2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/math64.h>
24 #include "free-space-cache.h"
25 #include "transaction.h"
27 #include "extent_io.h"
28 #include "inode-map.h"
30 #define BITS_PER_BITMAP (PAGE_CACHE_SIZE * 8)
31 #define MAX_CACHE_BYTES_PER_GIG (32 * 1024)
33 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
34 struct btrfs_free_space
*info
);
36 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
37 struct btrfs_path
*path
,
41 struct btrfs_key location
;
42 struct btrfs_disk_key disk_key
;
43 struct btrfs_free_space_header
*header
;
44 struct extent_buffer
*leaf
;
45 struct inode
*inode
= NULL
;
48 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
52 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
56 btrfs_release_path(path
);
57 return ERR_PTR(-ENOENT
);
60 leaf
= path
->nodes
[0];
61 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
62 struct btrfs_free_space_header
);
63 btrfs_free_space_key(leaf
, header
, &disk_key
);
64 btrfs_disk_key_to_cpu(&location
, &disk_key
);
65 btrfs_release_path(path
);
67 inode
= btrfs_iget(root
->fs_info
->sb
, &location
, root
, NULL
);
69 return ERR_PTR(-ENOENT
);
72 if (is_bad_inode(inode
)) {
74 return ERR_PTR(-ENOENT
);
77 inode
->i_mapping
->flags
&= ~__GFP_FS
;
82 struct inode
*lookup_free_space_inode(struct btrfs_root
*root
,
83 struct btrfs_block_group_cache
84 *block_group
, struct btrfs_path
*path
)
86 struct inode
*inode
= NULL
;
88 spin_lock(&block_group
->lock
);
89 if (block_group
->inode
)
90 inode
= igrab(block_group
->inode
);
91 spin_unlock(&block_group
->lock
);
95 inode
= __lookup_free_space_inode(root
, path
,
96 block_group
->key
.objectid
);
100 spin_lock(&block_group
->lock
);
101 if (BTRFS_I(inode
)->flags
& BTRFS_INODE_NODATASUM
) {
102 printk(KERN_INFO
"Old style space inode found, converting.\n");
103 BTRFS_I(inode
)->flags
&= ~BTRFS_INODE_NODATASUM
;
104 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
107 if (!btrfs_fs_closing(root
->fs_info
)) {
108 block_group
->inode
= igrab(inode
);
109 block_group
->iref
= 1;
111 spin_unlock(&block_group
->lock
);
116 int __create_free_space_inode(struct btrfs_root
*root
,
117 struct btrfs_trans_handle
*trans
,
118 struct btrfs_path
*path
, u64 ino
, u64 offset
)
120 struct btrfs_key key
;
121 struct btrfs_disk_key disk_key
;
122 struct btrfs_free_space_header
*header
;
123 struct btrfs_inode_item
*inode_item
;
124 struct extent_buffer
*leaf
;
127 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
131 leaf
= path
->nodes
[0];
132 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
133 struct btrfs_inode_item
);
134 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
135 memset_extent_buffer(leaf
, 0, (unsigned long)inode_item
,
136 sizeof(*inode_item
));
137 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
138 btrfs_set_inode_size(leaf
, inode_item
, 0);
139 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
140 btrfs_set_inode_uid(leaf
, inode_item
, 0);
141 btrfs_set_inode_gid(leaf
, inode_item
, 0);
142 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
143 btrfs_set_inode_flags(leaf
, inode_item
, BTRFS_INODE_NOCOMPRESS
|
144 BTRFS_INODE_PREALLOC
);
145 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
146 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
147 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
148 btrfs_mark_buffer_dirty(leaf
);
149 btrfs_release_path(path
);
151 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
155 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
156 sizeof(struct btrfs_free_space_header
));
158 btrfs_release_path(path
);
161 leaf
= path
->nodes
[0];
162 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
163 struct btrfs_free_space_header
);
164 memset_extent_buffer(leaf
, 0, (unsigned long)header
, sizeof(*header
));
165 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
166 btrfs_mark_buffer_dirty(leaf
);
167 btrfs_release_path(path
);
172 int create_free_space_inode(struct btrfs_root
*root
,
173 struct btrfs_trans_handle
*trans
,
174 struct btrfs_block_group_cache
*block_group
,
175 struct btrfs_path
*path
)
180 ret
= btrfs_find_free_objectid(root
, &ino
);
184 return __create_free_space_inode(root
, trans
, path
, ino
,
185 block_group
->key
.objectid
);
188 int btrfs_truncate_free_space_cache(struct btrfs_root
*root
,
189 struct btrfs_trans_handle
*trans
,
190 struct btrfs_path
*path
,
193 struct btrfs_block_rsv
*rsv
;
197 rsv
= trans
->block_rsv
;
198 trans
->block_rsv
= root
->orphan_block_rsv
;
199 ret
= btrfs_block_rsv_check(trans
, root
,
200 root
->orphan_block_rsv
,
205 oldsize
= i_size_read(inode
);
206 btrfs_i_size_write(inode
, 0);
207 truncate_pagecache(inode
, oldsize
, 0);
210 * We don't need an orphan item because truncating the free space cache
211 * will never be split across transactions.
213 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
214 0, BTRFS_EXTENT_DATA_KEY
);
216 trans
->block_rsv
= rsv
;
222 ret
= btrfs_update_inode(trans
, root
, inode
);
226 static int readahead_cache(struct inode
*inode
)
228 struct file_ra_state
*ra
;
229 unsigned long last_index
;
231 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
235 file_ra_state_init(ra
, inode
->i_mapping
);
236 last_index
= (i_size_read(inode
) - 1) >> PAGE_CACHE_SHIFT
;
238 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
245 int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
246 struct btrfs_free_space_ctl
*ctl
,
247 struct btrfs_path
*path
, u64 offset
)
249 struct btrfs_free_space_header
*header
;
250 struct extent_buffer
*leaf
;
252 struct btrfs_key key
;
253 struct list_head bitmaps
;
260 INIT_LIST_HEAD(&bitmaps
);
262 /* Nothing in the space cache, goodbye */
263 if (!i_size_read(inode
))
266 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
270 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
274 btrfs_release_path(path
);
281 leaf
= path
->nodes
[0];
282 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
283 struct btrfs_free_space_header
);
284 num_entries
= btrfs_free_space_entries(leaf
, header
);
285 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
286 generation
= btrfs_free_space_generation(leaf
, header
);
287 btrfs_release_path(path
);
289 if (BTRFS_I(inode
)->generation
!= generation
) {
290 printk(KERN_ERR
"btrfs: free space inode generation (%llu) did"
291 " not match free space cache generation (%llu)\n",
292 (unsigned long long)BTRFS_I(inode
)->generation
,
293 (unsigned long long)generation
);
300 ret
= readahead_cache(inode
);
305 struct btrfs_free_space_entry
*entry
;
306 struct btrfs_free_space
*e
;
308 unsigned long offset
= 0;
311 if (!num_entries
&& !num_bitmaps
)
314 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
318 if (!PageUptodate(page
)) {
319 btrfs_readpage(NULL
, page
);
321 if (!PageUptodate(page
)) {
323 page_cache_release(page
);
324 printk(KERN_ERR
"btrfs: error reading free "
335 * We put a bogus crc in the front of the first page in
336 * case old kernels try to mount a fs with the new
337 * format to make sure they discard the cache.
340 offset
+= sizeof(u64
);
343 if (*gen
!= BTRFS_I(inode
)->generation
) {
344 printk(KERN_ERR
"btrfs: space cache generation"
345 " (%llu) does not match inode (%llu)\n",
346 (unsigned long long)*gen
,
348 BTRFS_I(inode
)->generation
);
351 page_cache_release(page
);
355 offset
+= sizeof(u64
);
364 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
369 page_cache_release(page
);
373 e
->offset
= le64_to_cpu(entry
->offset
);
374 e
->bytes
= le64_to_cpu(entry
->bytes
);
377 kmem_cache_free(btrfs_free_space_cachep
, e
);
379 page_cache_release(page
);
383 if (entry
->type
== BTRFS_FREE_SPACE_EXTENT
) {
384 spin_lock(&ctl
->tree_lock
);
385 ret
= link_free_space(ctl
, e
);
386 spin_unlock(&ctl
->tree_lock
);
388 printk(KERN_ERR
"Duplicate entries in "
389 "free space cache, dumping\n");
392 page_cache_release(page
);
396 e
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
400 btrfs_free_space_cachep
, e
);
402 page_cache_release(page
);
405 spin_lock(&ctl
->tree_lock
);
406 ret
= link_free_space(ctl
, e
);
407 ctl
->total_bitmaps
++;
408 ctl
->op
->recalc_thresholds(ctl
);
409 spin_unlock(&ctl
->tree_lock
);
411 printk(KERN_ERR
"Duplicate entries in "
412 "free space cache, dumping\n");
415 page_cache_release(page
);
418 list_add_tail(&e
->list
, &bitmaps
);
422 offset
+= sizeof(struct btrfs_free_space_entry
);
423 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
430 * We read an entry out of this page, we need to move on to the
439 * We add the bitmaps at the end of the entries in order that
440 * the bitmap entries are added to the cache.
442 e
= list_entry(bitmaps
.next
, struct btrfs_free_space
, list
);
443 list_del_init(&e
->list
);
444 memcpy(e
->bitmap
, addr
, PAGE_CACHE_SIZE
);
449 page_cache_release(page
);
457 __btrfs_remove_free_space_cache(ctl
);
461 int load_free_space_cache(struct btrfs_fs_info
*fs_info
,
462 struct btrfs_block_group_cache
*block_group
)
464 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
465 struct btrfs_root
*root
= fs_info
->tree_root
;
467 struct btrfs_path
*path
;
470 u64 used
= btrfs_block_group_used(&block_group
->item
);
473 * If we're unmounting then just return, since this does a search on the
474 * normal root and not the commit root and we could deadlock.
476 if (btrfs_fs_closing(fs_info
))
480 * If this block group has been marked to be cleared for one reason or
481 * another then we can't trust the on disk cache, so just return.
483 spin_lock(&block_group
->lock
);
484 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
485 spin_unlock(&block_group
->lock
);
488 spin_unlock(&block_group
->lock
);
490 path
= btrfs_alloc_path();
494 inode
= lookup_free_space_inode(root
, block_group
, path
);
496 btrfs_free_path(path
);
500 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
501 path
, block_group
->key
.objectid
);
502 btrfs_free_path(path
);
506 spin_lock(&ctl
->tree_lock
);
507 matched
= (ctl
->free_space
== (block_group
->key
.offset
- used
-
508 block_group
->bytes_super
));
509 spin_unlock(&ctl
->tree_lock
);
512 __btrfs_remove_free_space_cache(ctl
);
513 printk(KERN_ERR
"block group %llu has an wrong amount of free "
514 "space\n", block_group
->key
.objectid
);
519 /* This cache is bogus, make sure it gets cleared */
520 spin_lock(&block_group
->lock
);
521 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
522 spin_unlock(&block_group
->lock
);
525 printk(KERN_ERR
"btrfs: failed to load free space cache "
526 "for block group %llu\n", block_group
->key
.objectid
);
533 int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
534 struct btrfs_free_space_ctl
*ctl
,
535 struct btrfs_block_group_cache
*block_group
,
536 struct btrfs_trans_handle
*trans
,
537 struct btrfs_path
*path
, u64 offset
)
539 struct btrfs_free_space_header
*header
;
540 struct extent_buffer
*leaf
;
541 struct rb_node
*node
;
542 struct list_head
*pos
, *n
;
545 struct extent_state
*cached_state
= NULL
;
546 struct btrfs_free_cluster
*cluster
= NULL
;
547 struct extent_io_tree
*unpin
= NULL
;
548 struct list_head bitmap_list
;
549 struct btrfs_key key
;
553 int index
= 0, num_pages
= 0;
557 bool next_page
= false;
558 bool out_of_space
= false;
560 INIT_LIST_HEAD(&bitmap_list
);
562 node
= rb_first(&ctl
->free_space_offset
);
566 if (!i_size_read(inode
))
569 num_pages
= (i_size_read(inode
) + PAGE_CACHE_SIZE
- 1) >>
572 filemap_write_and_wait(inode
->i_mapping
);
573 btrfs_wait_ordered_range(inode
, inode
->i_size
&
574 ~(root
->sectorsize
- 1), (u64
)-1);
576 pages
= kzalloc(sizeof(struct page
*) * num_pages
, GFP_NOFS
);
580 /* Get the cluster for this block_group if it exists */
581 if (block_group
&& !list_empty(&block_group
->cluster_list
))
582 cluster
= list_entry(block_group
->cluster_list
.next
,
583 struct btrfs_free_cluster
,
587 * We shouldn't have switched the pinned extents yet so this is the
590 unpin
= root
->fs_info
->pinned_extents
;
593 * Lock all pages first so we can lock the extent safely.
595 * NOTE: Because we hold the ref the entire time we're going to write to
596 * the page find_get_page should never fail, so we don't do a check
597 * after find_get_page at this point. Just putting this here so people
598 * know and don't freak out.
600 while (index
< num_pages
) {
601 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_NOFS
);
605 for (i
= 0; i
< num_pages
; i
++) {
606 unlock_page(pages
[i
]);
607 page_cache_release(pages
[i
]);
616 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
617 0, &cached_state
, GFP_NOFS
);
620 * When searching for pinned extents, we need to start at our start
624 start
= block_group
->key
.objectid
;
626 /* Write out the extent entries */
628 struct btrfs_free_space_entry
*entry
;
630 unsigned long offset
= 0;
634 if (index
>= num_pages
) {
641 orig
= addr
= kmap(page
);
646 * We're going to put in a bogus crc for this page to
647 * make sure that old kernels who aren't aware of this
648 * format will be sure to discard the cache.
651 offset
+= sizeof(u64
);
654 *gen
= trans
->transid
;
656 offset
+= sizeof(u64
);
660 memset(addr
, 0, PAGE_CACHE_SIZE
- offset
);
661 while (node
&& !next_page
) {
662 struct btrfs_free_space
*e
;
664 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
667 entry
->offset
= cpu_to_le64(e
->offset
);
668 entry
->bytes
= cpu_to_le64(e
->bytes
);
670 entry
->type
= BTRFS_FREE_SPACE_BITMAP
;
671 list_add_tail(&e
->list
, &bitmap_list
);
674 entry
->type
= BTRFS_FREE_SPACE_EXTENT
;
676 node
= rb_next(node
);
677 if (!node
&& cluster
) {
678 node
= rb_first(&cluster
->root
);
681 offset
+= sizeof(struct btrfs_free_space_entry
);
682 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
689 * We want to add any pinned extents to our free space cache
690 * so we don't leak the space
692 while (block_group
&& !next_page
&&
693 (start
< block_group
->key
.objectid
+
694 block_group
->key
.offset
)) {
695 ret
= find_first_extent_bit(unpin
, start
, &start
, &end
,
702 /* This pinned extent is out of our range */
703 if (start
>= block_group
->key
.objectid
+
704 block_group
->key
.offset
)
707 len
= block_group
->key
.objectid
+
708 block_group
->key
.offset
- start
;
709 len
= min(len
, end
+ 1 - start
);
712 entry
->offset
= cpu_to_le64(start
);
713 entry
->bytes
= cpu_to_le64(len
);
714 entry
->type
= BTRFS_FREE_SPACE_EXTENT
;
717 offset
+= sizeof(struct btrfs_free_space_entry
);
718 if (offset
+ sizeof(struct btrfs_free_space_entry
) >=
724 /* Generate bogus crc value */
727 crc
= btrfs_csum_data(root
, orig
+ sizeof(u64
), crc
,
728 PAGE_CACHE_SIZE
- sizeof(u64
));
729 btrfs_csum_final(crc
, (char *)&crc
);
737 bytes
+= PAGE_CACHE_SIZE
;
740 } while (node
|| next_page
);
742 /* Write out the bitmaps */
743 list_for_each_safe(pos
, n
, &bitmap_list
) {
745 struct btrfs_free_space
*entry
=
746 list_entry(pos
, struct btrfs_free_space
, list
);
748 if (index
>= num_pages
) {
755 memcpy(addr
, entry
->bitmap
, PAGE_CACHE_SIZE
);
757 bytes
+= PAGE_CACHE_SIZE
;
759 list_del_init(&entry
->list
);
764 btrfs_drop_pages(pages
, num_pages
);
765 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
766 i_size_read(inode
) - 1, &cached_state
,
772 /* Zero out the rest of the pages just to make sure */
773 while (index
< num_pages
) {
778 memset(addr
, 0, PAGE_CACHE_SIZE
);
780 bytes
+= PAGE_CACHE_SIZE
;
784 ret
= btrfs_dirty_pages(root
, inode
, pages
, num_pages
, 0,
785 bytes
, &cached_state
);
786 btrfs_drop_pages(pages
, num_pages
);
787 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
788 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
795 BTRFS_I(inode
)->generation
= trans
->transid
;
797 filemap_write_and_wait(inode
->i_mapping
);
799 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
803 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 1, 1);
806 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, bytes
- 1,
807 EXTENT_DIRTY
| EXTENT_DELALLOC
|
808 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
, GFP_NOFS
);
811 leaf
= path
->nodes
[0];
813 struct btrfs_key found_key
;
814 BUG_ON(!path
->slots
[0]);
816 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
817 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
818 found_key
.offset
!= offset
) {
820 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, bytes
- 1,
821 EXTENT_DIRTY
| EXTENT_DELALLOC
|
822 EXTENT_DO_ACCOUNTING
, 0, 0, NULL
,
824 btrfs_release_path(path
);
828 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
829 struct btrfs_free_space_header
);
830 btrfs_set_free_space_entries(leaf
, header
, entries
);
831 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
832 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
833 btrfs_mark_buffer_dirty(leaf
);
834 btrfs_release_path(path
);
841 invalidate_inode_pages2_range(inode
->i_mapping
, 0, index
);
842 BTRFS_I(inode
)->generation
= 0;
844 btrfs_update_inode(trans
, root
, inode
);
848 int btrfs_write_out_cache(struct btrfs_root
*root
,
849 struct btrfs_trans_handle
*trans
,
850 struct btrfs_block_group_cache
*block_group
,
851 struct btrfs_path
*path
)
853 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
857 root
= root
->fs_info
->tree_root
;
859 spin_lock(&block_group
->lock
);
860 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
861 spin_unlock(&block_group
->lock
);
864 spin_unlock(&block_group
->lock
);
866 inode
= lookup_free_space_inode(root
, block_group
, path
);
870 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, block_group
, trans
,
871 path
, block_group
->key
.objectid
);
873 spin_lock(&block_group
->lock
);
874 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
875 spin_unlock(&block_group
->lock
);
878 printk(KERN_ERR
"btrfs: failed to write free space cace "
879 "for block group %llu\n", block_group
->key
.objectid
);
886 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
889 BUG_ON(offset
< bitmap_start
);
890 offset
-= bitmap_start
;
891 return (unsigned long)(div_u64(offset
, unit
));
894 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
896 return (unsigned long)(div_u64(bytes
, unit
));
899 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
903 u64 bytes_per_bitmap
;
905 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
906 bitmap_start
= offset
- ctl
->start
;
907 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
908 bitmap_start
*= bytes_per_bitmap
;
909 bitmap_start
+= ctl
->start
;
914 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
915 struct rb_node
*node
, int bitmap
)
917 struct rb_node
**p
= &root
->rb_node
;
918 struct rb_node
*parent
= NULL
;
919 struct btrfs_free_space
*info
;
923 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
925 if (offset
< info
->offset
) {
927 } else if (offset
> info
->offset
) {
931 * we could have a bitmap entry and an extent entry
932 * share the same offset. If this is the case, we want
933 * the extent entry to always be found first if we do a
934 * linear search through the tree, since we want to have
935 * the quickest allocation time, and allocating from an
936 * extent is faster than allocating from a bitmap. So
937 * if we're inserting a bitmap and we find an entry at
938 * this offset, we want to go right, or after this entry
939 * logically. If we are inserting an extent and we've
940 * found a bitmap, we want to go left, or before
959 rb_link_node(node
, parent
, p
);
960 rb_insert_color(node
, root
);
966 * searches the tree for the given offset.
968 * fuzzy - If this is set, then we are trying to make an allocation, and we just
969 * want a section that has at least bytes size and comes at or after the given
972 static struct btrfs_free_space
*
973 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
974 u64 offset
, int bitmap_only
, int fuzzy
)
976 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
977 struct btrfs_free_space
*entry
, *prev
= NULL
;
979 /* find entry that is closest to the 'offset' */
986 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
989 if (offset
< entry
->offset
)
991 else if (offset
> entry
->offset
)
1004 * bitmap entry and extent entry may share same offset,
1005 * in that case, bitmap entry comes after extent entry.
1010 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1011 if (entry
->offset
!= offset
)
1014 WARN_ON(!entry
->bitmap
);
1017 if (entry
->bitmap
) {
1019 * if previous extent entry covers the offset,
1020 * we should return it instead of the bitmap entry
1022 n
= &entry
->offset_index
;
1027 prev
= rb_entry(n
, struct btrfs_free_space
,
1029 if (!prev
->bitmap
) {
1030 if (prev
->offset
+ prev
->bytes
> offset
)
1042 /* find last entry before the 'offset' */
1044 if (entry
->offset
> offset
) {
1045 n
= rb_prev(&entry
->offset_index
);
1047 entry
= rb_entry(n
, struct btrfs_free_space
,
1049 BUG_ON(entry
->offset
> offset
);
1058 if (entry
->bitmap
) {
1059 n
= &entry
->offset_index
;
1064 prev
= rb_entry(n
, struct btrfs_free_space
,
1066 if (!prev
->bitmap
) {
1067 if (prev
->offset
+ prev
->bytes
> offset
)
1072 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1074 } else if (entry
->offset
+ entry
->bytes
> offset
)
1081 if (entry
->bitmap
) {
1082 if (entry
->offset
+ BITS_PER_BITMAP
*
1086 if (entry
->offset
+ entry
->bytes
> offset
)
1090 n
= rb_next(&entry
->offset_index
);
1093 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1099 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1100 struct btrfs_free_space
*info
)
1102 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1103 ctl
->free_extents
--;
1106 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1107 struct btrfs_free_space
*info
)
1109 __unlink_free_space(ctl
, info
);
1110 ctl
->free_space
-= info
->bytes
;
1113 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1114 struct btrfs_free_space
*info
)
1118 BUG_ON(!info
->bitmap
&& !info
->bytes
);
1119 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1120 &info
->offset_index
, (info
->bitmap
!= NULL
));
1124 ctl
->free_space
+= info
->bytes
;
1125 ctl
->free_extents
++;
1129 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1131 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1135 u64 size
= block_group
->key
.offset
;
1136 u64 bytes_per_bg
= BITS_PER_BITMAP
* block_group
->sectorsize
;
1137 int max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1139 BUG_ON(ctl
->total_bitmaps
> max_bitmaps
);
1142 * The goal is to keep the total amount of memory used per 1gb of space
1143 * at or below 32k, so we need to adjust how much memory we allow to be
1144 * used by extent based free space tracking
1146 if (size
< 1024 * 1024 * 1024)
1147 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1149 max_bytes
= MAX_CACHE_BYTES_PER_GIG
*
1150 div64_u64(size
, 1024 * 1024 * 1024);
1153 * we want to account for 1 more bitmap than what we have so we can make
1154 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1155 * we add more bitmaps.
1157 bitmap_bytes
= (ctl
->total_bitmaps
+ 1) * PAGE_CACHE_SIZE
;
1159 if (bitmap_bytes
>= max_bytes
) {
1160 ctl
->extents_thresh
= 0;
1165 * we want the extent entry threshold to always be at most 1/2 the maxw
1166 * bytes we can have, or whatever is less than that.
1168 extent_bytes
= max_bytes
- bitmap_bytes
;
1169 extent_bytes
= min_t(u64
, extent_bytes
, div64_u64(max_bytes
, 2));
1171 ctl
->extents_thresh
=
1172 div64_u64(extent_bytes
, (sizeof(struct btrfs_free_space
)));
1175 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1176 struct btrfs_free_space
*info
,
1177 u64 offset
, u64 bytes
)
1179 unsigned long start
, count
;
1181 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1182 count
= bytes_to_bits(bytes
, ctl
->unit
);
1183 BUG_ON(start
+ count
> BITS_PER_BITMAP
);
1185 bitmap_clear(info
->bitmap
, start
, count
);
1187 info
->bytes
-= bytes
;
1190 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1191 struct btrfs_free_space
*info
, u64 offset
,
1194 __bitmap_clear_bits(ctl
, info
, offset
, bytes
);
1195 ctl
->free_space
-= bytes
;
1198 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1199 struct btrfs_free_space
*info
, u64 offset
,
1202 unsigned long start
, count
;
1204 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1205 count
= bytes_to_bits(bytes
, ctl
->unit
);
1206 BUG_ON(start
+ count
> BITS_PER_BITMAP
);
1208 bitmap_set(info
->bitmap
, start
, count
);
1210 info
->bytes
+= bytes
;
1211 ctl
->free_space
+= bytes
;
1214 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1215 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1218 unsigned long found_bits
= 0;
1219 unsigned long bits
, i
;
1220 unsigned long next_zero
;
1222 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1223 max_t(u64
, *offset
, bitmap_info
->offset
));
1224 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1226 for (i
= find_next_bit(bitmap_info
->bitmap
, BITS_PER_BITMAP
, i
);
1227 i
< BITS_PER_BITMAP
;
1228 i
= find_next_bit(bitmap_info
->bitmap
, BITS_PER_BITMAP
, i
+ 1)) {
1229 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1230 BITS_PER_BITMAP
, i
);
1231 if ((next_zero
- i
) >= bits
) {
1232 found_bits
= next_zero
- i
;
1239 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1240 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1247 static struct btrfs_free_space
*
1248 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
)
1250 struct btrfs_free_space
*entry
;
1251 struct rb_node
*node
;
1254 if (!ctl
->free_space_offset
.rb_node
)
1257 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1261 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1262 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1263 if (entry
->bytes
< *bytes
)
1266 if (entry
->bitmap
) {
1267 ret
= search_bitmap(ctl
, entry
, offset
, bytes
);
1273 *offset
= entry
->offset
;
1274 *bytes
= entry
->bytes
;
1281 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1282 struct btrfs_free_space
*info
, u64 offset
)
1284 info
->offset
= offset_to_bitmap(ctl
, offset
);
1286 link_free_space(ctl
, info
);
1287 ctl
->total_bitmaps
++;
1289 ctl
->op
->recalc_thresholds(ctl
);
1292 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1293 struct btrfs_free_space
*bitmap_info
)
1295 unlink_free_space(ctl
, bitmap_info
);
1296 kfree(bitmap_info
->bitmap
);
1297 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1298 ctl
->total_bitmaps
--;
1299 ctl
->op
->recalc_thresholds(ctl
);
1302 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1303 struct btrfs_free_space
*bitmap_info
,
1304 u64
*offset
, u64
*bytes
)
1307 u64 search_start
, search_bytes
;
1311 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1314 * XXX - this can go away after a few releases.
1316 * since the only user of btrfs_remove_free_space is the tree logging
1317 * stuff, and the only way to test that is under crash conditions, we
1318 * want to have this debug stuff here just in case somethings not
1319 * working. Search the bitmap for the space we are trying to use to
1320 * make sure its actually there. If its not there then we need to stop
1321 * because something has gone wrong.
1323 search_start
= *offset
;
1324 search_bytes
= *bytes
;
1325 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1326 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
);
1327 BUG_ON(ret
< 0 || search_start
!= *offset
);
1329 if (*offset
> bitmap_info
->offset
&& *offset
+ *bytes
> end
) {
1330 bitmap_clear_bits(ctl
, bitmap_info
, *offset
, end
- *offset
+ 1);
1331 *bytes
-= end
- *offset
+ 1;
1333 } else if (*offset
>= bitmap_info
->offset
&& *offset
+ *bytes
<= end
) {
1334 bitmap_clear_bits(ctl
, bitmap_info
, *offset
, *bytes
);
1339 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1340 if (!bitmap_info
->bytes
)
1341 free_bitmap(ctl
, bitmap_info
);
1344 * no entry after this bitmap, but we still have bytes to
1345 * remove, so something has gone wrong.
1350 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1354 * if the next entry isn't a bitmap we need to return to let the
1355 * extent stuff do its work.
1357 if (!bitmap_info
->bitmap
)
1361 * Ok the next item is a bitmap, but it may not actually hold
1362 * the information for the rest of this free space stuff, so
1363 * look for it, and if we don't find it return so we can try
1364 * everything over again.
1366 search_start
= *offset
;
1367 search_bytes
= *bytes
;
1368 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
1370 if (ret
< 0 || search_start
!= *offset
)
1374 } else if (!bitmap_info
->bytes
)
1375 free_bitmap(ctl
, bitmap_info
);
1380 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1381 struct btrfs_free_space
*info
, u64 offset
,
1384 u64 bytes_to_set
= 0;
1387 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
1389 bytes_to_set
= min(end
- offset
, bytes
);
1391 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
1393 return bytes_to_set
;
1397 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
1398 struct btrfs_free_space
*info
)
1400 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1403 * If we are below the extents threshold then we can add this as an
1404 * extent, and don't have to deal with the bitmap
1406 if (ctl
->free_extents
< ctl
->extents_thresh
) {
1408 * If this block group has some small extents we don't want to
1409 * use up all of our free slots in the cache with them, we want
1410 * to reserve them to larger extents, however if we have plent
1411 * of cache left then go ahead an dadd them, no sense in adding
1412 * the overhead of a bitmap if we don't have to.
1414 if (info
->bytes
<= block_group
->sectorsize
* 4) {
1415 if (ctl
->free_extents
* 2 <= ctl
->extents_thresh
)
1423 * some block groups are so tiny they can't be enveloped by a bitmap, so
1424 * don't even bother to create a bitmap for this
1426 if (BITS_PER_BITMAP
* block_group
->sectorsize
>
1427 block_group
->key
.offset
)
1433 static struct btrfs_free_space_op free_space_op
= {
1434 .recalc_thresholds
= recalculate_thresholds
,
1435 .use_bitmap
= use_bitmap
,
1438 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
1439 struct btrfs_free_space
*info
)
1441 struct btrfs_free_space
*bitmap_info
;
1442 struct btrfs_block_group_cache
*block_group
= NULL
;
1444 u64 bytes
, offset
, bytes_added
;
1447 bytes
= info
->bytes
;
1448 offset
= info
->offset
;
1450 if (!ctl
->op
->use_bitmap(ctl
, info
))
1453 if (ctl
->op
== &free_space_op
)
1454 block_group
= ctl
->private;
1457 * Since we link bitmaps right into the cluster we need to see if we
1458 * have a cluster here, and if so and it has our bitmap we need to add
1459 * the free space to that bitmap.
1461 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
1462 struct btrfs_free_cluster
*cluster
;
1463 struct rb_node
*node
;
1464 struct btrfs_free_space
*entry
;
1466 cluster
= list_entry(block_group
->cluster_list
.next
,
1467 struct btrfs_free_cluster
,
1469 spin_lock(&cluster
->lock
);
1470 node
= rb_first(&cluster
->root
);
1472 spin_unlock(&cluster
->lock
);
1473 goto no_cluster_bitmap
;
1476 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1477 if (!entry
->bitmap
) {
1478 spin_unlock(&cluster
->lock
);
1479 goto no_cluster_bitmap
;
1482 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
1483 bytes_added
= add_bytes_to_bitmap(ctl
, entry
,
1485 bytes
-= bytes_added
;
1486 offset
+= bytes_added
;
1488 spin_unlock(&cluster
->lock
);
1496 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1503 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
1504 bytes
-= bytes_added
;
1505 offset
+= bytes_added
;
1515 if (info
&& info
->bitmap
) {
1516 add_new_bitmap(ctl
, info
, offset
);
1521 spin_unlock(&ctl
->tree_lock
);
1523 /* no pre-allocated info, allocate a new one */
1525 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
1528 spin_lock(&ctl
->tree_lock
);
1534 /* allocate the bitmap */
1535 info
->bitmap
= kzalloc(PAGE_CACHE_SIZE
, GFP_NOFS
);
1536 spin_lock(&ctl
->tree_lock
);
1537 if (!info
->bitmap
) {
1547 kfree(info
->bitmap
);
1548 kmem_cache_free(btrfs_free_space_cachep
, info
);
1554 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
1555 struct btrfs_free_space
*info
, bool update_stat
)
1557 struct btrfs_free_space
*left_info
;
1558 struct btrfs_free_space
*right_info
;
1559 bool merged
= false;
1560 u64 offset
= info
->offset
;
1561 u64 bytes
= info
->bytes
;
1564 * first we want to see if there is free space adjacent to the range we
1565 * are adding, if there is remove that struct and add a new one to
1566 * cover the entire range
1568 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
1569 if (right_info
&& rb_prev(&right_info
->offset_index
))
1570 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
1571 struct btrfs_free_space
, offset_index
);
1573 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
1575 if (right_info
&& !right_info
->bitmap
) {
1577 unlink_free_space(ctl
, right_info
);
1579 __unlink_free_space(ctl
, right_info
);
1580 info
->bytes
+= right_info
->bytes
;
1581 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
1585 if (left_info
&& !left_info
->bitmap
&&
1586 left_info
->offset
+ left_info
->bytes
== offset
) {
1588 unlink_free_space(ctl
, left_info
);
1590 __unlink_free_space(ctl
, left_info
);
1591 info
->offset
= left_info
->offset
;
1592 info
->bytes
+= left_info
->bytes
;
1593 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
1600 int __btrfs_add_free_space(struct btrfs_free_space_ctl
*ctl
,
1601 u64 offset
, u64 bytes
)
1603 struct btrfs_free_space
*info
;
1606 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
1610 info
->offset
= offset
;
1611 info
->bytes
= bytes
;
1613 spin_lock(&ctl
->tree_lock
);
1615 if (try_merge_free_space(ctl
, info
, true))
1619 * There was no extent directly to the left or right of this new
1620 * extent then we know we're going to have to allocate a new extent, so
1621 * before we do that see if we need to drop this into a bitmap
1623 ret
= insert_into_bitmap(ctl
, info
);
1631 ret
= link_free_space(ctl
, info
);
1633 kmem_cache_free(btrfs_free_space_cachep
, info
);
1635 spin_unlock(&ctl
->tree_lock
);
1638 printk(KERN_CRIT
"btrfs: unable to add free space :%d\n", ret
);
1639 BUG_ON(ret
== -EEXIST
);
1645 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
1646 u64 offset
, u64 bytes
)
1648 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1649 struct btrfs_free_space
*info
;
1650 struct btrfs_free_space
*next_info
= NULL
;
1653 spin_lock(&ctl
->tree_lock
);
1656 info
= tree_search_offset(ctl
, offset
, 0, 0);
1659 * oops didn't find an extent that matched the space we wanted
1660 * to remove, look for a bitmap instead
1662 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
1670 if (info
->bytes
< bytes
&& rb_next(&info
->offset_index
)) {
1672 next_info
= rb_entry(rb_next(&info
->offset_index
),
1673 struct btrfs_free_space
,
1676 if (next_info
->bitmap
)
1677 end
= next_info
->offset
+
1678 BITS_PER_BITMAP
* ctl
->unit
- 1;
1680 end
= next_info
->offset
+ next_info
->bytes
;
1682 if (next_info
->bytes
< bytes
||
1683 next_info
->offset
> offset
|| offset
> end
) {
1684 printk(KERN_CRIT
"Found free space at %llu, size %llu,"
1685 " trying to use %llu\n",
1686 (unsigned long long)info
->offset
,
1687 (unsigned long long)info
->bytes
,
1688 (unsigned long long)bytes
);
1697 if (info
->bytes
== bytes
) {
1698 unlink_free_space(ctl
, info
);
1700 kfree(info
->bitmap
);
1701 ctl
->total_bitmaps
--;
1703 kmem_cache_free(btrfs_free_space_cachep
, info
);
1707 if (!info
->bitmap
&& info
->offset
== offset
) {
1708 unlink_free_space(ctl
, info
);
1709 info
->offset
+= bytes
;
1710 info
->bytes
-= bytes
;
1711 link_free_space(ctl
, info
);
1715 if (!info
->bitmap
&& info
->offset
<= offset
&&
1716 info
->offset
+ info
->bytes
>= offset
+ bytes
) {
1717 u64 old_start
= info
->offset
;
1719 * we're freeing space in the middle of the info,
1720 * this can happen during tree log replay
1722 * first unlink the old info and then
1723 * insert it again after the hole we're creating
1725 unlink_free_space(ctl
, info
);
1726 if (offset
+ bytes
< info
->offset
+ info
->bytes
) {
1727 u64 old_end
= info
->offset
+ info
->bytes
;
1729 info
->offset
= offset
+ bytes
;
1730 info
->bytes
= old_end
- info
->offset
;
1731 ret
= link_free_space(ctl
, info
);
1736 /* the hole we're creating ends at the end
1737 * of the info struct, just free the info
1739 kmem_cache_free(btrfs_free_space_cachep
, info
);
1741 spin_unlock(&ctl
->tree_lock
);
1743 /* step two, insert a new info struct to cover
1744 * anything before the hole
1746 ret
= btrfs_add_free_space(block_group
, old_start
,
1747 offset
- old_start
);
1752 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
1757 spin_unlock(&ctl
->tree_lock
);
1762 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
1765 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1766 struct btrfs_free_space
*info
;
1770 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
1771 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1772 if (info
->bytes
>= bytes
)
1774 printk(KERN_CRIT
"entry offset %llu, bytes %llu, bitmap %s\n",
1775 (unsigned long long)info
->offset
,
1776 (unsigned long long)info
->bytes
,
1777 (info
->bitmap
) ? "yes" : "no");
1779 printk(KERN_INFO
"block group has cluster?: %s\n",
1780 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
1781 printk(KERN_INFO
"%d blocks of free space at or bigger than bytes is"
1785 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache
*block_group
)
1787 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1789 spin_lock_init(&ctl
->tree_lock
);
1790 ctl
->unit
= block_group
->sectorsize
;
1791 ctl
->start
= block_group
->key
.objectid
;
1792 ctl
->private = block_group
;
1793 ctl
->op
= &free_space_op
;
1796 * we only want to have 32k of ram per block group for keeping
1797 * track of free space, and if we pass 1/2 of that we want to
1798 * start converting things over to using bitmaps
1800 ctl
->extents_thresh
= ((1024 * 32) / 2) /
1801 sizeof(struct btrfs_free_space
);
1805 * for a given cluster, put all of its extents back into the free
1806 * space cache. If the block group passed doesn't match the block group
1807 * pointed to by the cluster, someone else raced in and freed the
1808 * cluster already. In that case, we just return without changing anything
1811 __btrfs_return_cluster_to_free_space(
1812 struct btrfs_block_group_cache
*block_group
,
1813 struct btrfs_free_cluster
*cluster
)
1815 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1816 struct btrfs_free_space
*entry
;
1817 struct rb_node
*node
;
1819 spin_lock(&cluster
->lock
);
1820 if (cluster
->block_group
!= block_group
)
1823 cluster
->block_group
= NULL
;
1824 cluster
->window_start
= 0;
1825 list_del_init(&cluster
->block_group_list
);
1827 node
= rb_first(&cluster
->root
);
1831 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1832 node
= rb_next(&entry
->offset_index
);
1833 rb_erase(&entry
->offset_index
, &cluster
->root
);
1835 bitmap
= (entry
->bitmap
!= NULL
);
1837 try_merge_free_space(ctl
, entry
, false);
1838 tree_insert_offset(&ctl
->free_space_offset
,
1839 entry
->offset
, &entry
->offset_index
, bitmap
);
1841 cluster
->root
= RB_ROOT
;
1844 spin_unlock(&cluster
->lock
);
1845 btrfs_put_block_group(block_group
);
1849 void __btrfs_remove_free_space_cache_locked(struct btrfs_free_space_ctl
*ctl
)
1851 struct btrfs_free_space
*info
;
1852 struct rb_node
*node
;
1854 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
1855 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1856 if (!info
->bitmap
) {
1857 unlink_free_space(ctl
, info
);
1858 kmem_cache_free(btrfs_free_space_cachep
, info
);
1860 free_bitmap(ctl
, info
);
1862 if (need_resched()) {
1863 spin_unlock(&ctl
->tree_lock
);
1865 spin_lock(&ctl
->tree_lock
);
1870 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
1872 spin_lock(&ctl
->tree_lock
);
1873 __btrfs_remove_free_space_cache_locked(ctl
);
1874 spin_unlock(&ctl
->tree_lock
);
1877 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
1879 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1880 struct btrfs_free_cluster
*cluster
;
1881 struct list_head
*head
;
1883 spin_lock(&ctl
->tree_lock
);
1884 while ((head
= block_group
->cluster_list
.next
) !=
1885 &block_group
->cluster_list
) {
1886 cluster
= list_entry(head
, struct btrfs_free_cluster
,
1889 WARN_ON(cluster
->block_group
!= block_group
);
1890 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
1891 if (need_resched()) {
1892 spin_unlock(&ctl
->tree_lock
);
1894 spin_lock(&ctl
->tree_lock
);
1897 __btrfs_remove_free_space_cache_locked(ctl
);
1898 spin_unlock(&ctl
->tree_lock
);
1902 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
1903 u64 offset
, u64 bytes
, u64 empty_size
)
1905 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1906 struct btrfs_free_space
*entry
= NULL
;
1907 u64 bytes_search
= bytes
+ empty_size
;
1910 spin_lock(&ctl
->tree_lock
);
1911 entry
= find_free_space(ctl
, &offset
, &bytes_search
);
1916 if (entry
->bitmap
) {
1917 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
1919 free_bitmap(ctl
, entry
);
1921 unlink_free_space(ctl
, entry
);
1922 entry
->offset
+= bytes
;
1923 entry
->bytes
-= bytes
;
1925 kmem_cache_free(btrfs_free_space_cachep
, entry
);
1927 link_free_space(ctl
, entry
);
1931 spin_unlock(&ctl
->tree_lock
);
1937 * given a cluster, put all of its extents back into the free space
1938 * cache. If a block group is passed, this function will only free
1939 * a cluster that belongs to the passed block group.
1941 * Otherwise, it'll get a reference on the block group pointed to by the
1942 * cluster and remove the cluster from it.
1944 int btrfs_return_cluster_to_free_space(
1945 struct btrfs_block_group_cache
*block_group
,
1946 struct btrfs_free_cluster
*cluster
)
1948 struct btrfs_free_space_ctl
*ctl
;
1951 /* first, get a safe pointer to the block group */
1952 spin_lock(&cluster
->lock
);
1954 block_group
= cluster
->block_group
;
1956 spin_unlock(&cluster
->lock
);
1959 } else if (cluster
->block_group
!= block_group
) {
1960 /* someone else has already freed it don't redo their work */
1961 spin_unlock(&cluster
->lock
);
1964 atomic_inc(&block_group
->count
);
1965 spin_unlock(&cluster
->lock
);
1967 ctl
= block_group
->free_space_ctl
;
1969 /* now return any extents the cluster had on it */
1970 spin_lock(&ctl
->tree_lock
);
1971 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
1972 spin_unlock(&ctl
->tree_lock
);
1974 /* finally drop our ref */
1975 btrfs_put_block_group(block_group
);
1979 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
1980 struct btrfs_free_cluster
*cluster
,
1981 struct btrfs_free_space
*entry
,
1982 u64 bytes
, u64 min_start
)
1984 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1986 u64 search_start
= cluster
->window_start
;
1987 u64 search_bytes
= bytes
;
1990 search_start
= min_start
;
1991 search_bytes
= bytes
;
1993 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
);
1998 __bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2004 * given a cluster, try to allocate 'bytes' from it, returns 0
2005 * if it couldn't find anything suitably large, or a logical disk offset
2006 * if things worked out
2008 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
2009 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2012 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2013 struct btrfs_free_space
*entry
= NULL
;
2014 struct rb_node
*node
;
2017 spin_lock(&cluster
->lock
);
2018 if (bytes
> cluster
->max_size
)
2021 if (cluster
->block_group
!= block_group
)
2024 node
= rb_first(&cluster
->root
);
2028 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2030 if (entry
->bytes
< bytes
||
2031 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
2032 node
= rb_next(&entry
->offset_index
);
2035 entry
= rb_entry(node
, struct btrfs_free_space
,
2040 if (entry
->bitmap
) {
2041 ret
= btrfs_alloc_from_bitmap(block_group
,
2042 cluster
, entry
, bytes
,
2045 node
= rb_next(&entry
->offset_index
);
2048 entry
= rb_entry(node
, struct btrfs_free_space
,
2053 ret
= entry
->offset
;
2055 entry
->offset
+= bytes
;
2056 entry
->bytes
-= bytes
;
2059 if (entry
->bytes
== 0)
2060 rb_erase(&entry
->offset_index
, &cluster
->root
);
2064 spin_unlock(&cluster
->lock
);
2069 spin_lock(&ctl
->tree_lock
);
2071 ctl
->free_space
-= bytes
;
2072 if (entry
->bytes
== 0) {
2073 ctl
->free_extents
--;
2074 if (entry
->bitmap
) {
2075 kfree(entry
->bitmap
);
2076 ctl
->total_bitmaps
--;
2077 ctl
->op
->recalc_thresholds(ctl
);
2079 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2082 spin_unlock(&ctl
->tree_lock
);
2087 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
2088 struct btrfs_free_space
*entry
,
2089 struct btrfs_free_cluster
*cluster
,
2090 u64 offset
, u64 bytes
, u64 min_bytes
)
2092 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2093 unsigned long next_zero
;
2095 unsigned long search_bits
;
2096 unsigned long total_bits
;
2097 unsigned long found_bits
;
2098 unsigned long start
= 0;
2099 unsigned long total_found
= 0;
2103 i
= offset_to_bit(entry
->offset
, block_group
->sectorsize
,
2104 max_t(u64
, offset
, entry
->offset
));
2105 search_bits
= bytes_to_bits(bytes
, block_group
->sectorsize
);
2106 total_bits
= bytes_to_bits(min_bytes
, block_group
->sectorsize
);
2110 for (i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, i
);
2111 i
< BITS_PER_BITMAP
;
2112 i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, i
+ 1)) {
2113 next_zero
= find_next_zero_bit(entry
->bitmap
,
2114 BITS_PER_BITMAP
, i
);
2115 if (next_zero
- i
>= search_bits
) {
2116 found_bits
= next_zero
- i
;
2130 total_found
+= found_bits
;
2132 if (cluster
->max_size
< found_bits
* block_group
->sectorsize
)
2133 cluster
->max_size
= found_bits
* block_group
->sectorsize
;
2135 if (total_found
< total_bits
) {
2136 i
= find_next_bit(entry
->bitmap
, BITS_PER_BITMAP
, next_zero
);
2137 if (i
- start
> total_bits
* 2) {
2139 cluster
->max_size
= 0;
2145 cluster
->window_start
= start
* block_group
->sectorsize
+
2147 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2148 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2149 &entry
->offset_index
, 1);
2156 * This searches the block group for just extents to fill the cluster with.
2159 setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2160 struct btrfs_free_cluster
*cluster
,
2161 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2164 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2165 struct btrfs_free_space
*first
= NULL
;
2166 struct btrfs_free_space
*entry
= NULL
;
2167 struct btrfs_free_space
*prev
= NULL
;
2168 struct btrfs_free_space
*last
;
2169 struct rb_node
*node
;
2173 u64 max_gap
= 128 * 1024;
2175 entry
= tree_search_offset(ctl
, offset
, 0, 1);
2180 * We don't want bitmaps, so just move along until we find a normal
2183 while (entry
->bitmap
) {
2184 if (list_empty(&entry
->list
))
2185 list_add_tail(&entry
->list
, bitmaps
);
2186 node
= rb_next(&entry
->offset_index
);
2189 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2192 window_start
= entry
->offset
;
2193 window_free
= entry
->bytes
;
2194 max_extent
= entry
->bytes
;
2199 while (window_free
<= min_bytes
) {
2200 node
= rb_next(&entry
->offset_index
);
2203 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2205 if (entry
->bitmap
) {
2206 if (list_empty(&entry
->list
))
2207 list_add_tail(&entry
->list
, bitmaps
);
2212 * we haven't filled the empty size and the window is
2213 * very large. reset and try again
2215 if (entry
->offset
- (prev
->offset
+ prev
->bytes
) > max_gap
||
2216 entry
->offset
- window_start
> (min_bytes
* 2)) {
2218 window_start
= entry
->offset
;
2219 window_free
= entry
->bytes
;
2221 max_extent
= entry
->bytes
;
2224 window_free
+= entry
->bytes
;
2225 if (entry
->bytes
> max_extent
)
2226 max_extent
= entry
->bytes
;
2231 cluster
->window_start
= first
->offset
;
2233 node
= &first
->offset_index
;
2236 * now we've found our entries, pull them out of the free space
2237 * cache and put them into the cluster rbtree
2242 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2243 node
= rb_next(&entry
->offset_index
);
2247 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2248 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2249 &entry
->offset_index
, 0);
2251 } while (node
&& entry
!= last
);
2253 cluster
->max_size
= max_extent
;
2259 * This specifically looks for bitmaps that may work in the cluster, we assume
2260 * that we have already failed to find extents that will work.
2263 setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
2264 struct btrfs_free_cluster
*cluster
,
2265 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2268 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2269 struct btrfs_free_space
*entry
;
2270 struct rb_node
*node
;
2273 if (ctl
->total_bitmaps
== 0)
2277 * First check our cached list of bitmaps and see if there is an entry
2278 * here that will work.
2280 list_for_each_entry(entry
, bitmaps
, list
) {
2281 if (entry
->bytes
< min_bytes
)
2283 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
2290 * If we do have entries on our list and we are here then we didn't find
2291 * anything, so go ahead and get the next entry after the last entry in
2292 * this list and start the search from there.
2294 if (!list_empty(bitmaps
)) {
2295 entry
= list_entry(bitmaps
->prev
, struct btrfs_free_space
,
2297 node
= rb_next(&entry
->offset_index
);
2300 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2304 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
), 0, 1);
2309 node
= &entry
->offset_index
;
2311 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2312 node
= rb_next(&entry
->offset_index
);
2315 if (entry
->bytes
< min_bytes
)
2317 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
2319 } while (ret
&& node
);
2325 * here we try to find a cluster of blocks in a block group. The goal
2326 * is to find at least bytes free and up to empty_size + bytes free.
2327 * We might not find them all in one contiguous area.
2329 * returns zero and sets up cluster if things worked out, otherwise
2330 * it returns -enospc
2332 int btrfs_find_space_cluster(struct btrfs_trans_handle
*trans
,
2333 struct btrfs_root
*root
,
2334 struct btrfs_block_group_cache
*block_group
,
2335 struct btrfs_free_cluster
*cluster
,
2336 u64 offset
, u64 bytes
, u64 empty_size
)
2338 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2339 struct list_head bitmaps
;
2340 struct btrfs_free_space
*entry
, *tmp
;
2344 /* for metadata, allow allocates with more holes */
2345 if (btrfs_test_opt(root
, SSD_SPREAD
)) {
2346 min_bytes
= bytes
+ empty_size
;
2347 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
2349 * we want to do larger allocations when we are
2350 * flushing out the delayed refs, it helps prevent
2351 * making more work as we go along.
2353 if (trans
->transaction
->delayed_refs
.flushing
)
2354 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 1);
2356 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 4);
2358 min_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
2360 spin_lock(&ctl
->tree_lock
);
2363 * If we know we don't have enough space to make a cluster don't even
2364 * bother doing all the work to try and find one.
2366 if (ctl
->free_space
< min_bytes
) {
2367 spin_unlock(&ctl
->tree_lock
);
2371 spin_lock(&cluster
->lock
);
2373 /* someone already found a cluster, hooray */
2374 if (cluster
->block_group
) {
2379 INIT_LIST_HEAD(&bitmaps
);
2380 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
2383 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
2384 offset
, bytes
, min_bytes
);
2386 /* Clear our temporary list */
2387 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
2388 list_del_init(&entry
->list
);
2391 atomic_inc(&block_group
->count
);
2392 list_add_tail(&cluster
->block_group_list
,
2393 &block_group
->cluster_list
);
2394 cluster
->block_group
= block_group
;
2397 spin_unlock(&cluster
->lock
);
2398 spin_unlock(&ctl
->tree_lock
);
2404 * simple code to zero out a cluster
2406 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
2408 spin_lock_init(&cluster
->lock
);
2409 spin_lock_init(&cluster
->refill_lock
);
2410 cluster
->root
= RB_ROOT
;
2411 cluster
->max_size
= 0;
2412 INIT_LIST_HEAD(&cluster
->block_group_list
);
2413 cluster
->block_group
= NULL
;
2416 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
2417 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
2419 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2420 struct btrfs_free_space
*entry
= NULL
;
2421 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2423 u64 actually_trimmed
;
2428 while (start
< end
) {
2429 spin_lock(&ctl
->tree_lock
);
2431 if (ctl
->free_space
< minlen
) {
2432 spin_unlock(&ctl
->tree_lock
);
2436 entry
= tree_search_offset(ctl
, start
, 0, 1);
2438 entry
= tree_search_offset(ctl
,
2439 offset_to_bitmap(ctl
, start
),
2442 if (!entry
|| entry
->offset
>= end
) {
2443 spin_unlock(&ctl
->tree_lock
);
2447 if (entry
->bitmap
) {
2448 ret
= search_bitmap(ctl
, entry
, &start
, &bytes
);
2451 spin_unlock(&ctl
->tree_lock
);
2454 bytes
= min(bytes
, end
- start
);
2455 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
2456 if (entry
->bytes
== 0)
2457 free_bitmap(ctl
, entry
);
2459 start
= entry
->offset
+ BITS_PER_BITMAP
*
2460 block_group
->sectorsize
;
2461 spin_unlock(&ctl
->tree_lock
);
2466 start
= entry
->offset
;
2467 bytes
= min(entry
->bytes
, end
- start
);
2468 unlink_free_space(ctl
, entry
);
2469 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2472 spin_unlock(&ctl
->tree_lock
);
2474 if (bytes
>= minlen
) {
2476 update_ret
= btrfs_update_reserved_bytes(block_group
,
2479 ret
= btrfs_error_discard_extent(fs_info
->extent_root
,
2484 btrfs_add_free_space(block_group
, start
, bytes
);
2486 btrfs_update_reserved_bytes(block_group
,
2491 *trimmed
+= actually_trimmed
;
2496 if (fatal_signal_pending(current
)) {
2508 * Find the left-most item in the cache tree, and then return the
2509 * smallest inode number in the item.
2511 * Note: the returned inode number may not be the smallest one in
2512 * the tree, if the left-most item is a bitmap.
2514 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
2516 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
2517 struct btrfs_free_space
*entry
= NULL
;
2520 spin_lock(&ctl
->tree_lock
);
2522 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
2525 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
2526 struct btrfs_free_space
, offset_index
);
2528 if (!entry
->bitmap
) {
2529 ino
= entry
->offset
;
2531 unlink_free_space(ctl
, entry
);
2535 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2537 link_free_space(ctl
, entry
);
2543 ret
= search_bitmap(ctl
, entry
, &offset
, &count
);
2547 bitmap_clear_bits(ctl
, entry
, offset
, 1);
2548 if (entry
->bytes
== 0)
2549 free_bitmap(ctl
, entry
);
2552 spin_unlock(&ctl
->tree_lock
);
2557 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
2558 struct btrfs_path
*path
)
2560 struct inode
*inode
= NULL
;
2562 spin_lock(&root
->cache_lock
);
2563 if (root
->cache_inode
)
2564 inode
= igrab(root
->cache_inode
);
2565 spin_unlock(&root
->cache_lock
);
2569 inode
= __lookup_free_space_inode(root
, path
, 0);
2573 spin_lock(&root
->cache_lock
);
2574 if (!btrfs_fs_closing(root
->fs_info
))
2575 root
->cache_inode
= igrab(inode
);
2576 spin_unlock(&root
->cache_lock
);
2581 int create_free_ino_inode(struct btrfs_root
*root
,
2582 struct btrfs_trans_handle
*trans
,
2583 struct btrfs_path
*path
)
2585 return __create_free_space_inode(root
, trans
, path
,
2586 BTRFS_FREE_INO_OBJECTID
, 0);
2589 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
2591 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2592 struct btrfs_path
*path
;
2593 struct inode
*inode
;
2595 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
2597 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2601 * If we're unmounting then just return, since this does a search on the
2602 * normal root and not the commit root and we could deadlock.
2604 if (btrfs_fs_closing(fs_info
))
2607 path
= btrfs_alloc_path();
2611 inode
= lookup_free_ino_inode(root
, path
);
2615 if (root_gen
!= BTRFS_I(inode
)->generation
)
2618 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
2621 printk(KERN_ERR
"btrfs: failed to load free ino cache for "
2622 "root %llu\n", root
->root_key
.objectid
);
2626 btrfs_free_path(path
);
2630 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
2631 struct btrfs_trans_handle
*trans
,
2632 struct btrfs_path
*path
)
2634 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
2635 struct inode
*inode
;
2638 if (!btrfs_test_opt(root
, INODE_MAP_CACHE
))
2641 inode
= lookup_free_ino_inode(root
, path
);
2645 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, trans
, path
, 0);
2647 printk(KERN_ERR
"btrfs: failed to write free ino cache "
2648 "for root %llu\n", root
->root_key
.objectid
);