Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / drivers / usb / gadget / amd5536udc.c
blob4730016d7cd42d8644e8fb5fa8791fc9df080591
1 /*
2 * amd5536.c -- AMD 5536 UDC high/full speed USB device controller
4 * Copyright (C) 2005-2007 AMD (http://www.amd.com)
5 * Author: Thomas Dahlmann
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
14 * The AMD5536 UDC is part of the x86 southbridge AMD Geode CS5536.
15 * It is a USB Highspeed DMA capable USB device controller. Beside ep0 it
16 * provides 4 IN and 4 OUT endpoints (bulk or interrupt type).
18 * Make sure that UDC is assigned to port 4 by BIOS settings (port can also
19 * be used as host port) and UOC bits PAD_EN and APU are set (should be done
20 * by BIOS init).
22 * UDC DMA requires 32-bit aligned buffers so DMA with gadget ether does not
23 * work without updating NET_IP_ALIGN. Or PIO mode (module param "use_dma=0")
24 * can be used with gadget ether.
27 /* debug control */
28 /* #define UDC_VERBOSE */
30 /* Driver strings */
31 #define UDC_MOD_DESCRIPTION "AMD 5536 UDC - USB Device Controller"
32 #define UDC_DRIVER_VERSION_STRING "01.00.0206 - $Revision: #3 $"
34 /* system */
35 #include <linux/module.h>
36 #include <linux/pci.h>
37 #include <linux/kernel.h>
38 #include <linux/delay.h>
39 #include <linux/ioport.h>
40 #include <linux/sched.h>
41 #include <linux/slab.h>
42 #include <linux/errno.h>
43 #include <linux/init.h>
44 #include <linux/timer.h>
45 #include <linux/list.h>
46 #include <linux/interrupt.h>
47 #include <linux/ioctl.h>
48 #include <linux/fs.h>
49 #include <linux/dmapool.h>
50 #include <linux/moduleparam.h>
51 #include <linux/device.h>
52 #include <linux/io.h>
53 #include <linux/irq.h>
54 #include <linux/prefetch.h>
56 #include <asm/byteorder.h>
57 #include <asm/system.h>
58 #include <asm/unaligned.h>
60 /* gadget stack */
61 #include <linux/usb/ch9.h>
62 #include <linux/usb/gadget.h>
64 /* udc specific */
65 #include "amd5536udc.h"
68 static void udc_tasklet_disconnect(unsigned long);
69 static void empty_req_queue(struct udc_ep *);
70 static int udc_probe(struct udc *dev);
71 static void udc_basic_init(struct udc *dev);
72 static void udc_setup_endpoints(struct udc *dev);
73 static void udc_soft_reset(struct udc *dev);
74 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep);
75 static void udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq);
76 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req);
77 static int udc_create_dma_chain(struct udc_ep *ep, struct udc_request *req,
78 unsigned long buf_len, gfp_t gfp_flags);
79 static int udc_remote_wakeup(struct udc *dev);
80 static int udc_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id);
81 static void udc_pci_remove(struct pci_dev *pdev);
83 /* description */
84 static const char mod_desc[] = UDC_MOD_DESCRIPTION;
85 static const char name[] = "amd5536udc";
87 /* structure to hold endpoint function pointers */
88 static const struct usb_ep_ops udc_ep_ops;
90 /* received setup data */
91 static union udc_setup_data setup_data;
93 /* pointer to device object */
94 static struct udc *udc;
96 /* irq spin lock for soft reset */
97 static DEFINE_SPINLOCK(udc_irq_spinlock);
98 /* stall spin lock */
99 static DEFINE_SPINLOCK(udc_stall_spinlock);
102 * slave mode: pending bytes in rx fifo after nyet,
103 * used if EPIN irq came but no req was available
105 static unsigned int udc_rxfifo_pending;
107 /* count soft resets after suspend to avoid loop */
108 static int soft_reset_occured;
109 static int soft_reset_after_usbreset_occured;
111 /* timer */
112 static struct timer_list udc_timer;
113 static int stop_timer;
115 /* set_rde -- Is used to control enabling of RX DMA. Problem is
116 * that UDC has only one bit (RDE) to enable/disable RX DMA for
117 * all OUT endpoints. So we have to handle race conditions like
118 * when OUT data reaches the fifo but no request was queued yet.
119 * This cannot be solved by letting the RX DMA disabled until a
120 * request gets queued because there may be other OUT packets
121 * in the FIFO (important for not blocking control traffic).
122 * The value of set_rde controls the correspondig timer.
124 * set_rde -1 == not used, means it is alloed to be set to 0 or 1
125 * set_rde 0 == do not touch RDE, do no start the RDE timer
126 * set_rde 1 == timer function will look whether FIFO has data
127 * set_rde 2 == set by timer function to enable RX DMA on next call
129 static int set_rde = -1;
131 static DECLARE_COMPLETION(on_exit);
132 static struct timer_list udc_pollstall_timer;
133 static int stop_pollstall_timer;
134 static DECLARE_COMPLETION(on_pollstall_exit);
136 /* tasklet for usb disconnect */
137 static DECLARE_TASKLET(disconnect_tasklet, udc_tasklet_disconnect,
138 (unsigned long) &udc);
141 /* endpoint names used for print */
142 static const char ep0_string[] = "ep0in";
143 static const char *ep_string[] = {
144 ep0_string,
145 "ep1in-int", "ep2in-bulk", "ep3in-bulk", "ep4in-bulk", "ep5in-bulk",
146 "ep6in-bulk", "ep7in-bulk", "ep8in-bulk", "ep9in-bulk", "ep10in-bulk",
147 "ep11in-bulk", "ep12in-bulk", "ep13in-bulk", "ep14in-bulk",
148 "ep15in-bulk", "ep0out", "ep1out-bulk", "ep2out-bulk", "ep3out-bulk",
149 "ep4out-bulk", "ep5out-bulk", "ep6out-bulk", "ep7out-bulk",
150 "ep8out-bulk", "ep9out-bulk", "ep10out-bulk", "ep11out-bulk",
151 "ep12out-bulk", "ep13out-bulk", "ep14out-bulk", "ep15out-bulk"
154 /* DMA usage flag */
155 static int use_dma = 1;
156 /* packet per buffer dma */
157 static int use_dma_ppb = 1;
158 /* with per descr. update */
159 static int use_dma_ppb_du;
160 /* buffer fill mode */
161 static int use_dma_bufferfill_mode;
162 /* full speed only mode */
163 static int use_fullspeed;
164 /* tx buffer size for high speed */
165 static unsigned long hs_tx_buf = UDC_EPIN_BUFF_SIZE;
167 /* module parameters */
168 module_param(use_dma, bool, S_IRUGO);
169 MODULE_PARM_DESC(use_dma, "true for DMA");
170 module_param(use_dma_ppb, bool, S_IRUGO);
171 MODULE_PARM_DESC(use_dma_ppb, "true for DMA in packet per buffer mode");
172 module_param(use_dma_ppb_du, bool, S_IRUGO);
173 MODULE_PARM_DESC(use_dma_ppb_du,
174 "true for DMA in packet per buffer mode with descriptor update");
175 module_param(use_fullspeed, bool, S_IRUGO);
176 MODULE_PARM_DESC(use_fullspeed, "true for fullspeed only");
178 /*---------------------------------------------------------------------------*/
179 /* Prints UDC device registers and endpoint irq registers */
180 static void print_regs(struct udc *dev)
182 DBG(dev, "------- Device registers -------\n");
183 DBG(dev, "dev config = %08x\n", readl(&dev->regs->cfg));
184 DBG(dev, "dev control = %08x\n", readl(&dev->regs->ctl));
185 DBG(dev, "dev status = %08x\n", readl(&dev->regs->sts));
186 DBG(dev, "\n");
187 DBG(dev, "dev int's = %08x\n", readl(&dev->regs->irqsts));
188 DBG(dev, "dev intmask = %08x\n", readl(&dev->regs->irqmsk));
189 DBG(dev, "\n");
190 DBG(dev, "dev ep int's = %08x\n", readl(&dev->regs->ep_irqsts));
191 DBG(dev, "dev ep intmask = %08x\n", readl(&dev->regs->ep_irqmsk));
192 DBG(dev, "\n");
193 DBG(dev, "USE DMA = %d\n", use_dma);
194 if (use_dma && use_dma_ppb && !use_dma_ppb_du) {
195 DBG(dev, "DMA mode = PPBNDU (packet per buffer "
196 "WITHOUT desc. update)\n");
197 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBNDU");
198 } else if (use_dma && use_dma_ppb && use_dma_ppb_du) {
199 DBG(dev, "DMA mode = PPBDU (packet per buffer "
200 "WITH desc. update)\n");
201 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "PPBDU");
203 if (use_dma && use_dma_bufferfill_mode) {
204 DBG(dev, "DMA mode = BF (buffer fill mode)\n");
205 dev_info(&dev->pdev->dev, "DMA mode (%s)\n", "BF");
207 if (!use_dma) {
208 dev_info(&dev->pdev->dev, "FIFO mode\n");
210 DBG(dev, "-------------------------------------------------------\n");
213 /* Masks unused interrupts */
214 static int udc_mask_unused_interrupts(struct udc *dev)
216 u32 tmp;
218 /* mask all dev interrupts */
219 tmp = AMD_BIT(UDC_DEVINT_SVC) |
220 AMD_BIT(UDC_DEVINT_ENUM) |
221 AMD_BIT(UDC_DEVINT_US) |
222 AMD_BIT(UDC_DEVINT_UR) |
223 AMD_BIT(UDC_DEVINT_ES) |
224 AMD_BIT(UDC_DEVINT_SI) |
225 AMD_BIT(UDC_DEVINT_SOF)|
226 AMD_BIT(UDC_DEVINT_SC);
227 writel(tmp, &dev->regs->irqmsk);
229 /* mask all ep interrupts */
230 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqmsk);
232 return 0;
235 /* Enables endpoint 0 interrupts */
236 static int udc_enable_ep0_interrupts(struct udc *dev)
238 u32 tmp;
240 DBG(dev, "udc_enable_ep0_interrupts()\n");
242 /* read irq mask */
243 tmp = readl(&dev->regs->ep_irqmsk);
244 /* enable ep0 irq's */
245 tmp &= AMD_UNMASK_BIT(UDC_EPINT_IN_EP0)
246 & AMD_UNMASK_BIT(UDC_EPINT_OUT_EP0);
247 writel(tmp, &dev->regs->ep_irqmsk);
249 return 0;
252 /* Enables device interrupts for SET_INTF and SET_CONFIG */
253 static int udc_enable_dev_setup_interrupts(struct udc *dev)
255 u32 tmp;
257 DBG(dev, "enable device interrupts for setup data\n");
259 /* read irq mask */
260 tmp = readl(&dev->regs->irqmsk);
262 /* enable SET_INTERFACE, SET_CONFIG and other needed irq's */
263 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_SI)
264 & AMD_UNMASK_BIT(UDC_DEVINT_SC)
265 & AMD_UNMASK_BIT(UDC_DEVINT_UR)
266 & AMD_UNMASK_BIT(UDC_DEVINT_SVC)
267 & AMD_UNMASK_BIT(UDC_DEVINT_ENUM);
268 writel(tmp, &dev->regs->irqmsk);
270 return 0;
273 /* Calculates fifo start of endpoint based on preceding endpoints */
274 static int udc_set_txfifo_addr(struct udc_ep *ep)
276 struct udc *dev;
277 u32 tmp;
278 int i;
280 if (!ep || !(ep->in))
281 return -EINVAL;
283 dev = ep->dev;
284 ep->txfifo = dev->txfifo;
286 /* traverse ep's */
287 for (i = 0; i < ep->num; i++) {
288 if (dev->ep[i].regs) {
289 /* read fifo size */
290 tmp = readl(&dev->ep[i].regs->bufin_framenum);
291 tmp = AMD_GETBITS(tmp, UDC_EPIN_BUFF_SIZE);
292 ep->txfifo += tmp;
295 return 0;
298 /* CNAK pending field: bit0 = ep0in, bit16 = ep0out */
299 static u32 cnak_pending;
301 static void UDC_QUEUE_CNAK(struct udc_ep *ep, unsigned num)
303 if (readl(&ep->regs->ctl) & AMD_BIT(UDC_EPCTL_NAK)) {
304 DBG(ep->dev, "NAK could not be cleared for ep%d\n", num);
305 cnak_pending |= 1 << (num);
306 ep->naking = 1;
307 } else
308 cnak_pending = cnak_pending & (~(1 << (num)));
312 /* Enables endpoint, is called by gadget driver */
313 static int
314 udc_ep_enable(struct usb_ep *usbep, const struct usb_endpoint_descriptor *desc)
316 struct udc_ep *ep;
317 struct udc *dev;
318 u32 tmp;
319 unsigned long iflags;
320 u8 udc_csr_epix;
321 unsigned maxpacket;
323 if (!usbep
324 || usbep->name == ep0_string
325 || !desc
326 || desc->bDescriptorType != USB_DT_ENDPOINT)
327 return -EINVAL;
329 ep = container_of(usbep, struct udc_ep, ep);
330 dev = ep->dev;
332 DBG(dev, "udc_ep_enable() ep %d\n", ep->num);
334 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
335 return -ESHUTDOWN;
337 spin_lock_irqsave(&dev->lock, iflags);
338 ep->desc = desc;
340 ep->halted = 0;
342 /* set traffic type */
343 tmp = readl(&dev->ep[ep->num].regs->ctl);
344 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_EPCTL_ET);
345 writel(tmp, &dev->ep[ep->num].regs->ctl);
347 /* set max packet size */
348 maxpacket = usb_endpoint_maxp(desc);
349 tmp = readl(&dev->ep[ep->num].regs->bufout_maxpkt);
350 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_EP_MAX_PKT_SIZE);
351 ep->ep.maxpacket = maxpacket;
352 writel(tmp, &dev->ep[ep->num].regs->bufout_maxpkt);
354 /* IN ep */
355 if (ep->in) {
357 /* ep ix in UDC CSR register space */
358 udc_csr_epix = ep->num;
360 /* set buffer size (tx fifo entries) */
361 tmp = readl(&dev->ep[ep->num].regs->bufin_framenum);
362 /* double buffering: fifo size = 2 x max packet size */
363 tmp = AMD_ADDBITS(
364 tmp,
365 maxpacket * UDC_EPIN_BUFF_SIZE_MULT
366 / UDC_DWORD_BYTES,
367 UDC_EPIN_BUFF_SIZE);
368 writel(tmp, &dev->ep[ep->num].regs->bufin_framenum);
370 /* calc. tx fifo base addr */
371 udc_set_txfifo_addr(ep);
373 /* flush fifo */
374 tmp = readl(&ep->regs->ctl);
375 tmp |= AMD_BIT(UDC_EPCTL_F);
376 writel(tmp, &ep->regs->ctl);
378 /* OUT ep */
379 } else {
380 /* ep ix in UDC CSR register space */
381 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
383 /* set max packet size UDC CSR */
384 tmp = readl(&dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
385 tmp = AMD_ADDBITS(tmp, maxpacket,
386 UDC_CSR_NE_MAX_PKT);
387 writel(tmp, &dev->csr->ne[ep->num - UDC_CSR_EP_OUT_IX_OFS]);
389 if (use_dma && !ep->in) {
390 /* alloc and init BNA dummy request */
391 ep->bna_dummy_req = udc_alloc_bna_dummy(ep);
392 ep->bna_occurred = 0;
395 if (ep->num != UDC_EP0OUT_IX)
396 dev->data_ep_enabled = 1;
399 /* set ep values */
400 tmp = readl(&dev->csr->ne[udc_csr_epix]);
401 /* max packet */
402 tmp = AMD_ADDBITS(tmp, maxpacket, UDC_CSR_NE_MAX_PKT);
403 /* ep number */
404 tmp = AMD_ADDBITS(tmp, desc->bEndpointAddress, UDC_CSR_NE_NUM);
405 /* ep direction */
406 tmp = AMD_ADDBITS(tmp, ep->in, UDC_CSR_NE_DIR);
407 /* ep type */
408 tmp = AMD_ADDBITS(tmp, desc->bmAttributes, UDC_CSR_NE_TYPE);
409 /* ep config */
410 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config, UDC_CSR_NE_CFG);
411 /* ep interface */
412 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf, UDC_CSR_NE_INTF);
413 /* ep alt */
414 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt, UDC_CSR_NE_ALT);
415 /* write reg */
416 writel(tmp, &dev->csr->ne[udc_csr_epix]);
418 /* enable ep irq */
419 tmp = readl(&dev->regs->ep_irqmsk);
420 tmp &= AMD_UNMASK_BIT(ep->num);
421 writel(tmp, &dev->regs->ep_irqmsk);
424 * clear NAK by writing CNAK
425 * avoid BNA for OUT DMA, don't clear NAK until DMA desc. written
427 if (!use_dma || ep->in) {
428 tmp = readl(&ep->regs->ctl);
429 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
430 writel(tmp, &ep->regs->ctl);
431 ep->naking = 0;
432 UDC_QUEUE_CNAK(ep, ep->num);
434 tmp = desc->bEndpointAddress;
435 DBG(dev, "%s enabled\n", usbep->name);
437 spin_unlock_irqrestore(&dev->lock, iflags);
438 return 0;
441 /* Resets endpoint */
442 static void ep_init(struct udc_regs __iomem *regs, struct udc_ep *ep)
444 u32 tmp;
446 VDBG(ep->dev, "ep-%d reset\n", ep->num);
447 ep->desc = NULL;
448 ep->ep.ops = &udc_ep_ops;
449 INIT_LIST_HEAD(&ep->queue);
451 ep->ep.maxpacket = (u16) ~0;
452 /* set NAK */
453 tmp = readl(&ep->regs->ctl);
454 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
455 writel(tmp, &ep->regs->ctl);
456 ep->naking = 1;
458 /* disable interrupt */
459 tmp = readl(&regs->ep_irqmsk);
460 tmp |= AMD_BIT(ep->num);
461 writel(tmp, &regs->ep_irqmsk);
463 if (ep->in) {
464 /* unset P and IN bit of potential former DMA */
465 tmp = readl(&ep->regs->ctl);
466 tmp &= AMD_UNMASK_BIT(UDC_EPCTL_P);
467 writel(tmp, &ep->regs->ctl);
469 tmp = readl(&ep->regs->sts);
470 tmp |= AMD_BIT(UDC_EPSTS_IN);
471 writel(tmp, &ep->regs->sts);
473 /* flush the fifo */
474 tmp = readl(&ep->regs->ctl);
475 tmp |= AMD_BIT(UDC_EPCTL_F);
476 writel(tmp, &ep->regs->ctl);
479 /* reset desc pointer */
480 writel(0, &ep->regs->desptr);
483 /* Disables endpoint, is called by gadget driver */
484 static int udc_ep_disable(struct usb_ep *usbep)
486 struct udc_ep *ep = NULL;
487 unsigned long iflags;
489 if (!usbep)
490 return -EINVAL;
492 ep = container_of(usbep, struct udc_ep, ep);
493 if (usbep->name == ep0_string || !ep->desc)
494 return -EINVAL;
496 DBG(ep->dev, "Disable ep-%d\n", ep->num);
498 spin_lock_irqsave(&ep->dev->lock, iflags);
499 udc_free_request(&ep->ep, &ep->bna_dummy_req->req);
500 empty_req_queue(ep);
501 ep_init(ep->dev->regs, ep);
502 spin_unlock_irqrestore(&ep->dev->lock, iflags);
504 return 0;
507 /* Allocates request packet, called by gadget driver */
508 static struct usb_request *
509 udc_alloc_request(struct usb_ep *usbep, gfp_t gfp)
511 struct udc_request *req;
512 struct udc_data_dma *dma_desc;
513 struct udc_ep *ep;
515 if (!usbep)
516 return NULL;
518 ep = container_of(usbep, struct udc_ep, ep);
520 VDBG(ep->dev, "udc_alloc_req(): ep%d\n", ep->num);
521 req = kzalloc(sizeof(struct udc_request), gfp);
522 if (!req)
523 return NULL;
525 req->req.dma = DMA_DONT_USE;
526 INIT_LIST_HEAD(&req->queue);
528 if (ep->dma) {
529 /* ep0 in requests are allocated from data pool here */
530 dma_desc = pci_pool_alloc(ep->dev->data_requests, gfp,
531 &req->td_phys);
532 if (!dma_desc) {
533 kfree(req);
534 return NULL;
537 VDBG(ep->dev, "udc_alloc_req: req = %p dma_desc = %p, "
538 "td_phys = %lx\n",
539 req, dma_desc,
540 (unsigned long)req->td_phys);
541 /* prevent from using desc. - set HOST BUSY */
542 dma_desc->status = AMD_ADDBITS(dma_desc->status,
543 UDC_DMA_STP_STS_BS_HOST_BUSY,
544 UDC_DMA_STP_STS_BS);
545 dma_desc->bufptr = cpu_to_le32(DMA_DONT_USE);
546 req->td_data = dma_desc;
547 req->td_data_last = NULL;
548 req->chain_len = 1;
551 return &req->req;
554 /* Frees request packet, called by gadget driver */
555 static void
556 udc_free_request(struct usb_ep *usbep, struct usb_request *usbreq)
558 struct udc_ep *ep;
559 struct udc_request *req;
561 if (!usbep || !usbreq)
562 return;
564 ep = container_of(usbep, struct udc_ep, ep);
565 req = container_of(usbreq, struct udc_request, req);
566 VDBG(ep->dev, "free_req req=%p\n", req);
567 BUG_ON(!list_empty(&req->queue));
568 if (req->td_data) {
569 VDBG(ep->dev, "req->td_data=%p\n", req->td_data);
571 /* free dma chain if created */
572 if (req->chain_len > 1) {
573 udc_free_dma_chain(ep->dev, req);
576 pci_pool_free(ep->dev->data_requests, req->td_data,
577 req->td_phys);
579 kfree(req);
582 /* Init BNA dummy descriptor for HOST BUSY and pointing to itself */
583 static void udc_init_bna_dummy(struct udc_request *req)
585 if (req) {
586 /* set last bit */
587 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
588 /* set next pointer to itself */
589 req->td_data->next = req->td_phys;
590 /* set HOST BUSY */
591 req->td_data->status
592 = AMD_ADDBITS(req->td_data->status,
593 UDC_DMA_STP_STS_BS_DMA_DONE,
594 UDC_DMA_STP_STS_BS);
595 #ifdef UDC_VERBOSE
596 pr_debug("bna desc = %p, sts = %08x\n",
597 req->td_data, req->td_data->status);
598 #endif
602 /* Allocate BNA dummy descriptor */
603 static struct udc_request *udc_alloc_bna_dummy(struct udc_ep *ep)
605 struct udc_request *req = NULL;
606 struct usb_request *_req = NULL;
608 /* alloc the dummy request */
609 _req = udc_alloc_request(&ep->ep, GFP_ATOMIC);
610 if (_req) {
611 req = container_of(_req, struct udc_request, req);
612 ep->bna_dummy_req = req;
613 udc_init_bna_dummy(req);
615 return req;
618 /* Write data to TX fifo for IN packets */
619 static void
620 udc_txfifo_write(struct udc_ep *ep, struct usb_request *req)
622 u8 *req_buf;
623 u32 *buf;
624 int i, j;
625 unsigned bytes = 0;
626 unsigned remaining = 0;
628 if (!req || !ep)
629 return;
631 req_buf = req->buf + req->actual;
632 prefetch(req_buf);
633 remaining = req->length - req->actual;
635 buf = (u32 *) req_buf;
637 bytes = ep->ep.maxpacket;
638 if (bytes > remaining)
639 bytes = remaining;
641 /* dwords first */
642 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
643 writel(*(buf + i), ep->txfifo);
646 /* remaining bytes must be written by byte access */
647 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
648 writeb((u8)(*(buf + i) >> (j << UDC_BITS_PER_BYTE_SHIFT)),
649 ep->txfifo);
652 /* dummy write confirm */
653 writel(0, &ep->regs->confirm);
656 /* Read dwords from RX fifo for OUT transfers */
657 static int udc_rxfifo_read_dwords(struct udc *dev, u32 *buf, int dwords)
659 int i;
661 VDBG(dev, "udc_read_dwords(): %d dwords\n", dwords);
663 for (i = 0; i < dwords; i++) {
664 *(buf + i) = readl(dev->rxfifo);
666 return 0;
669 /* Read bytes from RX fifo for OUT transfers */
670 static int udc_rxfifo_read_bytes(struct udc *dev, u8 *buf, int bytes)
672 int i, j;
673 u32 tmp;
675 VDBG(dev, "udc_read_bytes(): %d bytes\n", bytes);
677 /* dwords first */
678 for (i = 0; i < bytes / UDC_DWORD_BYTES; i++) {
679 *((u32 *)(buf + (i<<2))) = readl(dev->rxfifo);
682 /* remaining bytes must be read by byte access */
683 if (bytes % UDC_DWORD_BYTES) {
684 tmp = readl(dev->rxfifo);
685 for (j = 0; j < bytes % UDC_DWORD_BYTES; j++) {
686 *(buf + (i<<2) + j) = (u8)(tmp & UDC_BYTE_MASK);
687 tmp = tmp >> UDC_BITS_PER_BYTE;
691 return 0;
694 /* Read data from RX fifo for OUT transfers */
695 static int
696 udc_rxfifo_read(struct udc_ep *ep, struct udc_request *req)
698 u8 *buf;
699 unsigned buf_space;
700 unsigned bytes = 0;
701 unsigned finished = 0;
703 /* received number bytes */
704 bytes = readl(&ep->regs->sts);
705 bytes = AMD_GETBITS(bytes, UDC_EPSTS_RX_PKT_SIZE);
707 buf_space = req->req.length - req->req.actual;
708 buf = req->req.buf + req->req.actual;
709 if (bytes > buf_space) {
710 if ((buf_space % ep->ep.maxpacket) != 0) {
711 DBG(ep->dev,
712 "%s: rx %d bytes, rx-buf space = %d bytesn\n",
713 ep->ep.name, bytes, buf_space);
714 req->req.status = -EOVERFLOW;
716 bytes = buf_space;
718 req->req.actual += bytes;
720 /* last packet ? */
721 if (((bytes % ep->ep.maxpacket) != 0) || (!bytes)
722 || ((req->req.actual == req->req.length) && !req->req.zero))
723 finished = 1;
725 /* read rx fifo bytes */
726 VDBG(ep->dev, "ep %s: rxfifo read %d bytes\n", ep->ep.name, bytes);
727 udc_rxfifo_read_bytes(ep->dev, buf, bytes);
729 return finished;
732 /* create/re-init a DMA descriptor or a DMA descriptor chain */
733 static int prep_dma(struct udc_ep *ep, struct udc_request *req, gfp_t gfp)
735 int retval = 0;
736 u32 tmp;
738 VDBG(ep->dev, "prep_dma\n");
739 VDBG(ep->dev, "prep_dma ep%d req->td_data=%p\n",
740 ep->num, req->td_data);
742 /* set buffer pointer */
743 req->td_data->bufptr = req->req.dma;
745 /* set last bit */
746 req->td_data->status |= AMD_BIT(UDC_DMA_IN_STS_L);
748 /* build/re-init dma chain if maxpkt scatter mode, not for EP0 */
749 if (use_dma_ppb) {
751 retval = udc_create_dma_chain(ep, req, ep->ep.maxpacket, gfp);
752 if (retval != 0) {
753 if (retval == -ENOMEM)
754 DBG(ep->dev, "Out of DMA memory\n");
755 return retval;
757 if (ep->in) {
758 if (req->req.length == ep->ep.maxpacket) {
759 /* write tx bytes */
760 req->td_data->status =
761 AMD_ADDBITS(req->td_data->status,
762 ep->ep.maxpacket,
763 UDC_DMA_IN_STS_TXBYTES);
770 if (ep->in) {
771 VDBG(ep->dev, "IN: use_dma_ppb=%d req->req.len=%d "
772 "maxpacket=%d ep%d\n",
773 use_dma_ppb, req->req.length,
774 ep->ep.maxpacket, ep->num);
776 * if bytes < max packet then tx bytes must
777 * be written in packet per buffer mode
779 if (!use_dma_ppb || req->req.length < ep->ep.maxpacket
780 || ep->num == UDC_EP0OUT_IX
781 || ep->num == UDC_EP0IN_IX) {
782 /* write tx bytes */
783 req->td_data->status =
784 AMD_ADDBITS(req->td_data->status,
785 req->req.length,
786 UDC_DMA_IN_STS_TXBYTES);
787 /* reset frame num */
788 req->td_data->status =
789 AMD_ADDBITS(req->td_data->status,
791 UDC_DMA_IN_STS_FRAMENUM);
793 /* set HOST BUSY */
794 req->td_data->status =
795 AMD_ADDBITS(req->td_data->status,
796 UDC_DMA_STP_STS_BS_HOST_BUSY,
797 UDC_DMA_STP_STS_BS);
798 } else {
799 VDBG(ep->dev, "OUT set host ready\n");
800 /* set HOST READY */
801 req->td_data->status =
802 AMD_ADDBITS(req->td_data->status,
803 UDC_DMA_STP_STS_BS_HOST_READY,
804 UDC_DMA_STP_STS_BS);
807 /* clear NAK by writing CNAK */
808 if (ep->naking) {
809 tmp = readl(&ep->regs->ctl);
810 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
811 writel(tmp, &ep->regs->ctl);
812 ep->naking = 0;
813 UDC_QUEUE_CNAK(ep, ep->num);
818 return retval;
821 /* Completes request packet ... caller MUST hold lock */
822 static void
823 complete_req(struct udc_ep *ep, struct udc_request *req, int sts)
824 __releases(ep->dev->lock)
825 __acquires(ep->dev->lock)
827 struct udc *dev;
828 unsigned halted;
830 VDBG(ep->dev, "complete_req(): ep%d\n", ep->num);
832 dev = ep->dev;
833 /* unmap DMA */
834 if (req->dma_mapping) {
835 if (ep->in)
836 pci_unmap_single(dev->pdev,
837 req->req.dma,
838 req->req.length,
839 PCI_DMA_TODEVICE);
840 else
841 pci_unmap_single(dev->pdev,
842 req->req.dma,
843 req->req.length,
844 PCI_DMA_FROMDEVICE);
845 req->dma_mapping = 0;
846 req->req.dma = DMA_DONT_USE;
849 halted = ep->halted;
850 ep->halted = 1;
852 /* set new status if pending */
853 if (req->req.status == -EINPROGRESS)
854 req->req.status = sts;
856 /* remove from ep queue */
857 list_del_init(&req->queue);
859 VDBG(ep->dev, "req %p => complete %d bytes at %s with sts %d\n",
860 &req->req, req->req.length, ep->ep.name, sts);
862 spin_unlock(&dev->lock);
863 req->req.complete(&ep->ep, &req->req);
864 spin_lock(&dev->lock);
865 ep->halted = halted;
868 /* frees pci pool descriptors of a DMA chain */
869 static int udc_free_dma_chain(struct udc *dev, struct udc_request *req)
872 int ret_val = 0;
873 struct udc_data_dma *td;
874 struct udc_data_dma *td_last = NULL;
875 unsigned int i;
877 DBG(dev, "free chain req = %p\n", req);
879 /* do not free first desc., will be done by free for request */
880 td_last = req->td_data;
881 td = phys_to_virt(td_last->next);
883 for (i = 1; i < req->chain_len; i++) {
885 pci_pool_free(dev->data_requests, td,
886 (dma_addr_t) td_last->next);
887 td_last = td;
888 td = phys_to_virt(td_last->next);
891 return ret_val;
894 /* Iterates to the end of a DMA chain and returns last descriptor */
895 static struct udc_data_dma *udc_get_last_dma_desc(struct udc_request *req)
897 struct udc_data_dma *td;
899 td = req->td_data;
900 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
901 td = phys_to_virt(td->next);
904 return td;
908 /* Iterates to the end of a DMA chain and counts bytes received */
909 static u32 udc_get_ppbdu_rxbytes(struct udc_request *req)
911 struct udc_data_dma *td;
912 u32 count;
914 td = req->td_data;
915 /* received number bytes */
916 count = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_RXBYTES);
918 while (td && !(td->status & AMD_BIT(UDC_DMA_IN_STS_L))) {
919 td = phys_to_virt(td->next);
920 /* received number bytes */
921 if (td) {
922 count += AMD_GETBITS(td->status,
923 UDC_DMA_OUT_STS_RXBYTES);
927 return count;
931 /* Creates or re-inits a DMA chain */
932 static int udc_create_dma_chain(
933 struct udc_ep *ep,
934 struct udc_request *req,
935 unsigned long buf_len, gfp_t gfp_flags
938 unsigned long bytes = req->req.length;
939 unsigned int i;
940 dma_addr_t dma_addr;
941 struct udc_data_dma *td = NULL;
942 struct udc_data_dma *last = NULL;
943 unsigned long txbytes;
944 unsigned create_new_chain = 0;
945 unsigned len;
947 VDBG(ep->dev, "udc_create_dma_chain: bytes=%ld buf_len=%ld\n",
948 bytes, buf_len);
949 dma_addr = DMA_DONT_USE;
951 /* unset L bit in first desc for OUT */
952 if (!ep->in) {
953 req->td_data->status &= AMD_CLEAR_BIT(UDC_DMA_IN_STS_L);
956 /* alloc only new desc's if not already available */
957 len = req->req.length / ep->ep.maxpacket;
958 if (req->req.length % ep->ep.maxpacket) {
959 len++;
962 if (len > req->chain_len) {
963 /* shorter chain already allocated before */
964 if (req->chain_len > 1) {
965 udc_free_dma_chain(ep->dev, req);
967 req->chain_len = len;
968 create_new_chain = 1;
971 td = req->td_data;
972 /* gen. required number of descriptors and buffers */
973 for (i = buf_len; i < bytes; i += buf_len) {
974 /* create or determine next desc. */
975 if (create_new_chain) {
977 td = pci_pool_alloc(ep->dev->data_requests,
978 gfp_flags, &dma_addr);
979 if (!td)
980 return -ENOMEM;
982 td->status = 0;
983 } else if (i == buf_len) {
984 /* first td */
985 td = (struct udc_data_dma *) phys_to_virt(
986 req->td_data->next);
987 td->status = 0;
988 } else {
989 td = (struct udc_data_dma *) phys_to_virt(last->next);
990 td->status = 0;
994 if (td)
995 td->bufptr = req->req.dma + i; /* assign buffer */
996 else
997 break;
999 /* short packet ? */
1000 if ((bytes - i) >= buf_len) {
1001 txbytes = buf_len;
1002 } else {
1003 /* short packet */
1004 txbytes = bytes - i;
1007 /* link td and assign tx bytes */
1008 if (i == buf_len) {
1009 if (create_new_chain) {
1010 req->td_data->next = dma_addr;
1011 } else {
1012 /* req->td_data->next = virt_to_phys(td); */
1014 /* write tx bytes */
1015 if (ep->in) {
1016 /* first desc */
1017 req->td_data->status =
1018 AMD_ADDBITS(req->td_data->status,
1019 ep->ep.maxpacket,
1020 UDC_DMA_IN_STS_TXBYTES);
1021 /* second desc */
1022 td->status = AMD_ADDBITS(td->status,
1023 txbytes,
1024 UDC_DMA_IN_STS_TXBYTES);
1026 } else {
1027 if (create_new_chain) {
1028 last->next = dma_addr;
1029 } else {
1030 /* last->next = virt_to_phys(td); */
1032 if (ep->in) {
1033 /* write tx bytes */
1034 td->status = AMD_ADDBITS(td->status,
1035 txbytes,
1036 UDC_DMA_IN_STS_TXBYTES);
1039 last = td;
1041 /* set last bit */
1042 if (td) {
1043 td->status |= AMD_BIT(UDC_DMA_IN_STS_L);
1044 /* last desc. points to itself */
1045 req->td_data_last = td;
1048 return 0;
1051 /* Enabling RX DMA */
1052 static void udc_set_rde(struct udc *dev)
1054 u32 tmp;
1056 VDBG(dev, "udc_set_rde()\n");
1057 /* stop RDE timer */
1058 if (timer_pending(&udc_timer)) {
1059 set_rde = 0;
1060 mod_timer(&udc_timer, jiffies - 1);
1062 /* set RDE */
1063 tmp = readl(&dev->regs->ctl);
1064 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1065 writel(tmp, &dev->regs->ctl);
1068 /* Queues a request packet, called by gadget driver */
1069 static int
1070 udc_queue(struct usb_ep *usbep, struct usb_request *usbreq, gfp_t gfp)
1072 int retval = 0;
1073 u8 open_rxfifo = 0;
1074 unsigned long iflags;
1075 struct udc_ep *ep;
1076 struct udc_request *req;
1077 struct udc *dev;
1078 u32 tmp;
1080 /* check the inputs */
1081 req = container_of(usbreq, struct udc_request, req);
1083 if (!usbep || !usbreq || !usbreq->complete || !usbreq->buf
1084 || !list_empty(&req->queue))
1085 return -EINVAL;
1087 ep = container_of(usbep, struct udc_ep, ep);
1088 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1089 return -EINVAL;
1091 VDBG(ep->dev, "udc_queue(): ep%d-in=%d\n", ep->num, ep->in);
1092 dev = ep->dev;
1094 if (!dev->driver || dev->gadget.speed == USB_SPEED_UNKNOWN)
1095 return -ESHUTDOWN;
1097 /* map dma (usually done before) */
1098 if (ep->dma && usbreq->length != 0
1099 && (usbreq->dma == DMA_DONT_USE || usbreq->dma == 0)) {
1100 VDBG(dev, "DMA map req %p\n", req);
1101 if (ep->in)
1102 usbreq->dma = pci_map_single(dev->pdev,
1103 usbreq->buf,
1104 usbreq->length,
1105 PCI_DMA_TODEVICE);
1106 else
1107 usbreq->dma = pci_map_single(dev->pdev,
1108 usbreq->buf,
1109 usbreq->length,
1110 PCI_DMA_FROMDEVICE);
1111 req->dma_mapping = 1;
1114 VDBG(dev, "%s queue req %p, len %d req->td_data=%p buf %p\n",
1115 usbep->name, usbreq, usbreq->length,
1116 req->td_data, usbreq->buf);
1118 spin_lock_irqsave(&dev->lock, iflags);
1119 usbreq->actual = 0;
1120 usbreq->status = -EINPROGRESS;
1121 req->dma_done = 0;
1123 /* on empty queue just do first transfer */
1124 if (list_empty(&ep->queue)) {
1125 /* zlp */
1126 if (usbreq->length == 0) {
1127 /* IN zlp's are handled by hardware */
1128 complete_req(ep, req, 0);
1129 VDBG(dev, "%s: zlp\n", ep->ep.name);
1131 * if set_config or set_intf is waiting for ack by zlp
1132 * then set CSR_DONE
1134 if (dev->set_cfg_not_acked) {
1135 tmp = readl(&dev->regs->ctl);
1136 tmp |= AMD_BIT(UDC_DEVCTL_CSR_DONE);
1137 writel(tmp, &dev->regs->ctl);
1138 dev->set_cfg_not_acked = 0;
1140 /* setup command is ACK'ed now by zlp */
1141 if (dev->waiting_zlp_ack_ep0in) {
1142 /* clear NAK by writing CNAK in EP0_IN */
1143 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1144 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1145 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1146 dev->ep[UDC_EP0IN_IX].naking = 0;
1147 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX],
1148 UDC_EP0IN_IX);
1149 dev->waiting_zlp_ack_ep0in = 0;
1151 goto finished;
1153 if (ep->dma) {
1154 retval = prep_dma(ep, req, gfp);
1155 if (retval != 0)
1156 goto finished;
1157 /* write desc pointer to enable DMA */
1158 if (ep->in) {
1159 /* set HOST READY */
1160 req->td_data->status =
1161 AMD_ADDBITS(req->td_data->status,
1162 UDC_DMA_IN_STS_BS_HOST_READY,
1163 UDC_DMA_IN_STS_BS);
1166 /* disabled rx dma while descriptor update */
1167 if (!ep->in) {
1168 /* stop RDE timer */
1169 if (timer_pending(&udc_timer)) {
1170 set_rde = 0;
1171 mod_timer(&udc_timer, jiffies - 1);
1173 /* clear RDE */
1174 tmp = readl(&dev->regs->ctl);
1175 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1176 writel(tmp, &dev->regs->ctl);
1177 open_rxfifo = 1;
1180 * if BNA occurred then let BNA dummy desc.
1181 * point to current desc.
1183 if (ep->bna_occurred) {
1184 VDBG(dev, "copy to BNA dummy desc.\n");
1185 memcpy(ep->bna_dummy_req->td_data,
1186 req->td_data,
1187 sizeof(struct udc_data_dma));
1190 /* write desc pointer */
1191 writel(req->td_phys, &ep->regs->desptr);
1193 /* clear NAK by writing CNAK */
1194 if (ep->naking) {
1195 tmp = readl(&ep->regs->ctl);
1196 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1197 writel(tmp, &ep->regs->ctl);
1198 ep->naking = 0;
1199 UDC_QUEUE_CNAK(ep, ep->num);
1202 if (ep->in) {
1203 /* enable ep irq */
1204 tmp = readl(&dev->regs->ep_irqmsk);
1205 tmp &= AMD_UNMASK_BIT(ep->num);
1206 writel(tmp, &dev->regs->ep_irqmsk);
1208 } else if (ep->in) {
1209 /* enable ep irq */
1210 tmp = readl(&dev->regs->ep_irqmsk);
1211 tmp &= AMD_UNMASK_BIT(ep->num);
1212 writel(tmp, &dev->regs->ep_irqmsk);
1215 } else if (ep->dma) {
1218 * prep_dma not used for OUT ep's, this is not possible
1219 * for PPB modes, because of chain creation reasons
1221 if (ep->in) {
1222 retval = prep_dma(ep, req, gfp);
1223 if (retval != 0)
1224 goto finished;
1227 VDBG(dev, "list_add\n");
1228 /* add request to ep queue */
1229 if (req) {
1231 list_add_tail(&req->queue, &ep->queue);
1233 /* open rxfifo if out data queued */
1234 if (open_rxfifo) {
1235 /* enable DMA */
1236 req->dma_going = 1;
1237 udc_set_rde(dev);
1238 if (ep->num != UDC_EP0OUT_IX)
1239 dev->data_ep_queued = 1;
1241 /* stop OUT naking */
1242 if (!ep->in) {
1243 if (!use_dma && udc_rxfifo_pending) {
1244 DBG(dev, "udc_queue(): pending bytes in "
1245 "rxfifo after nyet\n");
1247 * read pending bytes afer nyet:
1248 * referring to isr
1250 if (udc_rxfifo_read(ep, req)) {
1251 /* finish */
1252 complete_req(ep, req, 0);
1254 udc_rxfifo_pending = 0;
1260 finished:
1261 spin_unlock_irqrestore(&dev->lock, iflags);
1262 return retval;
1265 /* Empty request queue of an endpoint; caller holds spinlock */
1266 static void empty_req_queue(struct udc_ep *ep)
1268 struct udc_request *req;
1270 ep->halted = 1;
1271 while (!list_empty(&ep->queue)) {
1272 req = list_entry(ep->queue.next,
1273 struct udc_request,
1274 queue);
1275 complete_req(ep, req, -ESHUTDOWN);
1279 /* Dequeues a request packet, called by gadget driver */
1280 static int udc_dequeue(struct usb_ep *usbep, struct usb_request *usbreq)
1282 struct udc_ep *ep;
1283 struct udc_request *req;
1284 unsigned halted;
1285 unsigned long iflags;
1287 ep = container_of(usbep, struct udc_ep, ep);
1288 if (!usbep || !usbreq || (!ep->desc && (ep->num != 0
1289 && ep->num != UDC_EP0OUT_IX)))
1290 return -EINVAL;
1292 req = container_of(usbreq, struct udc_request, req);
1294 spin_lock_irqsave(&ep->dev->lock, iflags);
1295 halted = ep->halted;
1296 ep->halted = 1;
1297 /* request in processing or next one */
1298 if (ep->queue.next == &req->queue) {
1299 if (ep->dma && req->dma_going) {
1300 if (ep->in)
1301 ep->cancel_transfer = 1;
1302 else {
1303 u32 tmp;
1304 u32 dma_sts;
1305 /* stop potential receive DMA */
1306 tmp = readl(&udc->regs->ctl);
1307 writel(tmp & AMD_UNMASK_BIT(UDC_DEVCTL_RDE),
1308 &udc->regs->ctl);
1310 * Cancel transfer later in ISR
1311 * if descriptor was touched.
1313 dma_sts = AMD_GETBITS(req->td_data->status,
1314 UDC_DMA_OUT_STS_BS);
1315 if (dma_sts != UDC_DMA_OUT_STS_BS_HOST_READY)
1316 ep->cancel_transfer = 1;
1317 else {
1318 udc_init_bna_dummy(ep->req);
1319 writel(ep->bna_dummy_req->td_phys,
1320 &ep->regs->desptr);
1322 writel(tmp, &udc->regs->ctl);
1326 complete_req(ep, req, -ECONNRESET);
1327 ep->halted = halted;
1329 spin_unlock_irqrestore(&ep->dev->lock, iflags);
1330 return 0;
1333 /* Halt or clear halt of endpoint */
1334 static int
1335 udc_set_halt(struct usb_ep *usbep, int halt)
1337 struct udc_ep *ep;
1338 u32 tmp;
1339 unsigned long iflags;
1340 int retval = 0;
1342 if (!usbep)
1343 return -EINVAL;
1345 pr_debug("set_halt %s: halt=%d\n", usbep->name, halt);
1347 ep = container_of(usbep, struct udc_ep, ep);
1348 if (!ep->desc && (ep->num != 0 && ep->num != UDC_EP0OUT_IX))
1349 return -EINVAL;
1350 if (!ep->dev->driver || ep->dev->gadget.speed == USB_SPEED_UNKNOWN)
1351 return -ESHUTDOWN;
1353 spin_lock_irqsave(&udc_stall_spinlock, iflags);
1354 /* halt or clear halt */
1355 if (halt) {
1356 if (ep->num == 0)
1357 ep->dev->stall_ep0in = 1;
1358 else {
1360 * set STALL
1361 * rxfifo empty not taken into acount
1363 tmp = readl(&ep->regs->ctl);
1364 tmp |= AMD_BIT(UDC_EPCTL_S);
1365 writel(tmp, &ep->regs->ctl);
1366 ep->halted = 1;
1368 /* setup poll timer */
1369 if (!timer_pending(&udc_pollstall_timer)) {
1370 udc_pollstall_timer.expires = jiffies +
1371 HZ * UDC_POLLSTALL_TIMER_USECONDS
1372 / (1000 * 1000);
1373 if (!stop_pollstall_timer) {
1374 DBG(ep->dev, "start polltimer\n");
1375 add_timer(&udc_pollstall_timer);
1379 } else {
1380 /* ep is halted by set_halt() before */
1381 if (ep->halted) {
1382 tmp = readl(&ep->regs->ctl);
1383 /* clear stall bit */
1384 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
1385 /* clear NAK by writing CNAK */
1386 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1387 writel(tmp, &ep->regs->ctl);
1388 ep->halted = 0;
1389 UDC_QUEUE_CNAK(ep, ep->num);
1392 spin_unlock_irqrestore(&udc_stall_spinlock, iflags);
1393 return retval;
1396 /* gadget interface */
1397 static const struct usb_ep_ops udc_ep_ops = {
1398 .enable = udc_ep_enable,
1399 .disable = udc_ep_disable,
1401 .alloc_request = udc_alloc_request,
1402 .free_request = udc_free_request,
1404 .queue = udc_queue,
1405 .dequeue = udc_dequeue,
1407 .set_halt = udc_set_halt,
1408 /* fifo ops not implemented */
1411 /*-------------------------------------------------------------------------*/
1413 /* Get frame counter (not implemented) */
1414 static int udc_get_frame(struct usb_gadget *gadget)
1416 return -EOPNOTSUPP;
1419 /* Remote wakeup gadget interface */
1420 static int udc_wakeup(struct usb_gadget *gadget)
1422 struct udc *dev;
1424 if (!gadget)
1425 return -EINVAL;
1426 dev = container_of(gadget, struct udc, gadget);
1427 udc_remote_wakeup(dev);
1429 return 0;
1432 static int amd5536_start(struct usb_gadget_driver *driver,
1433 int (*bind)(struct usb_gadget *));
1434 static int amd5536_stop(struct usb_gadget_driver *driver);
1435 /* gadget operations */
1436 static const struct usb_gadget_ops udc_ops = {
1437 .wakeup = udc_wakeup,
1438 .get_frame = udc_get_frame,
1439 .start = amd5536_start,
1440 .stop = amd5536_stop,
1443 /* Setups endpoint parameters, adds endpoints to linked list */
1444 static void make_ep_lists(struct udc *dev)
1446 /* make gadget ep lists */
1447 INIT_LIST_HEAD(&dev->gadget.ep_list);
1448 list_add_tail(&dev->ep[UDC_EPIN_STATUS_IX].ep.ep_list,
1449 &dev->gadget.ep_list);
1450 list_add_tail(&dev->ep[UDC_EPIN_IX].ep.ep_list,
1451 &dev->gadget.ep_list);
1452 list_add_tail(&dev->ep[UDC_EPOUT_IX].ep.ep_list,
1453 &dev->gadget.ep_list);
1455 /* fifo config */
1456 dev->ep[UDC_EPIN_STATUS_IX].fifo_depth = UDC_EPIN_SMALLINT_BUFF_SIZE;
1457 if (dev->gadget.speed == USB_SPEED_FULL)
1458 dev->ep[UDC_EPIN_IX].fifo_depth = UDC_FS_EPIN_BUFF_SIZE;
1459 else if (dev->gadget.speed == USB_SPEED_HIGH)
1460 dev->ep[UDC_EPIN_IX].fifo_depth = hs_tx_buf;
1461 dev->ep[UDC_EPOUT_IX].fifo_depth = UDC_RXFIFO_SIZE;
1464 /* init registers at driver load time */
1465 static int startup_registers(struct udc *dev)
1467 u32 tmp;
1469 /* init controller by soft reset */
1470 udc_soft_reset(dev);
1472 /* mask not needed interrupts */
1473 udc_mask_unused_interrupts(dev);
1475 /* put into initial config */
1476 udc_basic_init(dev);
1477 /* link up all endpoints */
1478 udc_setup_endpoints(dev);
1480 /* program speed */
1481 tmp = readl(&dev->regs->cfg);
1482 if (use_fullspeed) {
1483 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1484 } else {
1485 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_HS, UDC_DEVCFG_SPD);
1487 writel(tmp, &dev->regs->cfg);
1489 return 0;
1492 /* Inits UDC context */
1493 static void udc_basic_init(struct udc *dev)
1495 u32 tmp;
1497 DBG(dev, "udc_basic_init()\n");
1499 dev->gadget.speed = USB_SPEED_UNKNOWN;
1501 /* stop RDE timer */
1502 if (timer_pending(&udc_timer)) {
1503 set_rde = 0;
1504 mod_timer(&udc_timer, jiffies - 1);
1506 /* stop poll stall timer */
1507 if (timer_pending(&udc_pollstall_timer)) {
1508 mod_timer(&udc_pollstall_timer, jiffies - 1);
1510 /* disable DMA */
1511 tmp = readl(&dev->regs->ctl);
1512 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_RDE);
1513 tmp &= AMD_UNMASK_BIT(UDC_DEVCTL_TDE);
1514 writel(tmp, &dev->regs->ctl);
1516 /* enable dynamic CSR programming */
1517 tmp = readl(&dev->regs->cfg);
1518 tmp |= AMD_BIT(UDC_DEVCFG_CSR_PRG);
1519 /* set self powered */
1520 tmp |= AMD_BIT(UDC_DEVCFG_SP);
1521 /* set remote wakeupable */
1522 tmp |= AMD_BIT(UDC_DEVCFG_RWKP);
1523 writel(tmp, &dev->regs->cfg);
1525 make_ep_lists(dev);
1527 dev->data_ep_enabled = 0;
1528 dev->data_ep_queued = 0;
1531 /* Sets initial endpoint parameters */
1532 static void udc_setup_endpoints(struct udc *dev)
1534 struct udc_ep *ep;
1535 u32 tmp;
1536 u32 reg;
1538 DBG(dev, "udc_setup_endpoints()\n");
1540 /* read enum speed */
1541 tmp = readl(&dev->regs->sts);
1542 tmp = AMD_GETBITS(tmp, UDC_DEVSTS_ENUM_SPEED);
1543 if (tmp == UDC_DEVSTS_ENUM_SPEED_HIGH) {
1544 dev->gadget.speed = USB_SPEED_HIGH;
1545 } else if (tmp == UDC_DEVSTS_ENUM_SPEED_FULL) {
1546 dev->gadget.speed = USB_SPEED_FULL;
1549 /* set basic ep parameters */
1550 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1551 ep = &dev->ep[tmp];
1552 ep->dev = dev;
1553 ep->ep.name = ep_string[tmp];
1554 ep->num = tmp;
1555 /* txfifo size is calculated at enable time */
1556 ep->txfifo = dev->txfifo;
1558 /* fifo size */
1559 if (tmp < UDC_EPIN_NUM) {
1560 ep->fifo_depth = UDC_TXFIFO_SIZE;
1561 ep->in = 1;
1562 } else {
1563 ep->fifo_depth = UDC_RXFIFO_SIZE;
1564 ep->in = 0;
1567 ep->regs = &dev->ep_regs[tmp];
1569 * ep will be reset only if ep was not enabled before to avoid
1570 * disabling ep interrupts when ENUM interrupt occurs but ep is
1571 * not enabled by gadget driver
1573 if (!ep->desc) {
1574 ep_init(dev->regs, ep);
1577 if (use_dma) {
1579 * ep->dma is not really used, just to indicate that
1580 * DMA is active: remove this
1581 * dma regs = dev control regs
1583 ep->dma = &dev->regs->ctl;
1585 /* nak OUT endpoints until enable - not for ep0 */
1586 if (tmp != UDC_EP0IN_IX && tmp != UDC_EP0OUT_IX
1587 && tmp > UDC_EPIN_NUM) {
1588 /* set NAK */
1589 reg = readl(&dev->ep[tmp].regs->ctl);
1590 reg |= AMD_BIT(UDC_EPCTL_SNAK);
1591 writel(reg, &dev->ep[tmp].regs->ctl);
1592 dev->ep[tmp].naking = 1;
1597 /* EP0 max packet */
1598 if (dev->gadget.speed == USB_SPEED_FULL) {
1599 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_FS_EP0IN_MAX_PKT_SIZE;
1600 dev->ep[UDC_EP0OUT_IX].ep.maxpacket =
1601 UDC_FS_EP0OUT_MAX_PKT_SIZE;
1602 } else if (dev->gadget.speed == USB_SPEED_HIGH) {
1603 dev->ep[UDC_EP0IN_IX].ep.maxpacket = UDC_EP0IN_MAX_PKT_SIZE;
1604 dev->ep[UDC_EP0OUT_IX].ep.maxpacket = UDC_EP0OUT_MAX_PKT_SIZE;
1608 * with suspend bug workaround, ep0 params for gadget driver
1609 * are set at gadget driver bind() call
1611 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
1612 dev->ep[UDC_EP0IN_IX].halted = 0;
1613 INIT_LIST_HEAD(&dev->gadget.ep0->ep_list);
1615 /* init cfg/alt/int */
1616 dev->cur_config = 0;
1617 dev->cur_intf = 0;
1618 dev->cur_alt = 0;
1621 /* Bringup after Connect event, initial bringup to be ready for ep0 events */
1622 static void usb_connect(struct udc *dev)
1625 dev_info(&dev->pdev->dev, "USB Connect\n");
1627 dev->connected = 1;
1629 /* put into initial config */
1630 udc_basic_init(dev);
1632 /* enable device setup interrupts */
1633 udc_enable_dev_setup_interrupts(dev);
1637 * Calls gadget with disconnect event and resets the UDC and makes
1638 * initial bringup to be ready for ep0 events
1640 static void usb_disconnect(struct udc *dev)
1643 dev_info(&dev->pdev->dev, "USB Disconnect\n");
1645 dev->connected = 0;
1647 /* mask interrupts */
1648 udc_mask_unused_interrupts(dev);
1650 /* REVISIT there doesn't seem to be a point to having this
1651 * talk to a tasklet ... do it directly, we already hold
1652 * the spinlock needed to process the disconnect.
1655 tasklet_schedule(&disconnect_tasklet);
1658 /* Tasklet for disconnect to be outside of interrupt context */
1659 static void udc_tasklet_disconnect(unsigned long par)
1661 struct udc *dev = (struct udc *)(*((struct udc **) par));
1662 u32 tmp;
1664 DBG(dev, "Tasklet disconnect\n");
1665 spin_lock_irq(&dev->lock);
1667 if (dev->driver) {
1668 spin_unlock(&dev->lock);
1669 dev->driver->disconnect(&dev->gadget);
1670 spin_lock(&dev->lock);
1672 /* empty queues */
1673 for (tmp = 0; tmp < UDC_EP_NUM; tmp++) {
1674 empty_req_queue(&dev->ep[tmp]);
1679 /* disable ep0 */
1680 ep_init(dev->regs,
1681 &dev->ep[UDC_EP0IN_IX]);
1684 if (!soft_reset_occured) {
1685 /* init controller by soft reset */
1686 udc_soft_reset(dev);
1687 soft_reset_occured++;
1690 /* re-enable dev interrupts */
1691 udc_enable_dev_setup_interrupts(dev);
1692 /* back to full speed ? */
1693 if (use_fullspeed) {
1694 tmp = readl(&dev->regs->cfg);
1695 tmp = AMD_ADDBITS(tmp, UDC_DEVCFG_SPD_FS, UDC_DEVCFG_SPD);
1696 writel(tmp, &dev->regs->cfg);
1699 spin_unlock_irq(&dev->lock);
1702 /* Reset the UDC core */
1703 static void udc_soft_reset(struct udc *dev)
1705 unsigned long flags;
1707 DBG(dev, "Soft reset\n");
1709 * reset possible waiting interrupts, because int.
1710 * status is lost after soft reset,
1711 * ep int. status reset
1713 writel(UDC_EPINT_MSK_DISABLE_ALL, &dev->regs->ep_irqsts);
1714 /* device int. status reset */
1715 writel(UDC_DEV_MSK_DISABLE, &dev->regs->irqsts);
1717 spin_lock_irqsave(&udc_irq_spinlock, flags);
1718 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
1719 readl(&dev->regs->cfg);
1720 spin_unlock_irqrestore(&udc_irq_spinlock, flags);
1724 /* RDE timer callback to set RDE bit */
1725 static void udc_timer_function(unsigned long v)
1727 u32 tmp;
1729 spin_lock_irq(&udc_irq_spinlock);
1731 if (set_rde > 0) {
1733 * open the fifo if fifo was filled on last timer call
1734 * conditionally
1736 if (set_rde > 1) {
1737 /* set RDE to receive setup data */
1738 tmp = readl(&udc->regs->ctl);
1739 tmp |= AMD_BIT(UDC_DEVCTL_RDE);
1740 writel(tmp, &udc->regs->ctl);
1741 set_rde = -1;
1742 } else if (readl(&udc->regs->sts)
1743 & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
1745 * if fifo empty setup polling, do not just
1746 * open the fifo
1748 udc_timer.expires = jiffies + HZ/UDC_RDE_TIMER_DIV;
1749 if (!stop_timer) {
1750 add_timer(&udc_timer);
1752 } else {
1754 * fifo contains data now, setup timer for opening
1755 * the fifo when timer expires to be able to receive
1756 * setup packets, when data packets gets queued by
1757 * gadget layer then timer will forced to expire with
1758 * set_rde=0 (RDE is set in udc_queue())
1760 set_rde++;
1761 /* debug: lhadmot_timer_start = 221070 */
1762 udc_timer.expires = jiffies + HZ*UDC_RDE_TIMER_SECONDS;
1763 if (!stop_timer) {
1764 add_timer(&udc_timer);
1768 } else
1769 set_rde = -1; /* RDE was set by udc_queue() */
1770 spin_unlock_irq(&udc_irq_spinlock);
1771 if (stop_timer)
1772 complete(&on_exit);
1776 /* Handle halt state, used in stall poll timer */
1777 static void udc_handle_halt_state(struct udc_ep *ep)
1779 u32 tmp;
1780 /* set stall as long not halted */
1781 if (ep->halted == 1) {
1782 tmp = readl(&ep->regs->ctl);
1783 /* STALL cleared ? */
1784 if (!(tmp & AMD_BIT(UDC_EPCTL_S))) {
1786 * FIXME: MSC spec requires that stall remains
1787 * even on receivng of CLEAR_FEATURE HALT. So
1788 * we would set STALL again here to be compliant.
1789 * But with current mass storage drivers this does
1790 * not work (would produce endless host retries).
1791 * So we clear halt on CLEAR_FEATURE.
1793 DBG(ep->dev, "ep %d: set STALL again\n", ep->num);
1794 tmp |= AMD_BIT(UDC_EPCTL_S);
1795 writel(tmp, &ep->regs->ctl);*/
1797 /* clear NAK by writing CNAK */
1798 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1799 writel(tmp, &ep->regs->ctl);
1800 ep->halted = 0;
1801 UDC_QUEUE_CNAK(ep, ep->num);
1806 /* Stall timer callback to poll S bit and set it again after */
1807 static void udc_pollstall_timer_function(unsigned long v)
1809 struct udc_ep *ep;
1810 int halted = 0;
1812 spin_lock_irq(&udc_stall_spinlock);
1814 * only one IN and OUT endpoints are handled
1815 * IN poll stall
1817 ep = &udc->ep[UDC_EPIN_IX];
1818 udc_handle_halt_state(ep);
1819 if (ep->halted)
1820 halted = 1;
1821 /* OUT poll stall */
1822 ep = &udc->ep[UDC_EPOUT_IX];
1823 udc_handle_halt_state(ep);
1824 if (ep->halted)
1825 halted = 1;
1827 /* setup timer again when still halted */
1828 if (!stop_pollstall_timer && halted) {
1829 udc_pollstall_timer.expires = jiffies +
1830 HZ * UDC_POLLSTALL_TIMER_USECONDS
1831 / (1000 * 1000);
1832 add_timer(&udc_pollstall_timer);
1834 spin_unlock_irq(&udc_stall_spinlock);
1836 if (stop_pollstall_timer)
1837 complete(&on_pollstall_exit);
1840 /* Inits endpoint 0 so that SETUP packets are processed */
1841 static void activate_control_endpoints(struct udc *dev)
1843 u32 tmp;
1845 DBG(dev, "activate_control_endpoints\n");
1847 /* flush fifo */
1848 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1849 tmp |= AMD_BIT(UDC_EPCTL_F);
1850 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1852 /* set ep0 directions */
1853 dev->ep[UDC_EP0IN_IX].in = 1;
1854 dev->ep[UDC_EP0OUT_IX].in = 0;
1856 /* set buffer size (tx fifo entries) of EP0_IN */
1857 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1858 if (dev->gadget.speed == USB_SPEED_FULL)
1859 tmp = AMD_ADDBITS(tmp, UDC_FS_EPIN0_BUFF_SIZE,
1860 UDC_EPIN_BUFF_SIZE);
1861 else if (dev->gadget.speed == USB_SPEED_HIGH)
1862 tmp = AMD_ADDBITS(tmp, UDC_EPIN0_BUFF_SIZE,
1863 UDC_EPIN_BUFF_SIZE);
1864 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufin_framenum);
1866 /* set max packet size of EP0_IN */
1867 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1868 if (dev->gadget.speed == USB_SPEED_FULL)
1869 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0IN_MAX_PKT_SIZE,
1870 UDC_EP_MAX_PKT_SIZE);
1871 else if (dev->gadget.speed == USB_SPEED_HIGH)
1872 tmp = AMD_ADDBITS(tmp, UDC_EP0IN_MAX_PKT_SIZE,
1873 UDC_EP_MAX_PKT_SIZE);
1874 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->bufout_maxpkt);
1876 /* set max packet size of EP0_OUT */
1877 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1878 if (dev->gadget.speed == USB_SPEED_FULL)
1879 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1880 UDC_EP_MAX_PKT_SIZE);
1881 else if (dev->gadget.speed == USB_SPEED_HIGH)
1882 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1883 UDC_EP_MAX_PKT_SIZE);
1884 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->bufout_maxpkt);
1886 /* set max packet size of EP0 in UDC CSR */
1887 tmp = readl(&dev->csr->ne[0]);
1888 if (dev->gadget.speed == USB_SPEED_FULL)
1889 tmp = AMD_ADDBITS(tmp, UDC_FS_EP0OUT_MAX_PKT_SIZE,
1890 UDC_CSR_NE_MAX_PKT);
1891 else if (dev->gadget.speed == USB_SPEED_HIGH)
1892 tmp = AMD_ADDBITS(tmp, UDC_EP0OUT_MAX_PKT_SIZE,
1893 UDC_CSR_NE_MAX_PKT);
1894 writel(tmp, &dev->csr->ne[0]);
1896 if (use_dma) {
1897 dev->ep[UDC_EP0OUT_IX].td->status |=
1898 AMD_BIT(UDC_DMA_OUT_STS_L);
1899 /* write dma desc address */
1900 writel(dev->ep[UDC_EP0OUT_IX].td_stp_dma,
1901 &dev->ep[UDC_EP0OUT_IX].regs->subptr);
1902 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
1903 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
1904 /* stop RDE timer */
1905 if (timer_pending(&udc_timer)) {
1906 set_rde = 0;
1907 mod_timer(&udc_timer, jiffies - 1);
1909 /* stop pollstall timer */
1910 if (timer_pending(&udc_pollstall_timer)) {
1911 mod_timer(&udc_pollstall_timer, jiffies - 1);
1913 /* enable DMA */
1914 tmp = readl(&dev->regs->ctl);
1915 tmp |= AMD_BIT(UDC_DEVCTL_MODE)
1916 | AMD_BIT(UDC_DEVCTL_RDE)
1917 | AMD_BIT(UDC_DEVCTL_TDE);
1918 if (use_dma_bufferfill_mode) {
1919 tmp |= AMD_BIT(UDC_DEVCTL_BF);
1920 } else if (use_dma_ppb_du) {
1921 tmp |= AMD_BIT(UDC_DEVCTL_DU);
1923 writel(tmp, &dev->regs->ctl);
1926 /* clear NAK by writing CNAK for EP0IN */
1927 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
1928 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1929 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
1930 dev->ep[UDC_EP0IN_IX].naking = 0;
1931 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
1933 /* clear NAK by writing CNAK for EP0OUT */
1934 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
1935 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
1936 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
1937 dev->ep[UDC_EP0OUT_IX].naking = 0;
1938 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
1941 /* Make endpoint 0 ready for control traffic */
1942 static int setup_ep0(struct udc *dev)
1944 activate_control_endpoints(dev);
1945 /* enable ep0 interrupts */
1946 udc_enable_ep0_interrupts(dev);
1947 /* enable device setup interrupts */
1948 udc_enable_dev_setup_interrupts(dev);
1950 return 0;
1953 /* Called by gadget driver to register itself */
1954 static int amd5536_start(struct usb_gadget_driver *driver,
1955 int (*bind)(struct usb_gadget *))
1957 struct udc *dev = udc;
1958 int retval;
1959 u32 tmp;
1961 if (!driver || !bind || !driver->setup
1962 || driver->speed != USB_SPEED_HIGH)
1963 return -EINVAL;
1964 if (!dev)
1965 return -ENODEV;
1966 if (dev->driver)
1967 return -EBUSY;
1969 driver->driver.bus = NULL;
1970 dev->driver = driver;
1971 dev->gadget.dev.driver = &driver->driver;
1973 retval = bind(&dev->gadget);
1975 /* Some gadget drivers use both ep0 directions.
1976 * NOTE: to gadget driver, ep0 is just one endpoint...
1978 dev->ep[UDC_EP0OUT_IX].ep.driver_data =
1979 dev->ep[UDC_EP0IN_IX].ep.driver_data;
1981 if (retval) {
1982 DBG(dev, "binding to %s returning %d\n",
1983 driver->driver.name, retval);
1984 dev->driver = NULL;
1985 dev->gadget.dev.driver = NULL;
1986 return retval;
1989 /* get ready for ep0 traffic */
1990 setup_ep0(dev);
1992 /* clear SD */
1993 tmp = readl(&dev->regs->ctl);
1994 tmp = tmp & AMD_CLEAR_BIT(UDC_DEVCTL_SD);
1995 writel(tmp, &dev->regs->ctl);
1997 usb_connect(dev);
1999 return 0;
2002 /* shutdown requests and disconnect from gadget */
2003 static void
2004 shutdown(struct udc *dev, struct usb_gadget_driver *driver)
2005 __releases(dev->lock)
2006 __acquires(dev->lock)
2008 int tmp;
2010 if (dev->gadget.speed != USB_SPEED_UNKNOWN) {
2011 spin_unlock(&dev->lock);
2012 driver->disconnect(&dev->gadget);
2013 spin_lock(&dev->lock);
2016 /* empty queues and init hardware */
2017 udc_basic_init(dev);
2018 for (tmp = 0; tmp < UDC_EP_NUM; tmp++)
2019 empty_req_queue(&dev->ep[tmp]);
2021 udc_setup_endpoints(dev);
2024 /* Called by gadget driver to unregister itself */
2025 static int amd5536_stop(struct usb_gadget_driver *driver)
2027 struct udc *dev = udc;
2028 unsigned long flags;
2029 u32 tmp;
2031 if (!dev)
2032 return -ENODEV;
2033 if (!driver || driver != dev->driver || !driver->unbind)
2034 return -EINVAL;
2036 spin_lock_irqsave(&dev->lock, flags);
2037 udc_mask_unused_interrupts(dev);
2038 shutdown(dev, driver);
2039 spin_unlock_irqrestore(&dev->lock, flags);
2041 driver->unbind(&dev->gadget);
2042 dev->gadget.dev.driver = NULL;
2043 dev->driver = NULL;
2045 /* set SD */
2046 tmp = readl(&dev->regs->ctl);
2047 tmp |= AMD_BIT(UDC_DEVCTL_SD);
2048 writel(tmp, &dev->regs->ctl);
2051 DBG(dev, "%s: unregistered\n", driver->driver.name);
2053 return 0;
2056 /* Clear pending NAK bits */
2057 static void udc_process_cnak_queue(struct udc *dev)
2059 u32 tmp;
2060 u32 reg;
2062 /* check epin's */
2063 DBG(dev, "CNAK pending queue processing\n");
2064 for (tmp = 0; tmp < UDC_EPIN_NUM_USED; tmp++) {
2065 if (cnak_pending & (1 << tmp)) {
2066 DBG(dev, "CNAK pending for ep%d\n", tmp);
2067 /* clear NAK by writing CNAK */
2068 reg = readl(&dev->ep[tmp].regs->ctl);
2069 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2070 writel(reg, &dev->ep[tmp].regs->ctl);
2071 dev->ep[tmp].naking = 0;
2072 UDC_QUEUE_CNAK(&dev->ep[tmp], dev->ep[tmp].num);
2075 /* ... and ep0out */
2076 if (cnak_pending & (1 << UDC_EP0OUT_IX)) {
2077 DBG(dev, "CNAK pending for ep%d\n", UDC_EP0OUT_IX);
2078 /* clear NAK by writing CNAK */
2079 reg = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2080 reg |= AMD_BIT(UDC_EPCTL_CNAK);
2081 writel(reg, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2082 dev->ep[UDC_EP0OUT_IX].naking = 0;
2083 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX],
2084 dev->ep[UDC_EP0OUT_IX].num);
2088 /* Enabling RX DMA after setup packet */
2089 static void udc_ep0_set_rde(struct udc *dev)
2091 if (use_dma) {
2093 * only enable RXDMA when no data endpoint enabled
2094 * or data is queued
2096 if (!dev->data_ep_enabled || dev->data_ep_queued) {
2097 udc_set_rde(dev);
2098 } else {
2100 * setup timer for enabling RDE (to not enable
2101 * RXFIFO DMA for data endpoints to early)
2103 if (set_rde != 0 && !timer_pending(&udc_timer)) {
2104 udc_timer.expires =
2105 jiffies + HZ/UDC_RDE_TIMER_DIV;
2106 set_rde = 1;
2107 if (!stop_timer) {
2108 add_timer(&udc_timer);
2116 /* Interrupt handler for data OUT traffic */
2117 static irqreturn_t udc_data_out_isr(struct udc *dev, int ep_ix)
2119 irqreturn_t ret_val = IRQ_NONE;
2120 u32 tmp;
2121 struct udc_ep *ep;
2122 struct udc_request *req;
2123 unsigned int count;
2124 struct udc_data_dma *td = NULL;
2125 unsigned dma_done;
2127 VDBG(dev, "ep%d irq\n", ep_ix);
2128 ep = &dev->ep[ep_ix];
2130 tmp = readl(&ep->regs->sts);
2131 if (use_dma) {
2132 /* BNA event ? */
2133 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2134 DBG(dev, "BNA ep%dout occurred - DESPTR = %x \n",
2135 ep->num, readl(&ep->regs->desptr));
2136 /* clear BNA */
2137 writel(tmp | AMD_BIT(UDC_EPSTS_BNA), &ep->regs->sts);
2138 if (!ep->cancel_transfer)
2139 ep->bna_occurred = 1;
2140 else
2141 ep->cancel_transfer = 0;
2142 ret_val = IRQ_HANDLED;
2143 goto finished;
2146 /* HE event ? */
2147 if (tmp & AMD_BIT(UDC_EPSTS_HE)) {
2148 dev_err(&dev->pdev->dev, "HE ep%dout occurred\n", ep->num);
2150 /* clear HE */
2151 writel(tmp | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2152 ret_val = IRQ_HANDLED;
2153 goto finished;
2156 if (!list_empty(&ep->queue)) {
2158 /* next request */
2159 req = list_entry(ep->queue.next,
2160 struct udc_request, queue);
2161 } else {
2162 req = NULL;
2163 udc_rxfifo_pending = 1;
2165 VDBG(dev, "req = %p\n", req);
2166 /* fifo mode */
2167 if (!use_dma) {
2169 /* read fifo */
2170 if (req && udc_rxfifo_read(ep, req)) {
2171 ret_val = IRQ_HANDLED;
2173 /* finish */
2174 complete_req(ep, req, 0);
2175 /* next request */
2176 if (!list_empty(&ep->queue) && !ep->halted) {
2177 req = list_entry(ep->queue.next,
2178 struct udc_request, queue);
2179 } else
2180 req = NULL;
2183 /* DMA */
2184 } else if (!ep->cancel_transfer && req != NULL) {
2185 ret_val = IRQ_HANDLED;
2187 /* check for DMA done */
2188 if (!use_dma_ppb) {
2189 dma_done = AMD_GETBITS(req->td_data->status,
2190 UDC_DMA_OUT_STS_BS);
2191 /* packet per buffer mode - rx bytes */
2192 } else {
2194 * if BNA occurred then recover desc. from
2195 * BNA dummy desc.
2197 if (ep->bna_occurred) {
2198 VDBG(dev, "Recover desc. from BNA dummy\n");
2199 memcpy(req->td_data, ep->bna_dummy_req->td_data,
2200 sizeof(struct udc_data_dma));
2201 ep->bna_occurred = 0;
2202 udc_init_bna_dummy(ep->req);
2204 td = udc_get_last_dma_desc(req);
2205 dma_done = AMD_GETBITS(td->status, UDC_DMA_OUT_STS_BS);
2207 if (dma_done == UDC_DMA_OUT_STS_BS_DMA_DONE) {
2208 /* buffer fill mode - rx bytes */
2209 if (!use_dma_ppb) {
2210 /* received number bytes */
2211 count = AMD_GETBITS(req->td_data->status,
2212 UDC_DMA_OUT_STS_RXBYTES);
2213 VDBG(dev, "rx bytes=%u\n", count);
2214 /* packet per buffer mode - rx bytes */
2215 } else {
2216 VDBG(dev, "req->td_data=%p\n", req->td_data);
2217 VDBG(dev, "last desc = %p\n", td);
2218 /* received number bytes */
2219 if (use_dma_ppb_du) {
2220 /* every desc. counts bytes */
2221 count = udc_get_ppbdu_rxbytes(req);
2222 } else {
2223 /* last desc. counts bytes */
2224 count = AMD_GETBITS(td->status,
2225 UDC_DMA_OUT_STS_RXBYTES);
2226 if (!count && req->req.length
2227 == UDC_DMA_MAXPACKET) {
2229 * on 64k packets the RXBYTES
2230 * field is zero
2232 count = UDC_DMA_MAXPACKET;
2235 VDBG(dev, "last desc rx bytes=%u\n", count);
2238 tmp = req->req.length - req->req.actual;
2239 if (count > tmp) {
2240 if ((tmp % ep->ep.maxpacket) != 0) {
2241 DBG(dev, "%s: rx %db, space=%db\n",
2242 ep->ep.name, count, tmp);
2243 req->req.status = -EOVERFLOW;
2245 count = tmp;
2247 req->req.actual += count;
2248 req->dma_going = 0;
2249 /* complete request */
2250 complete_req(ep, req, 0);
2252 /* next request */
2253 if (!list_empty(&ep->queue) && !ep->halted) {
2254 req = list_entry(ep->queue.next,
2255 struct udc_request,
2256 queue);
2258 * DMA may be already started by udc_queue()
2259 * called by gadget drivers completion
2260 * routine. This happens when queue
2261 * holds one request only.
2263 if (req->dma_going == 0) {
2264 /* next dma */
2265 if (prep_dma(ep, req, GFP_ATOMIC) != 0)
2266 goto finished;
2267 /* write desc pointer */
2268 writel(req->td_phys,
2269 &ep->regs->desptr);
2270 req->dma_going = 1;
2271 /* enable DMA */
2272 udc_set_rde(dev);
2274 } else {
2276 * implant BNA dummy descriptor to allow
2277 * RXFIFO opening by RDE
2279 if (ep->bna_dummy_req) {
2280 /* write desc pointer */
2281 writel(ep->bna_dummy_req->td_phys,
2282 &ep->regs->desptr);
2283 ep->bna_occurred = 0;
2287 * schedule timer for setting RDE if queue
2288 * remains empty to allow ep0 packets pass
2289 * through
2291 if (set_rde != 0
2292 && !timer_pending(&udc_timer)) {
2293 udc_timer.expires =
2294 jiffies
2295 + HZ*UDC_RDE_TIMER_SECONDS;
2296 set_rde = 1;
2297 if (!stop_timer) {
2298 add_timer(&udc_timer);
2301 if (ep->num != UDC_EP0OUT_IX)
2302 dev->data_ep_queued = 0;
2305 } else {
2307 * RX DMA must be reenabled for each desc in PPBDU mode
2308 * and must be enabled for PPBNDU mode in case of BNA
2310 udc_set_rde(dev);
2313 } else if (ep->cancel_transfer) {
2314 ret_val = IRQ_HANDLED;
2315 ep->cancel_transfer = 0;
2318 /* check pending CNAKS */
2319 if (cnak_pending) {
2320 /* CNAk processing when rxfifo empty only */
2321 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2322 udc_process_cnak_queue(dev);
2326 /* clear OUT bits in ep status */
2327 writel(UDC_EPSTS_OUT_CLEAR, &ep->regs->sts);
2328 finished:
2329 return ret_val;
2332 /* Interrupt handler for data IN traffic */
2333 static irqreturn_t udc_data_in_isr(struct udc *dev, int ep_ix)
2335 irqreturn_t ret_val = IRQ_NONE;
2336 u32 tmp;
2337 u32 epsts;
2338 struct udc_ep *ep;
2339 struct udc_request *req;
2340 struct udc_data_dma *td;
2341 unsigned dma_done;
2342 unsigned len;
2344 ep = &dev->ep[ep_ix];
2346 epsts = readl(&ep->regs->sts);
2347 if (use_dma) {
2348 /* BNA ? */
2349 if (epsts & AMD_BIT(UDC_EPSTS_BNA)) {
2350 dev_err(&dev->pdev->dev,
2351 "BNA ep%din occurred - DESPTR = %08lx \n",
2352 ep->num,
2353 (unsigned long) readl(&ep->regs->desptr));
2355 /* clear BNA */
2356 writel(epsts, &ep->regs->sts);
2357 ret_val = IRQ_HANDLED;
2358 goto finished;
2361 /* HE event ? */
2362 if (epsts & AMD_BIT(UDC_EPSTS_HE)) {
2363 dev_err(&dev->pdev->dev,
2364 "HE ep%dn occurred - DESPTR = %08lx \n",
2365 ep->num, (unsigned long) readl(&ep->regs->desptr));
2367 /* clear HE */
2368 writel(epsts | AMD_BIT(UDC_EPSTS_HE), &ep->regs->sts);
2369 ret_val = IRQ_HANDLED;
2370 goto finished;
2373 /* DMA completion */
2374 if (epsts & AMD_BIT(UDC_EPSTS_TDC)) {
2375 VDBG(dev, "TDC set- completion\n");
2376 ret_val = IRQ_HANDLED;
2377 if (!ep->cancel_transfer && !list_empty(&ep->queue)) {
2378 req = list_entry(ep->queue.next,
2379 struct udc_request, queue);
2381 * length bytes transferred
2382 * check dma done of last desc. in PPBDU mode
2384 if (use_dma_ppb_du) {
2385 td = udc_get_last_dma_desc(req);
2386 if (td) {
2387 dma_done =
2388 AMD_GETBITS(td->status,
2389 UDC_DMA_IN_STS_BS);
2390 /* don't care DMA done */
2391 req->req.actual = req->req.length;
2393 } else {
2394 /* assume all bytes transferred */
2395 req->req.actual = req->req.length;
2398 if (req->req.actual == req->req.length) {
2399 /* complete req */
2400 complete_req(ep, req, 0);
2401 req->dma_going = 0;
2402 /* further request available ? */
2403 if (list_empty(&ep->queue)) {
2404 /* disable interrupt */
2405 tmp = readl(&dev->regs->ep_irqmsk);
2406 tmp |= AMD_BIT(ep->num);
2407 writel(tmp, &dev->regs->ep_irqmsk);
2411 ep->cancel_transfer = 0;
2415 * status reg has IN bit set and TDC not set (if TDC was handled,
2416 * IN must not be handled (UDC defect) ?
2418 if ((epsts & AMD_BIT(UDC_EPSTS_IN))
2419 && !(epsts & AMD_BIT(UDC_EPSTS_TDC))) {
2420 ret_val = IRQ_HANDLED;
2421 if (!list_empty(&ep->queue)) {
2422 /* next request */
2423 req = list_entry(ep->queue.next,
2424 struct udc_request, queue);
2425 /* FIFO mode */
2426 if (!use_dma) {
2427 /* write fifo */
2428 udc_txfifo_write(ep, &req->req);
2429 len = req->req.length - req->req.actual;
2430 if (len > ep->ep.maxpacket)
2431 len = ep->ep.maxpacket;
2432 req->req.actual += len;
2433 if (req->req.actual == req->req.length
2434 || (len != ep->ep.maxpacket)) {
2435 /* complete req */
2436 complete_req(ep, req, 0);
2438 /* DMA */
2439 } else if (req && !req->dma_going) {
2440 VDBG(dev, "IN DMA : req=%p req->td_data=%p\n",
2441 req, req->td_data);
2442 if (req->td_data) {
2444 req->dma_going = 1;
2447 * unset L bit of first desc.
2448 * for chain
2450 if (use_dma_ppb && req->req.length >
2451 ep->ep.maxpacket) {
2452 req->td_data->status &=
2453 AMD_CLEAR_BIT(
2454 UDC_DMA_IN_STS_L);
2457 /* write desc pointer */
2458 writel(req->td_phys, &ep->regs->desptr);
2460 /* set HOST READY */
2461 req->td_data->status =
2462 AMD_ADDBITS(
2463 req->td_data->status,
2464 UDC_DMA_IN_STS_BS_HOST_READY,
2465 UDC_DMA_IN_STS_BS);
2467 /* set poll demand bit */
2468 tmp = readl(&ep->regs->ctl);
2469 tmp |= AMD_BIT(UDC_EPCTL_P);
2470 writel(tmp, &ep->regs->ctl);
2474 } else if (!use_dma && ep->in) {
2475 /* disable interrupt */
2476 tmp = readl(
2477 &dev->regs->ep_irqmsk);
2478 tmp |= AMD_BIT(ep->num);
2479 writel(tmp,
2480 &dev->regs->ep_irqmsk);
2483 /* clear status bits */
2484 writel(epsts, &ep->regs->sts);
2486 finished:
2487 return ret_val;
2491 /* Interrupt handler for Control OUT traffic */
2492 static irqreturn_t udc_control_out_isr(struct udc *dev)
2493 __releases(dev->lock)
2494 __acquires(dev->lock)
2496 irqreturn_t ret_val = IRQ_NONE;
2497 u32 tmp;
2498 int setup_supported;
2499 u32 count;
2500 int set = 0;
2501 struct udc_ep *ep;
2502 struct udc_ep *ep_tmp;
2504 ep = &dev->ep[UDC_EP0OUT_IX];
2506 /* clear irq */
2507 writel(AMD_BIT(UDC_EPINT_OUT_EP0), &dev->regs->ep_irqsts);
2509 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2510 /* check BNA and clear if set */
2511 if (tmp & AMD_BIT(UDC_EPSTS_BNA)) {
2512 VDBG(dev, "ep0: BNA set\n");
2513 writel(AMD_BIT(UDC_EPSTS_BNA),
2514 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2515 ep->bna_occurred = 1;
2516 ret_val = IRQ_HANDLED;
2517 goto finished;
2520 /* type of data: SETUP or DATA 0 bytes */
2521 tmp = AMD_GETBITS(tmp, UDC_EPSTS_OUT);
2522 VDBG(dev, "data_typ = %x\n", tmp);
2524 /* setup data */
2525 if (tmp == UDC_EPSTS_OUT_SETUP) {
2526 ret_val = IRQ_HANDLED;
2528 ep->dev->stall_ep0in = 0;
2529 dev->waiting_zlp_ack_ep0in = 0;
2531 /* set NAK for EP0_IN */
2532 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2533 tmp |= AMD_BIT(UDC_EPCTL_SNAK);
2534 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2535 dev->ep[UDC_EP0IN_IX].naking = 1;
2536 /* get setup data */
2537 if (use_dma) {
2539 /* clear OUT bits in ep status */
2540 writel(UDC_EPSTS_OUT_CLEAR,
2541 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2543 setup_data.data[0] =
2544 dev->ep[UDC_EP0OUT_IX].td_stp->data12;
2545 setup_data.data[1] =
2546 dev->ep[UDC_EP0OUT_IX].td_stp->data34;
2547 /* set HOST READY */
2548 dev->ep[UDC_EP0OUT_IX].td_stp->status =
2549 UDC_DMA_STP_STS_BS_HOST_READY;
2550 } else {
2551 /* read fifo */
2552 udc_rxfifo_read_dwords(dev, setup_data.data, 2);
2555 /* determine direction of control data */
2556 if ((setup_data.request.bRequestType & USB_DIR_IN) != 0) {
2557 dev->gadget.ep0 = &dev->ep[UDC_EP0IN_IX].ep;
2558 /* enable RDE */
2559 udc_ep0_set_rde(dev);
2560 set = 0;
2561 } else {
2562 dev->gadget.ep0 = &dev->ep[UDC_EP0OUT_IX].ep;
2564 * implant BNA dummy descriptor to allow RXFIFO opening
2565 * by RDE
2567 if (ep->bna_dummy_req) {
2568 /* write desc pointer */
2569 writel(ep->bna_dummy_req->td_phys,
2570 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2571 ep->bna_occurred = 0;
2574 set = 1;
2575 dev->ep[UDC_EP0OUT_IX].naking = 1;
2577 * setup timer for enabling RDE (to not enable
2578 * RXFIFO DMA for data to early)
2580 set_rde = 1;
2581 if (!timer_pending(&udc_timer)) {
2582 udc_timer.expires = jiffies +
2583 HZ/UDC_RDE_TIMER_DIV;
2584 if (!stop_timer) {
2585 add_timer(&udc_timer);
2591 * mass storage reset must be processed here because
2592 * next packet may be a CLEAR_FEATURE HALT which would not
2593 * clear the stall bit when no STALL handshake was received
2594 * before (autostall can cause this)
2596 if (setup_data.data[0] == UDC_MSCRES_DWORD0
2597 && setup_data.data[1] == UDC_MSCRES_DWORD1) {
2598 DBG(dev, "MSC Reset\n");
2600 * clear stall bits
2601 * only one IN and OUT endpoints are handled
2603 ep_tmp = &udc->ep[UDC_EPIN_IX];
2604 udc_set_halt(&ep_tmp->ep, 0);
2605 ep_tmp = &udc->ep[UDC_EPOUT_IX];
2606 udc_set_halt(&ep_tmp->ep, 0);
2609 /* call gadget with setup data received */
2610 spin_unlock(&dev->lock);
2611 setup_supported = dev->driver->setup(&dev->gadget,
2612 &setup_data.request);
2613 spin_lock(&dev->lock);
2615 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2616 /* ep0 in returns data (not zlp) on IN phase */
2617 if (setup_supported >= 0 && setup_supported <
2618 UDC_EP0IN_MAXPACKET) {
2619 /* clear NAK by writing CNAK in EP0_IN */
2620 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2621 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2622 dev->ep[UDC_EP0IN_IX].naking = 0;
2623 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0IN_IX], UDC_EP0IN_IX);
2625 /* if unsupported request then stall */
2626 } else if (setup_supported < 0) {
2627 tmp |= AMD_BIT(UDC_EPCTL_S);
2628 writel(tmp, &dev->ep[UDC_EP0IN_IX].regs->ctl);
2629 } else
2630 dev->waiting_zlp_ack_ep0in = 1;
2633 /* clear NAK by writing CNAK in EP0_OUT */
2634 if (!set) {
2635 tmp = readl(&dev->ep[UDC_EP0OUT_IX].regs->ctl);
2636 tmp |= AMD_BIT(UDC_EPCTL_CNAK);
2637 writel(tmp, &dev->ep[UDC_EP0OUT_IX].regs->ctl);
2638 dev->ep[UDC_EP0OUT_IX].naking = 0;
2639 UDC_QUEUE_CNAK(&dev->ep[UDC_EP0OUT_IX], UDC_EP0OUT_IX);
2642 if (!use_dma) {
2643 /* clear OUT bits in ep status */
2644 writel(UDC_EPSTS_OUT_CLEAR,
2645 &dev->ep[UDC_EP0OUT_IX].regs->sts);
2648 /* data packet 0 bytes */
2649 } else if (tmp == UDC_EPSTS_OUT_DATA) {
2650 /* clear OUT bits in ep status */
2651 writel(UDC_EPSTS_OUT_CLEAR, &dev->ep[UDC_EP0OUT_IX].regs->sts);
2653 /* get setup data: only 0 packet */
2654 if (use_dma) {
2655 /* no req if 0 packet, just reactivate */
2656 if (list_empty(&dev->ep[UDC_EP0OUT_IX].queue)) {
2657 VDBG(dev, "ZLP\n");
2659 /* set HOST READY */
2660 dev->ep[UDC_EP0OUT_IX].td->status =
2661 AMD_ADDBITS(
2662 dev->ep[UDC_EP0OUT_IX].td->status,
2663 UDC_DMA_OUT_STS_BS_HOST_READY,
2664 UDC_DMA_OUT_STS_BS);
2665 /* enable RDE */
2666 udc_ep0_set_rde(dev);
2667 ret_val = IRQ_HANDLED;
2669 } else {
2670 /* control write */
2671 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2672 /* re-program desc. pointer for possible ZLPs */
2673 writel(dev->ep[UDC_EP0OUT_IX].td_phys,
2674 &dev->ep[UDC_EP0OUT_IX].regs->desptr);
2675 /* enable RDE */
2676 udc_ep0_set_rde(dev);
2678 } else {
2680 /* received number bytes */
2681 count = readl(&dev->ep[UDC_EP0OUT_IX].regs->sts);
2682 count = AMD_GETBITS(count, UDC_EPSTS_RX_PKT_SIZE);
2683 /* out data for fifo mode not working */
2684 count = 0;
2686 /* 0 packet or real data ? */
2687 if (count != 0) {
2688 ret_val |= udc_data_out_isr(dev, UDC_EP0OUT_IX);
2689 } else {
2690 /* dummy read confirm */
2691 readl(&dev->ep[UDC_EP0OUT_IX].regs->confirm);
2692 ret_val = IRQ_HANDLED;
2697 /* check pending CNAKS */
2698 if (cnak_pending) {
2699 /* CNAk processing when rxfifo empty only */
2700 if (readl(&dev->regs->sts) & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY)) {
2701 udc_process_cnak_queue(dev);
2705 finished:
2706 return ret_val;
2709 /* Interrupt handler for Control IN traffic */
2710 static irqreturn_t udc_control_in_isr(struct udc *dev)
2712 irqreturn_t ret_val = IRQ_NONE;
2713 u32 tmp;
2714 struct udc_ep *ep;
2715 struct udc_request *req;
2716 unsigned len;
2718 ep = &dev->ep[UDC_EP0IN_IX];
2720 /* clear irq */
2721 writel(AMD_BIT(UDC_EPINT_IN_EP0), &dev->regs->ep_irqsts);
2723 tmp = readl(&dev->ep[UDC_EP0IN_IX].regs->sts);
2724 /* DMA completion */
2725 if (tmp & AMD_BIT(UDC_EPSTS_TDC)) {
2726 VDBG(dev, "isr: TDC clear \n");
2727 ret_val = IRQ_HANDLED;
2729 /* clear TDC bit */
2730 writel(AMD_BIT(UDC_EPSTS_TDC),
2731 &dev->ep[UDC_EP0IN_IX].regs->sts);
2733 /* status reg has IN bit set ? */
2734 } else if (tmp & AMD_BIT(UDC_EPSTS_IN)) {
2735 ret_val = IRQ_HANDLED;
2737 if (ep->dma) {
2738 /* clear IN bit */
2739 writel(AMD_BIT(UDC_EPSTS_IN),
2740 &dev->ep[UDC_EP0IN_IX].regs->sts);
2742 if (dev->stall_ep0in) {
2743 DBG(dev, "stall ep0in\n");
2744 /* halt ep0in */
2745 tmp = readl(&ep->regs->ctl);
2746 tmp |= AMD_BIT(UDC_EPCTL_S);
2747 writel(tmp, &ep->regs->ctl);
2748 } else {
2749 if (!list_empty(&ep->queue)) {
2750 /* next request */
2751 req = list_entry(ep->queue.next,
2752 struct udc_request, queue);
2754 if (ep->dma) {
2755 /* write desc pointer */
2756 writel(req->td_phys, &ep->regs->desptr);
2757 /* set HOST READY */
2758 req->td_data->status =
2759 AMD_ADDBITS(
2760 req->td_data->status,
2761 UDC_DMA_STP_STS_BS_HOST_READY,
2762 UDC_DMA_STP_STS_BS);
2764 /* set poll demand bit */
2765 tmp =
2766 readl(&dev->ep[UDC_EP0IN_IX].regs->ctl);
2767 tmp |= AMD_BIT(UDC_EPCTL_P);
2768 writel(tmp,
2769 &dev->ep[UDC_EP0IN_IX].regs->ctl);
2771 /* all bytes will be transferred */
2772 req->req.actual = req->req.length;
2774 /* complete req */
2775 complete_req(ep, req, 0);
2777 } else {
2778 /* write fifo */
2779 udc_txfifo_write(ep, &req->req);
2781 /* lengh bytes transferred */
2782 len = req->req.length - req->req.actual;
2783 if (len > ep->ep.maxpacket)
2784 len = ep->ep.maxpacket;
2786 req->req.actual += len;
2787 if (req->req.actual == req->req.length
2788 || (len != ep->ep.maxpacket)) {
2789 /* complete req */
2790 complete_req(ep, req, 0);
2796 ep->halted = 0;
2797 dev->stall_ep0in = 0;
2798 if (!ep->dma) {
2799 /* clear IN bit */
2800 writel(AMD_BIT(UDC_EPSTS_IN),
2801 &dev->ep[UDC_EP0IN_IX].regs->sts);
2805 return ret_val;
2809 /* Interrupt handler for global device events */
2810 static irqreturn_t udc_dev_isr(struct udc *dev, u32 dev_irq)
2811 __releases(dev->lock)
2812 __acquires(dev->lock)
2814 irqreturn_t ret_val = IRQ_NONE;
2815 u32 tmp;
2816 u32 cfg;
2817 struct udc_ep *ep;
2818 u16 i;
2819 u8 udc_csr_epix;
2821 /* SET_CONFIG irq ? */
2822 if (dev_irq & AMD_BIT(UDC_DEVINT_SC)) {
2823 ret_val = IRQ_HANDLED;
2825 /* read config value */
2826 tmp = readl(&dev->regs->sts);
2827 cfg = AMD_GETBITS(tmp, UDC_DEVSTS_CFG);
2828 DBG(dev, "SET_CONFIG interrupt: config=%d\n", cfg);
2829 dev->cur_config = cfg;
2830 dev->set_cfg_not_acked = 1;
2832 /* make usb request for gadget driver */
2833 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2834 setup_data.request.bRequest = USB_REQ_SET_CONFIGURATION;
2835 setup_data.request.wValue = cpu_to_le16(dev->cur_config);
2837 /* programm the NE registers */
2838 for (i = 0; i < UDC_EP_NUM; i++) {
2839 ep = &dev->ep[i];
2840 if (ep->in) {
2842 /* ep ix in UDC CSR register space */
2843 udc_csr_epix = ep->num;
2846 /* OUT ep */
2847 } else {
2848 /* ep ix in UDC CSR register space */
2849 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2852 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2853 /* ep cfg */
2854 tmp = AMD_ADDBITS(tmp, ep->dev->cur_config,
2855 UDC_CSR_NE_CFG);
2856 /* write reg */
2857 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2859 /* clear stall bits */
2860 ep->halted = 0;
2861 tmp = readl(&ep->regs->ctl);
2862 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2863 writel(tmp, &ep->regs->ctl);
2865 /* call gadget zero with setup data received */
2866 spin_unlock(&dev->lock);
2867 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2868 spin_lock(&dev->lock);
2870 } /* SET_INTERFACE ? */
2871 if (dev_irq & AMD_BIT(UDC_DEVINT_SI)) {
2872 ret_val = IRQ_HANDLED;
2874 dev->set_cfg_not_acked = 1;
2875 /* read interface and alt setting values */
2876 tmp = readl(&dev->regs->sts);
2877 dev->cur_alt = AMD_GETBITS(tmp, UDC_DEVSTS_ALT);
2878 dev->cur_intf = AMD_GETBITS(tmp, UDC_DEVSTS_INTF);
2880 /* make usb request for gadget driver */
2881 memset(&setup_data, 0 , sizeof(union udc_setup_data));
2882 setup_data.request.bRequest = USB_REQ_SET_INTERFACE;
2883 setup_data.request.bRequestType = USB_RECIP_INTERFACE;
2884 setup_data.request.wValue = cpu_to_le16(dev->cur_alt);
2885 setup_data.request.wIndex = cpu_to_le16(dev->cur_intf);
2887 DBG(dev, "SET_INTERFACE interrupt: alt=%d intf=%d\n",
2888 dev->cur_alt, dev->cur_intf);
2890 /* programm the NE registers */
2891 for (i = 0; i < UDC_EP_NUM; i++) {
2892 ep = &dev->ep[i];
2893 if (ep->in) {
2895 /* ep ix in UDC CSR register space */
2896 udc_csr_epix = ep->num;
2899 /* OUT ep */
2900 } else {
2901 /* ep ix in UDC CSR register space */
2902 udc_csr_epix = ep->num - UDC_CSR_EP_OUT_IX_OFS;
2905 /* UDC CSR reg */
2906 /* set ep values */
2907 tmp = readl(&dev->csr->ne[udc_csr_epix]);
2908 /* ep interface */
2909 tmp = AMD_ADDBITS(tmp, ep->dev->cur_intf,
2910 UDC_CSR_NE_INTF);
2911 /* tmp = AMD_ADDBITS(tmp, 2, UDC_CSR_NE_INTF); */
2912 /* ep alt */
2913 tmp = AMD_ADDBITS(tmp, ep->dev->cur_alt,
2914 UDC_CSR_NE_ALT);
2915 /* write reg */
2916 writel(tmp, &dev->csr->ne[udc_csr_epix]);
2918 /* clear stall bits */
2919 ep->halted = 0;
2920 tmp = readl(&ep->regs->ctl);
2921 tmp = tmp & AMD_CLEAR_BIT(UDC_EPCTL_S);
2922 writel(tmp, &ep->regs->ctl);
2925 /* call gadget zero with setup data received */
2926 spin_unlock(&dev->lock);
2927 tmp = dev->driver->setup(&dev->gadget, &setup_data.request);
2928 spin_lock(&dev->lock);
2930 } /* USB reset */
2931 if (dev_irq & AMD_BIT(UDC_DEVINT_UR)) {
2932 DBG(dev, "USB Reset interrupt\n");
2933 ret_val = IRQ_HANDLED;
2935 /* allow soft reset when suspend occurs */
2936 soft_reset_occured = 0;
2938 dev->waiting_zlp_ack_ep0in = 0;
2939 dev->set_cfg_not_acked = 0;
2941 /* mask not needed interrupts */
2942 udc_mask_unused_interrupts(dev);
2944 /* call gadget to resume and reset configs etc. */
2945 spin_unlock(&dev->lock);
2946 if (dev->sys_suspended && dev->driver->resume) {
2947 dev->driver->resume(&dev->gadget);
2948 dev->sys_suspended = 0;
2950 dev->driver->disconnect(&dev->gadget);
2951 spin_lock(&dev->lock);
2953 /* disable ep0 to empty req queue */
2954 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
2955 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
2957 /* soft reset when rxfifo not empty */
2958 tmp = readl(&dev->regs->sts);
2959 if (!(tmp & AMD_BIT(UDC_DEVSTS_RXFIFO_EMPTY))
2960 && !soft_reset_after_usbreset_occured) {
2961 udc_soft_reset(dev);
2962 soft_reset_after_usbreset_occured++;
2966 * DMA reset to kill potential old DMA hw hang,
2967 * POLL bit is already reset by ep_init() through
2968 * disconnect()
2970 DBG(dev, "DMA machine reset\n");
2971 tmp = readl(&dev->regs->cfg);
2972 writel(tmp | AMD_BIT(UDC_DEVCFG_DMARST), &dev->regs->cfg);
2973 writel(tmp, &dev->regs->cfg);
2975 /* put into initial config */
2976 udc_basic_init(dev);
2978 /* enable device setup interrupts */
2979 udc_enable_dev_setup_interrupts(dev);
2981 /* enable suspend interrupt */
2982 tmp = readl(&dev->regs->irqmsk);
2983 tmp &= AMD_UNMASK_BIT(UDC_DEVINT_US);
2984 writel(tmp, &dev->regs->irqmsk);
2986 } /* USB suspend */
2987 if (dev_irq & AMD_BIT(UDC_DEVINT_US)) {
2988 DBG(dev, "USB Suspend interrupt\n");
2989 ret_val = IRQ_HANDLED;
2990 if (dev->driver->suspend) {
2991 spin_unlock(&dev->lock);
2992 dev->sys_suspended = 1;
2993 dev->driver->suspend(&dev->gadget);
2994 spin_lock(&dev->lock);
2996 } /* new speed ? */
2997 if (dev_irq & AMD_BIT(UDC_DEVINT_ENUM)) {
2998 DBG(dev, "ENUM interrupt\n");
2999 ret_val = IRQ_HANDLED;
3000 soft_reset_after_usbreset_occured = 0;
3002 /* disable ep0 to empty req queue */
3003 empty_req_queue(&dev->ep[UDC_EP0IN_IX]);
3004 ep_init(dev->regs, &dev->ep[UDC_EP0IN_IX]);
3006 /* link up all endpoints */
3007 udc_setup_endpoints(dev);
3008 dev_info(&dev->pdev->dev, "Connect: %s\n",
3009 usb_speed_string(dev->gadget.speed));
3011 /* init ep 0 */
3012 activate_control_endpoints(dev);
3014 /* enable ep0 interrupts */
3015 udc_enable_ep0_interrupts(dev);
3017 /* session valid change interrupt */
3018 if (dev_irq & AMD_BIT(UDC_DEVINT_SVC)) {
3019 DBG(dev, "USB SVC interrupt\n");
3020 ret_val = IRQ_HANDLED;
3022 /* check that session is not valid to detect disconnect */
3023 tmp = readl(&dev->regs->sts);
3024 if (!(tmp & AMD_BIT(UDC_DEVSTS_SESSVLD))) {
3025 /* disable suspend interrupt */
3026 tmp = readl(&dev->regs->irqmsk);
3027 tmp |= AMD_BIT(UDC_DEVINT_US);
3028 writel(tmp, &dev->regs->irqmsk);
3029 DBG(dev, "USB Disconnect (session valid low)\n");
3030 /* cleanup on disconnect */
3031 usb_disconnect(udc);
3036 return ret_val;
3039 /* Interrupt Service Routine, see Linux Kernel Doc for parameters */
3040 static irqreturn_t udc_irq(int irq, void *pdev)
3042 struct udc *dev = pdev;
3043 u32 reg;
3044 u16 i;
3045 u32 ep_irq;
3046 irqreturn_t ret_val = IRQ_NONE;
3048 spin_lock(&dev->lock);
3050 /* check for ep irq */
3051 reg = readl(&dev->regs->ep_irqsts);
3052 if (reg) {
3053 if (reg & AMD_BIT(UDC_EPINT_OUT_EP0))
3054 ret_val |= udc_control_out_isr(dev);
3055 if (reg & AMD_BIT(UDC_EPINT_IN_EP0))
3056 ret_val |= udc_control_in_isr(dev);
3059 * data endpoint
3060 * iterate ep's
3062 for (i = 1; i < UDC_EP_NUM; i++) {
3063 ep_irq = 1 << i;
3064 if (!(reg & ep_irq) || i == UDC_EPINT_OUT_EP0)
3065 continue;
3067 /* clear irq status */
3068 writel(ep_irq, &dev->regs->ep_irqsts);
3070 /* irq for out ep ? */
3071 if (i > UDC_EPIN_NUM)
3072 ret_val |= udc_data_out_isr(dev, i);
3073 else
3074 ret_val |= udc_data_in_isr(dev, i);
3080 /* check for dev irq */
3081 reg = readl(&dev->regs->irqsts);
3082 if (reg) {
3083 /* clear irq */
3084 writel(reg, &dev->regs->irqsts);
3085 ret_val |= udc_dev_isr(dev, reg);
3089 spin_unlock(&dev->lock);
3090 return ret_val;
3093 /* Tears down device */
3094 static void gadget_release(struct device *pdev)
3096 struct amd5536udc *dev = dev_get_drvdata(pdev);
3097 kfree(dev);
3100 /* Cleanup on device remove */
3101 static void udc_remove(struct udc *dev)
3103 /* remove timer */
3104 stop_timer++;
3105 if (timer_pending(&udc_timer))
3106 wait_for_completion(&on_exit);
3107 if (udc_timer.data)
3108 del_timer_sync(&udc_timer);
3109 /* remove pollstall timer */
3110 stop_pollstall_timer++;
3111 if (timer_pending(&udc_pollstall_timer))
3112 wait_for_completion(&on_pollstall_exit);
3113 if (udc_pollstall_timer.data)
3114 del_timer_sync(&udc_pollstall_timer);
3115 udc = NULL;
3118 /* Reset all pci context */
3119 static void udc_pci_remove(struct pci_dev *pdev)
3121 struct udc *dev;
3123 dev = pci_get_drvdata(pdev);
3125 usb_del_gadget_udc(&udc->gadget);
3126 /* gadget driver must not be registered */
3127 BUG_ON(dev->driver != NULL);
3129 /* dma pool cleanup */
3130 if (dev->data_requests)
3131 pci_pool_destroy(dev->data_requests);
3133 if (dev->stp_requests) {
3134 /* cleanup DMA desc's for ep0in */
3135 pci_pool_free(dev->stp_requests,
3136 dev->ep[UDC_EP0OUT_IX].td_stp,
3137 dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3138 pci_pool_free(dev->stp_requests,
3139 dev->ep[UDC_EP0OUT_IX].td,
3140 dev->ep[UDC_EP0OUT_IX].td_phys);
3142 pci_pool_destroy(dev->stp_requests);
3145 /* reset controller */
3146 writel(AMD_BIT(UDC_DEVCFG_SOFTRESET), &dev->regs->cfg);
3147 if (dev->irq_registered)
3148 free_irq(pdev->irq, dev);
3149 if (dev->regs)
3150 iounmap(dev->regs);
3151 if (dev->mem_region)
3152 release_mem_region(pci_resource_start(pdev, 0),
3153 pci_resource_len(pdev, 0));
3154 if (dev->active)
3155 pci_disable_device(pdev);
3157 device_unregister(&dev->gadget.dev);
3158 pci_set_drvdata(pdev, NULL);
3160 udc_remove(dev);
3163 /* create dma pools on init */
3164 static int init_dma_pools(struct udc *dev)
3166 struct udc_stp_dma *td_stp;
3167 struct udc_data_dma *td_data;
3168 int retval;
3170 /* consistent DMA mode setting ? */
3171 if (use_dma_ppb) {
3172 use_dma_bufferfill_mode = 0;
3173 } else {
3174 use_dma_ppb_du = 0;
3175 use_dma_bufferfill_mode = 1;
3178 /* DMA setup */
3179 dev->data_requests = dma_pool_create("data_requests", NULL,
3180 sizeof(struct udc_data_dma), 0, 0);
3181 if (!dev->data_requests) {
3182 DBG(dev, "can't get request data pool\n");
3183 retval = -ENOMEM;
3184 goto finished;
3187 /* EP0 in dma regs = dev control regs */
3188 dev->ep[UDC_EP0IN_IX].dma = &dev->regs->ctl;
3190 /* dma desc for setup data */
3191 dev->stp_requests = dma_pool_create("setup requests", NULL,
3192 sizeof(struct udc_stp_dma), 0, 0);
3193 if (!dev->stp_requests) {
3194 DBG(dev, "can't get stp request pool\n");
3195 retval = -ENOMEM;
3196 goto finished;
3198 /* setup */
3199 td_stp = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3200 &dev->ep[UDC_EP0OUT_IX].td_stp_dma);
3201 if (td_stp == NULL) {
3202 retval = -ENOMEM;
3203 goto finished;
3205 dev->ep[UDC_EP0OUT_IX].td_stp = td_stp;
3207 /* data: 0 packets !? */
3208 td_data = dma_pool_alloc(dev->stp_requests, GFP_KERNEL,
3209 &dev->ep[UDC_EP0OUT_IX].td_phys);
3210 if (td_data == NULL) {
3211 retval = -ENOMEM;
3212 goto finished;
3214 dev->ep[UDC_EP0OUT_IX].td = td_data;
3215 return 0;
3217 finished:
3218 return retval;
3221 /* Called by pci bus driver to init pci context */
3222 static int udc_pci_probe(
3223 struct pci_dev *pdev,
3224 const struct pci_device_id *id
3227 struct udc *dev;
3228 unsigned long resource;
3229 unsigned long len;
3230 int retval = 0;
3232 /* one udc only */
3233 if (udc) {
3234 dev_dbg(&pdev->dev, "already probed\n");
3235 return -EBUSY;
3238 /* init */
3239 dev = kzalloc(sizeof(struct udc), GFP_KERNEL);
3240 if (!dev) {
3241 retval = -ENOMEM;
3242 goto finished;
3245 /* pci setup */
3246 if (pci_enable_device(pdev) < 0) {
3247 kfree(dev);
3248 dev = NULL;
3249 retval = -ENODEV;
3250 goto finished;
3252 dev->active = 1;
3254 /* PCI resource allocation */
3255 resource = pci_resource_start(pdev, 0);
3256 len = pci_resource_len(pdev, 0);
3258 if (!request_mem_region(resource, len, name)) {
3259 dev_dbg(&pdev->dev, "pci device used already\n");
3260 kfree(dev);
3261 dev = NULL;
3262 retval = -EBUSY;
3263 goto finished;
3265 dev->mem_region = 1;
3267 dev->virt_addr = ioremap_nocache(resource, len);
3268 if (dev->virt_addr == NULL) {
3269 dev_dbg(&pdev->dev, "start address cannot be mapped\n");
3270 kfree(dev);
3271 dev = NULL;
3272 retval = -EFAULT;
3273 goto finished;
3276 if (!pdev->irq) {
3277 dev_err(&dev->pdev->dev, "irq not set\n");
3278 kfree(dev);
3279 dev = NULL;
3280 retval = -ENODEV;
3281 goto finished;
3284 spin_lock_init(&dev->lock);
3285 /* udc csr registers base */
3286 dev->csr = dev->virt_addr + UDC_CSR_ADDR;
3287 /* dev registers base */
3288 dev->regs = dev->virt_addr + UDC_DEVCFG_ADDR;
3289 /* ep registers base */
3290 dev->ep_regs = dev->virt_addr + UDC_EPREGS_ADDR;
3291 /* fifo's base */
3292 dev->rxfifo = (u32 __iomem *)(dev->virt_addr + UDC_RXFIFO_ADDR);
3293 dev->txfifo = (u32 __iomem *)(dev->virt_addr + UDC_TXFIFO_ADDR);
3295 if (request_irq(pdev->irq, udc_irq, IRQF_SHARED, name, dev) != 0) {
3296 dev_dbg(&dev->pdev->dev, "request_irq(%d) fail\n", pdev->irq);
3297 kfree(dev);
3298 dev = NULL;
3299 retval = -EBUSY;
3300 goto finished;
3302 dev->irq_registered = 1;
3304 pci_set_drvdata(pdev, dev);
3306 /* chip revision for Hs AMD5536 */
3307 dev->chiprev = pdev->revision;
3309 pci_set_master(pdev);
3310 pci_try_set_mwi(pdev);
3312 /* init dma pools */
3313 if (use_dma) {
3314 retval = init_dma_pools(dev);
3315 if (retval != 0)
3316 goto finished;
3319 dev->phys_addr = resource;
3320 dev->irq = pdev->irq;
3321 dev->pdev = pdev;
3322 dev->gadget.dev.parent = &pdev->dev;
3323 dev->gadget.dev.dma_mask = pdev->dev.dma_mask;
3325 /* general probing */
3326 if (udc_probe(dev) == 0)
3327 return 0;
3329 finished:
3330 if (dev)
3331 udc_pci_remove(pdev);
3332 return retval;
3335 /* general probe */
3336 static int udc_probe(struct udc *dev)
3338 char tmp[128];
3339 u32 reg;
3340 int retval;
3342 /* mark timer as not initialized */
3343 udc_timer.data = 0;
3344 udc_pollstall_timer.data = 0;
3346 /* device struct setup */
3347 dev->gadget.ops = &udc_ops;
3349 dev_set_name(&dev->gadget.dev, "gadget");
3350 dev->gadget.dev.release = gadget_release;
3351 dev->gadget.name = name;
3352 dev->gadget.is_dualspeed = 1;
3354 /* init registers, interrupts, ... */
3355 startup_registers(dev);
3357 dev_info(&dev->pdev->dev, "%s\n", mod_desc);
3359 snprintf(tmp, sizeof tmp, "%d", dev->irq);
3360 dev_info(&dev->pdev->dev,
3361 "irq %s, pci mem %08lx, chip rev %02x(Geode5536 %s)\n",
3362 tmp, dev->phys_addr, dev->chiprev,
3363 (dev->chiprev == UDC_HSA0_REV) ? "A0" : "B1");
3364 strcpy(tmp, UDC_DRIVER_VERSION_STRING);
3365 if (dev->chiprev == UDC_HSA0_REV) {
3366 dev_err(&dev->pdev->dev, "chip revision is A0; too old\n");
3367 retval = -ENODEV;
3368 goto finished;
3370 dev_info(&dev->pdev->dev,
3371 "driver version: %s(for Geode5536 B1)\n", tmp);
3372 udc = dev;
3374 retval = usb_add_gadget_udc(&udc->pdev->dev, &dev->gadget);
3375 if (retval)
3376 goto finished;
3378 retval = device_register(&dev->gadget.dev);
3379 if (retval) {
3380 usb_del_gadget_udc(&dev->gadget);
3381 put_device(&dev->gadget.dev);
3382 goto finished;
3385 /* timer init */
3386 init_timer(&udc_timer);
3387 udc_timer.function = udc_timer_function;
3388 udc_timer.data = 1;
3389 /* timer pollstall init */
3390 init_timer(&udc_pollstall_timer);
3391 udc_pollstall_timer.function = udc_pollstall_timer_function;
3392 udc_pollstall_timer.data = 1;
3394 /* set SD */
3395 reg = readl(&dev->regs->ctl);
3396 reg |= AMD_BIT(UDC_DEVCTL_SD);
3397 writel(reg, &dev->regs->ctl);
3399 /* print dev register info */
3400 print_regs(dev);
3402 return 0;
3404 finished:
3405 return retval;
3408 /* Initiates a remote wakeup */
3409 static int udc_remote_wakeup(struct udc *dev)
3411 unsigned long flags;
3412 u32 tmp;
3414 DBG(dev, "UDC initiates remote wakeup\n");
3416 spin_lock_irqsave(&dev->lock, flags);
3418 tmp = readl(&dev->regs->ctl);
3419 tmp |= AMD_BIT(UDC_DEVCTL_RES);
3420 writel(tmp, &dev->regs->ctl);
3421 tmp &= AMD_CLEAR_BIT(UDC_DEVCTL_RES);
3422 writel(tmp, &dev->regs->ctl);
3424 spin_unlock_irqrestore(&dev->lock, flags);
3425 return 0;
3428 /* PCI device parameters */
3429 static const struct pci_device_id pci_id[] = {
3431 PCI_DEVICE(PCI_VENDOR_ID_AMD, 0x2096),
3432 .class = (PCI_CLASS_SERIAL_USB << 8) | 0xfe,
3433 .class_mask = 0xffffffff,
3437 MODULE_DEVICE_TABLE(pci, pci_id);
3439 /* PCI functions */
3440 static struct pci_driver udc_pci_driver = {
3441 .name = (char *) name,
3442 .id_table = pci_id,
3443 .probe = udc_pci_probe,
3444 .remove = udc_pci_remove,
3447 /* Inits driver */
3448 static int __init init(void)
3450 return pci_register_driver(&udc_pci_driver);
3452 module_init(init);
3454 /* Cleans driver */
3455 static void __exit cleanup(void)
3457 pci_unregister_driver(&udc_pci_driver);
3459 module_exit(cleanup);
3461 MODULE_DESCRIPTION(UDC_MOD_DESCRIPTION);
3462 MODULE_AUTHOR("Thomas Dahlmann");
3463 MODULE_LICENSE("GPL");