Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / drivers / video / intelfb / intelfbhw.c
blob38065cf94ac4cf5dbaf195233871712af4607ab6
1 /*
2 * intelfb
4 * Linux framebuffer driver for Intel(R) 865G integrated graphics chips.
6 * Copyright © 2002, 2003 David Dawes <dawes@xfree86.org>
7 * 2004 Sylvain Meyer
9 * This driver consists of two parts. The first part (intelfbdrv.c) provides
10 * the basic fbdev interfaces, is derived in part from the radeonfb and
11 * vesafb drivers, and is covered by the GPL. The second part (intelfbhw.c)
12 * provides the code to program the hardware. Most of it is derived from
13 * the i810/i830 XFree86 driver. The HW-specific code is covered here
14 * under a dual license (GPL and MIT/XFree86 license).
16 * Author: David Dawes
20 /* $DHD: intelfb/intelfbhw.c,v 1.9 2003/06/27 15:06:25 dawes Exp $ */
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/delay.h>
28 #include <linux/fb.h>
29 #include <linux/ioport.h>
30 #include <linux/init.h>
31 #include <linux/pci.h>
32 #include <linux/vmalloc.h>
33 #include <linux/pagemap.h>
34 #include <linux/interrupt.h>
36 #include <asm/io.h>
38 #include "intelfb.h"
39 #include "intelfbhw.h"
41 struct pll_min_max {
42 int min_m, max_m, min_m1, max_m1;
43 int min_m2, max_m2, min_n, max_n;
44 int min_p, max_p, min_p1, max_p1;
45 int min_vco, max_vco, p_transition_clk, ref_clk;
46 int p_inc_lo, p_inc_hi;
49 #define PLLS_I8xx 0
50 #define PLLS_I9xx 1
51 #define PLLS_MAX 2
53 static struct pll_min_max plls[PLLS_MAX] = {
54 { 108, 140, 18, 26,
55 6, 16, 3, 16,
56 4, 128, 0, 31,
57 930000, 1400000, 165000, 48000,
58 4, 2 }, /* I8xx */
60 { 75, 120, 10, 20,
61 5, 9, 4, 7,
62 5, 80, 1, 8,
63 1400000, 2800000, 200000, 96000,
64 10, 5 } /* I9xx */
67 int intelfbhw_get_chipset(struct pci_dev *pdev, struct intelfb_info *dinfo)
69 u32 tmp;
70 if (!pdev || !dinfo)
71 return 1;
73 switch (pdev->device) {
74 case PCI_DEVICE_ID_INTEL_830M:
75 dinfo->name = "Intel(R) 830M";
76 dinfo->chipset = INTEL_830M;
77 dinfo->mobile = 1;
78 dinfo->pll_index = PLLS_I8xx;
79 return 0;
80 case PCI_DEVICE_ID_INTEL_845G:
81 dinfo->name = "Intel(R) 845G";
82 dinfo->chipset = INTEL_845G;
83 dinfo->mobile = 0;
84 dinfo->pll_index = PLLS_I8xx;
85 return 0;
86 case PCI_DEVICE_ID_INTEL_854:
87 dinfo->mobile = 1;
88 dinfo->name = "Intel(R) 854";
89 dinfo->chipset = INTEL_854;
90 return 0;
91 case PCI_DEVICE_ID_INTEL_85XGM:
92 tmp = 0;
93 dinfo->mobile = 1;
94 dinfo->pll_index = PLLS_I8xx;
95 pci_read_config_dword(pdev, INTEL_85X_CAPID, &tmp);
96 switch ((tmp >> INTEL_85X_VARIANT_SHIFT) &
97 INTEL_85X_VARIANT_MASK) {
98 case INTEL_VAR_855GME:
99 dinfo->name = "Intel(R) 855GME";
100 dinfo->chipset = INTEL_855GME;
101 return 0;
102 case INTEL_VAR_855GM:
103 dinfo->name = "Intel(R) 855GM";
104 dinfo->chipset = INTEL_855GM;
105 return 0;
106 case INTEL_VAR_852GME:
107 dinfo->name = "Intel(R) 852GME";
108 dinfo->chipset = INTEL_852GME;
109 return 0;
110 case INTEL_VAR_852GM:
111 dinfo->name = "Intel(R) 852GM";
112 dinfo->chipset = INTEL_852GM;
113 return 0;
114 default:
115 dinfo->name = "Intel(R) 852GM/855GM";
116 dinfo->chipset = INTEL_85XGM;
117 return 0;
119 break;
120 case PCI_DEVICE_ID_INTEL_865G:
121 dinfo->name = "Intel(R) 865G";
122 dinfo->chipset = INTEL_865G;
123 dinfo->mobile = 0;
124 dinfo->pll_index = PLLS_I8xx;
125 return 0;
126 case PCI_DEVICE_ID_INTEL_915G:
127 dinfo->name = "Intel(R) 915G";
128 dinfo->chipset = INTEL_915G;
129 dinfo->mobile = 0;
130 dinfo->pll_index = PLLS_I9xx;
131 return 0;
132 case PCI_DEVICE_ID_INTEL_915GM:
133 dinfo->name = "Intel(R) 915GM";
134 dinfo->chipset = INTEL_915GM;
135 dinfo->mobile = 1;
136 dinfo->pll_index = PLLS_I9xx;
137 return 0;
138 case PCI_DEVICE_ID_INTEL_945G:
139 dinfo->name = "Intel(R) 945G";
140 dinfo->chipset = INTEL_945G;
141 dinfo->mobile = 0;
142 dinfo->pll_index = PLLS_I9xx;
143 return 0;
144 case PCI_DEVICE_ID_INTEL_945GM:
145 dinfo->name = "Intel(R) 945GM";
146 dinfo->chipset = INTEL_945GM;
147 dinfo->mobile = 1;
148 dinfo->pll_index = PLLS_I9xx;
149 return 0;
150 case PCI_DEVICE_ID_INTEL_945GME:
151 dinfo->name = "Intel(R) 945GME";
152 dinfo->chipset = INTEL_945GME;
153 dinfo->mobile = 1;
154 dinfo->pll_index = PLLS_I9xx;
155 return 0;
156 case PCI_DEVICE_ID_INTEL_965G:
157 dinfo->name = "Intel(R) 965G";
158 dinfo->chipset = INTEL_965G;
159 dinfo->mobile = 0;
160 dinfo->pll_index = PLLS_I9xx;
161 return 0;
162 case PCI_DEVICE_ID_INTEL_965GM:
163 dinfo->name = "Intel(R) 965GM";
164 dinfo->chipset = INTEL_965GM;
165 dinfo->mobile = 1;
166 dinfo->pll_index = PLLS_I9xx;
167 return 0;
168 default:
169 return 1;
173 int intelfbhw_get_memory(struct pci_dev *pdev, int *aperture_size,
174 int *stolen_size)
176 struct pci_dev *bridge_dev;
177 u16 tmp;
178 int stolen_overhead;
180 if (!pdev || !aperture_size || !stolen_size)
181 return 1;
183 /* Find the bridge device. It is always 0:0.0 */
184 if (!(bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0)))) {
185 ERR_MSG("cannot find bridge device\n");
186 return 1;
189 /* Get the fb aperture size and "stolen" memory amount. */
190 tmp = 0;
191 pci_read_config_word(bridge_dev, INTEL_GMCH_CTRL, &tmp);
192 pci_dev_put(bridge_dev);
194 switch (pdev->device) {
195 case PCI_DEVICE_ID_INTEL_915G:
196 case PCI_DEVICE_ID_INTEL_915GM:
197 case PCI_DEVICE_ID_INTEL_945G:
198 case PCI_DEVICE_ID_INTEL_945GM:
199 case PCI_DEVICE_ID_INTEL_945GME:
200 case PCI_DEVICE_ID_INTEL_965G:
201 case PCI_DEVICE_ID_INTEL_965GM:
202 /* 915, 945 and 965 chipsets support a 256MB aperture.
203 Aperture size is determined by inspected the
204 base address of the aperture. */
205 if (pci_resource_start(pdev, 2) & 0x08000000)
206 *aperture_size = MB(128);
207 else
208 *aperture_size = MB(256);
209 break;
210 default:
211 if ((tmp & INTEL_GMCH_MEM_MASK) == INTEL_GMCH_MEM_64M)
212 *aperture_size = MB(64);
213 else
214 *aperture_size = MB(128);
215 break;
218 /* Stolen memory size is reduced by the GTT and the popup.
219 GTT is 1K per MB of aperture size, and popup is 4K. */
220 stolen_overhead = (*aperture_size / MB(1)) + 4;
221 switch(pdev->device) {
222 case PCI_DEVICE_ID_INTEL_830M:
223 case PCI_DEVICE_ID_INTEL_845G:
224 switch (tmp & INTEL_830_GMCH_GMS_MASK) {
225 case INTEL_830_GMCH_GMS_STOLEN_512:
226 *stolen_size = KB(512) - KB(stolen_overhead);
227 return 0;
228 case INTEL_830_GMCH_GMS_STOLEN_1024:
229 *stolen_size = MB(1) - KB(stolen_overhead);
230 return 0;
231 case INTEL_830_GMCH_GMS_STOLEN_8192:
232 *stolen_size = MB(8) - KB(stolen_overhead);
233 return 0;
234 case INTEL_830_GMCH_GMS_LOCAL:
235 ERR_MSG("only local memory found\n");
236 return 1;
237 case INTEL_830_GMCH_GMS_DISABLED:
238 ERR_MSG("video memory is disabled\n");
239 return 1;
240 default:
241 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
242 tmp & INTEL_830_GMCH_GMS_MASK);
243 return 1;
245 break;
246 default:
247 switch (tmp & INTEL_855_GMCH_GMS_MASK) {
248 case INTEL_855_GMCH_GMS_STOLEN_1M:
249 *stolen_size = MB(1) - KB(stolen_overhead);
250 return 0;
251 case INTEL_855_GMCH_GMS_STOLEN_4M:
252 *stolen_size = MB(4) - KB(stolen_overhead);
253 return 0;
254 case INTEL_855_GMCH_GMS_STOLEN_8M:
255 *stolen_size = MB(8) - KB(stolen_overhead);
256 return 0;
257 case INTEL_855_GMCH_GMS_STOLEN_16M:
258 *stolen_size = MB(16) - KB(stolen_overhead);
259 return 0;
260 case INTEL_855_GMCH_GMS_STOLEN_32M:
261 *stolen_size = MB(32) - KB(stolen_overhead);
262 return 0;
263 case INTEL_915G_GMCH_GMS_STOLEN_48M:
264 *stolen_size = MB(48) - KB(stolen_overhead);
265 return 0;
266 case INTEL_915G_GMCH_GMS_STOLEN_64M:
267 *stolen_size = MB(64) - KB(stolen_overhead);
268 return 0;
269 case INTEL_855_GMCH_GMS_DISABLED:
270 ERR_MSG("video memory is disabled\n");
271 return 0;
272 default:
273 ERR_MSG("unexpected GMCH_GMS value: 0x%02x\n",
274 tmp & INTEL_855_GMCH_GMS_MASK);
275 return 1;
280 int intelfbhw_check_non_crt(struct intelfb_info *dinfo)
282 int dvo = 0;
284 if (INREG(LVDS) & PORT_ENABLE)
285 dvo |= LVDS_PORT;
286 if (INREG(DVOA) & PORT_ENABLE)
287 dvo |= DVOA_PORT;
288 if (INREG(DVOB) & PORT_ENABLE)
289 dvo |= DVOB_PORT;
290 if (INREG(DVOC) & PORT_ENABLE)
291 dvo |= DVOC_PORT;
293 return dvo;
296 const char * intelfbhw_dvo_to_string(int dvo)
298 if (dvo & DVOA_PORT)
299 return "DVO port A";
300 else if (dvo & DVOB_PORT)
301 return "DVO port B";
302 else if (dvo & DVOC_PORT)
303 return "DVO port C";
304 else if (dvo & LVDS_PORT)
305 return "LVDS port";
306 else
307 return NULL;
311 int intelfbhw_validate_mode(struct intelfb_info *dinfo,
312 struct fb_var_screeninfo *var)
314 int bytes_per_pixel;
315 int tmp;
317 #if VERBOSE > 0
318 DBG_MSG("intelfbhw_validate_mode\n");
319 #endif
321 bytes_per_pixel = var->bits_per_pixel / 8;
322 if (bytes_per_pixel == 3)
323 bytes_per_pixel = 4;
325 /* Check if enough video memory. */
326 tmp = var->yres_virtual * var->xres_virtual * bytes_per_pixel;
327 if (tmp > dinfo->fb.size) {
328 WRN_MSG("Not enough video ram for mode "
329 "(%d KByte vs %d KByte).\n",
330 BtoKB(tmp), BtoKB(dinfo->fb.size));
331 return 1;
334 /* Check if x/y limits are OK. */
335 if (var->xres - 1 > HACTIVE_MASK) {
336 WRN_MSG("X resolution too large (%d vs %d).\n",
337 var->xres, HACTIVE_MASK + 1);
338 return 1;
340 if (var->yres - 1 > VACTIVE_MASK) {
341 WRN_MSG("Y resolution too large (%d vs %d).\n",
342 var->yres, VACTIVE_MASK + 1);
343 return 1;
345 if (var->xres < 4) {
346 WRN_MSG("X resolution too small (%d vs 4).\n", var->xres);
347 return 1;
349 if (var->yres < 4) {
350 WRN_MSG("Y resolution too small (%d vs 4).\n", var->yres);
351 return 1;
354 /* Check for doublescan modes. */
355 if (var->vmode & FB_VMODE_DOUBLE) {
356 WRN_MSG("Mode is double-scan.\n");
357 return 1;
360 if ((var->vmode & FB_VMODE_INTERLACED) && (var->yres & 1)) {
361 WRN_MSG("Odd number of lines in interlaced mode\n");
362 return 1;
365 /* Check if clock is OK. */
366 tmp = 1000000000 / var->pixclock;
367 if (tmp < MIN_CLOCK) {
368 WRN_MSG("Pixel clock is too low (%d MHz vs %d MHz).\n",
369 (tmp + 500) / 1000, MIN_CLOCK / 1000);
370 return 1;
372 if (tmp > MAX_CLOCK) {
373 WRN_MSG("Pixel clock is too high (%d MHz vs %d MHz).\n",
374 (tmp + 500) / 1000, MAX_CLOCK / 1000);
375 return 1;
378 return 0;
381 int intelfbhw_pan_display(struct fb_var_screeninfo *var, struct fb_info *info)
383 struct intelfb_info *dinfo = GET_DINFO(info);
384 u32 offset, xoffset, yoffset;
386 #if VERBOSE > 0
387 DBG_MSG("intelfbhw_pan_display\n");
388 #endif
390 xoffset = ROUND_DOWN_TO(var->xoffset, 8);
391 yoffset = var->yoffset;
393 if ((xoffset + var->xres > var->xres_virtual) ||
394 (yoffset + var->yres > var->yres_virtual))
395 return -EINVAL;
397 offset = (yoffset * dinfo->pitch) +
398 (xoffset * var->bits_per_pixel) / 8;
400 offset += dinfo->fb.offset << 12;
402 dinfo->vsync.pan_offset = offset;
403 if ((var->activate & FB_ACTIVATE_VBL) &&
404 !intelfbhw_enable_irq(dinfo))
405 dinfo->vsync.pan_display = 1;
406 else {
407 dinfo->vsync.pan_display = 0;
408 OUTREG(DSPABASE, offset);
411 return 0;
414 /* Blank the screen. */
415 void intelfbhw_do_blank(int blank, struct fb_info *info)
417 struct intelfb_info *dinfo = GET_DINFO(info);
418 u32 tmp;
420 #if VERBOSE > 0
421 DBG_MSG("intelfbhw_do_blank: blank is %d\n", blank);
422 #endif
424 /* Turn plane A on or off */
425 tmp = INREG(DSPACNTR);
426 if (blank)
427 tmp &= ~DISPPLANE_PLANE_ENABLE;
428 else
429 tmp |= DISPPLANE_PLANE_ENABLE;
430 OUTREG(DSPACNTR, tmp);
431 /* Flush */
432 tmp = INREG(DSPABASE);
433 OUTREG(DSPABASE, tmp);
435 /* Turn off/on the HW cursor */
436 #if VERBOSE > 0
437 DBG_MSG("cursor_on is %d\n", dinfo->cursor_on);
438 #endif
439 if (dinfo->cursor_on) {
440 if (blank)
441 intelfbhw_cursor_hide(dinfo);
442 else
443 intelfbhw_cursor_show(dinfo);
444 dinfo->cursor_on = 1;
446 dinfo->cursor_blanked = blank;
448 /* Set DPMS level */
449 tmp = INREG(ADPA) & ~ADPA_DPMS_CONTROL_MASK;
450 switch (blank) {
451 case FB_BLANK_UNBLANK:
452 case FB_BLANK_NORMAL:
453 tmp |= ADPA_DPMS_D0;
454 break;
455 case FB_BLANK_VSYNC_SUSPEND:
456 tmp |= ADPA_DPMS_D1;
457 break;
458 case FB_BLANK_HSYNC_SUSPEND:
459 tmp |= ADPA_DPMS_D2;
460 break;
461 case FB_BLANK_POWERDOWN:
462 tmp |= ADPA_DPMS_D3;
463 break;
465 OUTREG(ADPA, tmp);
467 return;
471 /* Check which pipe is connected to an active display plane. */
472 int intelfbhw_active_pipe(const struct intelfb_hwstate *hw)
474 int pipe = -1;
476 /* keep old default behaviour - prefer PIPE_A */
477 if (hw->disp_b_ctrl & DISPPLANE_PLANE_ENABLE) {
478 pipe = (hw->disp_b_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
479 pipe &= PIPE_MASK;
480 if (unlikely(pipe == PIPE_A))
481 return PIPE_A;
483 if (hw->disp_a_ctrl & DISPPLANE_PLANE_ENABLE) {
484 pipe = (hw->disp_a_ctrl >> DISPPLANE_SEL_PIPE_SHIFT);
485 pipe &= PIPE_MASK;
486 if (likely(pipe == PIPE_A))
487 return PIPE_A;
489 /* Impossible that no pipe is selected - return PIPE_A */
490 WARN_ON(pipe == -1);
491 if (unlikely(pipe == -1))
492 pipe = PIPE_A;
494 return pipe;
497 void intelfbhw_setcolreg(struct intelfb_info *dinfo, unsigned regno,
498 unsigned red, unsigned green, unsigned blue,
499 unsigned transp)
501 u32 palette_reg = (dinfo->pipe == PIPE_A) ?
502 PALETTE_A : PALETTE_B;
504 #if VERBOSE > 0
505 DBG_MSG("intelfbhw_setcolreg: %d: (%d, %d, %d)\n",
506 regno, red, green, blue);
507 #endif
509 OUTREG(palette_reg + (regno << 2),
510 (red << PALETTE_8_RED_SHIFT) |
511 (green << PALETTE_8_GREEN_SHIFT) |
512 (blue << PALETTE_8_BLUE_SHIFT));
516 int intelfbhw_read_hw_state(struct intelfb_info *dinfo,
517 struct intelfb_hwstate *hw, int flag)
519 int i;
521 #if VERBOSE > 0
522 DBG_MSG("intelfbhw_read_hw_state\n");
523 #endif
525 if (!hw || !dinfo)
526 return -1;
528 /* Read in as much of the HW state as possible. */
529 hw->vga0_divisor = INREG(VGA0_DIVISOR);
530 hw->vga1_divisor = INREG(VGA1_DIVISOR);
531 hw->vga_pd = INREG(VGAPD);
532 hw->dpll_a = INREG(DPLL_A);
533 hw->dpll_b = INREG(DPLL_B);
534 hw->fpa0 = INREG(FPA0);
535 hw->fpa1 = INREG(FPA1);
536 hw->fpb0 = INREG(FPB0);
537 hw->fpb1 = INREG(FPB1);
539 if (flag == 1)
540 return flag;
542 #if 0
543 /* This seems to be a problem with the 852GM/855GM */
544 for (i = 0; i < PALETTE_8_ENTRIES; i++) {
545 hw->palette_a[i] = INREG(PALETTE_A + (i << 2));
546 hw->palette_b[i] = INREG(PALETTE_B + (i << 2));
548 #endif
550 if (flag == 2)
551 return flag;
553 hw->htotal_a = INREG(HTOTAL_A);
554 hw->hblank_a = INREG(HBLANK_A);
555 hw->hsync_a = INREG(HSYNC_A);
556 hw->vtotal_a = INREG(VTOTAL_A);
557 hw->vblank_a = INREG(VBLANK_A);
558 hw->vsync_a = INREG(VSYNC_A);
559 hw->src_size_a = INREG(SRC_SIZE_A);
560 hw->bclrpat_a = INREG(BCLRPAT_A);
561 hw->htotal_b = INREG(HTOTAL_B);
562 hw->hblank_b = INREG(HBLANK_B);
563 hw->hsync_b = INREG(HSYNC_B);
564 hw->vtotal_b = INREG(VTOTAL_B);
565 hw->vblank_b = INREG(VBLANK_B);
566 hw->vsync_b = INREG(VSYNC_B);
567 hw->src_size_b = INREG(SRC_SIZE_B);
568 hw->bclrpat_b = INREG(BCLRPAT_B);
570 if (flag == 3)
571 return flag;
573 hw->adpa = INREG(ADPA);
574 hw->dvoa = INREG(DVOA);
575 hw->dvob = INREG(DVOB);
576 hw->dvoc = INREG(DVOC);
577 hw->dvoa_srcdim = INREG(DVOA_SRCDIM);
578 hw->dvob_srcdim = INREG(DVOB_SRCDIM);
579 hw->dvoc_srcdim = INREG(DVOC_SRCDIM);
580 hw->lvds = INREG(LVDS);
582 if (flag == 4)
583 return flag;
585 hw->pipe_a_conf = INREG(PIPEACONF);
586 hw->pipe_b_conf = INREG(PIPEBCONF);
587 hw->disp_arb = INREG(DISPARB);
589 if (flag == 5)
590 return flag;
592 hw->cursor_a_control = INREG(CURSOR_A_CONTROL);
593 hw->cursor_b_control = INREG(CURSOR_B_CONTROL);
594 hw->cursor_a_base = INREG(CURSOR_A_BASEADDR);
595 hw->cursor_b_base = INREG(CURSOR_B_BASEADDR);
597 if (flag == 6)
598 return flag;
600 for (i = 0; i < 4; i++) {
601 hw->cursor_a_palette[i] = INREG(CURSOR_A_PALETTE0 + (i << 2));
602 hw->cursor_b_palette[i] = INREG(CURSOR_B_PALETTE0 + (i << 2));
605 if (flag == 7)
606 return flag;
608 hw->cursor_size = INREG(CURSOR_SIZE);
610 if (flag == 8)
611 return flag;
613 hw->disp_a_ctrl = INREG(DSPACNTR);
614 hw->disp_b_ctrl = INREG(DSPBCNTR);
615 hw->disp_a_base = INREG(DSPABASE);
616 hw->disp_b_base = INREG(DSPBBASE);
617 hw->disp_a_stride = INREG(DSPASTRIDE);
618 hw->disp_b_stride = INREG(DSPBSTRIDE);
620 if (flag == 9)
621 return flag;
623 hw->vgacntrl = INREG(VGACNTRL);
625 if (flag == 10)
626 return flag;
628 hw->add_id = INREG(ADD_ID);
630 if (flag == 11)
631 return flag;
633 for (i = 0; i < 7; i++) {
634 hw->swf0x[i] = INREG(SWF00 + (i << 2));
635 hw->swf1x[i] = INREG(SWF10 + (i << 2));
636 if (i < 3)
637 hw->swf3x[i] = INREG(SWF30 + (i << 2));
640 for (i = 0; i < 8; i++)
641 hw->fence[i] = INREG(FENCE + (i << 2));
643 hw->instpm = INREG(INSTPM);
644 hw->mem_mode = INREG(MEM_MODE);
645 hw->fw_blc_0 = INREG(FW_BLC_0);
646 hw->fw_blc_1 = INREG(FW_BLC_1);
648 hw->hwstam = INREG16(HWSTAM);
649 hw->ier = INREG16(IER);
650 hw->iir = INREG16(IIR);
651 hw->imr = INREG16(IMR);
653 return 0;
657 static int calc_vclock3(int index, int m, int n, int p)
659 if (p == 0 || n == 0)
660 return 0;
661 return plls[index].ref_clk * m / n / p;
664 static int calc_vclock(int index, int m1, int m2, int n, int p1, int p2,
665 int lvds)
667 struct pll_min_max *pll = &plls[index];
668 u32 m, vco, p;
670 m = (5 * (m1 + 2)) + (m2 + 2);
671 n += 2;
672 vco = pll->ref_clk * m / n;
674 if (index == PLLS_I8xx)
675 p = ((p1 + 2) * (1 << (p2 + 1)));
676 else
677 p = ((p1) * (p2 ? 5 : 10));
678 return vco / p;
681 #if REGDUMP
682 static void intelfbhw_get_p1p2(struct intelfb_info *dinfo, int dpll,
683 int *o_p1, int *o_p2)
685 int p1, p2;
687 if (IS_I9XX(dinfo)) {
688 if (dpll & DPLL_P1_FORCE_DIV2)
689 p1 = 1;
690 else
691 p1 = (dpll >> DPLL_P1_SHIFT) & 0xff;
693 p1 = ffs(p1);
695 p2 = (dpll >> DPLL_I9XX_P2_SHIFT) & DPLL_P2_MASK;
696 } else {
697 if (dpll & DPLL_P1_FORCE_DIV2)
698 p1 = 0;
699 else
700 p1 = (dpll >> DPLL_P1_SHIFT) & DPLL_P1_MASK;
701 p2 = (dpll >> DPLL_P2_SHIFT) & DPLL_P2_MASK;
704 *o_p1 = p1;
705 *o_p2 = p2;
707 #endif
710 void intelfbhw_print_hw_state(struct intelfb_info *dinfo,
711 struct intelfb_hwstate *hw)
713 #if REGDUMP
714 int i, m1, m2, n, p1, p2;
715 int index = dinfo->pll_index;
716 DBG_MSG("intelfbhw_print_hw_state\n");
718 if (!hw)
719 return;
720 /* Read in as much of the HW state as possible. */
721 printk("hw state dump start\n");
722 printk(" VGA0_DIVISOR: 0x%08x\n", hw->vga0_divisor);
723 printk(" VGA1_DIVISOR: 0x%08x\n", hw->vga1_divisor);
724 printk(" VGAPD: 0x%08x\n", hw->vga_pd);
725 n = (hw->vga0_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
726 m1 = (hw->vga0_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
727 m2 = (hw->vga0_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
729 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
731 printk(" VGA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
732 m1, m2, n, p1, p2);
733 printk(" VGA0: clock is %d\n",
734 calc_vclock(index, m1, m2, n, p1, p2, 0));
736 n = (hw->vga1_divisor >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
737 m1 = (hw->vga1_divisor >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
738 m2 = (hw->vga1_divisor >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
740 intelfbhw_get_p1p2(dinfo, hw->vga_pd, &p1, &p2);
741 printk(" VGA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
742 m1, m2, n, p1, p2);
743 printk(" VGA1: clock is %d\n",
744 calc_vclock(index, m1, m2, n, p1, p2, 0));
746 printk(" DPLL_A: 0x%08x\n", hw->dpll_a);
747 printk(" DPLL_B: 0x%08x\n", hw->dpll_b);
748 printk(" FPA0: 0x%08x\n", hw->fpa0);
749 printk(" FPA1: 0x%08x\n", hw->fpa1);
750 printk(" FPB0: 0x%08x\n", hw->fpb0);
751 printk(" FPB1: 0x%08x\n", hw->fpb1);
753 n = (hw->fpa0 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
754 m1 = (hw->fpa0 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
755 m2 = (hw->fpa0 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
757 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
759 printk(" PLLA0: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
760 m1, m2, n, p1, p2);
761 printk(" PLLA0: clock is %d\n",
762 calc_vclock(index, m1, m2, n, p1, p2, 0));
764 n = (hw->fpa1 >> FP_N_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
765 m1 = (hw->fpa1 >> FP_M1_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
766 m2 = (hw->fpa1 >> FP_M2_DIVISOR_SHIFT) & FP_DIVISOR_MASK;
768 intelfbhw_get_p1p2(dinfo, hw->dpll_a, &p1, &p2);
770 printk(" PLLA1: (m1, m2, n, p1, p2) = (%d, %d, %d, %d, %d)\n",
771 m1, m2, n, p1, p2);
772 printk(" PLLA1: clock is %d\n",
773 calc_vclock(index, m1, m2, n, p1, p2, 0));
775 #if 0
776 printk(" PALETTE_A:\n");
777 for (i = 0; i < PALETTE_8_ENTRIES)
778 printk(" %3d: 0x%08x\n", i, hw->palette_a[i]);
779 printk(" PALETTE_B:\n");
780 for (i = 0; i < PALETTE_8_ENTRIES)
781 printk(" %3d: 0x%08x\n", i, hw->palette_b[i]);
782 #endif
784 printk(" HTOTAL_A: 0x%08x\n", hw->htotal_a);
785 printk(" HBLANK_A: 0x%08x\n", hw->hblank_a);
786 printk(" HSYNC_A: 0x%08x\n", hw->hsync_a);
787 printk(" VTOTAL_A: 0x%08x\n", hw->vtotal_a);
788 printk(" VBLANK_A: 0x%08x\n", hw->vblank_a);
789 printk(" VSYNC_A: 0x%08x\n", hw->vsync_a);
790 printk(" SRC_SIZE_A: 0x%08x\n", hw->src_size_a);
791 printk(" BCLRPAT_A: 0x%08x\n", hw->bclrpat_a);
792 printk(" HTOTAL_B: 0x%08x\n", hw->htotal_b);
793 printk(" HBLANK_B: 0x%08x\n", hw->hblank_b);
794 printk(" HSYNC_B: 0x%08x\n", hw->hsync_b);
795 printk(" VTOTAL_B: 0x%08x\n", hw->vtotal_b);
796 printk(" VBLANK_B: 0x%08x\n", hw->vblank_b);
797 printk(" VSYNC_B: 0x%08x\n", hw->vsync_b);
798 printk(" SRC_SIZE_B: 0x%08x\n", hw->src_size_b);
799 printk(" BCLRPAT_B: 0x%08x\n", hw->bclrpat_b);
801 printk(" ADPA: 0x%08x\n", hw->adpa);
802 printk(" DVOA: 0x%08x\n", hw->dvoa);
803 printk(" DVOB: 0x%08x\n", hw->dvob);
804 printk(" DVOC: 0x%08x\n", hw->dvoc);
805 printk(" DVOA_SRCDIM: 0x%08x\n", hw->dvoa_srcdim);
806 printk(" DVOB_SRCDIM: 0x%08x\n", hw->dvob_srcdim);
807 printk(" DVOC_SRCDIM: 0x%08x\n", hw->dvoc_srcdim);
808 printk(" LVDS: 0x%08x\n", hw->lvds);
810 printk(" PIPEACONF: 0x%08x\n", hw->pipe_a_conf);
811 printk(" PIPEBCONF: 0x%08x\n", hw->pipe_b_conf);
812 printk(" DISPARB: 0x%08x\n", hw->disp_arb);
814 printk(" CURSOR_A_CONTROL: 0x%08x\n", hw->cursor_a_control);
815 printk(" CURSOR_B_CONTROL: 0x%08x\n", hw->cursor_b_control);
816 printk(" CURSOR_A_BASEADDR: 0x%08x\n", hw->cursor_a_base);
817 printk(" CURSOR_B_BASEADDR: 0x%08x\n", hw->cursor_b_base);
819 printk(" CURSOR_A_PALETTE: ");
820 for (i = 0; i < 4; i++) {
821 printk("0x%08x", hw->cursor_a_palette[i]);
822 if (i < 3)
823 printk(", ");
825 printk("\n");
826 printk(" CURSOR_B_PALETTE: ");
827 for (i = 0; i < 4; i++) {
828 printk("0x%08x", hw->cursor_b_palette[i]);
829 if (i < 3)
830 printk(", ");
832 printk("\n");
834 printk(" CURSOR_SIZE: 0x%08x\n", hw->cursor_size);
836 printk(" DSPACNTR: 0x%08x\n", hw->disp_a_ctrl);
837 printk(" DSPBCNTR: 0x%08x\n", hw->disp_b_ctrl);
838 printk(" DSPABASE: 0x%08x\n", hw->disp_a_base);
839 printk(" DSPBBASE: 0x%08x\n", hw->disp_b_base);
840 printk(" DSPASTRIDE: 0x%08x\n", hw->disp_a_stride);
841 printk(" DSPBSTRIDE: 0x%08x\n", hw->disp_b_stride);
843 printk(" VGACNTRL: 0x%08x\n", hw->vgacntrl);
844 printk(" ADD_ID: 0x%08x\n", hw->add_id);
846 for (i = 0; i < 7; i++) {
847 printk(" SWF0%d 0x%08x\n", i,
848 hw->swf0x[i]);
850 for (i = 0; i < 7; i++) {
851 printk(" SWF1%d 0x%08x\n", i,
852 hw->swf1x[i]);
854 for (i = 0; i < 3; i++) {
855 printk(" SWF3%d 0x%08x\n", i,
856 hw->swf3x[i]);
858 for (i = 0; i < 8; i++)
859 printk(" FENCE%d 0x%08x\n", i,
860 hw->fence[i]);
862 printk(" INSTPM 0x%08x\n", hw->instpm);
863 printk(" MEM_MODE 0x%08x\n", hw->mem_mode);
864 printk(" FW_BLC_0 0x%08x\n", hw->fw_blc_0);
865 printk(" FW_BLC_1 0x%08x\n", hw->fw_blc_1);
867 printk(" HWSTAM 0x%04x\n", hw->hwstam);
868 printk(" IER 0x%04x\n", hw->ier);
869 printk(" IIR 0x%04x\n", hw->iir);
870 printk(" IMR 0x%04x\n", hw->imr);
871 printk("hw state dump end\n");
872 #endif
877 /* Split the M parameter into M1 and M2. */
878 static int splitm(int index, unsigned int m, unsigned int *retm1,
879 unsigned int *retm2)
881 int m1, m2;
882 int testm;
883 struct pll_min_max *pll = &plls[index];
885 /* no point optimising too much - brute force m */
886 for (m1 = pll->min_m1; m1 < pll->max_m1 + 1; m1++) {
887 for (m2 = pll->min_m2; m2 < pll->max_m2 + 1; m2++) {
888 testm = (5 * (m1 + 2)) + (m2 + 2);
889 if (testm == m) {
890 *retm1 = (unsigned int)m1;
891 *retm2 = (unsigned int)m2;
892 return 0;
896 return 1;
899 /* Split the P parameter into P1 and P2. */
900 static int splitp(int index, unsigned int p, unsigned int *retp1,
901 unsigned int *retp2)
903 int p1, p2;
904 struct pll_min_max *pll = &plls[index];
906 if (index == PLLS_I9xx) {
907 p2 = (p % 10) ? 1 : 0;
909 p1 = p / (p2 ? 5 : 10);
911 *retp1 = (unsigned int)p1;
912 *retp2 = (unsigned int)p2;
913 return 0;
916 if (p % 4 == 0)
917 p2 = 1;
918 else
919 p2 = 0;
920 p1 = (p / (1 << (p2 + 1))) - 2;
921 if (p % 4 == 0 && p1 < pll->min_p1) {
922 p2 = 0;
923 p1 = (p / (1 << (p2 + 1))) - 2;
925 if (p1 < pll->min_p1 || p1 > pll->max_p1 ||
926 (p1 + 2) * (1 << (p2 + 1)) != p) {
927 return 1;
928 } else {
929 *retp1 = (unsigned int)p1;
930 *retp2 = (unsigned int)p2;
931 return 0;
935 static int calc_pll_params(int index, int clock, u32 *retm1, u32 *retm2,
936 u32 *retn, u32 *retp1, u32 *retp2, u32 *retclock)
938 u32 m1, m2, n, p1, p2, n1, testm;
939 u32 f_vco, p, p_best = 0, m, f_out = 0;
940 u32 err_max, err_target, err_best = 10000000;
941 u32 n_best = 0, m_best = 0, f_best, f_err;
942 u32 p_min, p_max, p_inc, div_max;
943 struct pll_min_max *pll = &plls[index];
945 /* Accept 0.5% difference, but aim for 0.1% */
946 err_max = 5 * clock / 1000;
947 err_target = clock / 1000;
949 DBG_MSG("Clock is %d\n", clock);
951 div_max = pll->max_vco / clock;
953 p_inc = (clock <= pll->p_transition_clk) ? pll->p_inc_lo : pll->p_inc_hi;
954 p_min = p_inc;
955 p_max = ROUND_DOWN_TO(div_max, p_inc);
956 if (p_min < pll->min_p)
957 p_min = pll->min_p;
958 if (p_max > pll->max_p)
959 p_max = pll->max_p;
961 DBG_MSG("p range is %d-%d (%d)\n", p_min, p_max, p_inc);
963 p = p_min;
964 do {
965 if (splitp(index, p, &p1, &p2)) {
966 WRN_MSG("cannot split p = %d\n", p);
967 p += p_inc;
968 continue;
970 n = pll->min_n;
971 f_vco = clock * p;
973 do {
974 m = ROUND_UP_TO(f_vco * n, pll->ref_clk) / pll->ref_clk;
975 if (m < pll->min_m)
976 m = pll->min_m + 1;
977 if (m > pll->max_m)
978 m = pll->max_m - 1;
979 for (testm = m - 1; testm <= m; testm++) {
980 f_out = calc_vclock3(index, testm, n, p);
981 if (splitm(index, testm, &m1, &m2)) {
982 WRN_MSG("cannot split m = %d\n",
983 testm);
984 continue;
986 if (clock > f_out)
987 f_err = clock - f_out;
988 else/* slightly bias the error for bigger clocks */
989 f_err = f_out - clock + 1;
991 if (f_err < err_best) {
992 m_best = testm;
993 n_best = n;
994 p_best = p;
995 f_best = f_out;
996 err_best = f_err;
999 n++;
1000 } while ((n <= pll->max_n) && (f_out >= clock));
1001 p += p_inc;
1002 } while ((p <= p_max));
1004 if (!m_best) {
1005 WRN_MSG("cannot find parameters for clock %d\n", clock);
1006 return 1;
1008 m = m_best;
1009 n = n_best;
1010 p = p_best;
1011 splitm(index, m, &m1, &m2);
1012 splitp(index, p, &p1, &p2);
1013 n1 = n - 2;
1015 DBG_MSG("m, n, p: %d (%d,%d), %d (%d), %d (%d,%d), "
1016 "f: %d (%d), VCO: %d\n",
1017 m, m1, m2, n, n1, p, p1, p2,
1018 calc_vclock3(index, m, n, p),
1019 calc_vclock(index, m1, m2, n1, p1, p2, 0),
1020 calc_vclock3(index, m, n, p) * p);
1021 *retm1 = m1;
1022 *retm2 = m2;
1023 *retn = n1;
1024 *retp1 = p1;
1025 *retp2 = p2;
1026 *retclock = calc_vclock(index, m1, m2, n1, p1, p2, 0);
1028 return 0;
1031 static __inline__ int check_overflow(u32 value, u32 limit,
1032 const char *description)
1034 if (value > limit) {
1035 WRN_MSG("%s value %d exceeds limit %d\n",
1036 description, value, limit);
1037 return 1;
1039 return 0;
1042 /* It is assumed that hw is filled in with the initial state information. */
1043 int intelfbhw_mode_to_hw(struct intelfb_info *dinfo,
1044 struct intelfb_hwstate *hw,
1045 struct fb_var_screeninfo *var)
1047 int pipe = intelfbhw_active_pipe(hw);
1048 u32 *dpll, *fp0, *fp1;
1049 u32 m1, m2, n, p1, p2, clock_target, clock;
1050 u32 hsync_start, hsync_end, hblank_start, hblank_end, htotal, hactive;
1051 u32 vsync_start, vsync_end, vblank_start, vblank_end, vtotal, vactive;
1052 u32 vsync_pol, hsync_pol;
1053 u32 *vs, *vb, *vt, *hs, *hb, *ht, *ss, *pipe_conf;
1054 u32 stride_alignment;
1056 DBG_MSG("intelfbhw_mode_to_hw\n");
1058 /* Disable VGA */
1059 hw->vgacntrl |= VGA_DISABLE;
1061 /* Set which pipe's registers will be set. */
1062 if (pipe == PIPE_B) {
1063 dpll = &hw->dpll_b;
1064 fp0 = &hw->fpb0;
1065 fp1 = &hw->fpb1;
1066 hs = &hw->hsync_b;
1067 hb = &hw->hblank_b;
1068 ht = &hw->htotal_b;
1069 vs = &hw->vsync_b;
1070 vb = &hw->vblank_b;
1071 vt = &hw->vtotal_b;
1072 ss = &hw->src_size_b;
1073 pipe_conf = &hw->pipe_b_conf;
1074 } else {
1075 dpll = &hw->dpll_a;
1076 fp0 = &hw->fpa0;
1077 fp1 = &hw->fpa1;
1078 hs = &hw->hsync_a;
1079 hb = &hw->hblank_a;
1080 ht = &hw->htotal_a;
1081 vs = &hw->vsync_a;
1082 vb = &hw->vblank_a;
1083 vt = &hw->vtotal_a;
1084 ss = &hw->src_size_a;
1085 pipe_conf = &hw->pipe_a_conf;
1088 /* Use ADPA register for sync control. */
1089 hw->adpa &= ~ADPA_USE_VGA_HVPOLARITY;
1091 /* sync polarity */
1092 hsync_pol = (var->sync & FB_SYNC_HOR_HIGH_ACT) ?
1093 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1094 vsync_pol = (var->sync & FB_SYNC_VERT_HIGH_ACT) ?
1095 ADPA_SYNC_ACTIVE_HIGH : ADPA_SYNC_ACTIVE_LOW;
1096 hw->adpa &= ~((ADPA_SYNC_ACTIVE_MASK << ADPA_VSYNC_ACTIVE_SHIFT) |
1097 (ADPA_SYNC_ACTIVE_MASK << ADPA_HSYNC_ACTIVE_SHIFT));
1098 hw->adpa |= (hsync_pol << ADPA_HSYNC_ACTIVE_SHIFT) |
1099 (vsync_pol << ADPA_VSYNC_ACTIVE_SHIFT);
1101 /* Connect correct pipe to the analog port DAC */
1102 hw->adpa &= ~(PIPE_MASK << ADPA_PIPE_SELECT_SHIFT);
1103 hw->adpa |= (pipe << ADPA_PIPE_SELECT_SHIFT);
1105 /* Set DPMS state to D0 (on) */
1106 hw->adpa &= ~ADPA_DPMS_CONTROL_MASK;
1107 hw->adpa |= ADPA_DPMS_D0;
1109 hw->adpa |= ADPA_DAC_ENABLE;
1111 *dpll |= (DPLL_VCO_ENABLE | DPLL_VGA_MODE_DISABLE);
1112 *dpll &= ~(DPLL_RATE_SELECT_MASK | DPLL_REFERENCE_SELECT_MASK);
1113 *dpll |= (DPLL_REFERENCE_DEFAULT | DPLL_RATE_SELECT_FP0);
1115 /* Desired clock in kHz */
1116 clock_target = 1000000000 / var->pixclock;
1118 if (calc_pll_params(dinfo->pll_index, clock_target, &m1, &m2,
1119 &n, &p1, &p2, &clock)) {
1120 WRN_MSG("calc_pll_params failed\n");
1121 return 1;
1124 /* Check for overflow. */
1125 if (check_overflow(p1, DPLL_P1_MASK, "PLL P1 parameter"))
1126 return 1;
1127 if (check_overflow(p2, DPLL_P2_MASK, "PLL P2 parameter"))
1128 return 1;
1129 if (check_overflow(m1, FP_DIVISOR_MASK, "PLL M1 parameter"))
1130 return 1;
1131 if (check_overflow(m2, FP_DIVISOR_MASK, "PLL M2 parameter"))
1132 return 1;
1133 if (check_overflow(n, FP_DIVISOR_MASK, "PLL N parameter"))
1134 return 1;
1136 *dpll &= ~DPLL_P1_FORCE_DIV2;
1137 *dpll &= ~((DPLL_P2_MASK << DPLL_P2_SHIFT) |
1138 (DPLL_P1_MASK << DPLL_P1_SHIFT));
1140 if (IS_I9XX(dinfo)) {
1141 *dpll |= (p2 << DPLL_I9XX_P2_SHIFT);
1142 *dpll |= (1 << (p1 - 1)) << DPLL_P1_SHIFT;
1143 } else
1144 *dpll |= (p2 << DPLL_P2_SHIFT) | (p1 << DPLL_P1_SHIFT);
1146 *fp0 = (n << FP_N_DIVISOR_SHIFT) |
1147 (m1 << FP_M1_DIVISOR_SHIFT) |
1148 (m2 << FP_M2_DIVISOR_SHIFT);
1149 *fp1 = *fp0;
1151 hw->dvob &= ~PORT_ENABLE;
1152 hw->dvoc &= ~PORT_ENABLE;
1154 /* Use display plane A. */
1155 hw->disp_a_ctrl |= DISPPLANE_PLANE_ENABLE;
1156 hw->disp_a_ctrl &= ~DISPPLANE_GAMMA_ENABLE;
1157 hw->disp_a_ctrl &= ~DISPPLANE_PIXFORMAT_MASK;
1158 switch (intelfb_var_to_depth(var)) {
1159 case 8:
1160 hw->disp_a_ctrl |= DISPPLANE_8BPP | DISPPLANE_GAMMA_ENABLE;
1161 break;
1162 case 15:
1163 hw->disp_a_ctrl |= DISPPLANE_15_16BPP;
1164 break;
1165 case 16:
1166 hw->disp_a_ctrl |= DISPPLANE_16BPP;
1167 break;
1168 case 24:
1169 hw->disp_a_ctrl |= DISPPLANE_32BPP_NO_ALPHA;
1170 break;
1172 hw->disp_a_ctrl &= ~(PIPE_MASK << DISPPLANE_SEL_PIPE_SHIFT);
1173 hw->disp_a_ctrl |= (pipe << DISPPLANE_SEL_PIPE_SHIFT);
1175 /* Set CRTC registers. */
1176 hactive = var->xres;
1177 hsync_start = hactive + var->right_margin;
1178 hsync_end = hsync_start + var->hsync_len;
1179 htotal = hsync_end + var->left_margin;
1180 hblank_start = hactive;
1181 hblank_end = htotal;
1183 DBG_MSG("H: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1184 hactive, hsync_start, hsync_end, htotal, hblank_start,
1185 hblank_end);
1187 vactive = var->yres;
1188 if (var->vmode & FB_VMODE_INTERLACED)
1189 vactive--; /* the chip adds 2 halflines automatically */
1190 vsync_start = vactive + var->lower_margin;
1191 vsync_end = vsync_start + var->vsync_len;
1192 vtotal = vsync_end + var->upper_margin;
1193 vblank_start = vactive;
1194 vblank_end = vtotal;
1195 vblank_end = vsync_end + 1;
1197 DBG_MSG("V: act %d, ss %d, se %d, tot %d bs %d, be %d\n",
1198 vactive, vsync_start, vsync_end, vtotal, vblank_start,
1199 vblank_end);
1201 /* Adjust for register values, and check for overflow. */
1202 hactive--;
1203 if (check_overflow(hactive, HACTIVE_MASK, "CRTC hactive"))
1204 return 1;
1205 hsync_start--;
1206 if (check_overflow(hsync_start, HSYNCSTART_MASK, "CRTC hsync_start"))
1207 return 1;
1208 hsync_end--;
1209 if (check_overflow(hsync_end, HSYNCEND_MASK, "CRTC hsync_end"))
1210 return 1;
1211 htotal--;
1212 if (check_overflow(htotal, HTOTAL_MASK, "CRTC htotal"))
1213 return 1;
1214 hblank_start--;
1215 if (check_overflow(hblank_start, HBLANKSTART_MASK, "CRTC hblank_start"))
1216 return 1;
1217 hblank_end--;
1218 if (check_overflow(hblank_end, HBLANKEND_MASK, "CRTC hblank_end"))
1219 return 1;
1221 vactive--;
1222 if (check_overflow(vactive, VACTIVE_MASK, "CRTC vactive"))
1223 return 1;
1224 vsync_start--;
1225 if (check_overflow(vsync_start, VSYNCSTART_MASK, "CRTC vsync_start"))
1226 return 1;
1227 vsync_end--;
1228 if (check_overflow(vsync_end, VSYNCEND_MASK, "CRTC vsync_end"))
1229 return 1;
1230 vtotal--;
1231 if (check_overflow(vtotal, VTOTAL_MASK, "CRTC vtotal"))
1232 return 1;
1233 vblank_start--;
1234 if (check_overflow(vblank_start, VBLANKSTART_MASK, "CRTC vblank_start"))
1235 return 1;
1236 vblank_end--;
1237 if (check_overflow(vblank_end, VBLANKEND_MASK, "CRTC vblank_end"))
1238 return 1;
1240 *ht = (htotal << HTOTAL_SHIFT) | (hactive << HACTIVE_SHIFT);
1241 *hb = (hblank_start << HBLANKSTART_SHIFT) |
1242 (hblank_end << HSYNCEND_SHIFT);
1243 *hs = (hsync_start << HSYNCSTART_SHIFT) | (hsync_end << HSYNCEND_SHIFT);
1245 *vt = (vtotal << VTOTAL_SHIFT) | (vactive << VACTIVE_SHIFT);
1246 *vb = (vblank_start << VBLANKSTART_SHIFT) |
1247 (vblank_end << VSYNCEND_SHIFT);
1248 *vs = (vsync_start << VSYNCSTART_SHIFT) | (vsync_end << VSYNCEND_SHIFT);
1249 *ss = (hactive << SRC_SIZE_HORIZ_SHIFT) |
1250 (vactive << SRC_SIZE_VERT_SHIFT);
1252 hw->disp_a_stride = dinfo->pitch;
1253 DBG_MSG("pitch is %d\n", hw->disp_a_stride);
1255 hw->disp_a_base = hw->disp_a_stride * var->yoffset +
1256 var->xoffset * var->bits_per_pixel / 8;
1258 hw->disp_a_base += dinfo->fb.offset << 12;
1260 /* Check stride alignment. */
1261 stride_alignment = IS_I9XX(dinfo) ? STRIDE_ALIGNMENT_I9XX :
1262 STRIDE_ALIGNMENT;
1263 if (hw->disp_a_stride % stride_alignment != 0) {
1264 WRN_MSG("display stride %d has bad alignment %d\n",
1265 hw->disp_a_stride, stride_alignment);
1266 return 1;
1269 /* Set the palette to 8-bit mode. */
1270 *pipe_conf &= ~PIPECONF_GAMMA;
1272 if (var->vmode & FB_VMODE_INTERLACED)
1273 *pipe_conf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
1274 else
1275 *pipe_conf &= ~PIPECONF_INTERLACE_MASK;
1277 return 0;
1280 /* Program a (non-VGA) video mode. */
1281 int intelfbhw_program_mode(struct intelfb_info *dinfo,
1282 const struct intelfb_hwstate *hw, int blank)
1284 u32 tmp;
1285 const u32 *dpll, *fp0, *fp1, *pipe_conf;
1286 const u32 *hs, *ht, *hb, *vs, *vt, *vb, *ss;
1287 u32 dpll_reg, fp0_reg, fp1_reg, pipe_conf_reg, pipe_stat_reg;
1288 u32 hsync_reg, htotal_reg, hblank_reg;
1289 u32 vsync_reg, vtotal_reg, vblank_reg;
1290 u32 src_size_reg;
1291 u32 count, tmp_val[3];
1293 /* Assume single pipe */
1295 #if VERBOSE > 0
1296 DBG_MSG("intelfbhw_program_mode\n");
1297 #endif
1299 /* Disable VGA */
1300 tmp = INREG(VGACNTRL);
1301 tmp |= VGA_DISABLE;
1302 OUTREG(VGACNTRL, tmp);
1304 dinfo->pipe = intelfbhw_active_pipe(hw);
1306 if (dinfo->pipe == PIPE_B) {
1307 dpll = &hw->dpll_b;
1308 fp0 = &hw->fpb0;
1309 fp1 = &hw->fpb1;
1310 pipe_conf = &hw->pipe_b_conf;
1311 hs = &hw->hsync_b;
1312 hb = &hw->hblank_b;
1313 ht = &hw->htotal_b;
1314 vs = &hw->vsync_b;
1315 vb = &hw->vblank_b;
1316 vt = &hw->vtotal_b;
1317 ss = &hw->src_size_b;
1318 dpll_reg = DPLL_B;
1319 fp0_reg = FPB0;
1320 fp1_reg = FPB1;
1321 pipe_conf_reg = PIPEBCONF;
1322 pipe_stat_reg = PIPEBSTAT;
1323 hsync_reg = HSYNC_B;
1324 htotal_reg = HTOTAL_B;
1325 hblank_reg = HBLANK_B;
1326 vsync_reg = VSYNC_B;
1327 vtotal_reg = VTOTAL_B;
1328 vblank_reg = VBLANK_B;
1329 src_size_reg = SRC_SIZE_B;
1330 } else {
1331 dpll = &hw->dpll_a;
1332 fp0 = &hw->fpa0;
1333 fp1 = &hw->fpa1;
1334 pipe_conf = &hw->pipe_a_conf;
1335 hs = &hw->hsync_a;
1336 hb = &hw->hblank_a;
1337 ht = &hw->htotal_a;
1338 vs = &hw->vsync_a;
1339 vb = &hw->vblank_a;
1340 vt = &hw->vtotal_a;
1341 ss = &hw->src_size_a;
1342 dpll_reg = DPLL_A;
1343 fp0_reg = FPA0;
1344 fp1_reg = FPA1;
1345 pipe_conf_reg = PIPEACONF;
1346 pipe_stat_reg = PIPEASTAT;
1347 hsync_reg = HSYNC_A;
1348 htotal_reg = HTOTAL_A;
1349 hblank_reg = HBLANK_A;
1350 vsync_reg = VSYNC_A;
1351 vtotal_reg = VTOTAL_A;
1352 vblank_reg = VBLANK_A;
1353 src_size_reg = SRC_SIZE_A;
1356 /* turn off pipe */
1357 tmp = INREG(pipe_conf_reg);
1358 tmp &= ~PIPECONF_ENABLE;
1359 OUTREG(pipe_conf_reg, tmp);
1361 count = 0;
1362 do {
1363 tmp_val[count % 3] = INREG(PIPEA_DSL);
1364 if ((tmp_val[0] == tmp_val[1]) && (tmp_val[1] == tmp_val[2]))
1365 break;
1366 count++;
1367 udelay(1);
1368 if (count % 200 == 0) {
1369 tmp = INREG(pipe_conf_reg);
1370 tmp &= ~PIPECONF_ENABLE;
1371 OUTREG(pipe_conf_reg, tmp);
1373 } while (count < 2000);
1375 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1377 /* Disable planes A and B. */
1378 tmp = INREG(DSPACNTR);
1379 tmp &= ~DISPPLANE_PLANE_ENABLE;
1380 OUTREG(DSPACNTR, tmp);
1381 tmp = INREG(DSPBCNTR);
1382 tmp &= ~DISPPLANE_PLANE_ENABLE;
1383 OUTREG(DSPBCNTR, tmp);
1385 /* Wait for vblank. For now, just wait for a 50Hz cycle (20ms)) */
1386 mdelay(20);
1388 OUTREG(DVOB, INREG(DVOB) & ~PORT_ENABLE);
1389 OUTREG(DVOC, INREG(DVOC) & ~PORT_ENABLE);
1390 OUTREG(ADPA, INREG(ADPA) & ~ADPA_DAC_ENABLE);
1392 /* Disable Sync */
1393 tmp = INREG(ADPA);
1394 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1395 tmp |= ADPA_DPMS_D3;
1396 OUTREG(ADPA, tmp);
1398 /* do some funky magic - xyzzy */
1399 OUTREG(0x61204, 0xabcd0000);
1401 /* turn off PLL */
1402 tmp = INREG(dpll_reg);
1403 tmp &= ~DPLL_VCO_ENABLE;
1404 OUTREG(dpll_reg, tmp);
1406 /* Set PLL parameters */
1407 OUTREG(fp0_reg, *fp0);
1408 OUTREG(fp1_reg, *fp1);
1410 /* Enable PLL */
1411 OUTREG(dpll_reg, *dpll);
1413 /* Set DVOs B/C */
1414 OUTREG(DVOB, hw->dvob);
1415 OUTREG(DVOC, hw->dvoc);
1417 /* undo funky magic */
1418 OUTREG(0x61204, 0x00000000);
1420 /* Set ADPA */
1421 OUTREG(ADPA, INREG(ADPA) | ADPA_DAC_ENABLE);
1422 OUTREG(ADPA, (hw->adpa & ~(ADPA_DPMS_CONTROL_MASK)) | ADPA_DPMS_D3);
1424 /* Set pipe parameters */
1425 OUTREG(hsync_reg, *hs);
1426 OUTREG(hblank_reg, *hb);
1427 OUTREG(htotal_reg, *ht);
1428 OUTREG(vsync_reg, *vs);
1429 OUTREG(vblank_reg, *vb);
1430 OUTREG(vtotal_reg, *vt);
1431 OUTREG(src_size_reg, *ss);
1433 switch (dinfo->info->var.vmode & (FB_VMODE_INTERLACED |
1434 FB_VMODE_ODD_FLD_FIRST)) {
1435 case FB_VMODE_INTERLACED | FB_VMODE_ODD_FLD_FIRST:
1436 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_ODD_EN);
1437 break;
1438 case FB_VMODE_INTERLACED: /* even lines first */
1439 OUTREG(pipe_stat_reg, 0xFFFF | PIPESTAT_FLD_EVT_EVEN_EN);
1440 break;
1441 default: /* non-interlaced */
1442 OUTREG(pipe_stat_reg, 0xFFFF); /* clear all status bits only */
1444 /* Enable pipe */
1445 OUTREG(pipe_conf_reg, *pipe_conf | PIPECONF_ENABLE);
1447 /* Enable sync */
1448 tmp = INREG(ADPA);
1449 tmp &= ~ADPA_DPMS_CONTROL_MASK;
1450 tmp |= ADPA_DPMS_D0;
1451 OUTREG(ADPA, tmp);
1453 /* setup display plane */
1454 if (dinfo->pdev->device == PCI_DEVICE_ID_INTEL_830M) {
1456 * i830M errata: the display plane must be enabled
1457 * to allow writes to the other bits in the plane
1458 * control register.
1460 tmp = INREG(DSPACNTR);
1461 if ((tmp & DISPPLANE_PLANE_ENABLE) != DISPPLANE_PLANE_ENABLE) {
1462 tmp |= DISPPLANE_PLANE_ENABLE;
1463 OUTREG(DSPACNTR, tmp);
1464 OUTREG(DSPACNTR,
1465 hw->disp_a_ctrl|DISPPLANE_PLANE_ENABLE);
1466 mdelay(1);
1470 OUTREG(DSPACNTR, hw->disp_a_ctrl & ~DISPPLANE_PLANE_ENABLE);
1471 OUTREG(DSPASTRIDE, hw->disp_a_stride);
1472 OUTREG(DSPABASE, hw->disp_a_base);
1474 /* Enable plane */
1475 if (!blank) {
1476 tmp = INREG(DSPACNTR);
1477 tmp |= DISPPLANE_PLANE_ENABLE;
1478 OUTREG(DSPACNTR, tmp);
1479 OUTREG(DSPABASE, hw->disp_a_base);
1482 return 0;
1485 /* forward declarations */
1486 static void refresh_ring(struct intelfb_info *dinfo);
1487 static void reset_state(struct intelfb_info *dinfo);
1488 static void do_flush(struct intelfb_info *dinfo);
1490 static u32 get_ring_space(struct intelfb_info *dinfo)
1492 u32 ring_space;
1494 if (dinfo->ring_tail >= dinfo->ring_head)
1495 ring_space = dinfo->ring.size -
1496 (dinfo->ring_tail - dinfo->ring_head);
1497 else
1498 ring_space = dinfo->ring_head - dinfo->ring_tail;
1500 if (ring_space > RING_MIN_FREE)
1501 ring_space -= RING_MIN_FREE;
1502 else
1503 ring_space = 0;
1505 return ring_space;
1508 static int wait_ring(struct intelfb_info *dinfo, int n)
1510 int i = 0;
1511 unsigned long end;
1512 u32 last_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1514 #if VERBOSE > 0
1515 DBG_MSG("wait_ring: %d\n", n);
1516 #endif
1518 end = jiffies + (HZ * 3);
1519 while (dinfo->ring_space < n) {
1520 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1521 dinfo->ring_space = get_ring_space(dinfo);
1523 if (dinfo->ring_head != last_head) {
1524 end = jiffies + (HZ * 3);
1525 last_head = dinfo->ring_head;
1527 i++;
1528 if (time_before(end, jiffies)) {
1529 if (!i) {
1530 /* Try again */
1531 reset_state(dinfo);
1532 refresh_ring(dinfo);
1533 do_flush(dinfo);
1534 end = jiffies + (HZ * 3);
1535 i = 1;
1536 } else {
1537 WRN_MSG("ring buffer : space: %d wanted %d\n",
1538 dinfo->ring_space, n);
1539 WRN_MSG("lockup - turning off hardware "
1540 "acceleration\n");
1541 dinfo->ring_lockup = 1;
1542 break;
1545 udelay(1);
1547 return i;
1550 static void do_flush(struct intelfb_info *dinfo)
1552 START_RING(2);
1553 OUT_RING(MI_FLUSH | MI_WRITE_DIRTY_STATE | MI_INVALIDATE_MAP_CACHE);
1554 OUT_RING(MI_NOOP);
1555 ADVANCE_RING();
1558 void intelfbhw_do_sync(struct intelfb_info *dinfo)
1560 #if VERBOSE > 0
1561 DBG_MSG("intelfbhw_do_sync\n");
1562 #endif
1564 if (!dinfo->accel)
1565 return;
1568 * Send a flush, then wait until the ring is empty. This is what
1569 * the XFree86 driver does, and actually it doesn't seem a lot worse
1570 * than the recommended method (both have problems).
1572 do_flush(dinfo);
1573 wait_ring(dinfo, dinfo->ring.size - RING_MIN_FREE);
1574 dinfo->ring_space = dinfo->ring.size - RING_MIN_FREE;
1577 static void refresh_ring(struct intelfb_info *dinfo)
1579 #if VERBOSE > 0
1580 DBG_MSG("refresh_ring\n");
1581 #endif
1583 dinfo->ring_head = INREG(PRI_RING_HEAD) & RING_HEAD_MASK;
1584 dinfo->ring_tail = INREG(PRI_RING_TAIL) & RING_TAIL_MASK;
1585 dinfo->ring_space = get_ring_space(dinfo);
1588 static void reset_state(struct intelfb_info *dinfo)
1590 int i;
1591 u32 tmp;
1593 #if VERBOSE > 0
1594 DBG_MSG("reset_state\n");
1595 #endif
1597 for (i = 0; i < FENCE_NUM; i++)
1598 OUTREG(FENCE + (i << 2), 0);
1600 /* Flush the ring buffer if it's enabled. */
1601 tmp = INREG(PRI_RING_LENGTH);
1602 if (tmp & RING_ENABLE) {
1603 #if VERBOSE > 0
1604 DBG_MSG("reset_state: ring was enabled\n");
1605 #endif
1606 refresh_ring(dinfo);
1607 intelfbhw_do_sync(dinfo);
1608 DO_RING_IDLE();
1611 OUTREG(PRI_RING_LENGTH, 0);
1612 OUTREG(PRI_RING_HEAD, 0);
1613 OUTREG(PRI_RING_TAIL, 0);
1614 OUTREG(PRI_RING_START, 0);
1617 /* Stop the 2D engine, and turn off the ring buffer. */
1618 void intelfbhw_2d_stop(struct intelfb_info *dinfo)
1620 #if VERBOSE > 0
1621 DBG_MSG("intelfbhw_2d_stop: accel: %d, ring_active: %d\n",
1622 dinfo->accel, dinfo->ring_active);
1623 #endif
1625 if (!dinfo->accel)
1626 return;
1628 dinfo->ring_active = 0;
1629 reset_state(dinfo);
1633 * Enable the ring buffer, and initialise the 2D engine.
1634 * It is assumed that the graphics engine has been stopped by previously
1635 * calling intelfb_2d_stop().
1637 void intelfbhw_2d_start(struct intelfb_info *dinfo)
1639 #if VERBOSE > 0
1640 DBG_MSG("intelfbhw_2d_start: accel: %d, ring_active: %d\n",
1641 dinfo->accel, dinfo->ring_active);
1642 #endif
1644 if (!dinfo->accel)
1645 return;
1647 /* Initialise the primary ring buffer. */
1648 OUTREG(PRI_RING_LENGTH, 0);
1649 OUTREG(PRI_RING_TAIL, 0);
1650 OUTREG(PRI_RING_HEAD, 0);
1652 OUTREG(PRI_RING_START, dinfo->ring.physical & RING_START_MASK);
1653 OUTREG(PRI_RING_LENGTH,
1654 ((dinfo->ring.size - GTT_PAGE_SIZE) & RING_LENGTH_MASK) |
1655 RING_NO_REPORT | RING_ENABLE);
1656 refresh_ring(dinfo);
1657 dinfo->ring_active = 1;
1660 /* 2D fillrect (solid fill or invert) */
1661 void intelfbhw_do_fillrect(struct intelfb_info *dinfo, u32 x, u32 y, u32 w,
1662 u32 h, u32 color, u32 pitch, u32 bpp, u32 rop)
1664 u32 br00, br09, br13, br14, br16;
1666 #if VERBOSE > 0
1667 DBG_MSG("intelfbhw_do_fillrect: (%d,%d) %dx%d, c 0x%06x, p %d bpp %d, "
1668 "rop 0x%02x\n", x, y, w, h, color, pitch, bpp, rop);
1669 #endif
1671 br00 = COLOR_BLT_CMD;
1672 br09 = dinfo->fb_start + (y * pitch + x * (bpp / 8));
1673 br13 = (rop << ROP_SHIFT) | pitch;
1674 br14 = (h << HEIGHT_SHIFT) | ((w * (bpp / 8)) << WIDTH_SHIFT);
1675 br16 = color;
1677 switch (bpp) {
1678 case 8:
1679 br13 |= COLOR_DEPTH_8;
1680 break;
1681 case 16:
1682 br13 |= COLOR_DEPTH_16;
1683 break;
1684 case 32:
1685 br13 |= COLOR_DEPTH_32;
1686 br00 |= WRITE_ALPHA | WRITE_RGB;
1687 break;
1690 START_RING(6);
1691 OUT_RING(br00);
1692 OUT_RING(br13);
1693 OUT_RING(br14);
1694 OUT_RING(br09);
1695 OUT_RING(br16);
1696 OUT_RING(MI_NOOP);
1697 ADVANCE_RING();
1699 #if VERBOSE > 0
1700 DBG_MSG("ring = 0x%08x, 0x%08x (%d)\n", dinfo->ring_head,
1701 dinfo->ring_tail, dinfo->ring_space);
1702 #endif
1705 void
1706 intelfbhw_do_bitblt(struct intelfb_info *dinfo, u32 curx, u32 cury,
1707 u32 dstx, u32 dsty, u32 w, u32 h, u32 pitch, u32 bpp)
1709 u32 br00, br09, br11, br12, br13, br22, br23, br26;
1711 #if VERBOSE > 0
1712 DBG_MSG("intelfbhw_do_bitblt: (%d,%d)->(%d,%d) %dx%d, p %d bpp %d\n",
1713 curx, cury, dstx, dsty, w, h, pitch, bpp);
1714 #endif
1716 br00 = XY_SRC_COPY_BLT_CMD;
1717 br09 = dinfo->fb_start;
1718 br11 = (pitch << PITCH_SHIFT);
1719 br12 = dinfo->fb_start;
1720 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1721 br22 = (dstx << WIDTH_SHIFT) | (dsty << HEIGHT_SHIFT);
1722 br23 = ((dstx + w) << WIDTH_SHIFT) |
1723 ((dsty + h) << HEIGHT_SHIFT);
1724 br26 = (curx << WIDTH_SHIFT) | (cury << HEIGHT_SHIFT);
1726 switch (bpp) {
1727 case 8:
1728 br13 |= COLOR_DEPTH_8;
1729 break;
1730 case 16:
1731 br13 |= COLOR_DEPTH_16;
1732 break;
1733 case 32:
1734 br13 |= COLOR_DEPTH_32;
1735 br00 |= WRITE_ALPHA | WRITE_RGB;
1736 break;
1739 START_RING(8);
1740 OUT_RING(br00);
1741 OUT_RING(br13);
1742 OUT_RING(br22);
1743 OUT_RING(br23);
1744 OUT_RING(br09);
1745 OUT_RING(br26);
1746 OUT_RING(br11);
1747 OUT_RING(br12);
1748 ADVANCE_RING();
1751 int intelfbhw_do_drawglyph(struct intelfb_info *dinfo, u32 fg, u32 bg, u32 w,
1752 u32 h, const u8* cdat, u32 x, u32 y, u32 pitch,
1753 u32 bpp)
1755 int nbytes, ndwords, pad, tmp;
1756 u32 br00, br09, br13, br18, br19, br22, br23;
1757 int dat, ix, iy, iw;
1758 int i, j;
1760 #if VERBOSE > 0
1761 DBG_MSG("intelfbhw_do_drawglyph: (%d,%d) %dx%d\n", x, y, w, h);
1762 #endif
1764 /* size in bytes of a padded scanline */
1765 nbytes = ROUND_UP_TO(w, 16) / 8;
1767 /* Total bytes of padded scanline data to write out. */
1768 nbytes = nbytes * h;
1771 * Check if the glyph data exceeds the immediate mode limit.
1772 * It would take a large font (1K pixels) to hit this limit.
1774 if (nbytes > MAX_MONO_IMM_SIZE)
1775 return 0;
1777 /* Src data is packaged a dword (32-bit) at a time. */
1778 ndwords = ROUND_UP_TO(nbytes, 4) / 4;
1781 * Ring has to be padded to a quad word. But because the command starts
1782 with 7 bytes, pad only if there is an even number of ndwords
1784 pad = !(ndwords % 2);
1786 tmp = (XY_MONO_SRC_IMM_BLT_CMD & DW_LENGTH_MASK) + ndwords;
1787 br00 = (XY_MONO_SRC_IMM_BLT_CMD & ~DW_LENGTH_MASK) | tmp;
1788 br09 = dinfo->fb_start;
1789 br13 = (SRC_ROP_GXCOPY << ROP_SHIFT) | (pitch << PITCH_SHIFT);
1790 br18 = bg;
1791 br19 = fg;
1792 br22 = (x << WIDTH_SHIFT) | (y << HEIGHT_SHIFT);
1793 br23 = ((x + w) << WIDTH_SHIFT) | ((y + h) << HEIGHT_SHIFT);
1795 switch (bpp) {
1796 case 8:
1797 br13 |= COLOR_DEPTH_8;
1798 break;
1799 case 16:
1800 br13 |= COLOR_DEPTH_16;
1801 break;
1802 case 32:
1803 br13 |= COLOR_DEPTH_32;
1804 br00 |= WRITE_ALPHA | WRITE_RGB;
1805 break;
1808 START_RING(8 + ndwords);
1809 OUT_RING(br00);
1810 OUT_RING(br13);
1811 OUT_RING(br22);
1812 OUT_RING(br23);
1813 OUT_RING(br09);
1814 OUT_RING(br18);
1815 OUT_RING(br19);
1816 ix = iy = 0;
1817 iw = ROUND_UP_TO(w, 8) / 8;
1818 while (ndwords--) {
1819 dat = 0;
1820 for (j = 0; j < 2; ++j) {
1821 for (i = 0; i < 2; ++i) {
1822 if (ix != iw || i == 0)
1823 dat |= cdat[iy*iw + ix++] << (i+j*2)*8;
1825 if (ix == iw && iy != (h-1)) {
1826 ix = 0;
1827 ++iy;
1830 OUT_RING(dat);
1832 if (pad)
1833 OUT_RING(MI_NOOP);
1834 ADVANCE_RING();
1836 return 1;
1839 /* HW cursor functions. */
1840 void intelfbhw_cursor_init(struct intelfb_info *dinfo)
1842 u32 tmp;
1844 #if VERBOSE > 0
1845 DBG_MSG("intelfbhw_cursor_init\n");
1846 #endif
1848 if (dinfo->mobile || IS_I9XX(dinfo)) {
1849 if (!dinfo->cursor.physical)
1850 return;
1851 tmp = INREG(CURSOR_A_CONTROL);
1852 tmp &= ~(CURSOR_MODE_MASK | CURSOR_MOBILE_GAMMA_ENABLE |
1853 CURSOR_MEM_TYPE_LOCAL |
1854 (1 << CURSOR_PIPE_SELECT_SHIFT));
1855 tmp |= CURSOR_MODE_DISABLE;
1856 OUTREG(CURSOR_A_CONTROL, tmp);
1857 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1858 } else {
1859 tmp = INREG(CURSOR_CONTROL);
1860 tmp &= ~(CURSOR_FORMAT_MASK | CURSOR_GAMMA_ENABLE |
1861 CURSOR_ENABLE | CURSOR_STRIDE_MASK);
1862 tmp = CURSOR_FORMAT_3C;
1863 OUTREG(CURSOR_CONTROL, tmp);
1864 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.offset << 12);
1865 tmp = (64 << CURSOR_SIZE_H_SHIFT) |
1866 (64 << CURSOR_SIZE_V_SHIFT);
1867 OUTREG(CURSOR_SIZE, tmp);
1871 void intelfbhw_cursor_hide(struct intelfb_info *dinfo)
1873 u32 tmp;
1875 #if VERBOSE > 0
1876 DBG_MSG("intelfbhw_cursor_hide\n");
1877 #endif
1879 dinfo->cursor_on = 0;
1880 if (dinfo->mobile || IS_I9XX(dinfo)) {
1881 if (!dinfo->cursor.physical)
1882 return;
1883 tmp = INREG(CURSOR_A_CONTROL);
1884 tmp &= ~CURSOR_MODE_MASK;
1885 tmp |= CURSOR_MODE_DISABLE;
1886 OUTREG(CURSOR_A_CONTROL, tmp);
1887 /* Flush changes */
1888 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1889 } else {
1890 tmp = INREG(CURSOR_CONTROL);
1891 tmp &= ~CURSOR_ENABLE;
1892 OUTREG(CURSOR_CONTROL, tmp);
1896 void intelfbhw_cursor_show(struct intelfb_info *dinfo)
1898 u32 tmp;
1900 #if VERBOSE > 0
1901 DBG_MSG("intelfbhw_cursor_show\n");
1902 #endif
1904 dinfo->cursor_on = 1;
1906 if (dinfo->cursor_blanked)
1907 return;
1909 if (dinfo->mobile || IS_I9XX(dinfo)) {
1910 if (!dinfo->cursor.physical)
1911 return;
1912 tmp = INREG(CURSOR_A_CONTROL);
1913 tmp &= ~CURSOR_MODE_MASK;
1914 tmp |= CURSOR_MODE_64_4C_AX;
1915 OUTREG(CURSOR_A_CONTROL, tmp);
1916 /* Flush changes */
1917 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1918 } else {
1919 tmp = INREG(CURSOR_CONTROL);
1920 tmp |= CURSOR_ENABLE;
1921 OUTREG(CURSOR_CONTROL, tmp);
1925 void intelfbhw_cursor_setpos(struct intelfb_info *dinfo, int x, int y)
1927 u32 tmp;
1929 #if VERBOSE > 0
1930 DBG_MSG("intelfbhw_cursor_setpos: (%d, %d)\n", x, y);
1931 #endif
1934 * Sets the position. The coordinates are assumed to already
1935 * have any offset adjusted. Assume that the cursor is never
1936 * completely off-screen, and that x, y are always >= 0.
1939 tmp = ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT) |
1940 ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
1941 OUTREG(CURSOR_A_POSITION, tmp);
1943 if (IS_I9XX(dinfo))
1944 OUTREG(CURSOR_A_BASEADDR, dinfo->cursor.physical);
1947 void intelfbhw_cursor_setcolor(struct intelfb_info *dinfo, u32 bg, u32 fg)
1949 #if VERBOSE > 0
1950 DBG_MSG("intelfbhw_cursor_setcolor\n");
1951 #endif
1953 OUTREG(CURSOR_A_PALETTE0, bg & CURSOR_PALETTE_MASK);
1954 OUTREG(CURSOR_A_PALETTE1, fg & CURSOR_PALETTE_MASK);
1955 OUTREG(CURSOR_A_PALETTE2, fg & CURSOR_PALETTE_MASK);
1956 OUTREG(CURSOR_A_PALETTE3, bg & CURSOR_PALETTE_MASK);
1959 void intelfbhw_cursor_load(struct intelfb_info *dinfo, int width, int height,
1960 u8 *data)
1962 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1963 int i, j, w = width / 8;
1964 int mod = width % 8, t_mask, d_mask;
1966 #if VERBOSE > 0
1967 DBG_MSG("intelfbhw_cursor_load\n");
1968 #endif
1970 if (!dinfo->cursor.virtual)
1971 return;
1973 t_mask = 0xff >> mod;
1974 d_mask = ~(0xff >> mod);
1975 for (i = height; i--; ) {
1976 for (j = 0; j < w; j++) {
1977 writeb(0x00, addr + j);
1978 writeb(*(data++), addr + j+8);
1980 if (mod) {
1981 writeb(t_mask, addr + j);
1982 writeb(*(data++) & d_mask, addr + j+8);
1984 addr += 16;
1988 void intelfbhw_cursor_reset(struct intelfb_info *dinfo)
1990 u8 __iomem *addr = (u8 __iomem *)dinfo->cursor.virtual;
1991 int i, j;
1993 #if VERBOSE > 0
1994 DBG_MSG("intelfbhw_cursor_reset\n");
1995 #endif
1997 if (!dinfo->cursor.virtual)
1998 return;
2000 for (i = 64; i--; ) {
2001 for (j = 0; j < 8; j++) {
2002 writeb(0xff, addr + j+0);
2003 writeb(0x00, addr + j+8);
2005 addr += 16;
2009 static irqreturn_t intelfbhw_irq(int irq, void *dev_id)
2011 u16 tmp;
2012 struct intelfb_info *dinfo = dev_id;
2014 spin_lock(&dinfo->int_lock);
2016 tmp = INREG16(IIR);
2017 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2018 tmp &= PIPE_A_EVENT_INTERRUPT;
2019 else
2020 tmp &= VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2022 if (tmp == 0) {
2023 spin_unlock(&dinfo->int_lock);
2024 return IRQ_RETVAL(0); /* not us */
2027 /* clear status bits 0-15 ASAP and don't touch bits 16-31 */
2028 OUTREG(PIPEASTAT, INREG(PIPEASTAT));
2030 OUTREG16(IIR, tmp);
2031 if (dinfo->vsync.pan_display) {
2032 dinfo->vsync.pan_display = 0;
2033 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2036 dinfo->vsync.count++;
2037 wake_up_interruptible(&dinfo->vsync.wait);
2039 spin_unlock(&dinfo->int_lock);
2041 return IRQ_RETVAL(1);
2044 int intelfbhw_enable_irq(struct intelfb_info *dinfo)
2046 u16 tmp;
2047 if (!test_and_set_bit(0, &dinfo->irq_flags)) {
2048 if (request_irq(dinfo->pdev->irq, intelfbhw_irq, IRQF_SHARED,
2049 "intelfb", dinfo)) {
2050 clear_bit(0, &dinfo->irq_flags);
2051 return -EINVAL;
2054 spin_lock_irq(&dinfo->int_lock);
2055 OUTREG16(HWSTAM, 0xfffe); /* i830 DRM uses ffff */
2056 OUTREG16(IMR, 0);
2057 } else
2058 spin_lock_irq(&dinfo->int_lock);
2060 if (dinfo->info->var.vmode & FB_VMODE_INTERLACED)
2061 tmp = PIPE_A_EVENT_INTERRUPT;
2062 else
2063 tmp = VSYNC_PIPE_A_INTERRUPT; /* non-interlaced */
2064 if (tmp != INREG16(IER)) {
2065 DBG_MSG("changing IER to 0x%X\n", tmp);
2066 OUTREG16(IER, tmp);
2069 spin_unlock_irq(&dinfo->int_lock);
2070 return 0;
2073 void intelfbhw_disable_irq(struct intelfb_info *dinfo)
2075 if (test_and_clear_bit(0, &dinfo->irq_flags)) {
2076 if (dinfo->vsync.pan_display) {
2077 dinfo->vsync.pan_display = 0;
2078 OUTREG(DSPABASE, dinfo->vsync.pan_offset);
2080 spin_lock_irq(&dinfo->int_lock);
2081 OUTREG16(HWSTAM, 0xffff);
2082 OUTREG16(IMR, 0xffff);
2083 OUTREG16(IER, 0x0);
2085 OUTREG16(IIR, INREG16(IIR)); /* clear IRQ requests */
2086 spin_unlock_irq(&dinfo->int_lock);
2088 free_irq(dinfo->pdev->irq, dinfo);
2092 int intelfbhw_wait_for_vsync(struct intelfb_info *dinfo, u32 pipe)
2094 struct intelfb_vsync *vsync;
2095 unsigned int count;
2096 int ret;
2098 switch (pipe) {
2099 case 0:
2100 vsync = &dinfo->vsync;
2101 break;
2102 default:
2103 return -ENODEV;
2106 ret = intelfbhw_enable_irq(dinfo);
2107 if (ret)
2108 return ret;
2110 count = vsync->count;
2111 ret = wait_event_interruptible_timeout(vsync->wait,
2112 count != vsync->count, HZ / 10);
2113 if (ret < 0)
2114 return ret;
2115 if (ret == 0) {
2116 DBG_MSG("wait_for_vsync timed out!\n");
2117 return -ETIMEDOUT;
2120 return 0;