Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / drivers / tty / serial / jsm / jsm_neo.c
blob81dfafa11b0bc4f73e4cb0cdd37cee021f84046c
1 /************************************************************************
2 * Copyright 2003 Digi International (www.digi.com)
4 * Copyright (C) 2004 IBM Corporation. All rights reserved.
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2, or (at your option)
9 * any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED; without even the
13 * implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
14 * PURPOSE. See the GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 * Temple Place - Suite 330, Boston,
19 * MA 02111-1307, USA.
21 * Contact Information:
22 * Scott H Kilau <Scott_Kilau@digi.com>
23 * Wendy Xiong <wendyx@us.ibm.com>
25 ***********************************************************************/
26 #include <linux/delay.h> /* For udelay */
27 #include <linux/serial_reg.h> /* For the various UART offsets */
28 #include <linux/tty.h>
29 #include <linux/pci.h>
30 #include <asm/io.h>
32 #include "jsm.h" /* Driver main header file */
34 static u32 jsm_offset_table[8] = { 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80 };
37 * This function allows calls to ensure that all outstanding
38 * PCI writes have been completed, by doing a PCI read against
39 * a non-destructive, read-only location on the Neo card.
41 * In this case, we are reading the DVID (Read-only Device Identification)
42 * value of the Neo card.
44 static inline void neo_pci_posting_flush(struct jsm_board *bd)
46 readb(bd->re_map_membase + 0x8D);
49 static void neo_set_cts_flow_control(struct jsm_channel *ch)
51 u8 ier, efr;
52 ier = readb(&ch->ch_neo_uart->ier);
53 efr = readb(&ch->ch_neo_uart->efr);
55 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting CTSFLOW\n");
57 /* Turn on auto CTS flow control */
58 ier |= (UART_17158_IER_CTSDSR);
59 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_CTSDSR);
61 /* Turn off auto Xon flow control */
62 efr &= ~(UART_17158_EFR_IXON);
64 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
65 writeb(0, &ch->ch_neo_uart->efr);
67 /* Turn on UART enhanced bits */
68 writeb(efr, &ch->ch_neo_uart->efr);
70 /* Turn on table D, with 8 char hi/low watermarks */
71 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
73 /* Feed the UART our trigger levels */
74 writeb(8, &ch->ch_neo_uart->tfifo);
75 ch->ch_t_tlevel = 8;
77 writeb(ier, &ch->ch_neo_uart->ier);
80 static void neo_set_rts_flow_control(struct jsm_channel *ch)
82 u8 ier, efr;
83 ier = readb(&ch->ch_neo_uart->ier);
84 efr = readb(&ch->ch_neo_uart->efr);
86 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting RTSFLOW\n");
88 /* Turn on auto RTS flow control */
89 ier |= (UART_17158_IER_RTSDTR);
90 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_RTSDTR);
92 /* Turn off auto Xoff flow control */
93 ier &= ~(UART_17158_IER_XOFF);
94 efr &= ~(UART_17158_EFR_IXOFF);
96 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
97 writeb(0, &ch->ch_neo_uart->efr);
99 /* Turn on UART enhanced bits */
100 writeb(efr, &ch->ch_neo_uart->efr);
102 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_4DELAY), &ch->ch_neo_uart->fctr);
103 ch->ch_r_watermark = 4;
105 writeb(56, &ch->ch_neo_uart->rfifo);
106 ch->ch_r_tlevel = 56;
108 writeb(ier, &ch->ch_neo_uart->ier);
111 * From the Neo UART spec sheet:
112 * The auto RTS/DTR function must be started by asserting
113 * RTS/DTR# output pin (MCR bit-0 or 1 to logic 1 after
114 * it is enabled.
116 ch->ch_mostat |= (UART_MCR_RTS);
120 static void neo_set_ixon_flow_control(struct jsm_channel *ch)
122 u8 ier, efr;
123 ier = readb(&ch->ch_neo_uart->ier);
124 efr = readb(&ch->ch_neo_uart->efr);
126 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXON FLOW\n");
128 /* Turn off auto CTS flow control */
129 ier &= ~(UART_17158_IER_CTSDSR);
130 efr &= ~(UART_17158_EFR_CTSDSR);
132 /* Turn on auto Xon flow control */
133 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXON);
135 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
136 writeb(0, &ch->ch_neo_uart->efr);
138 /* Turn on UART enhanced bits */
139 writeb(efr, &ch->ch_neo_uart->efr);
141 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
142 ch->ch_r_watermark = 4;
144 writeb(32, &ch->ch_neo_uart->rfifo);
145 ch->ch_r_tlevel = 32;
147 /* Tell UART what start/stop chars it should be looking for */
148 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
149 writeb(0, &ch->ch_neo_uart->xonchar2);
151 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
152 writeb(0, &ch->ch_neo_uart->xoffchar2);
154 writeb(ier, &ch->ch_neo_uart->ier);
157 static void neo_set_ixoff_flow_control(struct jsm_channel *ch)
159 u8 ier, efr;
160 ier = readb(&ch->ch_neo_uart->ier);
161 efr = readb(&ch->ch_neo_uart->efr);
163 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Setting IXOFF FLOW\n");
165 /* Turn off auto RTS flow control */
166 ier &= ~(UART_17158_IER_RTSDTR);
167 efr &= ~(UART_17158_EFR_RTSDTR);
169 /* Turn on auto Xoff flow control */
170 ier |= (UART_17158_IER_XOFF);
171 efr |= (UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
173 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
174 writeb(0, &ch->ch_neo_uart->efr);
176 /* Turn on UART enhanced bits */
177 writeb(efr, &ch->ch_neo_uart->efr);
179 /* Turn on table D, with 8 char hi/low watermarks */
180 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
182 writeb(8, &ch->ch_neo_uart->tfifo);
183 ch->ch_t_tlevel = 8;
185 /* Tell UART what start/stop chars it should be looking for */
186 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
187 writeb(0, &ch->ch_neo_uart->xonchar2);
189 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
190 writeb(0, &ch->ch_neo_uart->xoffchar2);
192 writeb(ier, &ch->ch_neo_uart->ier);
195 static void neo_set_no_input_flow_control(struct jsm_channel *ch)
197 u8 ier, efr;
198 ier = readb(&ch->ch_neo_uart->ier);
199 efr = readb(&ch->ch_neo_uart->efr);
201 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Input FLOW\n");
203 /* Turn off auto RTS flow control */
204 ier &= ~(UART_17158_IER_RTSDTR);
205 efr &= ~(UART_17158_EFR_RTSDTR);
207 /* Turn off auto Xoff flow control */
208 ier &= ~(UART_17158_IER_XOFF);
209 if (ch->ch_c_iflag & IXON)
210 efr &= ~(UART_17158_EFR_IXOFF);
211 else
212 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXOFF);
214 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
215 writeb(0, &ch->ch_neo_uart->efr);
217 /* Turn on UART enhanced bits */
218 writeb(efr, &ch->ch_neo_uart->efr);
220 /* Turn on table D, with 8 char hi/low watermarks */
221 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
223 ch->ch_r_watermark = 0;
225 writeb(16, &ch->ch_neo_uart->tfifo);
226 ch->ch_t_tlevel = 16;
228 writeb(16, &ch->ch_neo_uart->rfifo);
229 ch->ch_r_tlevel = 16;
231 writeb(ier, &ch->ch_neo_uart->ier);
234 static void neo_set_no_output_flow_control(struct jsm_channel *ch)
236 u8 ier, efr;
237 ier = readb(&ch->ch_neo_uart->ier);
238 efr = readb(&ch->ch_neo_uart->efr);
240 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "Unsetting Output FLOW\n");
242 /* Turn off auto CTS flow control */
243 ier &= ~(UART_17158_IER_CTSDSR);
244 efr &= ~(UART_17158_EFR_CTSDSR);
246 /* Turn off auto Xon flow control */
247 if (ch->ch_c_iflag & IXOFF)
248 efr &= ~(UART_17158_EFR_IXON);
249 else
250 efr &= ~(UART_17158_EFR_ECB | UART_17158_EFR_IXON);
252 /* Why? Becuz Exar's spec says we have to zero it out before setting it */
253 writeb(0, &ch->ch_neo_uart->efr);
255 /* Turn on UART enhanced bits */
256 writeb(efr, &ch->ch_neo_uart->efr);
258 /* Turn on table D, with 8 char hi/low watermarks */
259 writeb((UART_17158_FCTR_TRGD | UART_17158_FCTR_RTS_8DELAY), &ch->ch_neo_uart->fctr);
261 ch->ch_r_watermark = 0;
263 writeb(16, &ch->ch_neo_uart->tfifo);
264 ch->ch_t_tlevel = 16;
266 writeb(16, &ch->ch_neo_uart->rfifo);
267 ch->ch_r_tlevel = 16;
269 writeb(ier, &ch->ch_neo_uart->ier);
272 static inline void neo_set_new_start_stop_chars(struct jsm_channel *ch)
275 /* if hardware flow control is set, then skip this whole thing */
276 if (ch->ch_c_cflag & CRTSCTS)
277 return;
279 jsm_printk(PARAM, INFO, &ch->ch_bd->pci_dev, "start\n");
281 /* Tell UART what start/stop chars it should be looking for */
282 writeb(ch->ch_startc, &ch->ch_neo_uart->xonchar1);
283 writeb(0, &ch->ch_neo_uart->xonchar2);
285 writeb(ch->ch_stopc, &ch->ch_neo_uart->xoffchar1);
286 writeb(0, &ch->ch_neo_uart->xoffchar2);
289 static void neo_copy_data_from_uart_to_queue(struct jsm_channel *ch)
291 int qleft = 0;
292 u8 linestatus = 0;
293 u8 error_mask = 0;
294 int n = 0;
295 int total = 0;
296 u16 head;
297 u16 tail;
299 if (!ch)
300 return;
302 /* cache head and tail of queue */
303 head = ch->ch_r_head & RQUEUEMASK;
304 tail = ch->ch_r_tail & RQUEUEMASK;
306 /* Get our cached LSR */
307 linestatus = ch->ch_cached_lsr;
308 ch->ch_cached_lsr = 0;
310 /* Store how much space we have left in the queue */
311 if ((qleft = tail - head - 1) < 0)
312 qleft += RQUEUEMASK + 1;
315 * If the UART is not in FIFO mode, force the FIFO copy to
316 * NOT be run, by setting total to 0.
318 * On the other hand, if the UART IS in FIFO mode, then ask
319 * the UART to give us an approximation of data it has RX'ed.
321 if (!(ch->ch_flags & CH_FIFO_ENABLED))
322 total = 0;
323 else {
324 total = readb(&ch->ch_neo_uart->rfifo);
327 * EXAR chip bug - RX FIFO COUNT - Fudge factor.
329 * This resolves a problem/bug with the Exar chip that sometimes
330 * returns a bogus value in the rfifo register.
331 * The count can be any where from 0-3 bytes "off".
332 * Bizarre, but true.
334 total -= 3;
338 * Finally, bound the copy to make sure we don't overflow
339 * our own queue...
340 * The byte by byte copy loop below this loop this will
341 * deal with the queue overflow possibility.
343 total = min(total, qleft);
345 while (total > 0) {
347 * Grab the linestatus register, we need to check
348 * to see if there are any errors in the FIFO.
350 linestatus = readb(&ch->ch_neo_uart->lsr);
353 * Break out if there is a FIFO error somewhere.
354 * This will allow us to go byte by byte down below,
355 * finding the exact location of the error.
357 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
358 break;
360 /* Make sure we don't go over the end of our queue */
361 n = min(((u32) total), (RQUEUESIZE - (u32) head));
364 * Cut down n even further if needed, this is to fix
365 * a problem with memcpy_fromio() with the Neo on the
366 * IBM pSeries platform.
367 * 15 bytes max appears to be the magic number.
369 n = min((u32) n, (u32) 12);
372 * Since we are grabbing the linestatus register, which
373 * will reset some bits after our read, we need to ensure
374 * we don't miss our TX FIFO emptys.
376 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR))
377 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
379 linestatus = 0;
381 /* Copy data from uart to the queue */
382 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, n);
384 * Since RX_FIFO_DATA_ERROR was 0, we are guaranteed
385 * that all the data currently in the FIFO is free of
386 * breaks and parity/frame/orun errors.
388 memset(ch->ch_equeue + head, 0, n);
390 /* Add to and flip head if needed */
391 head = (head + n) & RQUEUEMASK;
392 total -= n;
393 qleft -= n;
394 ch->ch_rxcount += n;
398 * Create a mask to determine whether we should
399 * insert the character (if any) into our queue.
401 if (ch->ch_c_iflag & IGNBRK)
402 error_mask |= UART_LSR_BI;
405 * Now cleanup any leftover bytes still in the UART.
406 * Also deal with any possible queue overflow here as well.
408 while (1) {
411 * Its possible we have a linestatus from the loop above
412 * this, so we "OR" on any extra bits.
414 linestatus |= readb(&ch->ch_neo_uart->lsr);
417 * If the chip tells us there is no more data pending to
418 * be read, we can then leave.
419 * But before we do, cache the linestatus, just in case.
421 if (!(linestatus & UART_LSR_DR)) {
422 ch->ch_cached_lsr = linestatus;
423 break;
426 /* No need to store this bit */
427 linestatus &= ~UART_LSR_DR;
430 * Since we are grabbing the linestatus register, which
431 * will reset some bits after our read, we need to ensure
432 * we don't miss our TX FIFO emptys.
434 if (linestatus & (UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR)) {
435 linestatus &= ~(UART_LSR_THRE | UART_17158_TX_AND_FIFO_CLR);
436 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
440 * Discard character if we are ignoring the error mask.
442 if (linestatus & error_mask) {
443 u8 discard;
444 linestatus = 0;
445 memcpy_fromio(&discard, &ch->ch_neo_uart->txrxburst, 1);
446 continue;
450 * If our queue is full, we have no choice but to drop some data.
451 * The assumption is that HWFLOW or SWFLOW should have stopped
452 * things way way before we got to this point.
454 * I decided that I wanted to ditch the oldest data first,
455 * I hope thats okay with everyone? Yes? Good.
457 while (qleft < 1) {
458 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
459 "Queue full, dropping DATA:%x LSR:%x\n",
460 ch->ch_rqueue[tail], ch->ch_equeue[tail]);
462 ch->ch_r_tail = tail = (tail + 1) & RQUEUEMASK;
463 ch->ch_err_overrun++;
464 qleft++;
467 memcpy_fromio(ch->ch_rqueue + head, &ch->ch_neo_uart->txrxburst, 1);
468 ch->ch_equeue[head] = (u8) linestatus;
470 jsm_printk(READ, INFO, &ch->ch_bd->pci_dev,
471 "DATA/LSR pair: %x %x\n", ch->ch_rqueue[head], ch->ch_equeue[head]);
473 /* Ditch any remaining linestatus value. */
474 linestatus = 0;
476 /* Add to and flip head if needed */
477 head = (head + 1) & RQUEUEMASK;
479 qleft--;
480 ch->ch_rxcount++;
484 * Write new final heads to channel structure.
486 ch->ch_r_head = head & RQUEUEMASK;
487 ch->ch_e_head = head & EQUEUEMASK;
488 jsm_input(ch);
491 static void neo_copy_data_from_queue_to_uart(struct jsm_channel *ch)
493 u16 head;
494 u16 tail;
495 int n;
496 int s;
497 int qlen;
498 u32 len_written = 0;
499 struct circ_buf *circ;
501 if (!ch)
502 return;
504 circ = &ch->uart_port.state->xmit;
506 /* No data to write to the UART */
507 if (uart_circ_empty(circ))
508 return;
510 /* If port is "stopped", don't send any data to the UART */
511 if ((ch->ch_flags & CH_STOP) || (ch->ch_flags & CH_BREAK_SENDING))
512 return;
514 * If FIFOs are disabled. Send data directly to txrx register
516 if (!(ch->ch_flags & CH_FIFO_ENABLED)) {
517 u8 lsrbits = readb(&ch->ch_neo_uart->lsr);
519 ch->ch_cached_lsr |= lsrbits;
520 if (ch->ch_cached_lsr & UART_LSR_THRE) {
521 ch->ch_cached_lsr &= ~(UART_LSR_THRE);
523 writeb(circ->buf[circ->tail], &ch->ch_neo_uart->txrx);
524 jsm_printk(WRITE, INFO, &ch->ch_bd->pci_dev,
525 "Tx data: %x\n", circ->buf[circ->tail]);
526 circ->tail = (circ->tail + 1) & (UART_XMIT_SIZE - 1);
527 ch->ch_txcount++;
529 return;
533 * We have to do it this way, because of the EXAR TXFIFO count bug.
535 if (!(ch->ch_flags & (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM)))
536 return;
538 n = UART_17158_TX_FIFOSIZE - ch->ch_t_tlevel;
540 /* cache head and tail of queue */
541 head = circ->head & (UART_XMIT_SIZE - 1);
542 tail = circ->tail & (UART_XMIT_SIZE - 1);
543 qlen = uart_circ_chars_pending(circ);
545 /* Find minimum of the FIFO space, versus queue length */
546 n = min(n, qlen);
548 while (n > 0) {
550 s = ((head >= tail) ? head : UART_XMIT_SIZE) - tail;
551 s = min(s, n);
553 if (s <= 0)
554 break;
556 memcpy_toio(&ch->ch_neo_uart->txrxburst, circ->buf + tail, s);
557 /* Add and flip queue if needed */
558 tail = (tail + s) & (UART_XMIT_SIZE - 1);
559 n -= s;
560 ch->ch_txcount += s;
561 len_written += s;
564 /* Update the final tail */
565 circ->tail = tail & (UART_XMIT_SIZE - 1);
567 if (len_written >= ch->ch_t_tlevel)
568 ch->ch_flags &= ~(CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
570 if (uart_circ_empty(circ))
571 uart_write_wakeup(&ch->uart_port);
574 static void neo_parse_modem(struct jsm_channel *ch, u8 signals)
576 u8 msignals = signals;
578 jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
579 "neo_parse_modem: port: %d msignals: %x\n", ch->ch_portnum, msignals);
581 /* Scrub off lower bits. They signify delta's, which I don't care about */
582 /* Keep DDCD and DDSR though */
583 msignals &= 0xf8;
585 if (msignals & UART_MSR_DDCD)
586 uart_handle_dcd_change(&ch->uart_port, msignals & UART_MSR_DCD);
587 if (msignals & UART_MSR_DDSR)
588 uart_handle_cts_change(&ch->uart_port, msignals & UART_MSR_CTS);
589 if (msignals & UART_MSR_DCD)
590 ch->ch_mistat |= UART_MSR_DCD;
591 else
592 ch->ch_mistat &= ~UART_MSR_DCD;
594 if (msignals & UART_MSR_DSR)
595 ch->ch_mistat |= UART_MSR_DSR;
596 else
597 ch->ch_mistat &= ~UART_MSR_DSR;
599 if (msignals & UART_MSR_RI)
600 ch->ch_mistat |= UART_MSR_RI;
601 else
602 ch->ch_mistat &= ~UART_MSR_RI;
604 if (msignals & UART_MSR_CTS)
605 ch->ch_mistat |= UART_MSR_CTS;
606 else
607 ch->ch_mistat &= ~UART_MSR_CTS;
609 jsm_printk(MSIGS, INFO, &ch->ch_bd->pci_dev,
610 "Port: %d DTR: %d RTS: %d CTS: %d DSR: %d " "RI: %d CD: %d\n",
611 ch->ch_portnum,
612 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_DTR),
613 !!((ch->ch_mistat | ch->ch_mostat) & UART_MCR_RTS),
614 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_CTS),
615 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DSR),
616 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_RI),
617 !!((ch->ch_mistat | ch->ch_mostat) & UART_MSR_DCD));
620 /* Make the UART raise any of the output signals we want up */
621 static void neo_assert_modem_signals(struct jsm_channel *ch)
623 if (!ch)
624 return;
626 writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
628 /* flush write operation */
629 neo_pci_posting_flush(ch->ch_bd);
633 * Flush the WRITE FIFO on the Neo.
635 * NOTE: Channel lock MUST be held before calling this function!
637 static void neo_flush_uart_write(struct jsm_channel *ch)
639 u8 tmp = 0;
640 int i = 0;
642 if (!ch)
643 return;
645 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
647 for (i = 0; i < 10; i++) {
649 /* Check to see if the UART feels it completely flushed the FIFO. */
650 tmp = readb(&ch->ch_neo_uart->isr_fcr);
651 if (tmp & 4) {
652 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
653 "Still flushing TX UART... i: %d\n", i);
654 udelay(10);
656 else
657 break;
660 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
665 * Flush the READ FIFO on the Neo.
667 * NOTE: Channel lock MUST be held before calling this function!
669 static void neo_flush_uart_read(struct jsm_channel *ch)
671 u8 tmp = 0;
672 int i = 0;
674 if (!ch)
675 return;
677 writeb((UART_FCR_ENABLE_FIFO | UART_FCR_CLEAR_RCVR), &ch->ch_neo_uart->isr_fcr);
679 for (i = 0; i < 10; i++) {
681 /* Check to see if the UART feels it completely flushed the FIFO. */
682 tmp = readb(&ch->ch_neo_uart->isr_fcr);
683 if (tmp & 2) {
684 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
685 "Still flushing RX UART... i: %d\n", i);
686 udelay(10);
688 else
689 break;
694 * No locks are assumed to be held when calling this function.
696 static void neo_clear_break(struct jsm_channel *ch, int force)
698 unsigned long lock_flags;
700 spin_lock_irqsave(&ch->ch_lock, lock_flags);
702 /* Turn break off, and unset some variables */
703 if (ch->ch_flags & CH_BREAK_SENDING) {
704 u8 temp = readb(&ch->ch_neo_uart->lcr);
705 writeb((temp & ~UART_LCR_SBC), &ch->ch_neo_uart->lcr);
707 ch->ch_flags &= ~(CH_BREAK_SENDING);
708 jsm_printk(IOCTL, INFO, &ch->ch_bd->pci_dev,
709 "clear break Finishing UART_LCR_SBC! finished: %lx\n", jiffies);
711 /* flush write operation */
712 neo_pci_posting_flush(ch->ch_bd);
714 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
718 * Parse the ISR register.
720 static inline void neo_parse_isr(struct jsm_board *brd, u32 port)
722 struct jsm_channel *ch;
723 u8 isr;
724 u8 cause;
725 unsigned long lock_flags;
727 if (!brd)
728 return;
730 if (port > brd->maxports)
731 return;
733 ch = brd->channels[port];
734 if (!ch)
735 return;
737 /* Here we try to figure out what caused the interrupt to happen */
738 while (1) {
740 isr = readb(&ch->ch_neo_uart->isr_fcr);
742 /* Bail if no pending interrupt */
743 if (isr & UART_IIR_NO_INT)
744 break;
747 * Yank off the upper 2 bits, which just show that the FIFO's are enabled.
749 isr &= ~(UART_17158_IIR_FIFO_ENABLED);
751 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
752 "%s:%d isr: %x\n", __FILE__, __LINE__, isr);
754 if (isr & (UART_17158_IIR_RDI_TIMEOUT | UART_IIR_RDI)) {
755 /* Read data from uart -> queue */
756 neo_copy_data_from_uart_to_queue(ch);
758 /* Call our tty layer to enforce queue flow control if needed. */
759 spin_lock_irqsave(&ch->ch_lock, lock_flags);
760 jsm_check_queue_flow_control(ch);
761 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
764 if (isr & UART_IIR_THRI) {
765 /* Transfer data (if any) from Write Queue -> UART. */
766 spin_lock_irqsave(&ch->ch_lock, lock_flags);
767 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
768 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
769 neo_copy_data_from_queue_to_uart(ch);
772 if (isr & UART_17158_IIR_XONXOFF) {
773 cause = readb(&ch->ch_neo_uart->xoffchar1);
775 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
776 "Port %d. Got ISR_XONXOFF: cause:%x\n", port, cause);
779 * Since the UART detected either an XON or
780 * XOFF match, we need to figure out which
781 * one it was, so we can suspend or resume data flow.
783 spin_lock_irqsave(&ch->ch_lock, lock_flags);
784 if (cause == UART_17158_XON_DETECT) {
785 /* Is output stopped right now, if so, resume it */
786 if (brd->channels[port]->ch_flags & CH_STOP) {
787 ch->ch_flags &= ~(CH_STOP);
789 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
790 "Port %d. XON detected in incoming data\n", port);
792 else if (cause == UART_17158_XOFF_DETECT) {
793 if (!(brd->channels[port]->ch_flags & CH_STOP)) {
794 ch->ch_flags |= CH_STOP;
795 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
796 "Setting CH_STOP\n");
798 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
799 "Port: %d. XOFF detected in incoming data\n", port);
801 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
804 if (isr & UART_17158_IIR_HWFLOW_STATE_CHANGE) {
806 * If we get here, this means the hardware is doing auto flow control.
807 * Check to see whether RTS/DTR or CTS/DSR caused this interrupt.
809 cause = readb(&ch->ch_neo_uart->mcr);
811 /* Which pin is doing auto flow? RTS or DTR? */
812 spin_lock_irqsave(&ch->ch_lock, lock_flags);
813 if ((cause & 0x4) == 0) {
814 if (cause & UART_MCR_RTS)
815 ch->ch_mostat |= UART_MCR_RTS;
816 else
817 ch->ch_mostat &= ~(UART_MCR_RTS);
818 } else {
819 if (cause & UART_MCR_DTR)
820 ch->ch_mostat |= UART_MCR_DTR;
821 else
822 ch->ch_mostat &= ~(UART_MCR_DTR);
824 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
827 /* Parse any modem signal changes */
828 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
829 "MOD_STAT: sending to parse_modem_sigs\n");
830 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
834 static inline void neo_parse_lsr(struct jsm_board *brd, u32 port)
836 struct jsm_channel *ch;
837 int linestatus;
838 unsigned long lock_flags;
840 if (!brd)
841 return;
843 if (port > brd->maxports)
844 return;
846 ch = brd->channels[port];
847 if (!ch)
848 return;
850 linestatus = readb(&ch->ch_neo_uart->lsr);
852 jsm_printk(INTR, INFO, &ch->ch_bd->pci_dev,
853 "%s:%d port: %d linestatus: %x\n", __FILE__, __LINE__, port, linestatus);
855 ch->ch_cached_lsr |= linestatus;
857 if (ch->ch_cached_lsr & UART_LSR_DR) {
858 /* Read data from uart -> queue */
859 neo_copy_data_from_uart_to_queue(ch);
860 spin_lock_irqsave(&ch->ch_lock, lock_flags);
861 jsm_check_queue_flow_control(ch);
862 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
866 * This is a special flag. It indicates that at least 1
867 * RX error (parity, framing, or break) has happened.
868 * Mark this in our struct, which will tell me that I have
869 *to do the special RX+LSR read for this FIFO load.
871 if (linestatus & UART_17158_RX_FIFO_DATA_ERROR)
872 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
873 "%s:%d Port: %d Got an RX error, need to parse LSR\n",
874 __FILE__, __LINE__, port);
877 * The next 3 tests should *NOT* happen, as the above test
878 * should encapsulate all 3... At least, thats what Exar says.
881 if (linestatus & UART_LSR_PE) {
882 ch->ch_err_parity++;
883 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
884 "%s:%d Port: %d. PAR ERR!\n", __FILE__, __LINE__, port);
887 if (linestatus & UART_LSR_FE) {
888 ch->ch_err_frame++;
889 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
890 "%s:%d Port: %d. FRM ERR!\n", __FILE__, __LINE__, port);
893 if (linestatus & UART_LSR_BI) {
894 ch->ch_err_break++;
895 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
896 "%s:%d Port: %d. BRK INTR!\n", __FILE__, __LINE__, port);
899 if (linestatus & UART_LSR_OE) {
901 * Rx Oruns. Exar says that an orun will NOT corrupt
902 * the FIFO. It will just replace the holding register
903 * with this new data byte. So basically just ignore this.
904 * Probably we should eventually have an orun stat in our driver...
906 ch->ch_err_overrun++;
907 jsm_printk(INTR, DEBUG, &ch->ch_bd->pci_dev,
908 "%s:%d Port: %d. Rx Overrun!\n", __FILE__, __LINE__, port);
911 if (linestatus & UART_LSR_THRE) {
912 spin_lock_irqsave(&ch->ch_lock, lock_flags);
913 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
914 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
916 /* Transfer data (if any) from Write Queue -> UART. */
917 neo_copy_data_from_queue_to_uart(ch);
919 else if (linestatus & UART_17158_TX_AND_FIFO_CLR) {
920 spin_lock_irqsave(&ch->ch_lock, lock_flags);
921 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
922 spin_unlock_irqrestore(&ch->ch_lock, lock_flags);
924 /* Transfer data (if any) from Write Queue -> UART. */
925 neo_copy_data_from_queue_to_uart(ch);
930 * neo_param()
931 * Send any/all changes to the line to the UART.
933 static void neo_param(struct jsm_channel *ch)
935 u8 lcr = 0;
936 u8 uart_lcr, ier;
937 u32 baud;
938 int quot;
939 struct jsm_board *bd;
941 bd = ch->ch_bd;
942 if (!bd)
943 return;
946 * If baud rate is zero, flush queues, and set mval to drop DTR.
948 if ((ch->ch_c_cflag & (CBAUD)) == 0) {
949 ch->ch_r_head = ch->ch_r_tail = 0;
950 ch->ch_e_head = ch->ch_e_tail = 0;
952 neo_flush_uart_write(ch);
953 neo_flush_uart_read(ch);
955 ch->ch_flags |= (CH_BAUD0);
956 ch->ch_mostat &= ~(UART_MCR_RTS | UART_MCR_DTR);
957 neo_assert_modem_signals(ch);
958 return;
960 } else {
961 int i;
962 unsigned int cflag;
963 static struct {
964 unsigned int rate;
965 unsigned int cflag;
966 } baud_rates[] = {
967 { 921600, B921600 },
968 { 460800, B460800 },
969 { 230400, B230400 },
970 { 115200, B115200 },
971 { 57600, B57600 },
972 { 38400, B38400 },
973 { 19200, B19200 },
974 { 9600, B9600 },
975 { 4800, B4800 },
976 { 2400, B2400 },
977 { 1200, B1200 },
978 { 600, B600 },
979 { 300, B300 },
980 { 200, B200 },
981 { 150, B150 },
982 { 134, B134 },
983 { 110, B110 },
984 { 75, B75 },
985 { 50, B50 },
988 cflag = C_BAUD(ch->uart_port.state->port.tty);
989 baud = 9600;
990 for (i = 0; i < ARRAY_SIZE(baud_rates); i++) {
991 if (baud_rates[i].cflag == cflag) {
992 baud = baud_rates[i].rate;
993 break;
997 if (ch->ch_flags & CH_BAUD0)
998 ch->ch_flags &= ~(CH_BAUD0);
1001 if (ch->ch_c_cflag & PARENB)
1002 lcr |= UART_LCR_PARITY;
1004 if (!(ch->ch_c_cflag & PARODD))
1005 lcr |= UART_LCR_EPAR;
1008 * Not all platforms support mark/space parity,
1009 * so this will hide behind an ifdef.
1011 #ifdef CMSPAR
1012 if (ch->ch_c_cflag & CMSPAR)
1013 lcr |= UART_LCR_SPAR;
1014 #endif
1016 if (ch->ch_c_cflag & CSTOPB)
1017 lcr |= UART_LCR_STOP;
1019 switch (ch->ch_c_cflag & CSIZE) {
1020 case CS5:
1021 lcr |= UART_LCR_WLEN5;
1022 break;
1023 case CS6:
1024 lcr |= UART_LCR_WLEN6;
1025 break;
1026 case CS7:
1027 lcr |= UART_LCR_WLEN7;
1028 break;
1029 case CS8:
1030 default:
1031 lcr |= UART_LCR_WLEN8;
1032 break;
1035 ier = readb(&ch->ch_neo_uart->ier);
1036 uart_lcr = readb(&ch->ch_neo_uart->lcr);
1038 if (baud == 0)
1039 baud = 9600;
1041 quot = ch->ch_bd->bd_dividend / baud;
1043 if (quot != 0) {
1044 writeb(UART_LCR_DLAB, &ch->ch_neo_uart->lcr);
1045 writeb((quot & 0xff), &ch->ch_neo_uart->txrx);
1046 writeb((quot >> 8), &ch->ch_neo_uart->ier);
1047 writeb(lcr, &ch->ch_neo_uart->lcr);
1050 if (uart_lcr != lcr)
1051 writeb(lcr, &ch->ch_neo_uart->lcr);
1053 if (ch->ch_c_cflag & CREAD)
1054 ier |= (UART_IER_RDI | UART_IER_RLSI);
1056 ier |= (UART_IER_THRI | UART_IER_MSI);
1058 writeb(ier, &ch->ch_neo_uart->ier);
1060 /* Set new start/stop chars */
1061 neo_set_new_start_stop_chars(ch);
1063 if (ch->ch_c_cflag & CRTSCTS)
1064 neo_set_cts_flow_control(ch);
1065 else if (ch->ch_c_iflag & IXON) {
1066 /* If start/stop is set to disable, then we should disable flow control */
1067 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1068 neo_set_no_output_flow_control(ch);
1069 else
1070 neo_set_ixon_flow_control(ch);
1072 else
1073 neo_set_no_output_flow_control(ch);
1075 if (ch->ch_c_cflag & CRTSCTS)
1076 neo_set_rts_flow_control(ch);
1077 else if (ch->ch_c_iflag & IXOFF) {
1078 /* If start/stop is set to disable, then we should disable flow control */
1079 if ((ch->ch_startc == __DISABLED_CHAR) || (ch->ch_stopc == __DISABLED_CHAR))
1080 neo_set_no_input_flow_control(ch);
1081 else
1082 neo_set_ixoff_flow_control(ch);
1084 else
1085 neo_set_no_input_flow_control(ch);
1087 * Adjust the RX FIFO Trigger level if baud is less than 9600.
1088 * Not exactly elegant, but this is needed because of the Exar chip's
1089 * delay on firing off the RX FIFO interrupt on slower baud rates.
1091 if (baud < 9600) {
1092 writeb(1, &ch->ch_neo_uart->rfifo);
1093 ch->ch_r_tlevel = 1;
1096 neo_assert_modem_signals(ch);
1098 /* Get current status of the modem signals now */
1099 neo_parse_modem(ch, readb(&ch->ch_neo_uart->msr));
1100 return;
1104 * jsm_neo_intr()
1106 * Neo specific interrupt handler.
1108 static irqreturn_t neo_intr(int irq, void *voidbrd)
1110 struct jsm_board *brd = voidbrd;
1111 struct jsm_channel *ch;
1112 int port = 0;
1113 int type = 0;
1114 int current_port;
1115 u32 tmp;
1116 u32 uart_poll;
1117 unsigned long lock_flags;
1118 unsigned long lock_flags2;
1119 int outofloop_count = 0;
1121 /* Lock out the slow poller from running on this board. */
1122 spin_lock_irqsave(&brd->bd_intr_lock, lock_flags);
1125 * Read in "extended" IRQ information from the 32bit Neo register.
1126 * Bits 0-7: What port triggered the interrupt.
1127 * Bits 8-31: Each 3bits indicate what type of interrupt occurred.
1129 uart_poll = readl(brd->re_map_membase + UART_17158_POLL_ADDR_OFFSET);
1131 jsm_printk(INTR, INFO, &brd->pci_dev,
1132 "%s:%d uart_poll: %x\n", __FILE__, __LINE__, uart_poll);
1134 if (!uart_poll) {
1135 jsm_printk(INTR, INFO, &brd->pci_dev,
1136 "Kernel interrupted to me, but no pending interrupts...\n");
1137 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1138 return IRQ_NONE;
1141 /* At this point, we have at least SOMETHING to service, dig further... */
1143 current_port = 0;
1145 /* Loop on each port */
1146 while (((uart_poll & 0xff) != 0) && (outofloop_count < 0xff)){
1148 tmp = uart_poll;
1149 outofloop_count++;
1151 /* Check current port to see if it has interrupt pending */
1152 if ((tmp & jsm_offset_table[current_port]) != 0) {
1153 port = current_port;
1154 type = tmp >> (8 + (port * 3));
1155 type &= 0x7;
1156 } else {
1157 current_port++;
1158 continue;
1161 jsm_printk(INTR, INFO, &brd->pci_dev,
1162 "%s:%d port: %x type: %x\n", __FILE__, __LINE__, port, type);
1164 /* Remove this port + type from uart_poll */
1165 uart_poll &= ~(jsm_offset_table[port]);
1167 if (!type) {
1168 /* If no type, just ignore it, and move onto next port */
1169 jsm_printk(INTR, ERR, &brd->pci_dev,
1170 "Interrupt with no type! port: %d\n", port);
1171 continue;
1174 /* Switch on type of interrupt we have */
1175 switch (type) {
1177 case UART_17158_RXRDY_TIMEOUT:
1179 * RXRDY Time-out is cleared by reading data in the
1180 * RX FIFO until it falls below the trigger level.
1183 /* Verify the port is in range. */
1184 if (port > brd->nasync)
1185 continue;
1187 ch = brd->channels[port];
1188 neo_copy_data_from_uart_to_queue(ch);
1190 /* Call our tty layer to enforce queue flow control if needed. */
1191 spin_lock_irqsave(&ch->ch_lock, lock_flags2);
1192 jsm_check_queue_flow_control(ch);
1193 spin_unlock_irqrestore(&ch->ch_lock, lock_flags2);
1195 continue;
1197 case UART_17158_RX_LINE_STATUS:
1199 * RXRDY and RX LINE Status (logic OR of LSR[4:1])
1201 neo_parse_lsr(brd, port);
1202 continue;
1204 case UART_17158_TXRDY:
1206 * TXRDY interrupt clears after reading ISR register for the UART channel.
1210 * Yes, this is odd...
1211 * Why would I check EVERY possibility of type of
1212 * interrupt, when we know its TXRDY???
1213 * Becuz for some reason, even tho we got triggered for TXRDY,
1214 * it seems to be occasionally wrong. Instead of TX, which
1215 * it should be, I was getting things like RXDY too. Weird.
1217 neo_parse_isr(brd, port);
1218 continue;
1220 case UART_17158_MSR:
1222 * MSR or flow control was seen.
1224 neo_parse_isr(brd, port);
1225 continue;
1227 default:
1229 * The UART triggered us with a bogus interrupt type.
1230 * It appears the Exar chip, when REALLY bogged down, will throw
1231 * these once and awhile.
1232 * Its harmless, just ignore it and move on.
1234 jsm_printk(INTR, ERR, &brd->pci_dev,
1235 "%s:%d Unknown Interrupt type: %x\n", __FILE__, __LINE__, type);
1236 continue;
1240 spin_unlock_irqrestore(&brd->bd_intr_lock, lock_flags);
1242 jsm_printk(INTR, INFO, &brd->pci_dev, "finish.\n");
1243 return IRQ_HANDLED;
1247 * Neo specific way of turning off the receiver.
1248 * Used as a way to enforce queue flow control when in
1249 * hardware flow control mode.
1251 static void neo_disable_receiver(struct jsm_channel *ch)
1253 u8 tmp = readb(&ch->ch_neo_uart->ier);
1254 tmp &= ~(UART_IER_RDI);
1255 writeb(tmp, &ch->ch_neo_uart->ier);
1257 /* flush write operation */
1258 neo_pci_posting_flush(ch->ch_bd);
1263 * Neo specific way of turning on the receiver.
1264 * Used as a way to un-enforce queue flow control when in
1265 * hardware flow control mode.
1267 static void neo_enable_receiver(struct jsm_channel *ch)
1269 u8 tmp = readb(&ch->ch_neo_uart->ier);
1270 tmp |= (UART_IER_RDI);
1271 writeb(tmp, &ch->ch_neo_uart->ier);
1273 /* flush write operation */
1274 neo_pci_posting_flush(ch->ch_bd);
1277 static void neo_send_start_character(struct jsm_channel *ch)
1279 if (!ch)
1280 return;
1282 if (ch->ch_startc != __DISABLED_CHAR) {
1283 ch->ch_xon_sends++;
1284 writeb(ch->ch_startc, &ch->ch_neo_uart->txrx);
1286 /* flush write operation */
1287 neo_pci_posting_flush(ch->ch_bd);
1291 static void neo_send_stop_character(struct jsm_channel *ch)
1293 if (!ch)
1294 return;
1296 if (ch->ch_stopc != __DISABLED_CHAR) {
1297 ch->ch_xoff_sends++;
1298 writeb(ch->ch_stopc, &ch->ch_neo_uart->txrx);
1300 /* flush write operation */
1301 neo_pci_posting_flush(ch->ch_bd);
1306 * neo_uart_init
1308 static void neo_uart_init(struct jsm_channel *ch)
1310 writeb(0, &ch->ch_neo_uart->ier);
1311 writeb(0, &ch->ch_neo_uart->efr);
1312 writeb(UART_EFR_ECB, &ch->ch_neo_uart->efr);
1314 /* Clear out UART and FIFO */
1315 readb(&ch->ch_neo_uart->txrx);
1316 writeb((UART_FCR_ENABLE_FIFO|UART_FCR_CLEAR_RCVR|UART_FCR_CLEAR_XMIT), &ch->ch_neo_uart->isr_fcr);
1317 readb(&ch->ch_neo_uart->lsr);
1318 readb(&ch->ch_neo_uart->msr);
1320 ch->ch_flags |= CH_FIFO_ENABLED;
1322 /* Assert any signals we want up */
1323 writeb(ch->ch_mostat, &ch->ch_neo_uart->mcr);
1327 * Make the UART completely turn off.
1329 static void neo_uart_off(struct jsm_channel *ch)
1331 /* Turn off UART enhanced bits */
1332 writeb(0, &ch->ch_neo_uart->efr);
1334 /* Stop all interrupts from occurring. */
1335 writeb(0, &ch->ch_neo_uart->ier);
1338 static u32 neo_get_uart_bytes_left(struct jsm_channel *ch)
1340 u8 left = 0;
1341 u8 lsr = readb(&ch->ch_neo_uart->lsr);
1343 /* We must cache the LSR as some of the bits get reset once read... */
1344 ch->ch_cached_lsr |= lsr;
1346 /* Determine whether the Transmitter is empty or not */
1347 if (!(lsr & UART_LSR_TEMT))
1348 left = 1;
1349 else {
1350 ch->ch_flags |= (CH_TX_FIFO_EMPTY | CH_TX_FIFO_LWM);
1351 left = 0;
1354 return left;
1357 /* Channel lock MUST be held by the calling function! */
1358 static void neo_send_break(struct jsm_channel *ch)
1361 * Set the time we should stop sending the break.
1362 * If we are already sending a break, toss away the existing
1363 * time to stop, and use this new value instead.
1366 /* Tell the UART to start sending the break */
1367 if (!(ch->ch_flags & CH_BREAK_SENDING)) {
1368 u8 temp = readb(&ch->ch_neo_uart->lcr);
1369 writeb((temp | UART_LCR_SBC), &ch->ch_neo_uart->lcr);
1370 ch->ch_flags |= (CH_BREAK_SENDING);
1372 /* flush write operation */
1373 neo_pci_posting_flush(ch->ch_bd);
1378 * neo_send_immediate_char.
1380 * Sends a specific character as soon as possible to the UART,
1381 * jumping over any bytes that might be in the write queue.
1383 * The channel lock MUST be held by the calling function.
1385 static void neo_send_immediate_char(struct jsm_channel *ch, unsigned char c)
1387 if (!ch)
1388 return;
1390 writeb(c, &ch->ch_neo_uart->txrx);
1392 /* flush write operation */
1393 neo_pci_posting_flush(ch->ch_bd);
1396 struct board_ops jsm_neo_ops = {
1397 .intr = neo_intr,
1398 .uart_init = neo_uart_init,
1399 .uart_off = neo_uart_off,
1400 .param = neo_param,
1401 .assert_modem_signals = neo_assert_modem_signals,
1402 .flush_uart_write = neo_flush_uart_write,
1403 .flush_uart_read = neo_flush_uart_read,
1404 .disable_receiver = neo_disable_receiver,
1405 .enable_receiver = neo_enable_receiver,
1406 .send_break = neo_send_break,
1407 .clear_break = neo_clear_break,
1408 .send_start_character = neo_send_start_character,
1409 .send_stop_character = neo_send_stop_character,
1410 .copy_data_from_queue_to_uart = neo_copy_data_from_queue_to_uart,
1411 .get_uart_bytes_left = neo_get_uart_bytes_left,
1412 .send_immediate_char = neo_send_immediate_char