Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / fs / proc / task_mmu.c
blob5afaa58a863012d83a69763b2e65c9db67fe2ada
1 #include <linux/mm.h>
2 #include <linux/hugetlb.h>
3 #include <linux/huge_mm.h>
4 #include <linux/mount.h>
5 #include <linux/seq_file.h>
6 #include <linux/highmem.h>
7 #include <linux/ptrace.h>
8 #include <linux/slab.h>
9 #include <linux/pagemap.h>
10 #include <linux/mempolicy.h>
11 #include <linux/rmap.h>
12 #include <linux/swap.h>
13 #include <linux/swapops.h>
15 #include <asm/elf.h>
16 #include <asm/uaccess.h>
17 #include <asm/tlbflush.h>
18 #include "internal.h"
20 void task_mem(struct seq_file *m, struct mm_struct *mm)
22 unsigned long data, text, lib, swap;
23 unsigned long hiwater_vm, total_vm, hiwater_rss, total_rss;
26 * Note: to minimize their overhead, mm maintains hiwater_vm and
27 * hiwater_rss only when about to *lower* total_vm or rss. Any
28 * collector of these hiwater stats must therefore get total_vm
29 * and rss too, which will usually be the higher. Barriers? not
30 * worth the effort, such snapshots can always be inconsistent.
32 hiwater_vm = total_vm = mm->total_vm;
33 if (hiwater_vm < mm->hiwater_vm)
34 hiwater_vm = mm->hiwater_vm;
35 hiwater_rss = total_rss = get_mm_rss(mm);
36 if (hiwater_rss < mm->hiwater_rss)
37 hiwater_rss = mm->hiwater_rss;
39 data = mm->total_vm - mm->shared_vm - mm->stack_vm;
40 text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK)) >> 10;
41 lib = (mm->exec_vm << (PAGE_SHIFT-10)) - text;
42 swap = get_mm_counter(mm, MM_SWAPENTS);
43 seq_printf(m,
44 "VmPeak:\t%8lu kB\n"
45 "VmSize:\t%8lu kB\n"
46 "VmLck:\t%8lu kB\n"
47 "VmHWM:\t%8lu kB\n"
48 "VmRSS:\t%8lu kB\n"
49 "VmData:\t%8lu kB\n"
50 "VmStk:\t%8lu kB\n"
51 "VmExe:\t%8lu kB\n"
52 "VmLib:\t%8lu kB\n"
53 "VmPTE:\t%8lu kB\n"
54 "VmSwap:\t%8lu kB\n",
55 hiwater_vm << (PAGE_SHIFT-10),
56 (total_vm - mm->reserved_vm) << (PAGE_SHIFT-10),
57 mm->locked_vm << (PAGE_SHIFT-10),
58 hiwater_rss << (PAGE_SHIFT-10),
59 total_rss << (PAGE_SHIFT-10),
60 data << (PAGE_SHIFT-10),
61 mm->stack_vm << (PAGE_SHIFT-10), text, lib,
62 (PTRS_PER_PTE*sizeof(pte_t)*mm->nr_ptes) >> 10,
63 swap << (PAGE_SHIFT-10));
66 unsigned long task_vsize(struct mm_struct *mm)
68 return PAGE_SIZE * mm->total_vm;
71 unsigned long task_statm(struct mm_struct *mm,
72 unsigned long *shared, unsigned long *text,
73 unsigned long *data, unsigned long *resident)
75 *shared = get_mm_counter(mm, MM_FILEPAGES);
76 *text = (PAGE_ALIGN(mm->end_code) - (mm->start_code & PAGE_MASK))
77 >> PAGE_SHIFT;
78 *data = mm->total_vm - mm->shared_vm;
79 *resident = *shared + get_mm_counter(mm, MM_ANONPAGES);
80 return mm->total_vm;
83 static void pad_len_spaces(struct seq_file *m, int len)
85 len = 25 + sizeof(void*) * 6 - len;
86 if (len < 1)
87 len = 1;
88 seq_printf(m, "%*c", len, ' ');
91 static void vma_stop(struct proc_maps_private *priv, struct vm_area_struct *vma)
93 if (vma && vma != priv->tail_vma) {
94 struct mm_struct *mm = vma->vm_mm;
95 up_read(&mm->mmap_sem);
96 mmput(mm);
100 static void *m_start(struct seq_file *m, loff_t *pos)
102 struct proc_maps_private *priv = m->private;
103 unsigned long last_addr = m->version;
104 struct mm_struct *mm;
105 struct vm_area_struct *vma, *tail_vma = NULL;
106 loff_t l = *pos;
108 /* Clear the per syscall fields in priv */
109 priv->task = NULL;
110 priv->tail_vma = NULL;
113 * We remember last_addr rather than next_addr to hit with
114 * mmap_cache most of the time. We have zero last_addr at
115 * the beginning and also after lseek. We will have -1 last_addr
116 * after the end of the vmas.
119 if (last_addr == -1UL)
120 return NULL;
122 priv->task = get_pid_task(priv->pid, PIDTYPE_PID);
123 if (!priv->task)
124 return ERR_PTR(-ESRCH);
126 mm = mm_for_maps(priv->task);
127 if (!mm || IS_ERR(mm))
128 return mm;
129 down_read(&mm->mmap_sem);
131 tail_vma = get_gate_vma(priv->task->mm);
132 priv->tail_vma = tail_vma;
134 /* Start with last addr hint */
135 vma = find_vma(mm, last_addr);
136 if (last_addr && vma) {
137 vma = vma->vm_next;
138 goto out;
142 * Check the vma index is within the range and do
143 * sequential scan until m_index.
145 vma = NULL;
146 if ((unsigned long)l < mm->map_count) {
147 vma = mm->mmap;
148 while (l-- && vma)
149 vma = vma->vm_next;
150 goto out;
153 if (l != mm->map_count)
154 tail_vma = NULL; /* After gate vma */
156 out:
157 if (vma)
158 return vma;
160 /* End of vmas has been reached */
161 m->version = (tail_vma != NULL)? 0: -1UL;
162 up_read(&mm->mmap_sem);
163 mmput(mm);
164 return tail_vma;
167 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
169 struct proc_maps_private *priv = m->private;
170 struct vm_area_struct *vma = v;
171 struct vm_area_struct *tail_vma = priv->tail_vma;
173 (*pos)++;
174 if (vma && (vma != tail_vma) && vma->vm_next)
175 return vma->vm_next;
176 vma_stop(priv, vma);
177 return (vma != tail_vma)? tail_vma: NULL;
180 static void m_stop(struct seq_file *m, void *v)
182 struct proc_maps_private *priv = m->private;
183 struct vm_area_struct *vma = v;
185 if (!IS_ERR(vma))
186 vma_stop(priv, vma);
187 if (priv->task)
188 put_task_struct(priv->task);
191 static int do_maps_open(struct inode *inode, struct file *file,
192 const struct seq_operations *ops)
194 struct proc_maps_private *priv;
195 int ret = -ENOMEM;
196 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
197 if (priv) {
198 priv->pid = proc_pid(inode);
199 ret = seq_open(file, ops);
200 if (!ret) {
201 struct seq_file *m = file->private_data;
202 m->private = priv;
203 } else {
204 kfree(priv);
207 return ret;
210 static void show_map_vma(struct seq_file *m, struct vm_area_struct *vma)
212 struct mm_struct *mm = vma->vm_mm;
213 struct file *file = vma->vm_file;
214 vm_flags_t flags = vma->vm_flags;
215 unsigned long ino = 0;
216 unsigned long long pgoff = 0;
217 unsigned long start, end;
218 dev_t dev = 0;
219 int len;
221 if (file) {
222 struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
223 dev = inode->i_sb->s_dev;
224 ino = inode->i_ino;
225 pgoff = ((loff_t)vma->vm_pgoff) << PAGE_SHIFT;
228 /* We don't show the stack guard page in /proc/maps */
229 start = vma->vm_start;
230 if (stack_guard_page_start(vma, start))
231 start += PAGE_SIZE;
232 end = vma->vm_end;
233 if (stack_guard_page_end(vma, end))
234 end -= PAGE_SIZE;
236 seq_printf(m, "%08lx-%08lx %c%c%c%c %08llx %02x:%02x %lu %n",
237 start,
238 end,
239 flags & VM_READ ? 'r' : '-',
240 flags & VM_WRITE ? 'w' : '-',
241 flags & VM_EXEC ? 'x' : '-',
242 flags & VM_MAYSHARE ? 's' : 'p',
243 pgoff,
244 MAJOR(dev), MINOR(dev), ino, &len);
247 * Print the dentry name for named mappings, and a
248 * special [heap] marker for the heap:
250 if (file) {
251 pad_len_spaces(m, len);
252 seq_path(m, &file->f_path, "\n");
253 } else {
254 const char *name = arch_vma_name(vma);
255 if (!name) {
256 if (mm) {
257 if (vma->vm_start <= mm->brk &&
258 vma->vm_end >= mm->start_brk) {
259 name = "[heap]";
260 } else if (vma->vm_start <= mm->start_stack &&
261 vma->vm_end >= mm->start_stack) {
262 name = "[stack]";
264 } else {
265 name = "[vdso]";
268 if (name) {
269 pad_len_spaces(m, len);
270 seq_puts(m, name);
273 seq_putc(m, '\n');
276 static int show_map(struct seq_file *m, void *v)
278 struct vm_area_struct *vma = v;
279 struct proc_maps_private *priv = m->private;
280 struct task_struct *task = priv->task;
282 show_map_vma(m, vma);
284 if (m->count < m->size) /* vma is copied successfully */
285 m->version = (vma != get_gate_vma(task->mm))
286 ? vma->vm_start : 0;
287 return 0;
290 static const struct seq_operations proc_pid_maps_op = {
291 .start = m_start,
292 .next = m_next,
293 .stop = m_stop,
294 .show = show_map
297 static int maps_open(struct inode *inode, struct file *file)
299 return do_maps_open(inode, file, &proc_pid_maps_op);
302 const struct file_operations proc_maps_operations = {
303 .open = maps_open,
304 .read = seq_read,
305 .llseek = seq_lseek,
306 .release = seq_release_private,
310 * Proportional Set Size(PSS): my share of RSS.
312 * PSS of a process is the count of pages it has in memory, where each
313 * page is divided by the number of processes sharing it. So if a
314 * process has 1000 pages all to itself, and 1000 shared with one other
315 * process, its PSS will be 1500.
317 * To keep (accumulated) division errors low, we adopt a 64bit
318 * fixed-point pss counter to minimize division errors. So (pss >>
319 * PSS_SHIFT) would be the real byte count.
321 * A shift of 12 before division means (assuming 4K page size):
322 * - 1M 3-user-pages add up to 8KB errors;
323 * - supports mapcount up to 2^24, or 16M;
324 * - supports PSS up to 2^52 bytes, or 4PB.
326 #define PSS_SHIFT 12
328 #ifdef CONFIG_PROC_PAGE_MONITOR
329 struct mem_size_stats {
330 struct vm_area_struct *vma;
331 unsigned long resident;
332 unsigned long shared_clean;
333 unsigned long shared_dirty;
334 unsigned long private_clean;
335 unsigned long private_dirty;
336 unsigned long referenced;
337 unsigned long anonymous;
338 unsigned long anonymous_thp;
339 unsigned long swap;
340 u64 pss;
344 static void smaps_pte_entry(pte_t ptent, unsigned long addr,
345 unsigned long ptent_size, struct mm_walk *walk)
347 struct mem_size_stats *mss = walk->private;
348 struct vm_area_struct *vma = mss->vma;
349 struct page *page;
350 int mapcount;
352 if (is_swap_pte(ptent)) {
353 mss->swap += ptent_size;
354 return;
357 if (!pte_present(ptent))
358 return;
360 page = vm_normal_page(vma, addr, ptent);
361 if (!page)
362 return;
364 if (PageAnon(page))
365 mss->anonymous += ptent_size;
367 mss->resident += ptent_size;
368 /* Accumulate the size in pages that have been accessed. */
369 if (pte_young(ptent) || PageReferenced(page))
370 mss->referenced += ptent_size;
371 mapcount = page_mapcount(page);
372 if (mapcount >= 2) {
373 if (pte_dirty(ptent) || PageDirty(page))
374 mss->shared_dirty += ptent_size;
375 else
376 mss->shared_clean += ptent_size;
377 mss->pss += (ptent_size << PSS_SHIFT) / mapcount;
378 } else {
379 if (pte_dirty(ptent) || PageDirty(page))
380 mss->private_dirty += ptent_size;
381 else
382 mss->private_clean += ptent_size;
383 mss->pss += (ptent_size << PSS_SHIFT);
387 static int smaps_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
388 struct mm_walk *walk)
390 struct mem_size_stats *mss = walk->private;
391 struct vm_area_struct *vma = mss->vma;
392 pte_t *pte;
393 spinlock_t *ptl;
395 spin_lock(&walk->mm->page_table_lock);
396 if (pmd_trans_huge(*pmd)) {
397 if (pmd_trans_splitting(*pmd)) {
398 spin_unlock(&walk->mm->page_table_lock);
399 wait_split_huge_page(vma->anon_vma, pmd);
400 } else {
401 smaps_pte_entry(*(pte_t *)pmd, addr,
402 HPAGE_PMD_SIZE, walk);
403 spin_unlock(&walk->mm->page_table_lock);
404 mss->anonymous_thp += HPAGE_PMD_SIZE;
405 return 0;
407 } else {
408 spin_unlock(&walk->mm->page_table_lock);
411 * The mmap_sem held all the way back in m_start() is what
412 * keeps khugepaged out of here and from collapsing things
413 * in here.
415 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
416 for (; addr != end; pte++, addr += PAGE_SIZE)
417 smaps_pte_entry(*pte, addr, PAGE_SIZE, walk);
418 pte_unmap_unlock(pte - 1, ptl);
419 cond_resched();
420 return 0;
423 static int show_smap(struct seq_file *m, void *v)
425 struct proc_maps_private *priv = m->private;
426 struct task_struct *task = priv->task;
427 struct vm_area_struct *vma = v;
428 struct mem_size_stats mss;
429 struct mm_walk smaps_walk = {
430 .pmd_entry = smaps_pte_range,
431 .mm = vma->vm_mm,
432 .private = &mss,
435 memset(&mss, 0, sizeof mss);
436 mss.vma = vma;
437 /* mmap_sem is held in m_start */
438 if (vma->vm_mm && !is_vm_hugetlb_page(vma))
439 walk_page_range(vma->vm_start, vma->vm_end, &smaps_walk);
441 show_map_vma(m, vma);
443 seq_printf(m,
444 "Size: %8lu kB\n"
445 "Rss: %8lu kB\n"
446 "Pss: %8lu kB\n"
447 "Shared_Clean: %8lu kB\n"
448 "Shared_Dirty: %8lu kB\n"
449 "Private_Clean: %8lu kB\n"
450 "Private_Dirty: %8lu kB\n"
451 "Referenced: %8lu kB\n"
452 "Anonymous: %8lu kB\n"
453 "AnonHugePages: %8lu kB\n"
454 "Swap: %8lu kB\n"
455 "KernelPageSize: %8lu kB\n"
456 "MMUPageSize: %8lu kB\n"
457 "Locked: %8lu kB\n",
458 (vma->vm_end - vma->vm_start) >> 10,
459 mss.resident >> 10,
460 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)),
461 mss.shared_clean >> 10,
462 mss.shared_dirty >> 10,
463 mss.private_clean >> 10,
464 mss.private_dirty >> 10,
465 mss.referenced >> 10,
466 mss.anonymous >> 10,
467 mss.anonymous_thp >> 10,
468 mss.swap >> 10,
469 vma_kernel_pagesize(vma) >> 10,
470 vma_mmu_pagesize(vma) >> 10,
471 (vma->vm_flags & VM_LOCKED) ?
472 (unsigned long)(mss.pss >> (10 + PSS_SHIFT)) : 0);
474 if (m->count < m->size) /* vma is copied successfully */
475 m->version = (vma != get_gate_vma(task->mm))
476 ? vma->vm_start : 0;
477 return 0;
480 static const struct seq_operations proc_pid_smaps_op = {
481 .start = m_start,
482 .next = m_next,
483 .stop = m_stop,
484 .show = show_smap
487 static int smaps_open(struct inode *inode, struct file *file)
489 return do_maps_open(inode, file, &proc_pid_smaps_op);
492 const struct file_operations proc_smaps_operations = {
493 .open = smaps_open,
494 .read = seq_read,
495 .llseek = seq_lseek,
496 .release = seq_release_private,
499 static int clear_refs_pte_range(pmd_t *pmd, unsigned long addr,
500 unsigned long end, struct mm_walk *walk)
502 struct vm_area_struct *vma = walk->private;
503 pte_t *pte, ptent;
504 spinlock_t *ptl;
505 struct page *page;
507 split_huge_page_pmd(walk->mm, pmd);
509 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
510 for (; addr != end; pte++, addr += PAGE_SIZE) {
511 ptent = *pte;
512 if (!pte_present(ptent))
513 continue;
515 page = vm_normal_page(vma, addr, ptent);
516 if (!page)
517 continue;
519 /* Clear accessed and referenced bits. */
520 ptep_test_and_clear_young(vma, addr, pte);
521 ClearPageReferenced(page);
523 pte_unmap_unlock(pte - 1, ptl);
524 cond_resched();
525 return 0;
528 #define CLEAR_REFS_ALL 1
529 #define CLEAR_REFS_ANON 2
530 #define CLEAR_REFS_MAPPED 3
532 static ssize_t clear_refs_write(struct file *file, const char __user *buf,
533 size_t count, loff_t *ppos)
535 struct task_struct *task;
536 char buffer[PROC_NUMBUF];
537 struct mm_struct *mm;
538 struct vm_area_struct *vma;
539 int type;
540 int rv;
542 memset(buffer, 0, sizeof(buffer));
543 if (count > sizeof(buffer) - 1)
544 count = sizeof(buffer) - 1;
545 if (copy_from_user(buffer, buf, count))
546 return -EFAULT;
547 rv = kstrtoint(strstrip(buffer), 10, &type);
548 if (rv < 0)
549 return rv;
550 if (type < CLEAR_REFS_ALL || type > CLEAR_REFS_MAPPED)
551 return -EINVAL;
552 task = get_proc_task(file->f_path.dentry->d_inode);
553 if (!task)
554 return -ESRCH;
555 mm = get_task_mm(task);
556 if (mm) {
557 struct mm_walk clear_refs_walk = {
558 .pmd_entry = clear_refs_pte_range,
559 .mm = mm,
561 down_read(&mm->mmap_sem);
562 for (vma = mm->mmap; vma; vma = vma->vm_next) {
563 clear_refs_walk.private = vma;
564 if (is_vm_hugetlb_page(vma))
565 continue;
567 * Writing 1 to /proc/pid/clear_refs affects all pages.
569 * Writing 2 to /proc/pid/clear_refs only affects
570 * Anonymous pages.
572 * Writing 3 to /proc/pid/clear_refs only affects file
573 * mapped pages.
575 if (type == CLEAR_REFS_ANON && vma->vm_file)
576 continue;
577 if (type == CLEAR_REFS_MAPPED && !vma->vm_file)
578 continue;
579 walk_page_range(vma->vm_start, vma->vm_end,
580 &clear_refs_walk);
582 flush_tlb_mm(mm);
583 up_read(&mm->mmap_sem);
584 mmput(mm);
586 put_task_struct(task);
588 return count;
591 const struct file_operations proc_clear_refs_operations = {
592 .write = clear_refs_write,
593 .llseek = noop_llseek,
596 struct pagemapread {
597 int pos, len;
598 u64 *buffer;
601 #define PM_ENTRY_BYTES sizeof(u64)
602 #define PM_STATUS_BITS 3
603 #define PM_STATUS_OFFSET (64 - PM_STATUS_BITS)
604 #define PM_STATUS_MASK (((1LL << PM_STATUS_BITS) - 1) << PM_STATUS_OFFSET)
605 #define PM_STATUS(nr) (((nr) << PM_STATUS_OFFSET) & PM_STATUS_MASK)
606 #define PM_PSHIFT_BITS 6
607 #define PM_PSHIFT_OFFSET (PM_STATUS_OFFSET - PM_PSHIFT_BITS)
608 #define PM_PSHIFT_MASK (((1LL << PM_PSHIFT_BITS) - 1) << PM_PSHIFT_OFFSET)
609 #define PM_PSHIFT(x) (((u64) (x) << PM_PSHIFT_OFFSET) & PM_PSHIFT_MASK)
610 #define PM_PFRAME_MASK ((1LL << PM_PSHIFT_OFFSET) - 1)
611 #define PM_PFRAME(x) ((x) & PM_PFRAME_MASK)
613 #define PM_PRESENT PM_STATUS(4LL)
614 #define PM_SWAP PM_STATUS(2LL)
615 #define PM_NOT_PRESENT PM_PSHIFT(PAGE_SHIFT)
616 #define PM_END_OF_BUFFER 1
618 static int add_to_pagemap(unsigned long addr, u64 pfn,
619 struct pagemapread *pm)
621 pm->buffer[pm->pos++] = pfn;
622 if (pm->pos >= pm->len)
623 return PM_END_OF_BUFFER;
624 return 0;
627 static int pagemap_pte_hole(unsigned long start, unsigned long end,
628 struct mm_walk *walk)
630 struct pagemapread *pm = walk->private;
631 unsigned long addr;
632 int err = 0;
633 for (addr = start; addr < end; addr += PAGE_SIZE) {
634 err = add_to_pagemap(addr, PM_NOT_PRESENT, pm);
635 if (err)
636 break;
638 return err;
641 static u64 swap_pte_to_pagemap_entry(pte_t pte)
643 swp_entry_t e = pte_to_swp_entry(pte);
644 return swp_type(e) | (swp_offset(e) << MAX_SWAPFILES_SHIFT);
647 static u64 pte_to_pagemap_entry(pte_t pte)
649 u64 pme = 0;
650 if (is_swap_pte(pte))
651 pme = PM_PFRAME(swap_pte_to_pagemap_entry(pte))
652 | PM_PSHIFT(PAGE_SHIFT) | PM_SWAP;
653 else if (pte_present(pte))
654 pme = PM_PFRAME(pte_pfn(pte))
655 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
656 return pme;
659 static int pagemap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end,
660 struct mm_walk *walk)
662 struct vm_area_struct *vma;
663 struct pagemapread *pm = walk->private;
664 pte_t *pte;
665 int err = 0;
667 split_huge_page_pmd(walk->mm, pmd);
669 /* find the first VMA at or above 'addr' */
670 vma = find_vma(walk->mm, addr);
671 for (; addr != end; addr += PAGE_SIZE) {
672 u64 pfn = PM_NOT_PRESENT;
674 /* check to see if we've left 'vma' behind
675 * and need a new, higher one */
676 if (vma && (addr >= vma->vm_end))
677 vma = find_vma(walk->mm, addr);
679 /* check that 'vma' actually covers this address,
680 * and that it isn't a huge page vma */
681 if (vma && (vma->vm_start <= addr) &&
682 !is_vm_hugetlb_page(vma)) {
683 pte = pte_offset_map(pmd, addr);
684 pfn = pte_to_pagemap_entry(*pte);
685 /* unmap before userspace copy */
686 pte_unmap(pte);
688 err = add_to_pagemap(addr, pfn, pm);
689 if (err)
690 return err;
693 cond_resched();
695 return err;
698 #ifdef CONFIG_HUGETLB_PAGE
699 static u64 huge_pte_to_pagemap_entry(pte_t pte, int offset)
701 u64 pme = 0;
702 if (pte_present(pte))
703 pme = PM_PFRAME(pte_pfn(pte) + offset)
704 | PM_PSHIFT(PAGE_SHIFT) | PM_PRESENT;
705 return pme;
708 /* This function walks within one hugetlb entry in the single call */
709 static int pagemap_hugetlb_range(pte_t *pte, unsigned long hmask,
710 unsigned long addr, unsigned long end,
711 struct mm_walk *walk)
713 struct pagemapread *pm = walk->private;
714 int err = 0;
715 u64 pfn;
717 for (; addr != end; addr += PAGE_SIZE) {
718 int offset = (addr & ~hmask) >> PAGE_SHIFT;
719 pfn = huge_pte_to_pagemap_entry(*pte, offset);
720 err = add_to_pagemap(addr, pfn, pm);
721 if (err)
722 return err;
725 cond_resched();
727 return err;
729 #endif /* HUGETLB_PAGE */
732 * /proc/pid/pagemap - an array mapping virtual pages to pfns
734 * For each page in the address space, this file contains one 64-bit entry
735 * consisting of the following:
737 * Bits 0-55 page frame number (PFN) if present
738 * Bits 0-4 swap type if swapped
739 * Bits 5-55 swap offset if swapped
740 * Bits 55-60 page shift (page size = 1<<page shift)
741 * Bit 61 reserved for future use
742 * Bit 62 page swapped
743 * Bit 63 page present
745 * If the page is not present but in swap, then the PFN contains an
746 * encoding of the swap file number and the page's offset into the
747 * swap. Unmapped pages return a null PFN. This allows determining
748 * precisely which pages are mapped (or in swap) and comparing mapped
749 * pages between processes.
751 * Efficient users of this interface will use /proc/pid/maps to
752 * determine which areas of memory are actually mapped and llseek to
753 * skip over unmapped regions.
755 #define PAGEMAP_WALK_SIZE (PMD_SIZE)
756 #define PAGEMAP_WALK_MASK (PMD_MASK)
757 static ssize_t pagemap_read(struct file *file, char __user *buf,
758 size_t count, loff_t *ppos)
760 struct task_struct *task = get_proc_task(file->f_path.dentry->d_inode);
761 struct mm_struct *mm;
762 struct pagemapread pm;
763 int ret = -ESRCH;
764 struct mm_walk pagemap_walk = {};
765 unsigned long src;
766 unsigned long svpfn;
767 unsigned long start_vaddr;
768 unsigned long end_vaddr;
769 int copied = 0;
771 if (!task)
772 goto out;
774 ret = -EINVAL;
775 /* file position must be aligned */
776 if ((*ppos % PM_ENTRY_BYTES) || (count % PM_ENTRY_BYTES))
777 goto out_task;
779 ret = 0;
780 if (!count)
781 goto out_task;
783 pm.len = PM_ENTRY_BYTES * (PAGEMAP_WALK_SIZE >> PAGE_SHIFT);
784 pm.buffer = kmalloc(pm.len, GFP_TEMPORARY);
785 ret = -ENOMEM;
786 if (!pm.buffer)
787 goto out_task;
789 mm = mm_for_maps(task);
790 ret = PTR_ERR(mm);
791 if (!mm || IS_ERR(mm))
792 goto out_free;
794 pagemap_walk.pmd_entry = pagemap_pte_range;
795 pagemap_walk.pte_hole = pagemap_pte_hole;
796 #ifdef CONFIG_HUGETLB_PAGE
797 pagemap_walk.hugetlb_entry = pagemap_hugetlb_range;
798 #endif
799 pagemap_walk.mm = mm;
800 pagemap_walk.private = &pm;
802 src = *ppos;
803 svpfn = src / PM_ENTRY_BYTES;
804 start_vaddr = svpfn << PAGE_SHIFT;
805 end_vaddr = TASK_SIZE_OF(task);
807 /* watch out for wraparound */
808 if (svpfn > TASK_SIZE_OF(task) >> PAGE_SHIFT)
809 start_vaddr = end_vaddr;
812 * The odds are that this will stop walking way
813 * before end_vaddr, because the length of the
814 * user buffer is tracked in "pm", and the walk
815 * will stop when we hit the end of the buffer.
817 ret = 0;
818 while (count && (start_vaddr < end_vaddr)) {
819 int len;
820 unsigned long end;
822 pm.pos = 0;
823 end = (start_vaddr + PAGEMAP_WALK_SIZE) & PAGEMAP_WALK_MASK;
824 /* overflow ? */
825 if (end < start_vaddr || end > end_vaddr)
826 end = end_vaddr;
827 down_read(&mm->mmap_sem);
828 ret = walk_page_range(start_vaddr, end, &pagemap_walk);
829 up_read(&mm->mmap_sem);
830 start_vaddr = end;
832 len = min(count, PM_ENTRY_BYTES * pm.pos);
833 if (copy_to_user(buf, pm.buffer, len)) {
834 ret = -EFAULT;
835 goto out_mm;
837 copied += len;
838 buf += len;
839 count -= len;
841 *ppos += copied;
842 if (!ret || ret == PM_END_OF_BUFFER)
843 ret = copied;
845 out_mm:
846 mmput(mm);
847 out_free:
848 kfree(pm.buffer);
849 out_task:
850 put_task_struct(task);
851 out:
852 return ret;
855 const struct file_operations proc_pagemap_operations = {
856 .llseek = mem_lseek, /* borrow this */
857 .read = pagemap_read,
859 #endif /* CONFIG_PROC_PAGE_MONITOR */
861 #ifdef CONFIG_NUMA
863 struct numa_maps {
864 struct vm_area_struct *vma;
865 unsigned long pages;
866 unsigned long anon;
867 unsigned long active;
868 unsigned long writeback;
869 unsigned long mapcount_max;
870 unsigned long dirty;
871 unsigned long swapcache;
872 unsigned long node[MAX_NUMNODES];
875 struct numa_maps_private {
876 struct proc_maps_private proc_maps;
877 struct numa_maps md;
880 static void gather_stats(struct page *page, struct numa_maps *md, int pte_dirty,
881 unsigned long nr_pages)
883 int count = page_mapcount(page);
885 md->pages += nr_pages;
886 if (pte_dirty || PageDirty(page))
887 md->dirty += nr_pages;
889 if (PageSwapCache(page))
890 md->swapcache += nr_pages;
892 if (PageActive(page) || PageUnevictable(page))
893 md->active += nr_pages;
895 if (PageWriteback(page))
896 md->writeback += nr_pages;
898 if (PageAnon(page))
899 md->anon += nr_pages;
901 if (count > md->mapcount_max)
902 md->mapcount_max = count;
904 md->node[page_to_nid(page)] += nr_pages;
907 static struct page *can_gather_numa_stats(pte_t pte, struct vm_area_struct *vma,
908 unsigned long addr)
910 struct page *page;
911 int nid;
913 if (!pte_present(pte))
914 return NULL;
916 page = vm_normal_page(vma, addr, pte);
917 if (!page)
918 return NULL;
920 if (PageReserved(page))
921 return NULL;
923 nid = page_to_nid(page);
924 if (!node_isset(nid, node_states[N_HIGH_MEMORY]))
925 return NULL;
927 return page;
930 static int gather_pte_stats(pmd_t *pmd, unsigned long addr,
931 unsigned long end, struct mm_walk *walk)
933 struct numa_maps *md;
934 spinlock_t *ptl;
935 pte_t *orig_pte;
936 pte_t *pte;
938 md = walk->private;
939 spin_lock(&walk->mm->page_table_lock);
940 if (pmd_trans_huge(*pmd)) {
941 if (pmd_trans_splitting(*pmd)) {
942 spin_unlock(&walk->mm->page_table_lock);
943 wait_split_huge_page(md->vma->anon_vma, pmd);
944 } else {
945 pte_t huge_pte = *(pte_t *)pmd;
946 struct page *page;
948 page = can_gather_numa_stats(huge_pte, md->vma, addr);
949 if (page)
950 gather_stats(page, md, pte_dirty(huge_pte),
951 HPAGE_PMD_SIZE/PAGE_SIZE);
952 spin_unlock(&walk->mm->page_table_lock);
953 return 0;
955 } else {
956 spin_unlock(&walk->mm->page_table_lock);
959 orig_pte = pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
960 do {
961 struct page *page = can_gather_numa_stats(*pte, md->vma, addr);
962 if (!page)
963 continue;
964 gather_stats(page, md, pte_dirty(*pte), 1);
966 } while (pte++, addr += PAGE_SIZE, addr != end);
967 pte_unmap_unlock(orig_pte, ptl);
968 return 0;
970 #ifdef CONFIG_HUGETLB_PAGE
971 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
972 unsigned long addr, unsigned long end, struct mm_walk *walk)
974 struct numa_maps *md;
975 struct page *page;
977 if (pte_none(*pte))
978 return 0;
980 page = pte_page(*pte);
981 if (!page)
982 return 0;
984 md = walk->private;
985 gather_stats(page, md, pte_dirty(*pte), 1);
986 return 0;
989 #else
990 static int gather_hugetbl_stats(pte_t *pte, unsigned long hmask,
991 unsigned long addr, unsigned long end, struct mm_walk *walk)
993 return 0;
995 #endif
998 * Display pages allocated per node and memory policy via /proc.
1000 static int show_numa_map(struct seq_file *m, void *v)
1002 struct numa_maps_private *numa_priv = m->private;
1003 struct proc_maps_private *proc_priv = &numa_priv->proc_maps;
1004 struct vm_area_struct *vma = v;
1005 struct numa_maps *md = &numa_priv->md;
1006 struct file *file = vma->vm_file;
1007 struct mm_struct *mm = vma->vm_mm;
1008 struct mm_walk walk = {};
1009 struct mempolicy *pol;
1010 int n;
1011 char buffer[50];
1013 if (!mm)
1014 return 0;
1016 /* Ensure we start with an empty set of numa_maps statistics. */
1017 memset(md, 0, sizeof(*md));
1019 md->vma = vma;
1021 walk.hugetlb_entry = gather_hugetbl_stats;
1022 walk.pmd_entry = gather_pte_stats;
1023 walk.private = md;
1024 walk.mm = mm;
1026 pol = get_vma_policy(proc_priv->task, vma, vma->vm_start);
1027 mpol_to_str(buffer, sizeof(buffer), pol, 0);
1028 mpol_cond_put(pol);
1030 seq_printf(m, "%08lx %s", vma->vm_start, buffer);
1032 if (file) {
1033 seq_printf(m, " file=");
1034 seq_path(m, &file->f_path, "\n\t= ");
1035 } else if (vma->vm_start <= mm->brk && vma->vm_end >= mm->start_brk) {
1036 seq_printf(m, " heap");
1037 } else if (vma->vm_start <= mm->start_stack &&
1038 vma->vm_end >= mm->start_stack) {
1039 seq_printf(m, " stack");
1042 walk_page_range(vma->vm_start, vma->vm_end, &walk);
1044 if (!md->pages)
1045 goto out;
1047 if (md->anon)
1048 seq_printf(m, " anon=%lu", md->anon);
1050 if (md->dirty)
1051 seq_printf(m, " dirty=%lu", md->dirty);
1053 if (md->pages != md->anon && md->pages != md->dirty)
1054 seq_printf(m, " mapped=%lu", md->pages);
1056 if (md->mapcount_max > 1)
1057 seq_printf(m, " mapmax=%lu", md->mapcount_max);
1059 if (md->swapcache)
1060 seq_printf(m, " swapcache=%lu", md->swapcache);
1062 if (md->active < md->pages && !is_vm_hugetlb_page(vma))
1063 seq_printf(m, " active=%lu", md->active);
1065 if (md->writeback)
1066 seq_printf(m, " writeback=%lu", md->writeback);
1068 for_each_node_state(n, N_HIGH_MEMORY)
1069 if (md->node[n])
1070 seq_printf(m, " N%d=%lu", n, md->node[n]);
1071 out:
1072 seq_putc(m, '\n');
1074 if (m->count < m->size)
1075 m->version = (vma != proc_priv->tail_vma) ? vma->vm_start : 0;
1076 return 0;
1079 static const struct seq_operations proc_pid_numa_maps_op = {
1080 .start = m_start,
1081 .next = m_next,
1082 .stop = m_stop,
1083 .show = show_numa_map,
1086 static int numa_maps_open(struct inode *inode, struct file *file)
1088 struct numa_maps_private *priv;
1089 int ret = -ENOMEM;
1090 priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1091 if (priv) {
1092 priv->proc_maps.pid = proc_pid(inode);
1093 ret = seq_open(file, &proc_pid_numa_maps_op);
1094 if (!ret) {
1095 struct seq_file *m = file->private_data;
1096 m->private = priv;
1097 } else {
1098 kfree(priv);
1101 return ret;
1104 const struct file_operations proc_numa_maps_operations = {
1105 .open = numa_maps_open,
1106 .read = seq_read,
1107 .llseek = seq_lseek,
1108 .release = seq_release_private,
1110 #endif /* CONFIG_NUMA */