Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / fs / btrfs / ioctl.c
blobdae5dfe41ba59fdd820006b96ff4ed2803d51887
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
55 /* Mask out flags that are inappropriate for the given type of inode. */
56 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
58 if (S_ISDIR(mode))
59 return flags;
60 else if (S_ISREG(mode))
61 return flags & ~FS_DIRSYNC_FL;
62 else
63 return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
67 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
69 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
71 unsigned int iflags = 0;
73 if (flags & BTRFS_INODE_SYNC)
74 iflags |= FS_SYNC_FL;
75 if (flags & BTRFS_INODE_IMMUTABLE)
76 iflags |= FS_IMMUTABLE_FL;
77 if (flags & BTRFS_INODE_APPEND)
78 iflags |= FS_APPEND_FL;
79 if (flags & BTRFS_INODE_NODUMP)
80 iflags |= FS_NODUMP_FL;
81 if (flags & BTRFS_INODE_NOATIME)
82 iflags |= FS_NOATIME_FL;
83 if (flags & BTRFS_INODE_DIRSYNC)
84 iflags |= FS_DIRSYNC_FL;
85 if (flags & BTRFS_INODE_NODATACOW)
86 iflags |= FS_NOCOW_FL;
88 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
89 iflags |= FS_COMPR_FL;
90 else if (flags & BTRFS_INODE_NOCOMPRESS)
91 iflags |= FS_NOCOMP_FL;
93 return iflags;
97 * Update inode->i_flags based on the btrfs internal flags.
99 void btrfs_update_iflags(struct inode *inode)
101 struct btrfs_inode *ip = BTRFS_I(inode);
103 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
105 if (ip->flags & BTRFS_INODE_SYNC)
106 inode->i_flags |= S_SYNC;
107 if (ip->flags & BTRFS_INODE_IMMUTABLE)
108 inode->i_flags |= S_IMMUTABLE;
109 if (ip->flags & BTRFS_INODE_APPEND)
110 inode->i_flags |= S_APPEND;
111 if (ip->flags & BTRFS_INODE_NOATIME)
112 inode->i_flags |= S_NOATIME;
113 if (ip->flags & BTRFS_INODE_DIRSYNC)
114 inode->i_flags |= S_DIRSYNC;
118 * Inherit flags from the parent inode.
120 * Unlike extN we don't have any flags we don't want to inherit currently.
122 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
124 unsigned int flags;
126 if (!dir)
127 return;
129 flags = BTRFS_I(dir)->flags;
131 if (S_ISREG(inode->i_mode))
132 flags &= ~BTRFS_INODE_DIRSYNC;
133 else if (!S_ISDIR(inode->i_mode))
134 flags &= (BTRFS_INODE_NODUMP | BTRFS_INODE_NOATIME);
136 BTRFS_I(inode)->flags = flags;
137 btrfs_update_iflags(inode);
140 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
142 struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
143 unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
145 if (copy_to_user(arg, &flags, sizeof(flags)))
146 return -EFAULT;
147 return 0;
150 static int check_flags(unsigned int flags)
152 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
153 FS_NOATIME_FL | FS_NODUMP_FL | \
154 FS_SYNC_FL | FS_DIRSYNC_FL | \
155 FS_NOCOMP_FL | FS_COMPR_FL |
156 FS_NOCOW_FL))
157 return -EOPNOTSUPP;
159 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
160 return -EINVAL;
162 return 0;
165 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
167 struct inode *inode = file->f_path.dentry->d_inode;
168 struct btrfs_inode *ip = BTRFS_I(inode);
169 struct btrfs_root *root = ip->root;
170 struct btrfs_trans_handle *trans;
171 unsigned int flags, oldflags;
172 int ret;
174 if (btrfs_root_readonly(root))
175 return -EROFS;
177 if (copy_from_user(&flags, arg, sizeof(flags)))
178 return -EFAULT;
180 ret = check_flags(flags);
181 if (ret)
182 return ret;
184 if (!inode_owner_or_capable(inode))
185 return -EACCES;
187 mutex_lock(&inode->i_mutex);
189 flags = btrfs_mask_flags(inode->i_mode, flags);
190 oldflags = btrfs_flags_to_ioctl(ip->flags);
191 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
192 if (!capable(CAP_LINUX_IMMUTABLE)) {
193 ret = -EPERM;
194 goto out_unlock;
198 ret = mnt_want_write(file->f_path.mnt);
199 if (ret)
200 goto out_unlock;
202 if (flags & FS_SYNC_FL)
203 ip->flags |= BTRFS_INODE_SYNC;
204 else
205 ip->flags &= ~BTRFS_INODE_SYNC;
206 if (flags & FS_IMMUTABLE_FL)
207 ip->flags |= BTRFS_INODE_IMMUTABLE;
208 else
209 ip->flags &= ~BTRFS_INODE_IMMUTABLE;
210 if (flags & FS_APPEND_FL)
211 ip->flags |= BTRFS_INODE_APPEND;
212 else
213 ip->flags &= ~BTRFS_INODE_APPEND;
214 if (flags & FS_NODUMP_FL)
215 ip->flags |= BTRFS_INODE_NODUMP;
216 else
217 ip->flags &= ~BTRFS_INODE_NODUMP;
218 if (flags & FS_NOATIME_FL)
219 ip->flags |= BTRFS_INODE_NOATIME;
220 else
221 ip->flags &= ~BTRFS_INODE_NOATIME;
222 if (flags & FS_DIRSYNC_FL)
223 ip->flags |= BTRFS_INODE_DIRSYNC;
224 else
225 ip->flags &= ~BTRFS_INODE_DIRSYNC;
226 if (flags & FS_NOCOW_FL)
227 ip->flags |= BTRFS_INODE_NODATACOW;
228 else
229 ip->flags &= ~BTRFS_INODE_NODATACOW;
232 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
233 * flag may be changed automatically if compression code won't make
234 * things smaller.
236 if (flags & FS_NOCOMP_FL) {
237 ip->flags &= ~BTRFS_INODE_COMPRESS;
238 ip->flags |= BTRFS_INODE_NOCOMPRESS;
239 } else if (flags & FS_COMPR_FL) {
240 ip->flags |= BTRFS_INODE_COMPRESS;
241 ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
242 } else {
243 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
246 trans = btrfs_join_transaction(root);
247 BUG_ON(IS_ERR(trans));
249 ret = btrfs_update_inode(trans, root, inode);
250 BUG_ON(ret);
252 btrfs_update_iflags(inode);
253 inode->i_ctime = CURRENT_TIME;
254 btrfs_end_transaction(trans, root);
256 mnt_drop_write(file->f_path.mnt);
258 ret = 0;
259 out_unlock:
260 mutex_unlock(&inode->i_mutex);
261 return ret;
264 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
266 struct inode *inode = file->f_path.dentry->d_inode;
268 return put_user(inode->i_generation, arg);
271 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
273 struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info;
274 struct btrfs_fs_info *fs_info = root->fs_info;
275 struct btrfs_device *device;
276 struct request_queue *q;
277 struct fstrim_range range;
278 u64 minlen = ULLONG_MAX;
279 u64 num_devices = 0;
280 int ret;
282 if (!capable(CAP_SYS_ADMIN))
283 return -EPERM;
285 rcu_read_lock();
286 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
287 dev_list) {
288 if (!device->bdev)
289 continue;
290 q = bdev_get_queue(device->bdev);
291 if (blk_queue_discard(q)) {
292 num_devices++;
293 minlen = min((u64)q->limits.discard_granularity,
294 minlen);
297 rcu_read_unlock();
298 if (!num_devices)
299 return -EOPNOTSUPP;
301 if (copy_from_user(&range, arg, sizeof(range)))
302 return -EFAULT;
304 range.minlen = max(range.minlen, minlen);
305 ret = btrfs_trim_fs(root, &range);
306 if (ret < 0)
307 return ret;
309 if (copy_to_user(arg, &range, sizeof(range)))
310 return -EFAULT;
312 return 0;
315 static noinline int create_subvol(struct btrfs_root *root,
316 struct dentry *dentry,
317 char *name, int namelen,
318 u64 *async_transid)
320 struct btrfs_trans_handle *trans;
321 struct btrfs_key key;
322 struct btrfs_root_item root_item;
323 struct btrfs_inode_item *inode_item;
324 struct extent_buffer *leaf;
325 struct btrfs_root *new_root;
326 struct dentry *parent = dentry->d_parent;
327 struct inode *dir;
328 int ret;
329 int err;
330 u64 objectid;
331 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
332 u64 index = 0;
334 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
335 if (ret)
336 return ret;
338 dir = parent->d_inode;
341 * 1 - inode item
342 * 2 - refs
343 * 1 - root item
344 * 2 - dir items
346 trans = btrfs_start_transaction(root, 6);
347 if (IS_ERR(trans))
348 return PTR_ERR(trans);
350 leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
351 0, objectid, NULL, 0, 0, 0);
352 if (IS_ERR(leaf)) {
353 ret = PTR_ERR(leaf);
354 goto fail;
357 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
358 btrfs_set_header_bytenr(leaf, leaf->start);
359 btrfs_set_header_generation(leaf, trans->transid);
360 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
361 btrfs_set_header_owner(leaf, objectid);
363 write_extent_buffer(leaf, root->fs_info->fsid,
364 (unsigned long)btrfs_header_fsid(leaf),
365 BTRFS_FSID_SIZE);
366 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
367 (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
368 BTRFS_UUID_SIZE);
369 btrfs_mark_buffer_dirty(leaf);
371 inode_item = &root_item.inode;
372 memset(inode_item, 0, sizeof(*inode_item));
373 inode_item->generation = cpu_to_le64(1);
374 inode_item->size = cpu_to_le64(3);
375 inode_item->nlink = cpu_to_le32(1);
376 inode_item->nbytes = cpu_to_le64(root->leafsize);
377 inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
379 root_item.flags = 0;
380 root_item.byte_limit = 0;
381 inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
383 btrfs_set_root_bytenr(&root_item, leaf->start);
384 btrfs_set_root_generation(&root_item, trans->transid);
385 btrfs_set_root_level(&root_item, 0);
386 btrfs_set_root_refs(&root_item, 1);
387 btrfs_set_root_used(&root_item, leaf->len);
388 btrfs_set_root_last_snapshot(&root_item, 0);
390 memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
391 root_item.drop_level = 0;
393 btrfs_tree_unlock(leaf);
394 free_extent_buffer(leaf);
395 leaf = NULL;
397 btrfs_set_root_dirid(&root_item, new_dirid);
399 key.objectid = objectid;
400 key.offset = 0;
401 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
402 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
403 &root_item);
404 if (ret)
405 goto fail;
407 key.offset = (u64)-1;
408 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
409 BUG_ON(IS_ERR(new_root));
411 btrfs_record_root_in_trans(trans, new_root);
413 ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
415 * insert the directory item
417 ret = btrfs_set_inode_index(dir, &index);
418 BUG_ON(ret);
420 ret = btrfs_insert_dir_item(trans, root,
421 name, namelen, dir, &key,
422 BTRFS_FT_DIR, index);
423 if (ret)
424 goto fail;
426 btrfs_i_size_write(dir, dir->i_size + namelen * 2);
427 ret = btrfs_update_inode(trans, root, dir);
428 BUG_ON(ret);
430 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
431 objectid, root->root_key.objectid,
432 btrfs_ino(dir), index, name, namelen);
434 BUG_ON(ret);
436 d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
437 fail:
438 if (async_transid) {
439 *async_transid = trans->transid;
440 err = btrfs_commit_transaction_async(trans, root, 1);
441 } else {
442 err = btrfs_commit_transaction(trans, root);
444 if (err && !ret)
445 ret = err;
446 return ret;
449 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
450 char *name, int namelen, u64 *async_transid,
451 bool readonly)
453 struct inode *inode;
454 struct btrfs_pending_snapshot *pending_snapshot;
455 struct btrfs_trans_handle *trans;
456 int ret;
458 if (!root->ref_cows)
459 return -EINVAL;
461 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
462 if (!pending_snapshot)
463 return -ENOMEM;
465 btrfs_init_block_rsv(&pending_snapshot->block_rsv);
466 pending_snapshot->dentry = dentry;
467 pending_snapshot->root = root;
468 pending_snapshot->readonly = readonly;
470 trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
471 if (IS_ERR(trans)) {
472 ret = PTR_ERR(trans);
473 goto fail;
476 ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
477 BUG_ON(ret);
479 spin_lock(&root->fs_info->trans_lock);
480 list_add(&pending_snapshot->list,
481 &trans->transaction->pending_snapshots);
482 spin_unlock(&root->fs_info->trans_lock);
483 if (async_transid) {
484 *async_transid = trans->transid;
485 ret = btrfs_commit_transaction_async(trans,
486 root->fs_info->extent_root, 1);
487 } else {
488 ret = btrfs_commit_transaction(trans,
489 root->fs_info->extent_root);
491 BUG_ON(ret);
493 ret = pending_snapshot->error;
494 if (ret)
495 goto fail;
497 ret = btrfs_orphan_cleanup(pending_snapshot->snap);
498 if (ret)
499 goto fail;
501 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
502 if (IS_ERR(inode)) {
503 ret = PTR_ERR(inode);
504 goto fail;
506 BUG_ON(!inode);
507 d_instantiate(dentry, inode);
508 ret = 0;
509 fail:
510 kfree(pending_snapshot);
511 return ret;
514 /* copy of check_sticky in fs/namei.c()
515 * It's inline, so penalty for filesystems that don't use sticky bit is
516 * minimal.
518 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
520 uid_t fsuid = current_fsuid();
522 if (!(dir->i_mode & S_ISVTX))
523 return 0;
524 if (inode->i_uid == fsuid)
525 return 0;
526 if (dir->i_uid == fsuid)
527 return 0;
528 return !capable(CAP_FOWNER);
531 /* copy of may_delete in fs/namei.c()
532 * Check whether we can remove a link victim from directory dir, check
533 * whether the type of victim is right.
534 * 1. We can't do it if dir is read-only (done in permission())
535 * 2. We should have write and exec permissions on dir
536 * 3. We can't remove anything from append-only dir
537 * 4. We can't do anything with immutable dir (done in permission())
538 * 5. If the sticky bit on dir is set we should either
539 * a. be owner of dir, or
540 * b. be owner of victim, or
541 * c. have CAP_FOWNER capability
542 * 6. If the victim is append-only or immutable we can't do antyhing with
543 * links pointing to it.
544 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
545 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
546 * 9. We can't remove a root or mountpoint.
547 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
548 * nfs_async_unlink().
551 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
553 int error;
555 if (!victim->d_inode)
556 return -ENOENT;
558 BUG_ON(victim->d_parent->d_inode != dir);
559 audit_inode_child(victim, dir);
561 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
562 if (error)
563 return error;
564 if (IS_APPEND(dir))
565 return -EPERM;
566 if (btrfs_check_sticky(dir, victim->d_inode)||
567 IS_APPEND(victim->d_inode)||
568 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
569 return -EPERM;
570 if (isdir) {
571 if (!S_ISDIR(victim->d_inode->i_mode))
572 return -ENOTDIR;
573 if (IS_ROOT(victim))
574 return -EBUSY;
575 } else if (S_ISDIR(victim->d_inode->i_mode))
576 return -EISDIR;
577 if (IS_DEADDIR(dir))
578 return -ENOENT;
579 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
580 return -EBUSY;
581 return 0;
584 /* copy of may_create in fs/namei.c() */
585 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
587 if (child->d_inode)
588 return -EEXIST;
589 if (IS_DEADDIR(dir))
590 return -ENOENT;
591 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
595 * Create a new subvolume below @parent. This is largely modeled after
596 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
597 * inside this filesystem so it's quite a bit simpler.
599 static noinline int btrfs_mksubvol(struct path *parent,
600 char *name, int namelen,
601 struct btrfs_root *snap_src,
602 u64 *async_transid, bool readonly)
604 struct inode *dir = parent->dentry->d_inode;
605 struct dentry *dentry;
606 int error;
608 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
610 dentry = lookup_one_len(name, parent->dentry, namelen);
611 error = PTR_ERR(dentry);
612 if (IS_ERR(dentry))
613 goto out_unlock;
615 error = -EEXIST;
616 if (dentry->d_inode)
617 goto out_dput;
619 error = mnt_want_write(parent->mnt);
620 if (error)
621 goto out_dput;
623 error = btrfs_may_create(dir, dentry);
624 if (error)
625 goto out_drop_write;
627 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
629 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
630 goto out_up_read;
632 if (snap_src) {
633 error = create_snapshot(snap_src, dentry,
634 name, namelen, async_transid, readonly);
635 } else {
636 error = create_subvol(BTRFS_I(dir)->root, dentry,
637 name, namelen, async_transid);
639 if (!error)
640 fsnotify_mkdir(dir, dentry);
641 out_up_read:
642 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
643 out_drop_write:
644 mnt_drop_write(parent->mnt);
645 out_dput:
646 dput(dentry);
647 out_unlock:
648 mutex_unlock(&dir->i_mutex);
649 return error;
653 * When we're defragging a range, we don't want to kick it off again
654 * if it is really just waiting for delalloc to send it down.
655 * If we find a nice big extent or delalloc range for the bytes in the
656 * file you want to defrag, we return 0 to let you know to skip this
657 * part of the file
659 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
661 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
662 struct extent_map *em = NULL;
663 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
664 u64 end;
666 read_lock(&em_tree->lock);
667 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
668 read_unlock(&em_tree->lock);
670 if (em) {
671 end = extent_map_end(em);
672 free_extent_map(em);
673 if (end - offset > thresh)
674 return 0;
676 /* if we already have a nice delalloc here, just stop */
677 thresh /= 2;
678 end = count_range_bits(io_tree, &offset, offset + thresh,
679 thresh, EXTENT_DELALLOC, 1);
680 if (end >= thresh)
681 return 0;
682 return 1;
686 * helper function to walk through a file and find extents
687 * newer than a specific transid, and smaller than thresh.
689 * This is used by the defragging code to find new and small
690 * extents
692 static int find_new_extents(struct btrfs_root *root,
693 struct inode *inode, u64 newer_than,
694 u64 *off, int thresh)
696 struct btrfs_path *path;
697 struct btrfs_key min_key;
698 struct btrfs_key max_key;
699 struct extent_buffer *leaf;
700 struct btrfs_file_extent_item *extent;
701 int type;
702 int ret;
703 u64 ino = btrfs_ino(inode);
705 path = btrfs_alloc_path();
706 if (!path)
707 return -ENOMEM;
709 min_key.objectid = ino;
710 min_key.type = BTRFS_EXTENT_DATA_KEY;
711 min_key.offset = *off;
713 max_key.objectid = ino;
714 max_key.type = (u8)-1;
715 max_key.offset = (u64)-1;
717 path->keep_locks = 1;
719 while(1) {
720 ret = btrfs_search_forward(root, &min_key, &max_key,
721 path, 0, newer_than);
722 if (ret != 0)
723 goto none;
724 if (min_key.objectid != ino)
725 goto none;
726 if (min_key.type != BTRFS_EXTENT_DATA_KEY)
727 goto none;
729 leaf = path->nodes[0];
730 extent = btrfs_item_ptr(leaf, path->slots[0],
731 struct btrfs_file_extent_item);
733 type = btrfs_file_extent_type(leaf, extent);
734 if (type == BTRFS_FILE_EXTENT_REG &&
735 btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
736 check_defrag_in_cache(inode, min_key.offset, thresh)) {
737 *off = min_key.offset;
738 btrfs_free_path(path);
739 return 0;
742 if (min_key.offset == (u64)-1)
743 goto none;
745 min_key.offset++;
746 btrfs_release_path(path);
748 none:
749 btrfs_free_path(path);
750 return -ENOENT;
753 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
754 int thresh, u64 *last_len, u64 *skip,
755 u64 *defrag_end)
757 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
758 struct extent_map *em = NULL;
759 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
760 int ret = 1;
763 * make sure that once we start defragging and extent, we keep on
764 * defragging it
766 if (start < *defrag_end)
767 return 1;
769 *skip = 0;
772 * hopefully we have this extent in the tree already, try without
773 * the full extent lock
775 read_lock(&em_tree->lock);
776 em = lookup_extent_mapping(em_tree, start, len);
777 read_unlock(&em_tree->lock);
779 if (!em) {
780 /* get the big lock and read metadata off disk */
781 lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
782 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
783 unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
785 if (IS_ERR(em))
786 return 0;
789 /* this will cover holes, and inline extents */
790 if (em->block_start >= EXTENT_MAP_LAST_BYTE)
791 ret = 0;
794 * we hit a real extent, if it is big don't bother defragging it again
796 if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
797 ret = 0;
800 * last_len ends up being a counter of how many bytes we've defragged.
801 * every time we choose not to defrag an extent, we reset *last_len
802 * so that the next tiny extent will force a defrag.
804 * The end result of this is that tiny extents before a single big
805 * extent will force at least part of that big extent to be defragged.
807 if (ret) {
808 *last_len += len;
809 *defrag_end = extent_map_end(em);
810 } else {
811 *last_len = 0;
812 *skip = extent_map_end(em);
813 *defrag_end = 0;
816 free_extent_map(em);
817 return ret;
821 * it doesn't do much good to defrag one or two pages
822 * at a time. This pulls in a nice chunk of pages
823 * to COW and defrag.
825 * It also makes sure the delalloc code has enough
826 * dirty data to avoid making new small extents as part
827 * of the defrag
829 * It's a good idea to start RA on this range
830 * before calling this.
832 static int cluster_pages_for_defrag(struct inode *inode,
833 struct page **pages,
834 unsigned long start_index,
835 int num_pages)
837 unsigned long file_end;
838 u64 isize = i_size_read(inode);
839 u64 page_start;
840 u64 page_end;
841 int ret;
842 int i;
843 int i_done;
844 struct btrfs_ordered_extent *ordered;
845 struct extent_state *cached_state = NULL;
847 if (isize == 0)
848 return 0;
849 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
851 ret = btrfs_delalloc_reserve_space(inode,
852 num_pages << PAGE_CACHE_SHIFT);
853 if (ret)
854 return ret;
855 again:
856 ret = 0;
857 i_done = 0;
859 /* step one, lock all the pages */
860 for (i = 0; i < num_pages; i++) {
861 struct page *page;
862 page = find_or_create_page(inode->i_mapping,
863 start_index + i, GFP_NOFS);
864 if (!page)
865 break;
867 if (!PageUptodate(page)) {
868 btrfs_readpage(NULL, page);
869 lock_page(page);
870 if (!PageUptodate(page)) {
871 unlock_page(page);
872 page_cache_release(page);
873 ret = -EIO;
874 break;
877 isize = i_size_read(inode);
878 file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
879 if (!isize || page->index > file_end ||
880 page->mapping != inode->i_mapping) {
881 /* whoops, we blew past eof, skip this page */
882 unlock_page(page);
883 page_cache_release(page);
884 break;
886 pages[i] = page;
887 i_done++;
889 if (!i_done || ret)
890 goto out;
892 if (!(inode->i_sb->s_flags & MS_ACTIVE))
893 goto out;
896 * so now we have a nice long stream of locked
897 * and up to date pages, lets wait on them
899 for (i = 0; i < i_done; i++)
900 wait_on_page_writeback(pages[i]);
902 page_start = page_offset(pages[0]);
903 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
905 lock_extent_bits(&BTRFS_I(inode)->io_tree,
906 page_start, page_end - 1, 0, &cached_state,
907 GFP_NOFS);
908 ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1);
909 if (ordered &&
910 ordered->file_offset + ordered->len > page_start &&
911 ordered->file_offset < page_end) {
912 btrfs_put_ordered_extent(ordered);
913 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
914 page_start, page_end - 1,
915 &cached_state, GFP_NOFS);
916 for (i = 0; i < i_done; i++) {
917 unlock_page(pages[i]);
918 page_cache_release(pages[i]);
920 btrfs_wait_ordered_range(inode, page_start,
921 page_end - page_start);
922 goto again;
924 if (ordered)
925 btrfs_put_ordered_extent(ordered);
927 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
928 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
929 EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
930 GFP_NOFS);
932 if (i_done != num_pages) {
933 spin_lock(&BTRFS_I(inode)->lock);
934 BTRFS_I(inode)->outstanding_extents++;
935 spin_unlock(&BTRFS_I(inode)->lock);
936 btrfs_delalloc_release_space(inode,
937 (num_pages - i_done) << PAGE_CACHE_SHIFT);
941 btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
942 &cached_state);
944 unlock_extent_cached(&BTRFS_I(inode)->io_tree,
945 page_start, page_end - 1, &cached_state,
946 GFP_NOFS);
948 for (i = 0; i < i_done; i++) {
949 clear_page_dirty_for_io(pages[i]);
950 ClearPageChecked(pages[i]);
951 set_page_extent_mapped(pages[i]);
952 set_page_dirty(pages[i]);
953 unlock_page(pages[i]);
954 page_cache_release(pages[i]);
956 return i_done;
957 out:
958 for (i = 0; i < i_done; i++) {
959 unlock_page(pages[i]);
960 page_cache_release(pages[i]);
962 btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT);
963 return ret;
967 int btrfs_defrag_file(struct inode *inode, struct file *file,
968 struct btrfs_ioctl_defrag_range_args *range,
969 u64 newer_than, unsigned long max_to_defrag)
971 struct btrfs_root *root = BTRFS_I(inode)->root;
972 struct btrfs_super_block *disk_super;
973 struct file_ra_state *ra = NULL;
974 unsigned long last_index;
975 u64 features;
976 u64 last_len = 0;
977 u64 skip = 0;
978 u64 defrag_end = 0;
979 u64 newer_off = range->start;
980 int newer_left = 0;
981 unsigned long i;
982 int ret;
983 int defrag_count = 0;
984 int compress_type = BTRFS_COMPRESS_ZLIB;
985 int extent_thresh = range->extent_thresh;
986 int newer_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
987 u64 new_align = ~((u64)128 * 1024 - 1);
988 struct page **pages = NULL;
990 if (extent_thresh == 0)
991 extent_thresh = 256 * 1024;
993 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
994 if (range->compress_type > BTRFS_COMPRESS_TYPES)
995 return -EINVAL;
996 if (range->compress_type)
997 compress_type = range->compress_type;
1000 if (inode->i_size == 0)
1001 return 0;
1004 * if we were not given a file, allocate a readahead
1005 * context
1007 if (!file) {
1008 ra = kzalloc(sizeof(*ra), GFP_NOFS);
1009 if (!ra)
1010 return -ENOMEM;
1011 file_ra_state_init(ra, inode->i_mapping);
1012 } else {
1013 ra = &file->f_ra;
1016 pages = kmalloc(sizeof(struct page *) * newer_cluster,
1017 GFP_NOFS);
1018 if (!pages) {
1019 ret = -ENOMEM;
1020 goto out_ra;
1023 /* find the last page to defrag */
1024 if (range->start + range->len > range->start) {
1025 last_index = min_t(u64, inode->i_size - 1,
1026 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1027 } else {
1028 last_index = (inode->i_size - 1) >> PAGE_CACHE_SHIFT;
1031 if (newer_than) {
1032 ret = find_new_extents(root, inode, newer_than,
1033 &newer_off, 64 * 1024);
1034 if (!ret) {
1035 range->start = newer_off;
1037 * we always align our defrag to help keep
1038 * the extents in the file evenly spaced
1040 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1041 newer_left = newer_cluster;
1042 } else
1043 goto out_ra;
1044 } else {
1045 i = range->start >> PAGE_CACHE_SHIFT;
1047 if (!max_to_defrag)
1048 max_to_defrag = last_index - 1;
1051 * make writeback starts from i, so the defrag range can be
1052 * written sequentially.
1054 if (i < inode->i_mapping->writeback_index)
1055 inode->i_mapping->writeback_index = i;
1057 while (i <= last_index && defrag_count < max_to_defrag &&
1058 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1059 PAGE_CACHE_SHIFT)) {
1061 * make sure we stop running if someone unmounts
1062 * the FS
1064 if (!(inode->i_sb->s_flags & MS_ACTIVE))
1065 break;
1067 if (!newer_than &&
1068 !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1069 PAGE_CACHE_SIZE,
1070 extent_thresh,
1071 &last_len, &skip,
1072 &defrag_end)) {
1073 unsigned long next;
1075 * the should_defrag function tells us how much to skip
1076 * bump our counter by the suggested amount
1078 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1079 i = max(i + 1, next);
1080 continue;
1082 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1083 BTRFS_I(inode)->force_compress = compress_type;
1085 btrfs_force_ra(inode->i_mapping, ra, file, i, newer_cluster);
1087 ret = cluster_pages_for_defrag(inode, pages, i, newer_cluster);
1088 if (ret < 0)
1089 goto out_ra;
1091 defrag_count += ret;
1092 balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1093 i += ret;
1095 if (newer_than) {
1096 if (newer_off == (u64)-1)
1097 break;
1099 newer_off = max(newer_off + 1,
1100 (u64)i << PAGE_CACHE_SHIFT);
1102 ret = find_new_extents(root, inode,
1103 newer_than, &newer_off,
1104 64 * 1024);
1105 if (!ret) {
1106 range->start = newer_off;
1107 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1108 newer_left = newer_cluster;
1109 } else {
1110 break;
1112 } else {
1113 i++;
1117 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1118 filemap_flush(inode->i_mapping);
1120 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1121 /* the filemap_flush will queue IO into the worker threads, but
1122 * we have to make sure the IO is actually started and that
1123 * ordered extents get created before we return
1125 atomic_inc(&root->fs_info->async_submit_draining);
1126 while (atomic_read(&root->fs_info->nr_async_submits) ||
1127 atomic_read(&root->fs_info->async_delalloc_pages)) {
1128 wait_event(root->fs_info->async_submit_wait,
1129 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1130 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1132 atomic_dec(&root->fs_info->async_submit_draining);
1134 mutex_lock(&inode->i_mutex);
1135 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1136 mutex_unlock(&inode->i_mutex);
1139 disk_super = &root->fs_info->super_copy;
1140 features = btrfs_super_incompat_flags(disk_super);
1141 if (range->compress_type == BTRFS_COMPRESS_LZO) {
1142 features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1143 btrfs_set_super_incompat_flags(disk_super, features);
1146 if (!file)
1147 kfree(ra);
1148 return defrag_count;
1150 out_ra:
1151 if (!file)
1152 kfree(ra);
1153 kfree(pages);
1154 return ret;
1157 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1158 void __user *arg)
1160 u64 new_size;
1161 u64 old_size;
1162 u64 devid = 1;
1163 struct btrfs_ioctl_vol_args *vol_args;
1164 struct btrfs_trans_handle *trans;
1165 struct btrfs_device *device = NULL;
1166 char *sizestr;
1167 char *devstr = NULL;
1168 int ret = 0;
1169 int mod = 0;
1171 if (root->fs_info->sb->s_flags & MS_RDONLY)
1172 return -EROFS;
1174 if (!capable(CAP_SYS_ADMIN))
1175 return -EPERM;
1177 vol_args = memdup_user(arg, sizeof(*vol_args));
1178 if (IS_ERR(vol_args))
1179 return PTR_ERR(vol_args);
1181 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1183 mutex_lock(&root->fs_info->volume_mutex);
1184 sizestr = vol_args->name;
1185 devstr = strchr(sizestr, ':');
1186 if (devstr) {
1187 char *end;
1188 sizestr = devstr + 1;
1189 *devstr = '\0';
1190 devstr = vol_args->name;
1191 devid = simple_strtoull(devstr, &end, 10);
1192 printk(KERN_INFO "resizing devid %llu\n",
1193 (unsigned long long)devid);
1195 device = btrfs_find_device(root, devid, NULL, NULL);
1196 if (!device) {
1197 printk(KERN_INFO "resizer unable to find device %llu\n",
1198 (unsigned long long)devid);
1199 ret = -EINVAL;
1200 goto out_unlock;
1202 if (!strcmp(sizestr, "max"))
1203 new_size = device->bdev->bd_inode->i_size;
1204 else {
1205 if (sizestr[0] == '-') {
1206 mod = -1;
1207 sizestr++;
1208 } else if (sizestr[0] == '+') {
1209 mod = 1;
1210 sizestr++;
1212 new_size = memparse(sizestr, NULL);
1213 if (new_size == 0) {
1214 ret = -EINVAL;
1215 goto out_unlock;
1219 old_size = device->total_bytes;
1221 if (mod < 0) {
1222 if (new_size > old_size) {
1223 ret = -EINVAL;
1224 goto out_unlock;
1226 new_size = old_size - new_size;
1227 } else if (mod > 0) {
1228 new_size = old_size + new_size;
1231 if (new_size < 256 * 1024 * 1024) {
1232 ret = -EINVAL;
1233 goto out_unlock;
1235 if (new_size > device->bdev->bd_inode->i_size) {
1236 ret = -EFBIG;
1237 goto out_unlock;
1240 do_div(new_size, root->sectorsize);
1241 new_size *= root->sectorsize;
1243 printk(KERN_INFO "new size for %s is %llu\n",
1244 device->name, (unsigned long long)new_size);
1246 if (new_size > old_size) {
1247 trans = btrfs_start_transaction(root, 0);
1248 if (IS_ERR(trans)) {
1249 ret = PTR_ERR(trans);
1250 goto out_unlock;
1252 ret = btrfs_grow_device(trans, device, new_size);
1253 btrfs_commit_transaction(trans, root);
1254 } else {
1255 ret = btrfs_shrink_device(device, new_size);
1258 out_unlock:
1259 mutex_unlock(&root->fs_info->volume_mutex);
1260 kfree(vol_args);
1261 return ret;
1264 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1265 char *name,
1266 unsigned long fd,
1267 int subvol,
1268 u64 *transid,
1269 bool readonly)
1271 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1272 struct file *src_file;
1273 int namelen;
1274 int ret = 0;
1276 if (root->fs_info->sb->s_flags & MS_RDONLY)
1277 return -EROFS;
1279 namelen = strlen(name);
1280 if (strchr(name, '/')) {
1281 ret = -EINVAL;
1282 goto out;
1285 if (subvol) {
1286 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1287 NULL, transid, readonly);
1288 } else {
1289 struct inode *src_inode;
1290 src_file = fget(fd);
1291 if (!src_file) {
1292 ret = -EINVAL;
1293 goto out;
1296 src_inode = src_file->f_path.dentry->d_inode;
1297 if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1298 printk(KERN_INFO "btrfs: Snapshot src from "
1299 "another FS\n");
1300 ret = -EINVAL;
1301 fput(src_file);
1302 goto out;
1304 ret = btrfs_mksubvol(&file->f_path, name, namelen,
1305 BTRFS_I(src_inode)->root,
1306 transid, readonly);
1307 fput(src_file);
1309 out:
1310 return ret;
1313 static noinline int btrfs_ioctl_snap_create(struct file *file,
1314 void __user *arg, int subvol)
1316 struct btrfs_ioctl_vol_args *vol_args;
1317 int ret;
1319 vol_args = memdup_user(arg, sizeof(*vol_args));
1320 if (IS_ERR(vol_args))
1321 return PTR_ERR(vol_args);
1322 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1324 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1325 vol_args->fd, subvol,
1326 NULL, false);
1328 kfree(vol_args);
1329 return ret;
1332 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1333 void __user *arg, int subvol)
1335 struct btrfs_ioctl_vol_args_v2 *vol_args;
1336 int ret;
1337 u64 transid = 0;
1338 u64 *ptr = NULL;
1339 bool readonly = false;
1341 vol_args = memdup_user(arg, sizeof(*vol_args));
1342 if (IS_ERR(vol_args))
1343 return PTR_ERR(vol_args);
1344 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1346 if (vol_args->flags &
1347 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1348 ret = -EOPNOTSUPP;
1349 goto out;
1352 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1353 ptr = &transid;
1354 if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1355 readonly = true;
1357 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1358 vol_args->fd, subvol,
1359 ptr, readonly);
1361 if (ret == 0 && ptr &&
1362 copy_to_user(arg +
1363 offsetof(struct btrfs_ioctl_vol_args_v2,
1364 transid), ptr, sizeof(*ptr)))
1365 ret = -EFAULT;
1366 out:
1367 kfree(vol_args);
1368 return ret;
1371 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1372 void __user *arg)
1374 struct inode *inode = fdentry(file)->d_inode;
1375 struct btrfs_root *root = BTRFS_I(inode)->root;
1376 int ret = 0;
1377 u64 flags = 0;
1379 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1380 return -EINVAL;
1382 down_read(&root->fs_info->subvol_sem);
1383 if (btrfs_root_readonly(root))
1384 flags |= BTRFS_SUBVOL_RDONLY;
1385 up_read(&root->fs_info->subvol_sem);
1387 if (copy_to_user(arg, &flags, sizeof(flags)))
1388 ret = -EFAULT;
1390 return ret;
1393 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1394 void __user *arg)
1396 struct inode *inode = fdentry(file)->d_inode;
1397 struct btrfs_root *root = BTRFS_I(inode)->root;
1398 struct btrfs_trans_handle *trans;
1399 u64 root_flags;
1400 u64 flags;
1401 int ret = 0;
1403 if (root->fs_info->sb->s_flags & MS_RDONLY)
1404 return -EROFS;
1406 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1407 return -EINVAL;
1409 if (copy_from_user(&flags, arg, sizeof(flags)))
1410 return -EFAULT;
1412 if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1413 return -EINVAL;
1415 if (flags & ~BTRFS_SUBVOL_RDONLY)
1416 return -EOPNOTSUPP;
1418 if (!inode_owner_or_capable(inode))
1419 return -EACCES;
1421 down_write(&root->fs_info->subvol_sem);
1423 /* nothing to do */
1424 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1425 goto out;
1427 root_flags = btrfs_root_flags(&root->root_item);
1428 if (flags & BTRFS_SUBVOL_RDONLY)
1429 btrfs_set_root_flags(&root->root_item,
1430 root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1431 else
1432 btrfs_set_root_flags(&root->root_item,
1433 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1435 trans = btrfs_start_transaction(root, 1);
1436 if (IS_ERR(trans)) {
1437 ret = PTR_ERR(trans);
1438 goto out_reset;
1441 ret = btrfs_update_root(trans, root->fs_info->tree_root,
1442 &root->root_key, &root->root_item);
1444 btrfs_commit_transaction(trans, root);
1445 out_reset:
1446 if (ret)
1447 btrfs_set_root_flags(&root->root_item, root_flags);
1448 out:
1449 up_write(&root->fs_info->subvol_sem);
1450 return ret;
1454 * helper to check if the subvolume references other subvolumes
1456 static noinline int may_destroy_subvol(struct btrfs_root *root)
1458 struct btrfs_path *path;
1459 struct btrfs_key key;
1460 int ret;
1462 path = btrfs_alloc_path();
1463 if (!path)
1464 return -ENOMEM;
1466 key.objectid = root->root_key.objectid;
1467 key.type = BTRFS_ROOT_REF_KEY;
1468 key.offset = (u64)-1;
1470 ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1471 &key, path, 0, 0);
1472 if (ret < 0)
1473 goto out;
1474 BUG_ON(ret == 0);
1476 ret = 0;
1477 if (path->slots[0] > 0) {
1478 path->slots[0]--;
1479 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1480 if (key.objectid == root->root_key.objectid &&
1481 key.type == BTRFS_ROOT_REF_KEY)
1482 ret = -ENOTEMPTY;
1484 out:
1485 btrfs_free_path(path);
1486 return ret;
1489 static noinline int key_in_sk(struct btrfs_key *key,
1490 struct btrfs_ioctl_search_key *sk)
1492 struct btrfs_key test;
1493 int ret;
1495 test.objectid = sk->min_objectid;
1496 test.type = sk->min_type;
1497 test.offset = sk->min_offset;
1499 ret = btrfs_comp_cpu_keys(key, &test);
1500 if (ret < 0)
1501 return 0;
1503 test.objectid = sk->max_objectid;
1504 test.type = sk->max_type;
1505 test.offset = sk->max_offset;
1507 ret = btrfs_comp_cpu_keys(key, &test);
1508 if (ret > 0)
1509 return 0;
1510 return 1;
1513 static noinline int copy_to_sk(struct btrfs_root *root,
1514 struct btrfs_path *path,
1515 struct btrfs_key *key,
1516 struct btrfs_ioctl_search_key *sk,
1517 char *buf,
1518 unsigned long *sk_offset,
1519 int *num_found)
1521 u64 found_transid;
1522 struct extent_buffer *leaf;
1523 struct btrfs_ioctl_search_header sh;
1524 unsigned long item_off;
1525 unsigned long item_len;
1526 int nritems;
1527 int i;
1528 int slot;
1529 int ret = 0;
1531 leaf = path->nodes[0];
1532 slot = path->slots[0];
1533 nritems = btrfs_header_nritems(leaf);
1535 if (btrfs_header_generation(leaf) > sk->max_transid) {
1536 i = nritems;
1537 goto advance_key;
1539 found_transid = btrfs_header_generation(leaf);
1541 for (i = slot; i < nritems; i++) {
1542 item_off = btrfs_item_ptr_offset(leaf, i);
1543 item_len = btrfs_item_size_nr(leaf, i);
1545 if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1546 item_len = 0;
1548 if (sizeof(sh) + item_len + *sk_offset >
1549 BTRFS_SEARCH_ARGS_BUFSIZE) {
1550 ret = 1;
1551 goto overflow;
1554 btrfs_item_key_to_cpu(leaf, key, i);
1555 if (!key_in_sk(key, sk))
1556 continue;
1558 sh.objectid = key->objectid;
1559 sh.offset = key->offset;
1560 sh.type = key->type;
1561 sh.len = item_len;
1562 sh.transid = found_transid;
1564 /* copy search result header */
1565 memcpy(buf + *sk_offset, &sh, sizeof(sh));
1566 *sk_offset += sizeof(sh);
1568 if (item_len) {
1569 char *p = buf + *sk_offset;
1570 /* copy the item */
1571 read_extent_buffer(leaf, p,
1572 item_off, item_len);
1573 *sk_offset += item_len;
1575 (*num_found)++;
1577 if (*num_found >= sk->nr_items)
1578 break;
1580 advance_key:
1581 ret = 0;
1582 if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1583 key->offset++;
1584 else if (key->type < (u8)-1 && key->type < sk->max_type) {
1585 key->offset = 0;
1586 key->type++;
1587 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1588 key->offset = 0;
1589 key->type = 0;
1590 key->objectid++;
1591 } else
1592 ret = 1;
1593 overflow:
1594 return ret;
1597 static noinline int search_ioctl(struct inode *inode,
1598 struct btrfs_ioctl_search_args *args)
1600 struct btrfs_root *root;
1601 struct btrfs_key key;
1602 struct btrfs_key max_key;
1603 struct btrfs_path *path;
1604 struct btrfs_ioctl_search_key *sk = &args->key;
1605 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1606 int ret;
1607 int num_found = 0;
1608 unsigned long sk_offset = 0;
1610 path = btrfs_alloc_path();
1611 if (!path)
1612 return -ENOMEM;
1614 if (sk->tree_id == 0) {
1615 /* search the root of the inode that was passed */
1616 root = BTRFS_I(inode)->root;
1617 } else {
1618 key.objectid = sk->tree_id;
1619 key.type = BTRFS_ROOT_ITEM_KEY;
1620 key.offset = (u64)-1;
1621 root = btrfs_read_fs_root_no_name(info, &key);
1622 if (IS_ERR(root)) {
1623 printk(KERN_ERR "could not find root %llu\n",
1624 sk->tree_id);
1625 btrfs_free_path(path);
1626 return -ENOENT;
1630 key.objectid = sk->min_objectid;
1631 key.type = sk->min_type;
1632 key.offset = sk->min_offset;
1634 max_key.objectid = sk->max_objectid;
1635 max_key.type = sk->max_type;
1636 max_key.offset = sk->max_offset;
1638 path->keep_locks = 1;
1640 while(1) {
1641 ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1642 sk->min_transid);
1643 if (ret != 0) {
1644 if (ret > 0)
1645 ret = 0;
1646 goto err;
1648 ret = copy_to_sk(root, path, &key, sk, args->buf,
1649 &sk_offset, &num_found);
1650 btrfs_release_path(path);
1651 if (ret || num_found >= sk->nr_items)
1652 break;
1655 ret = 0;
1656 err:
1657 sk->nr_items = num_found;
1658 btrfs_free_path(path);
1659 return ret;
1662 static noinline int btrfs_ioctl_tree_search(struct file *file,
1663 void __user *argp)
1665 struct btrfs_ioctl_search_args *args;
1666 struct inode *inode;
1667 int ret;
1669 if (!capable(CAP_SYS_ADMIN))
1670 return -EPERM;
1672 args = memdup_user(argp, sizeof(*args));
1673 if (IS_ERR(args))
1674 return PTR_ERR(args);
1676 inode = fdentry(file)->d_inode;
1677 ret = search_ioctl(inode, args);
1678 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1679 ret = -EFAULT;
1680 kfree(args);
1681 return ret;
1685 * Search INODE_REFs to identify path name of 'dirid' directory
1686 * in a 'tree_id' tree. and sets path name to 'name'.
1688 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1689 u64 tree_id, u64 dirid, char *name)
1691 struct btrfs_root *root;
1692 struct btrfs_key key;
1693 char *ptr;
1694 int ret = -1;
1695 int slot;
1696 int len;
1697 int total_len = 0;
1698 struct btrfs_inode_ref *iref;
1699 struct extent_buffer *l;
1700 struct btrfs_path *path;
1702 if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1703 name[0]='\0';
1704 return 0;
1707 path = btrfs_alloc_path();
1708 if (!path)
1709 return -ENOMEM;
1711 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1713 key.objectid = tree_id;
1714 key.type = BTRFS_ROOT_ITEM_KEY;
1715 key.offset = (u64)-1;
1716 root = btrfs_read_fs_root_no_name(info, &key);
1717 if (IS_ERR(root)) {
1718 printk(KERN_ERR "could not find root %llu\n", tree_id);
1719 ret = -ENOENT;
1720 goto out;
1723 key.objectid = dirid;
1724 key.type = BTRFS_INODE_REF_KEY;
1725 key.offset = (u64)-1;
1727 while(1) {
1728 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1729 if (ret < 0)
1730 goto out;
1732 l = path->nodes[0];
1733 slot = path->slots[0];
1734 if (ret > 0 && slot > 0)
1735 slot--;
1736 btrfs_item_key_to_cpu(l, &key, slot);
1738 if (ret > 0 && (key.objectid != dirid ||
1739 key.type != BTRFS_INODE_REF_KEY)) {
1740 ret = -ENOENT;
1741 goto out;
1744 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1745 len = btrfs_inode_ref_name_len(l, iref);
1746 ptr -= len + 1;
1747 total_len += len + 1;
1748 if (ptr < name)
1749 goto out;
1751 *(ptr + len) = '/';
1752 read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1754 if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1755 break;
1757 btrfs_release_path(path);
1758 key.objectid = key.offset;
1759 key.offset = (u64)-1;
1760 dirid = key.objectid;
1762 if (ptr < name)
1763 goto out;
1764 memmove(name, ptr, total_len);
1765 name[total_len]='\0';
1766 ret = 0;
1767 out:
1768 btrfs_free_path(path);
1769 return ret;
1772 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1773 void __user *argp)
1775 struct btrfs_ioctl_ino_lookup_args *args;
1776 struct inode *inode;
1777 int ret;
1779 if (!capable(CAP_SYS_ADMIN))
1780 return -EPERM;
1782 args = memdup_user(argp, sizeof(*args));
1783 if (IS_ERR(args))
1784 return PTR_ERR(args);
1786 inode = fdentry(file)->d_inode;
1788 if (args->treeid == 0)
1789 args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1791 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1792 args->treeid, args->objectid,
1793 args->name);
1795 if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1796 ret = -EFAULT;
1798 kfree(args);
1799 return ret;
1802 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1803 void __user *arg)
1805 struct dentry *parent = fdentry(file);
1806 struct dentry *dentry;
1807 struct inode *dir = parent->d_inode;
1808 struct inode *inode;
1809 struct btrfs_root *root = BTRFS_I(dir)->root;
1810 struct btrfs_root *dest = NULL;
1811 struct btrfs_ioctl_vol_args *vol_args;
1812 struct btrfs_trans_handle *trans;
1813 int namelen;
1814 int ret;
1815 int err = 0;
1817 vol_args = memdup_user(arg, sizeof(*vol_args));
1818 if (IS_ERR(vol_args))
1819 return PTR_ERR(vol_args);
1821 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1822 namelen = strlen(vol_args->name);
1823 if (strchr(vol_args->name, '/') ||
1824 strncmp(vol_args->name, "..", namelen) == 0) {
1825 err = -EINVAL;
1826 goto out;
1829 err = mnt_want_write(file->f_path.mnt);
1830 if (err)
1831 goto out;
1833 mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1834 dentry = lookup_one_len(vol_args->name, parent, namelen);
1835 if (IS_ERR(dentry)) {
1836 err = PTR_ERR(dentry);
1837 goto out_unlock_dir;
1840 if (!dentry->d_inode) {
1841 err = -ENOENT;
1842 goto out_dput;
1845 inode = dentry->d_inode;
1846 dest = BTRFS_I(inode)->root;
1847 if (!capable(CAP_SYS_ADMIN)){
1849 * Regular user. Only allow this with a special mount
1850 * option, when the user has write+exec access to the
1851 * subvol root, and when rmdir(2) would have been
1852 * allowed.
1854 * Note that this is _not_ check that the subvol is
1855 * empty or doesn't contain data that we wouldn't
1856 * otherwise be able to delete.
1858 * Users who want to delete empty subvols should try
1859 * rmdir(2).
1861 err = -EPERM;
1862 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1863 goto out_dput;
1866 * Do not allow deletion if the parent dir is the same
1867 * as the dir to be deleted. That means the ioctl
1868 * must be called on the dentry referencing the root
1869 * of the subvol, not a random directory contained
1870 * within it.
1872 err = -EINVAL;
1873 if (root == dest)
1874 goto out_dput;
1876 err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1877 if (err)
1878 goto out_dput;
1880 /* check if subvolume may be deleted by a non-root user */
1881 err = btrfs_may_delete(dir, dentry, 1);
1882 if (err)
1883 goto out_dput;
1886 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1887 err = -EINVAL;
1888 goto out_dput;
1891 mutex_lock(&inode->i_mutex);
1892 err = d_invalidate(dentry);
1893 if (err)
1894 goto out_unlock;
1896 down_write(&root->fs_info->subvol_sem);
1898 err = may_destroy_subvol(dest);
1899 if (err)
1900 goto out_up_write;
1902 trans = btrfs_start_transaction(root, 0);
1903 if (IS_ERR(trans)) {
1904 err = PTR_ERR(trans);
1905 goto out_up_write;
1907 trans->block_rsv = &root->fs_info->global_block_rsv;
1909 ret = btrfs_unlink_subvol(trans, root, dir,
1910 dest->root_key.objectid,
1911 dentry->d_name.name,
1912 dentry->d_name.len);
1913 BUG_ON(ret);
1915 btrfs_record_root_in_trans(trans, dest);
1917 memset(&dest->root_item.drop_progress, 0,
1918 sizeof(dest->root_item.drop_progress));
1919 dest->root_item.drop_level = 0;
1920 btrfs_set_root_refs(&dest->root_item, 0);
1922 if (!xchg(&dest->orphan_item_inserted, 1)) {
1923 ret = btrfs_insert_orphan_item(trans,
1924 root->fs_info->tree_root,
1925 dest->root_key.objectid);
1926 BUG_ON(ret);
1929 ret = btrfs_end_transaction(trans, root);
1930 BUG_ON(ret);
1931 inode->i_flags |= S_DEAD;
1932 out_up_write:
1933 up_write(&root->fs_info->subvol_sem);
1934 out_unlock:
1935 mutex_unlock(&inode->i_mutex);
1936 if (!err) {
1937 shrink_dcache_sb(root->fs_info->sb);
1938 btrfs_invalidate_inodes(dest);
1939 d_delete(dentry);
1941 out_dput:
1942 dput(dentry);
1943 out_unlock_dir:
1944 mutex_unlock(&dir->i_mutex);
1945 mnt_drop_write(file->f_path.mnt);
1946 out:
1947 kfree(vol_args);
1948 return err;
1951 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1953 struct inode *inode = fdentry(file)->d_inode;
1954 struct btrfs_root *root = BTRFS_I(inode)->root;
1955 struct btrfs_ioctl_defrag_range_args *range;
1956 int ret;
1958 if (btrfs_root_readonly(root))
1959 return -EROFS;
1961 ret = mnt_want_write(file->f_path.mnt);
1962 if (ret)
1963 return ret;
1965 switch (inode->i_mode & S_IFMT) {
1966 case S_IFDIR:
1967 if (!capable(CAP_SYS_ADMIN)) {
1968 ret = -EPERM;
1969 goto out;
1971 ret = btrfs_defrag_root(root, 0);
1972 if (ret)
1973 goto out;
1974 ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
1975 break;
1976 case S_IFREG:
1977 if (!(file->f_mode & FMODE_WRITE)) {
1978 ret = -EINVAL;
1979 goto out;
1982 range = kzalloc(sizeof(*range), GFP_KERNEL);
1983 if (!range) {
1984 ret = -ENOMEM;
1985 goto out;
1988 if (argp) {
1989 if (copy_from_user(range, argp,
1990 sizeof(*range))) {
1991 ret = -EFAULT;
1992 kfree(range);
1993 goto out;
1995 /* compression requires us to start the IO */
1996 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1997 range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
1998 range->extent_thresh = (u32)-1;
2000 } else {
2001 /* the rest are all set to zero by kzalloc */
2002 range->len = (u64)-1;
2004 ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2005 range, 0, 0);
2006 if (ret > 0)
2007 ret = 0;
2008 kfree(range);
2009 break;
2010 default:
2011 ret = -EINVAL;
2013 out:
2014 mnt_drop_write(file->f_path.mnt);
2015 return ret;
2018 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2020 struct btrfs_ioctl_vol_args *vol_args;
2021 int ret;
2023 if (!capable(CAP_SYS_ADMIN))
2024 return -EPERM;
2026 vol_args = memdup_user(arg, sizeof(*vol_args));
2027 if (IS_ERR(vol_args))
2028 return PTR_ERR(vol_args);
2030 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2031 ret = btrfs_init_new_device(root, vol_args->name);
2033 kfree(vol_args);
2034 return ret;
2037 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2039 struct btrfs_ioctl_vol_args *vol_args;
2040 int ret;
2042 if (!capable(CAP_SYS_ADMIN))
2043 return -EPERM;
2045 if (root->fs_info->sb->s_flags & MS_RDONLY)
2046 return -EROFS;
2048 vol_args = memdup_user(arg, sizeof(*vol_args));
2049 if (IS_ERR(vol_args))
2050 return PTR_ERR(vol_args);
2052 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2053 ret = btrfs_rm_device(root, vol_args->name);
2055 kfree(vol_args);
2056 return ret;
2059 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2061 struct btrfs_ioctl_fs_info_args *fi_args;
2062 struct btrfs_device *device;
2063 struct btrfs_device *next;
2064 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2065 int ret = 0;
2067 if (!capable(CAP_SYS_ADMIN))
2068 return -EPERM;
2070 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2071 if (!fi_args)
2072 return -ENOMEM;
2074 fi_args->num_devices = fs_devices->num_devices;
2075 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2077 mutex_lock(&fs_devices->device_list_mutex);
2078 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2079 if (device->devid > fi_args->max_id)
2080 fi_args->max_id = device->devid;
2082 mutex_unlock(&fs_devices->device_list_mutex);
2084 if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2085 ret = -EFAULT;
2087 kfree(fi_args);
2088 return ret;
2091 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2093 struct btrfs_ioctl_dev_info_args *di_args;
2094 struct btrfs_device *dev;
2095 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2096 int ret = 0;
2097 char *s_uuid = NULL;
2098 char empty_uuid[BTRFS_UUID_SIZE] = {0};
2100 if (!capable(CAP_SYS_ADMIN))
2101 return -EPERM;
2103 di_args = memdup_user(arg, sizeof(*di_args));
2104 if (IS_ERR(di_args))
2105 return PTR_ERR(di_args);
2107 if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2108 s_uuid = di_args->uuid;
2110 mutex_lock(&fs_devices->device_list_mutex);
2111 dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2112 mutex_unlock(&fs_devices->device_list_mutex);
2114 if (!dev) {
2115 ret = -ENODEV;
2116 goto out;
2119 di_args->devid = dev->devid;
2120 di_args->bytes_used = dev->bytes_used;
2121 di_args->total_bytes = dev->total_bytes;
2122 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2123 strncpy(di_args->path, dev->name, sizeof(di_args->path));
2125 out:
2126 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2127 ret = -EFAULT;
2129 kfree(di_args);
2130 return ret;
2133 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2134 u64 off, u64 olen, u64 destoff)
2136 struct inode *inode = fdentry(file)->d_inode;
2137 struct btrfs_root *root = BTRFS_I(inode)->root;
2138 struct file *src_file;
2139 struct inode *src;
2140 struct btrfs_trans_handle *trans;
2141 struct btrfs_path *path;
2142 struct extent_buffer *leaf;
2143 char *buf;
2144 struct btrfs_key key;
2145 u32 nritems;
2146 int slot;
2147 int ret;
2148 u64 len = olen;
2149 u64 bs = root->fs_info->sb->s_blocksize;
2150 u64 hint_byte;
2153 * TODO:
2154 * - split compressed inline extents. annoying: we need to
2155 * decompress into destination's address_space (the file offset
2156 * may change, so source mapping won't do), then recompress (or
2157 * otherwise reinsert) a subrange.
2158 * - allow ranges within the same file to be cloned (provided
2159 * they don't overlap)?
2162 /* the destination must be opened for writing */
2163 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2164 return -EINVAL;
2166 if (btrfs_root_readonly(root))
2167 return -EROFS;
2169 ret = mnt_want_write(file->f_path.mnt);
2170 if (ret)
2171 return ret;
2173 src_file = fget(srcfd);
2174 if (!src_file) {
2175 ret = -EBADF;
2176 goto out_drop_write;
2179 src = src_file->f_dentry->d_inode;
2181 ret = -EINVAL;
2182 if (src == inode)
2183 goto out_fput;
2185 /* the src must be open for reading */
2186 if (!(src_file->f_mode & FMODE_READ))
2187 goto out_fput;
2189 /* don't make the dst file partly checksummed */
2190 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2191 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2192 goto out_fput;
2194 ret = -EISDIR;
2195 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2196 goto out_fput;
2198 ret = -EXDEV;
2199 if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2200 goto out_fput;
2202 ret = -ENOMEM;
2203 buf = vmalloc(btrfs_level_size(root, 0));
2204 if (!buf)
2205 goto out_fput;
2207 path = btrfs_alloc_path();
2208 if (!path) {
2209 vfree(buf);
2210 goto out_fput;
2212 path->reada = 2;
2214 if (inode < src) {
2215 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2216 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2217 } else {
2218 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2219 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2222 /* determine range to clone */
2223 ret = -EINVAL;
2224 if (off + len > src->i_size || off + len < off)
2225 goto out_unlock;
2226 if (len == 0)
2227 olen = len = src->i_size - off;
2228 /* if we extend to eof, continue to block boundary */
2229 if (off + len == src->i_size)
2230 len = ALIGN(src->i_size, bs) - off;
2232 /* verify the end result is block aligned */
2233 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2234 !IS_ALIGNED(destoff, bs))
2235 goto out_unlock;
2237 if (destoff > inode->i_size) {
2238 ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2239 if (ret)
2240 goto out_unlock;
2243 /* truncate page cache pages from target inode range */
2244 truncate_inode_pages_range(&inode->i_data, destoff,
2245 PAGE_CACHE_ALIGN(destoff + len) - 1);
2247 /* do any pending delalloc/csum calc on src, one way or
2248 another, and lock file content */
2249 while (1) {
2250 struct btrfs_ordered_extent *ordered;
2251 lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2252 ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2253 if (!ordered &&
2254 !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2255 EXTENT_DELALLOC, 0, NULL))
2256 break;
2257 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2258 if (ordered)
2259 btrfs_put_ordered_extent(ordered);
2260 btrfs_wait_ordered_range(src, off, len);
2263 /* clone data */
2264 key.objectid = btrfs_ino(src);
2265 key.type = BTRFS_EXTENT_DATA_KEY;
2266 key.offset = 0;
2268 while (1) {
2270 * note the key will change type as we walk through the
2271 * tree.
2273 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2274 if (ret < 0)
2275 goto out;
2277 nritems = btrfs_header_nritems(path->nodes[0]);
2278 if (path->slots[0] >= nritems) {
2279 ret = btrfs_next_leaf(root, path);
2280 if (ret < 0)
2281 goto out;
2282 if (ret > 0)
2283 break;
2284 nritems = btrfs_header_nritems(path->nodes[0]);
2286 leaf = path->nodes[0];
2287 slot = path->slots[0];
2289 btrfs_item_key_to_cpu(leaf, &key, slot);
2290 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2291 key.objectid != btrfs_ino(src))
2292 break;
2294 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2295 struct btrfs_file_extent_item *extent;
2296 int type;
2297 u32 size;
2298 struct btrfs_key new_key;
2299 u64 disko = 0, diskl = 0;
2300 u64 datao = 0, datal = 0;
2301 u8 comp;
2302 u64 endoff;
2304 size = btrfs_item_size_nr(leaf, slot);
2305 read_extent_buffer(leaf, buf,
2306 btrfs_item_ptr_offset(leaf, slot),
2307 size);
2309 extent = btrfs_item_ptr(leaf, slot,
2310 struct btrfs_file_extent_item);
2311 comp = btrfs_file_extent_compression(leaf, extent);
2312 type = btrfs_file_extent_type(leaf, extent);
2313 if (type == BTRFS_FILE_EXTENT_REG ||
2314 type == BTRFS_FILE_EXTENT_PREALLOC) {
2315 disko = btrfs_file_extent_disk_bytenr(leaf,
2316 extent);
2317 diskl = btrfs_file_extent_disk_num_bytes(leaf,
2318 extent);
2319 datao = btrfs_file_extent_offset(leaf, extent);
2320 datal = btrfs_file_extent_num_bytes(leaf,
2321 extent);
2322 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2323 /* take upper bound, may be compressed */
2324 datal = btrfs_file_extent_ram_bytes(leaf,
2325 extent);
2327 btrfs_release_path(path);
2329 if (key.offset + datal <= off ||
2330 key.offset >= off+len)
2331 goto next;
2333 memcpy(&new_key, &key, sizeof(new_key));
2334 new_key.objectid = btrfs_ino(inode);
2335 if (off <= key.offset)
2336 new_key.offset = key.offset + destoff - off;
2337 else
2338 new_key.offset = destoff;
2341 * 1 - adjusting old extent (we may have to split it)
2342 * 1 - add new extent
2343 * 1 - inode update
2345 trans = btrfs_start_transaction(root, 3);
2346 if (IS_ERR(trans)) {
2347 ret = PTR_ERR(trans);
2348 goto out;
2351 if (type == BTRFS_FILE_EXTENT_REG ||
2352 type == BTRFS_FILE_EXTENT_PREALLOC) {
2354 * a | --- range to clone ---| b
2355 * | ------------- extent ------------- |
2358 /* substract range b */
2359 if (key.offset + datal > off + len)
2360 datal = off + len - key.offset;
2362 /* substract range a */
2363 if (off > key.offset) {
2364 datao += off - key.offset;
2365 datal -= off - key.offset;
2368 ret = btrfs_drop_extents(trans, inode,
2369 new_key.offset,
2370 new_key.offset + datal,
2371 &hint_byte, 1);
2372 BUG_ON(ret);
2374 ret = btrfs_insert_empty_item(trans, root, path,
2375 &new_key, size);
2376 BUG_ON(ret);
2378 leaf = path->nodes[0];
2379 slot = path->slots[0];
2380 write_extent_buffer(leaf, buf,
2381 btrfs_item_ptr_offset(leaf, slot),
2382 size);
2384 extent = btrfs_item_ptr(leaf, slot,
2385 struct btrfs_file_extent_item);
2387 /* disko == 0 means it's a hole */
2388 if (!disko)
2389 datao = 0;
2391 btrfs_set_file_extent_offset(leaf, extent,
2392 datao);
2393 btrfs_set_file_extent_num_bytes(leaf, extent,
2394 datal);
2395 if (disko) {
2396 inode_add_bytes(inode, datal);
2397 ret = btrfs_inc_extent_ref(trans, root,
2398 disko, diskl, 0,
2399 root->root_key.objectid,
2400 btrfs_ino(inode),
2401 new_key.offset - datao);
2402 BUG_ON(ret);
2404 } else if (type == BTRFS_FILE_EXTENT_INLINE) {
2405 u64 skip = 0;
2406 u64 trim = 0;
2407 if (off > key.offset) {
2408 skip = off - key.offset;
2409 new_key.offset += skip;
2412 if (key.offset + datal > off+len)
2413 trim = key.offset + datal - (off+len);
2415 if (comp && (skip || trim)) {
2416 ret = -EINVAL;
2417 btrfs_end_transaction(trans, root);
2418 goto out;
2420 size -= skip + trim;
2421 datal -= skip + trim;
2423 ret = btrfs_drop_extents(trans, inode,
2424 new_key.offset,
2425 new_key.offset + datal,
2426 &hint_byte, 1);
2427 BUG_ON(ret);
2429 ret = btrfs_insert_empty_item(trans, root, path,
2430 &new_key, size);
2431 BUG_ON(ret);
2433 if (skip) {
2434 u32 start =
2435 btrfs_file_extent_calc_inline_size(0);
2436 memmove(buf+start, buf+start+skip,
2437 datal);
2440 leaf = path->nodes[0];
2441 slot = path->slots[0];
2442 write_extent_buffer(leaf, buf,
2443 btrfs_item_ptr_offset(leaf, slot),
2444 size);
2445 inode_add_bytes(inode, datal);
2448 btrfs_mark_buffer_dirty(leaf);
2449 btrfs_release_path(path);
2451 inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2454 * we round up to the block size at eof when
2455 * determining which extents to clone above,
2456 * but shouldn't round up the file size
2458 endoff = new_key.offset + datal;
2459 if (endoff > destoff+olen)
2460 endoff = destoff+olen;
2461 if (endoff > inode->i_size)
2462 btrfs_i_size_write(inode, endoff);
2464 ret = btrfs_update_inode(trans, root, inode);
2465 BUG_ON(ret);
2466 btrfs_end_transaction(trans, root);
2468 next:
2469 btrfs_release_path(path);
2470 key.offset++;
2472 ret = 0;
2473 out:
2474 btrfs_release_path(path);
2475 unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2476 out_unlock:
2477 mutex_unlock(&src->i_mutex);
2478 mutex_unlock(&inode->i_mutex);
2479 vfree(buf);
2480 btrfs_free_path(path);
2481 out_fput:
2482 fput(src_file);
2483 out_drop_write:
2484 mnt_drop_write(file->f_path.mnt);
2485 return ret;
2488 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2490 struct btrfs_ioctl_clone_range_args args;
2492 if (copy_from_user(&args, argp, sizeof(args)))
2493 return -EFAULT;
2494 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2495 args.src_length, args.dest_offset);
2499 * there are many ways the trans_start and trans_end ioctls can lead
2500 * to deadlocks. They should only be used by applications that
2501 * basically own the machine, and have a very in depth understanding
2502 * of all the possible deadlocks and enospc problems.
2504 static long btrfs_ioctl_trans_start(struct file *file)
2506 struct inode *inode = fdentry(file)->d_inode;
2507 struct btrfs_root *root = BTRFS_I(inode)->root;
2508 struct btrfs_trans_handle *trans;
2509 int ret;
2511 ret = -EPERM;
2512 if (!capable(CAP_SYS_ADMIN))
2513 goto out;
2515 ret = -EINPROGRESS;
2516 if (file->private_data)
2517 goto out;
2519 ret = -EROFS;
2520 if (btrfs_root_readonly(root))
2521 goto out;
2523 ret = mnt_want_write(file->f_path.mnt);
2524 if (ret)
2525 goto out;
2527 atomic_inc(&root->fs_info->open_ioctl_trans);
2529 ret = -ENOMEM;
2530 trans = btrfs_start_ioctl_transaction(root);
2531 if (IS_ERR(trans))
2532 goto out_drop;
2534 file->private_data = trans;
2535 return 0;
2537 out_drop:
2538 atomic_dec(&root->fs_info->open_ioctl_trans);
2539 mnt_drop_write(file->f_path.mnt);
2540 out:
2541 return ret;
2544 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2546 struct inode *inode = fdentry(file)->d_inode;
2547 struct btrfs_root *root = BTRFS_I(inode)->root;
2548 struct btrfs_root *new_root;
2549 struct btrfs_dir_item *di;
2550 struct btrfs_trans_handle *trans;
2551 struct btrfs_path *path;
2552 struct btrfs_key location;
2553 struct btrfs_disk_key disk_key;
2554 struct btrfs_super_block *disk_super;
2555 u64 features;
2556 u64 objectid = 0;
2557 u64 dir_id;
2559 if (!capable(CAP_SYS_ADMIN))
2560 return -EPERM;
2562 if (copy_from_user(&objectid, argp, sizeof(objectid)))
2563 return -EFAULT;
2565 if (!objectid)
2566 objectid = root->root_key.objectid;
2568 location.objectid = objectid;
2569 location.type = BTRFS_ROOT_ITEM_KEY;
2570 location.offset = (u64)-1;
2572 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2573 if (IS_ERR(new_root))
2574 return PTR_ERR(new_root);
2576 if (btrfs_root_refs(&new_root->root_item) == 0)
2577 return -ENOENT;
2579 path = btrfs_alloc_path();
2580 if (!path)
2581 return -ENOMEM;
2582 path->leave_spinning = 1;
2584 trans = btrfs_start_transaction(root, 1);
2585 if (IS_ERR(trans)) {
2586 btrfs_free_path(path);
2587 return PTR_ERR(trans);
2590 dir_id = btrfs_super_root_dir(&root->fs_info->super_copy);
2591 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2592 dir_id, "default", 7, 1);
2593 if (IS_ERR_OR_NULL(di)) {
2594 btrfs_free_path(path);
2595 btrfs_end_transaction(trans, root);
2596 printk(KERN_ERR "Umm, you don't have the default dir item, "
2597 "this isn't going to work\n");
2598 return -ENOENT;
2601 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2602 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2603 btrfs_mark_buffer_dirty(path->nodes[0]);
2604 btrfs_free_path(path);
2606 disk_super = &root->fs_info->super_copy;
2607 features = btrfs_super_incompat_flags(disk_super);
2608 if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2609 features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2610 btrfs_set_super_incompat_flags(disk_super, features);
2612 btrfs_end_transaction(trans, root);
2614 return 0;
2617 static void get_block_group_info(struct list_head *groups_list,
2618 struct btrfs_ioctl_space_info *space)
2620 struct btrfs_block_group_cache *block_group;
2622 space->total_bytes = 0;
2623 space->used_bytes = 0;
2624 space->flags = 0;
2625 list_for_each_entry(block_group, groups_list, list) {
2626 space->flags = block_group->flags;
2627 space->total_bytes += block_group->key.offset;
2628 space->used_bytes +=
2629 btrfs_block_group_used(&block_group->item);
2633 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2635 struct btrfs_ioctl_space_args space_args;
2636 struct btrfs_ioctl_space_info space;
2637 struct btrfs_ioctl_space_info *dest;
2638 struct btrfs_ioctl_space_info *dest_orig;
2639 struct btrfs_ioctl_space_info __user *user_dest;
2640 struct btrfs_space_info *info;
2641 u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2642 BTRFS_BLOCK_GROUP_SYSTEM,
2643 BTRFS_BLOCK_GROUP_METADATA,
2644 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2645 int num_types = 4;
2646 int alloc_size;
2647 int ret = 0;
2648 u64 slot_count = 0;
2649 int i, c;
2651 if (copy_from_user(&space_args,
2652 (struct btrfs_ioctl_space_args __user *)arg,
2653 sizeof(space_args)))
2654 return -EFAULT;
2656 for (i = 0; i < num_types; i++) {
2657 struct btrfs_space_info *tmp;
2659 info = NULL;
2660 rcu_read_lock();
2661 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2662 list) {
2663 if (tmp->flags == types[i]) {
2664 info = tmp;
2665 break;
2668 rcu_read_unlock();
2670 if (!info)
2671 continue;
2673 down_read(&info->groups_sem);
2674 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2675 if (!list_empty(&info->block_groups[c]))
2676 slot_count++;
2678 up_read(&info->groups_sem);
2681 /* space_slots == 0 means they are asking for a count */
2682 if (space_args.space_slots == 0) {
2683 space_args.total_spaces = slot_count;
2684 goto out;
2687 slot_count = min_t(u64, space_args.space_slots, slot_count);
2689 alloc_size = sizeof(*dest) * slot_count;
2691 /* we generally have at most 6 or so space infos, one for each raid
2692 * level. So, a whole page should be more than enough for everyone
2694 if (alloc_size > PAGE_CACHE_SIZE)
2695 return -ENOMEM;
2697 space_args.total_spaces = 0;
2698 dest = kmalloc(alloc_size, GFP_NOFS);
2699 if (!dest)
2700 return -ENOMEM;
2701 dest_orig = dest;
2703 /* now we have a buffer to copy into */
2704 for (i = 0; i < num_types; i++) {
2705 struct btrfs_space_info *tmp;
2707 if (!slot_count)
2708 break;
2710 info = NULL;
2711 rcu_read_lock();
2712 list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2713 list) {
2714 if (tmp->flags == types[i]) {
2715 info = tmp;
2716 break;
2719 rcu_read_unlock();
2721 if (!info)
2722 continue;
2723 down_read(&info->groups_sem);
2724 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2725 if (!list_empty(&info->block_groups[c])) {
2726 get_block_group_info(&info->block_groups[c],
2727 &space);
2728 memcpy(dest, &space, sizeof(space));
2729 dest++;
2730 space_args.total_spaces++;
2731 slot_count--;
2733 if (!slot_count)
2734 break;
2736 up_read(&info->groups_sem);
2739 user_dest = (struct btrfs_ioctl_space_info *)
2740 (arg + sizeof(struct btrfs_ioctl_space_args));
2742 if (copy_to_user(user_dest, dest_orig, alloc_size))
2743 ret = -EFAULT;
2745 kfree(dest_orig);
2746 out:
2747 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2748 ret = -EFAULT;
2750 return ret;
2754 * there are many ways the trans_start and trans_end ioctls can lead
2755 * to deadlocks. They should only be used by applications that
2756 * basically own the machine, and have a very in depth understanding
2757 * of all the possible deadlocks and enospc problems.
2759 long btrfs_ioctl_trans_end(struct file *file)
2761 struct inode *inode = fdentry(file)->d_inode;
2762 struct btrfs_root *root = BTRFS_I(inode)->root;
2763 struct btrfs_trans_handle *trans;
2765 trans = file->private_data;
2766 if (!trans)
2767 return -EINVAL;
2768 file->private_data = NULL;
2770 btrfs_end_transaction(trans, root);
2772 atomic_dec(&root->fs_info->open_ioctl_trans);
2774 mnt_drop_write(file->f_path.mnt);
2775 return 0;
2778 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2780 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2781 struct btrfs_trans_handle *trans;
2782 u64 transid;
2783 int ret;
2785 trans = btrfs_start_transaction(root, 0);
2786 if (IS_ERR(trans))
2787 return PTR_ERR(trans);
2788 transid = trans->transid;
2789 ret = btrfs_commit_transaction_async(trans, root, 0);
2790 if (ret) {
2791 btrfs_end_transaction(trans, root);
2792 return ret;
2795 if (argp)
2796 if (copy_to_user(argp, &transid, sizeof(transid)))
2797 return -EFAULT;
2798 return 0;
2801 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2803 struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2804 u64 transid;
2806 if (argp) {
2807 if (copy_from_user(&transid, argp, sizeof(transid)))
2808 return -EFAULT;
2809 } else {
2810 transid = 0; /* current trans */
2812 return btrfs_wait_for_commit(root, transid);
2815 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2817 int ret;
2818 struct btrfs_ioctl_scrub_args *sa;
2820 if (!capable(CAP_SYS_ADMIN))
2821 return -EPERM;
2823 sa = memdup_user(arg, sizeof(*sa));
2824 if (IS_ERR(sa))
2825 return PTR_ERR(sa);
2827 ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
2828 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
2830 if (copy_to_user(arg, sa, sizeof(*sa)))
2831 ret = -EFAULT;
2833 kfree(sa);
2834 return ret;
2837 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
2839 if (!capable(CAP_SYS_ADMIN))
2840 return -EPERM;
2842 return btrfs_scrub_cancel(root);
2845 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
2846 void __user *arg)
2848 struct btrfs_ioctl_scrub_args *sa;
2849 int ret;
2851 if (!capable(CAP_SYS_ADMIN))
2852 return -EPERM;
2854 sa = memdup_user(arg, sizeof(*sa));
2855 if (IS_ERR(sa))
2856 return PTR_ERR(sa);
2858 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
2860 if (copy_to_user(arg, sa, sizeof(*sa)))
2861 ret = -EFAULT;
2863 kfree(sa);
2864 return ret;
2867 long btrfs_ioctl(struct file *file, unsigned int
2868 cmd, unsigned long arg)
2870 struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
2871 void __user *argp = (void __user *)arg;
2873 switch (cmd) {
2874 case FS_IOC_GETFLAGS:
2875 return btrfs_ioctl_getflags(file, argp);
2876 case FS_IOC_SETFLAGS:
2877 return btrfs_ioctl_setflags(file, argp);
2878 case FS_IOC_GETVERSION:
2879 return btrfs_ioctl_getversion(file, argp);
2880 case FITRIM:
2881 return btrfs_ioctl_fitrim(file, argp);
2882 case BTRFS_IOC_SNAP_CREATE:
2883 return btrfs_ioctl_snap_create(file, argp, 0);
2884 case BTRFS_IOC_SNAP_CREATE_V2:
2885 return btrfs_ioctl_snap_create_v2(file, argp, 0);
2886 case BTRFS_IOC_SUBVOL_CREATE:
2887 return btrfs_ioctl_snap_create(file, argp, 1);
2888 case BTRFS_IOC_SNAP_DESTROY:
2889 return btrfs_ioctl_snap_destroy(file, argp);
2890 case BTRFS_IOC_SUBVOL_GETFLAGS:
2891 return btrfs_ioctl_subvol_getflags(file, argp);
2892 case BTRFS_IOC_SUBVOL_SETFLAGS:
2893 return btrfs_ioctl_subvol_setflags(file, argp);
2894 case BTRFS_IOC_DEFAULT_SUBVOL:
2895 return btrfs_ioctl_default_subvol(file, argp);
2896 case BTRFS_IOC_DEFRAG:
2897 return btrfs_ioctl_defrag(file, NULL);
2898 case BTRFS_IOC_DEFRAG_RANGE:
2899 return btrfs_ioctl_defrag(file, argp);
2900 case BTRFS_IOC_RESIZE:
2901 return btrfs_ioctl_resize(root, argp);
2902 case BTRFS_IOC_ADD_DEV:
2903 return btrfs_ioctl_add_dev(root, argp);
2904 case BTRFS_IOC_RM_DEV:
2905 return btrfs_ioctl_rm_dev(root, argp);
2906 case BTRFS_IOC_FS_INFO:
2907 return btrfs_ioctl_fs_info(root, argp);
2908 case BTRFS_IOC_DEV_INFO:
2909 return btrfs_ioctl_dev_info(root, argp);
2910 case BTRFS_IOC_BALANCE:
2911 return btrfs_balance(root->fs_info->dev_root);
2912 case BTRFS_IOC_CLONE:
2913 return btrfs_ioctl_clone(file, arg, 0, 0, 0);
2914 case BTRFS_IOC_CLONE_RANGE:
2915 return btrfs_ioctl_clone_range(file, argp);
2916 case BTRFS_IOC_TRANS_START:
2917 return btrfs_ioctl_trans_start(file);
2918 case BTRFS_IOC_TRANS_END:
2919 return btrfs_ioctl_trans_end(file);
2920 case BTRFS_IOC_TREE_SEARCH:
2921 return btrfs_ioctl_tree_search(file, argp);
2922 case BTRFS_IOC_INO_LOOKUP:
2923 return btrfs_ioctl_ino_lookup(file, argp);
2924 case BTRFS_IOC_SPACE_INFO:
2925 return btrfs_ioctl_space_info(root, argp);
2926 case BTRFS_IOC_SYNC:
2927 btrfs_sync_fs(file->f_dentry->d_sb, 1);
2928 return 0;
2929 case BTRFS_IOC_START_SYNC:
2930 return btrfs_ioctl_start_sync(file, argp);
2931 case BTRFS_IOC_WAIT_SYNC:
2932 return btrfs_ioctl_wait_sync(file, argp);
2933 case BTRFS_IOC_SCRUB:
2934 return btrfs_ioctl_scrub(root, argp);
2935 case BTRFS_IOC_SCRUB_CANCEL:
2936 return btrfs_ioctl_scrub_cancel(root, argp);
2937 case BTRFS_IOC_SCRUB_PROGRESS:
2938 return btrfs_ioctl_scrub_progress(root, argp);
2941 return -ENOTTY;