
4175 * The cmd->transport_lun_stopped_sem will be upped by
4176 * transport_clear_lun_from_sessions() once the ConfigFS context caller
4177 * has completed its operation on the struct se_cmd.
4179 if (atomic_read(&cmd->transport_lun_stop)) {
4181 pr_debug("wait_for_tasks: Stopping"
4182 " wait_for_completion(&cmd->t_tasktransport_lun_fe"
4183 "_stop_comp); for ITT: 0x%08x\n",
4184 cmd->se_tfo->get_task_tag(cmd));
4186 * There is a special case for WRITES where a FE exception +
4187 * LUN shutdown means ConfigFS context is still sleeping on
4188 * transport_lun_stop_comp in transport_lun_wait_for_tasks().
4189 * We go ahead and up transport_lun_stop_comp just to be sure
4190 * here.
4192 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4193 complete(&cmd->transport_lun_stop_comp);
4194 wait_for_completion(&cmd->transport_lun_fe_stop_comp);
4195 spin_lock_irqsave(&cmd->t_state_lock, flags);
4197 transport_all_task_dev_remove_state(cmd);
4199 * At this point, the frontend who was the originator of this
4200 * struct se_cmd, now owns the structure and can be released through
4201 * normal means below.
4203 pr_debug("wait_for_tasks: Stopped"
4204 " wait_for_completion(&cmd->t_tasktransport_lun_fe_"
4205 "stop_comp); for ITT: 0x%08x\n",
4206 cmd->se_tfo->get_task_tag(cmd));
4208 atomic_set(&cmd->transport_lun_stop, 0);
4210 if (!atomic_read(&cmd->t_transport_active) ||
4211 atomic_read(&cmd->t_transport_aborted)) {
4212 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4213 return;
4216 atomic_set(&cmd->t_transport_stop, 1);
4218 pr_debug("wait_for_tasks: Stopping %p ITT: 0x%08x"
4219 " i_state: %d, t_state: %d, t_transport_stop = TRUE\n",
4220 cmd, cmd->se_tfo->get_task_tag(cmd),
4221 cmd->se_tfo->get_cmd_state(cmd), cmd->t_state);
4223 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4225 wake_up_interruptible(&cmd->se_dev->dev_queue_obj.thread_wq);
4227 wait_for_completion(&cmd->t_transport_stop_comp);
4229 spin_lock_irqsave(&cmd->t_state_lock, flags);
4230 atomic_set(&cmd->t_transport_active, 0);
4231 atomic_set(&cmd->t_transport_stop, 0);
4233 pr_debug("wait_for_tasks: Stopped wait_for_compltion("
4234 "&cmd->t_transport_stop_comp) for ITT: 0x%08x\n",
4235 cmd->se_tfo->get_task_tag(cmd));
4237 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4239 EXPORT_SYMBOL(transport_wait_for_tasks);
4241 static int transport_get_sense_codes(
4242 struct se_cmd *cmd,
4243 u8 *asc,
4244 u8 *ascq)
4246 *asc = cmd->scsi_asc;
4247 *ascq = cmd->scsi_ascq;
4249 return 0;
4252 static int transport_set_sense_codes(
4253 struct se_cmd *cmd,
4254 u8 asc,
4255 u8 ascq)
4257 cmd->scsi_asc = asc;
4258 cmd->scsi_ascq = ascq;
4260 return 0;
4263 int transport_send_check_condition_and_sense(
4264 struct se_cmd *cmd,
4265 u8 reason,
4266 int from_transport)
4268 unsigned char *buffer = cmd->sense_buffer;
4269 unsigned long flags;
4270 int offset;
4271 u8 asc = 0, ascq = 0;
4273 spin_lock_irqsave(&cmd->t_state_lock, flags);
4274 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4275 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4276 return 0;
4278 cmd->se_cmd_flags |= SCF_SENT_CHECK_CONDITION;
4279 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4281 if (!reason && from_transport)
4282 goto after_reason;
4284 if (!from_transport)
4285 cmd->se_cmd_flags |= SCF_EMULATED_TASK_SENSE;
4287 * Data Segment and SenseLength of the fabric response PDU.
4289 * TRANSPORT_SENSE_BUFFER is now set to SCSI_SENSE_BUFFERSIZE
4290 * from include/scsi/scsi_cmnd.h
4292 offset = cmd->se_tfo->set_fabric_sense_len(cmd,
4293 TRANSPORT_SENSE_BUFFER);
4295 * Actual SENSE DATA, see SPC-3 7.23.2 SPC_SENSE_KEY_OFFSET uses
4296 * SENSE KEY values from include/scsi/scsi.h
4298 switch (reason) {
4299 case TCM_NON_EXISTENT_LUN:
4300 /* CURRENT ERROR */
4301 buffer[offset] = 0x70;
4302 /* ILLEGAL REQUEST */
4303 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4304 /* LOGICAL UNIT NOT SUPPORTED */
4305 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x25;
4306 break;
4307 case TCM_UNSUPPORTED_SCSI_OPCODE:
4308 case TCM_SECTOR_COUNT_TOO_MANY:
4309 /* CURRENT ERROR */
4310 buffer[offset] = 0x70;
4311 /* ILLEGAL REQUEST */
4312 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4313 /* INVALID COMMAND OPERATION CODE */
4314 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x20;
4315 break;
4316 case TCM_UNKNOWN_MODE_PAGE:
4317 /* CURRENT ERROR */
4318 buffer[offset] = 0x70;
4319 /* ILLEGAL REQUEST */
4320 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4321 /* INVALID FIELD IN CDB */
4322 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4323 break;
4324 case TCM_CHECK_CONDITION_ABORT_CMD:
4325 /* CURRENT ERROR */
4326 buffer[offset] = 0x70;
4327 /* ABORTED COMMAND */
4328 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4329 /* BUS DEVICE RESET FUNCTION OCCURRED */
4330 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x29;
4331 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x03;
4332 break;
4333 case TCM_INCORRECT_AMOUNT_OF_DATA:
4334 /* CURRENT ERROR */
4335 buffer[offset] = 0x70;
4336 /* ABORTED COMMAND */
4337 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4338 /* WRITE ERROR */
4339 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4340 /* NOT ENOUGH UNSOLICITED DATA */
4341 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0d;
4342 break;
4343 case TCM_INVALID_CDB_FIELD:
4344 /* CURRENT ERROR */
4345 buffer[offset] = 0x70;
4346 /* ABORTED COMMAND */
4347 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4348 /* INVALID FIELD IN CDB */
4349 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x24;
4350 break;
4351 case TCM_INVALID_PARAMETER_LIST:
4352 /* CURRENT ERROR */
4353 buffer[offset] = 0x70;
4354 /* ABORTED COMMAND */
4355 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4356 /* INVALID FIELD IN PARAMETER LIST */
4357 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x26;
4358 break;
4359 case TCM_UNEXPECTED_UNSOLICITED_DATA:
4360 /* CURRENT ERROR */
4361 buffer[offset] = 0x70;
4362 /* ABORTED COMMAND */
4363 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4364 /* WRITE ERROR */
4365 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x0c;
4366 /* UNEXPECTED_UNSOLICITED_DATA */
4367 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x0c;
4368 break;
4369 case TCM_SERVICE_CRC_ERROR:
4370 /* CURRENT ERROR */
4371 buffer[offset] = 0x70;
4372 /* ABORTED COMMAND */
4373 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4374 /* PROTOCOL SERVICE CRC ERROR */
4375 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x47;
4376 /* N/A */
4377 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x05;
4378 break;
4379 case TCM_SNACK_REJECTED:
4380 /* CURRENT ERROR */
4381 buffer[offset] = 0x70;
4382 /* ABORTED COMMAND */
4383 buffer[offset+SPC_SENSE_KEY_OFFSET] = ABORTED_COMMAND;
4384 /* READ ERROR */
4385 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x11;
4386 /* FAILED RETRANSMISSION REQUEST */
4387 buffer[offset+SPC_ASCQ_KEY_OFFSET] = 0x13;
4388 break;
4389 case TCM_WRITE_PROTECTED:
4390 /* CURRENT ERROR */
4391 buffer[offset] = 0x70;
4392 /* DATA PROTECT */
4393 buffer[offset+SPC_SENSE_KEY_OFFSET] = DATA_PROTECT;
4394 /* WRITE PROTECTED */
4395 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x27;
4396 break;
4397 case TCM_CHECK_CONDITION_UNIT_ATTENTION:
4398 /* CURRENT ERROR */
4399 buffer[offset] = 0x70;
4400 /* UNIT ATTENTION */
4401 buffer[offset+SPC_SENSE_KEY_OFFSET] = UNIT_ATTENTION;
4402 core_scsi3_ua_for_check_condition(cmd, &asc, &ascq);
4403 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4404 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4405 break;
4406 case TCM_CHECK_CONDITION_NOT_READY:
4407 /* CURRENT ERROR */
4408 buffer[offset] = 0x70;
4409 /* Not Ready */
4410 buffer[offset+SPC_SENSE_KEY_OFFSET] = NOT_READY;
4411 transport_get_sense_codes(cmd, &asc, &ascq);
4412 buffer[offset+SPC_ASC_KEY_OFFSET] = asc;
4413 buffer[offset+SPC_ASCQ_KEY_OFFSET] = ascq;
4414 break;
4415 case TCM_LOGICAL_UNIT_COMMUNICATION_FAILURE:
4416 default:
4417 /* CURRENT ERROR */
4418 buffer[offset] = 0x70;
4419 /* ILLEGAL REQUEST */
4420 buffer[offset+SPC_SENSE_KEY_OFFSET] = ILLEGAL_REQUEST;
4421 /* LOGICAL UNIT COMMUNICATION FAILURE */
4422 buffer[offset+SPC_ASC_KEY_OFFSET] = 0x80;
4423 break;
4426 * This code uses linux/include/scsi/scsi.h SAM status codes!
4428 cmd->scsi_status = SAM_STAT_CHECK_CONDITION;
4430 * Automatically padded, this value is encoded in the fabric's
4431 * data_length response PDU containing the SCSI defined sense data.
4433 cmd->scsi_sense_length = TRANSPORT_SENSE_BUFFER + offset;
4435 after_reason:
4436 return cmd->se_tfo->queue_status(cmd);
4438 EXPORT_SYMBOL(transport_send_check_condition_and_sense);
4440 int transport_check_aborted_status(struct se_cmd *cmd, int send_status)
4442 int ret = 0;
4444 if (atomic_read(&cmd->t_transport_aborted) != 0) {
4445 if (!send_status ||
4446 (cmd->se_cmd_flags & SCF_SENT_DELAYED_TAS))
4447 return 1;
4448 #if 0
4449 pr_debug("Sending delayed SAM_STAT_TASK_ABORTED"
4450 " status for CDB: 0x%02x ITT: 0x%08x\n",
4451 cmd->t_task_cdb[0],
4452 cmd->se_tfo->get_task_tag(cmd));
4453 #endif
4454 cmd->se_cmd_flags |= SCF_SENT_DELAYED_TAS;
4455 cmd->se_tfo->queue_status(cmd);
4456 ret = 1;
4458 return ret;
4460 EXPORT_SYMBOL(transport_check_aborted_status);
4462 void transport_send_task_abort(struct se_cmd *cmd)
4464 unsigned long flags;
4466 spin_lock_irqsave(&cmd->t_state_lock, flags);
4467 if (cmd->se_cmd_flags & SCF_SENT_CHECK_CONDITION) {
4468 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4469 return;
4471 spin_unlock_irqrestore(&cmd->t_state_lock, flags);
4474 * If there are still expected incoming fabric WRITEs, we wait
4475 * until until they have completed before sending a TASK_ABORTED
4476 * response. This response with TASK_ABORTED status will be
4477 * queued back to fabric module by transport_check_aborted_status().
4479 if (cmd->data_direction == DMA_TO_DEVICE) {
4480 if (cmd->se_tfo->write_pending_status(cmd) != 0) {
4481 atomic_inc(&cmd->t_transport_aborted);
4482 smp_mb__after_atomic_inc();
4483 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4484 transport_new_cmd_failure(cmd);
4485 return;
4488 cmd->scsi_status = SAM_STAT_TASK_ABORTED;
4489 #if 0
4490 pr_debug("Setting SAM_STAT_TASK_ABORTED status for CDB: 0x%02x,"
4491 " ITT: 0x%08x\n", cmd->t_task_cdb[0],
4492 cmd->se_tfo->get_task_tag(cmd));
4493 #endif
4494 cmd->se_tfo->queue_status(cmd);
4497 /* transport_generic_do_tmr():
4501 int transport_generic_do_tmr(struct se_cmd *cmd)
4503 struct se_device *dev = cmd->se_dev;
4504 struct se_tmr_req *tmr = cmd->se_tmr_req;
4505 int ret;
4507 switch (tmr->function) {
4508 case TMR_ABORT_TASK:
4509 tmr->response = TMR_FUNCTION_REJECTED;
4510 break;
4511 case TMR_ABORT_TASK_SET:
4512 case TMR_CLEAR_ACA:
4513 case TMR_CLEAR_TASK_SET:
4514 tmr->response = TMR_TASK_MGMT_FUNCTION_NOT_SUPPORTED;
4515 break;
4516 case TMR_LUN_RESET:
4517 ret = core_tmr_lun_reset(dev, tmr, NULL, NULL);
4518 tmr->response = (!ret) ? TMR_FUNCTION_COMPLETE :
4519 TMR_FUNCTION_REJECTED;
4520 break;
4521 case TMR_TARGET_WARM_RESET:
4522 tmr->response = TMR_FUNCTION_REJECTED;
4523 break;
4524 case TMR_TARGET_COLD_RESET:
4525 tmr->response = TMR_FUNCTION_REJECTED;
4526 break;
4527 default:
4528 pr_err("Uknown TMR function: 0x%02x.\n",
4529 tmr->function);
4530 tmr->response = TMR_FUNCTION_REJECTED;
4531 break;
4534 cmd->t_state = TRANSPORT_ISTATE_PROCESSING;
4535 cmd->se_tfo->queue_tm_rsp(cmd);
4537 transport_cmd_check_stop_to_fabric(cmd);
4538 return 0;
4541 /* transport_processing_thread():
4545 static int transport_processing_thread(void *param)
4547 int ret;
4548 struct se_cmd *cmd;
4549 struct se_device *dev = (struct se_device *) param;
4551 set_user_nice(current, -20);
4553 while (!kthread_should_stop()) {
4554 ret = wait_event_interruptible(dev->dev_queue_obj.thread_wq,
4555 atomic_read(&dev->dev_queue_obj.queue_cnt) ||
4556 kthread_should_stop());
4557 if (ret < 0)
4558 goto out;
4560 get_cmd:
4561 __transport_execute_tasks(dev);
4563 cmd = transport_get_cmd_from_queue(&dev->dev_queue_obj);
4564 if (!cmd)
4565 continue;
4567 switch (cmd->t_state) {
4568 case TRANSPORT_NEW_CMD:
4569 BUG();
4570 break;
4571 case TRANSPORT_NEW_CMD_MAP:
4572 if (!cmd->se_tfo->new_cmd_map) {
4573 pr_err("cmd->se_tfo->new_cmd_map is"
4574 " NULL for TRANSPORT_NEW_CMD_MAP\n");
4575 BUG();
4577 ret = cmd->se_tfo->new_cmd_map(cmd);
4578 if (ret < 0) {
4579 cmd->transport_error_status = ret;
4580 transport_generic_request_failure(cmd,
4581 0, (cmd->data_direction !=
4582 DMA_TO_DEVICE));
4583 break;
4585 ret = transport_generic_new_cmd(cmd);
4586 if (ret == -EAGAIN)
4587 break;
4588 else if (ret < 0) {
4589 cmd->transport_error_status = ret;
4590 transport_generic_request_failure(cmd,
4591 0, (cmd->data_direction !=
4592 DMA_TO_DEVICE));
4594 break;
4595 case TRANSPORT_PROCESS_WRITE:
4596 transport_generic_process_write(cmd);
4597 break;
4598 case TRANSPORT_FREE_CMD_INTR:
4599 transport_generic_free_cmd(cmd, 0);
4600 break;
4601 case TRANSPORT_PROCESS_TMR:
4602 transport_generic_do_tmr(cmd);
4603 break;
4604 case TRANSPORT_COMPLETE_QF_WP:
4605 transport_write_pending_qf(cmd);
4606 break;
4607 case TRANSPORT_COMPLETE_QF_OK:
4608 transport_complete_qf(cmd);
4609 break;
4610 default:
4611 pr_err("Unknown t_state: %d for ITT: 0x%08x "
4612 "i_state: %d on SE LUN: %u\n",
4613 cmd->t_state,
4614 cmd->se_tfo->get_task_tag(cmd),
4615 cmd->se_tfo->get_cmd_state(cmd),
4616 cmd->se_lun->unpacked_lun);
4617 BUG();
4620 goto get_cmd;
4623 out:
4624 WARN_ON(!list_empty(&dev->state_task_list));
4625 WARN_ON(!list_empty(&dev->dev_queue_obj.qobj_list));
4626 dev->process_thread = NULL;
4627 return 0;