Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[linux-btrfs-devel.git] / fs / ubifs / debug.c
blobeef109a1a92772d67cfe7a5693e113c8c801dbec
1 /*
2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
20 * Adrian Hunter
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
35 #include "ubifs.h"
37 #ifdef CONFIG_UBIFS_FS_DEBUG
39 DEFINE_SPINLOCK(dbg_lock);
41 static char dbg_key_buf0[128];
42 static char dbg_key_buf1[128];
44 static const char *get_key_fmt(int fmt)
46 switch (fmt) {
47 case UBIFS_SIMPLE_KEY_FMT:
48 return "simple";
49 default:
50 return "unknown/invalid format";
54 static const char *get_key_hash(int hash)
56 switch (hash) {
57 case UBIFS_KEY_HASH_R5:
58 return "R5";
59 case UBIFS_KEY_HASH_TEST:
60 return "test";
61 default:
62 return "unknown/invalid name hash";
66 static const char *get_key_type(int type)
68 switch (type) {
69 case UBIFS_INO_KEY:
70 return "inode";
71 case UBIFS_DENT_KEY:
72 return "direntry";
73 case UBIFS_XENT_KEY:
74 return "xentry";
75 case UBIFS_DATA_KEY:
76 return "data";
77 case UBIFS_TRUN_KEY:
78 return "truncate";
79 default:
80 return "unknown/invalid key";
84 static const char *get_dent_type(int type)
86 switch (type) {
87 case UBIFS_ITYPE_REG:
88 return "file";
89 case UBIFS_ITYPE_DIR:
90 return "dir";
91 case UBIFS_ITYPE_LNK:
92 return "symlink";
93 case UBIFS_ITYPE_BLK:
94 return "blkdev";
95 case UBIFS_ITYPE_CHR:
96 return "char dev";
97 case UBIFS_ITYPE_FIFO:
98 return "fifo";
99 case UBIFS_ITYPE_SOCK:
100 return "socket";
101 default:
102 return "unknown/invalid type";
106 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
107 char *buffer)
109 char *p = buffer;
110 int type = key_type(c, key);
112 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
113 switch (type) {
114 case UBIFS_INO_KEY:
115 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
116 get_key_type(type));
117 break;
118 case UBIFS_DENT_KEY:
119 case UBIFS_XENT_KEY:
120 sprintf(p, "(%lu, %s, %#08x)",
121 (unsigned long)key_inum(c, key),
122 get_key_type(type), key_hash(c, key));
123 break;
124 case UBIFS_DATA_KEY:
125 sprintf(p, "(%lu, %s, %u)",
126 (unsigned long)key_inum(c, key),
127 get_key_type(type), key_block(c, key));
128 break;
129 case UBIFS_TRUN_KEY:
130 sprintf(p, "(%lu, %s)",
131 (unsigned long)key_inum(c, key),
132 get_key_type(type));
133 break;
134 default:
135 sprintf(p, "(bad key type: %#08x, %#08x)",
136 key->u32[0], key->u32[1]);
138 } else
139 sprintf(p, "bad key format %d", c->key_fmt);
142 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
144 /* dbg_lock must be held */
145 sprintf_key(c, key, dbg_key_buf0);
146 return dbg_key_buf0;
149 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
151 /* dbg_lock must be held */
152 sprintf_key(c, key, dbg_key_buf1);
153 return dbg_key_buf1;
156 const char *dbg_ntype(int type)
158 switch (type) {
159 case UBIFS_PAD_NODE:
160 return "padding node";
161 case UBIFS_SB_NODE:
162 return "superblock node";
163 case UBIFS_MST_NODE:
164 return "master node";
165 case UBIFS_REF_NODE:
166 return "reference node";
167 case UBIFS_INO_NODE:
168 return "inode node";
169 case UBIFS_DENT_NODE:
170 return "direntry node";
171 case UBIFS_XENT_NODE:
172 return "xentry node";
173 case UBIFS_DATA_NODE:
174 return "data node";
175 case UBIFS_TRUN_NODE:
176 return "truncate node";
177 case UBIFS_IDX_NODE:
178 return "indexing node";
179 case UBIFS_CS_NODE:
180 return "commit start node";
181 case UBIFS_ORPH_NODE:
182 return "orphan node";
183 default:
184 return "unknown node";
188 static const char *dbg_gtype(int type)
190 switch (type) {
191 case UBIFS_NO_NODE_GROUP:
192 return "no node group";
193 case UBIFS_IN_NODE_GROUP:
194 return "in node group";
195 case UBIFS_LAST_OF_NODE_GROUP:
196 return "last of node group";
197 default:
198 return "unknown";
202 const char *dbg_cstate(int cmt_state)
204 switch (cmt_state) {
205 case COMMIT_RESTING:
206 return "commit resting";
207 case COMMIT_BACKGROUND:
208 return "background commit requested";
209 case COMMIT_REQUIRED:
210 return "commit required";
211 case COMMIT_RUNNING_BACKGROUND:
212 return "BACKGROUND commit running";
213 case COMMIT_RUNNING_REQUIRED:
214 return "commit running and required";
215 case COMMIT_BROKEN:
216 return "broken commit";
217 default:
218 return "unknown commit state";
222 const char *dbg_jhead(int jhead)
224 switch (jhead) {
225 case GCHD:
226 return "0 (GC)";
227 case BASEHD:
228 return "1 (base)";
229 case DATAHD:
230 return "2 (data)";
231 default:
232 return "unknown journal head";
236 static void dump_ch(const struct ubifs_ch *ch)
238 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic));
239 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc));
240 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type,
241 dbg_ntype(ch->node_type));
242 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type,
243 dbg_gtype(ch->group_type));
244 printk(KERN_DEBUG "\tsqnum %llu\n",
245 (unsigned long long)le64_to_cpu(ch->sqnum));
246 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len));
249 void dbg_dump_inode(struct ubifs_info *c, const struct inode *inode)
251 const struct ubifs_inode *ui = ubifs_inode(inode);
252 struct qstr nm = { .name = NULL };
253 union ubifs_key key;
254 struct ubifs_dent_node *dent, *pdent = NULL;
255 int count = 2;
257 printk(KERN_DEBUG "Dump in-memory inode:");
258 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino);
259 printk(KERN_DEBUG "\tsize %llu\n",
260 (unsigned long long)i_size_read(inode));
261 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink);
262 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid);
263 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid);
264 printk(KERN_DEBUG "\tatime %u.%u\n",
265 (unsigned int)inode->i_atime.tv_sec,
266 (unsigned int)inode->i_atime.tv_nsec);
267 printk(KERN_DEBUG "\tmtime %u.%u\n",
268 (unsigned int)inode->i_mtime.tv_sec,
269 (unsigned int)inode->i_mtime.tv_nsec);
270 printk(KERN_DEBUG "\tctime %u.%u\n",
271 (unsigned int)inode->i_ctime.tv_sec,
272 (unsigned int)inode->i_ctime.tv_nsec);
273 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum);
274 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size);
275 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt);
276 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names);
277 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty);
278 printk(KERN_DEBUG "\txattr %u\n", ui->xattr);
279 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr);
280 printk(KERN_DEBUG "\tsynced_i_size %llu\n",
281 (unsigned long long)ui->synced_i_size);
282 printk(KERN_DEBUG "\tui_size %llu\n",
283 (unsigned long long)ui->ui_size);
284 printk(KERN_DEBUG "\tflags %d\n", ui->flags);
285 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type);
286 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
287 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row);
288 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len);
290 if (!S_ISDIR(inode->i_mode))
291 return;
293 printk(KERN_DEBUG "List of directory entries:\n");
294 ubifs_assert(!mutex_is_locked(&c->tnc_mutex));
296 lowest_dent_key(c, &key, inode->i_ino);
297 while (1) {
298 dent = ubifs_tnc_next_ent(c, &key, &nm);
299 if (IS_ERR(dent)) {
300 if (PTR_ERR(dent) != -ENOENT)
301 printk(KERN_DEBUG "error %ld\n", PTR_ERR(dent));
302 break;
305 printk(KERN_DEBUG "\t%d: %s (%s)\n",
306 count++, dent->name, get_dent_type(dent->type));
308 nm.name = dent->name;
309 nm.len = le16_to_cpu(dent->nlen);
310 kfree(pdent);
311 pdent = dent;
312 key_read(c, &dent->key, &key);
314 kfree(pdent);
317 void dbg_dump_node(const struct ubifs_info *c, const void *node)
319 int i, n;
320 union ubifs_key key;
321 const struct ubifs_ch *ch = node;
323 if (dbg_is_tst_rcvry(c))
324 return;
326 /* If the magic is incorrect, just hexdump the first bytes */
327 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
328 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
329 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
330 (void *)node, UBIFS_CH_SZ, 1);
331 return;
334 spin_lock(&dbg_lock);
335 dump_ch(node);
337 switch (ch->node_type) {
338 case UBIFS_PAD_NODE:
340 const struct ubifs_pad_node *pad = node;
342 printk(KERN_DEBUG "\tpad_len %u\n",
343 le32_to_cpu(pad->pad_len));
344 break;
346 case UBIFS_SB_NODE:
348 const struct ubifs_sb_node *sup = node;
349 unsigned int sup_flags = le32_to_cpu(sup->flags);
351 printk(KERN_DEBUG "\tkey_hash %d (%s)\n",
352 (int)sup->key_hash, get_key_hash(sup->key_hash));
353 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n",
354 (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
355 printk(KERN_DEBUG "\tflags %#x\n", sup_flags);
356 printk(KERN_DEBUG "\t big_lpt %u\n",
357 !!(sup_flags & UBIFS_FLG_BIGLPT));
358 printk(KERN_DEBUG "\t space_fixup %u\n",
359 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
360 printk(KERN_DEBUG "\tmin_io_size %u\n",
361 le32_to_cpu(sup->min_io_size));
362 printk(KERN_DEBUG "\tleb_size %u\n",
363 le32_to_cpu(sup->leb_size));
364 printk(KERN_DEBUG "\tleb_cnt %u\n",
365 le32_to_cpu(sup->leb_cnt));
366 printk(KERN_DEBUG "\tmax_leb_cnt %u\n",
367 le32_to_cpu(sup->max_leb_cnt));
368 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n",
369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
370 printk(KERN_DEBUG "\tlog_lebs %u\n",
371 le32_to_cpu(sup->log_lebs));
372 printk(KERN_DEBUG "\tlpt_lebs %u\n",
373 le32_to_cpu(sup->lpt_lebs));
374 printk(KERN_DEBUG "\torph_lebs %u\n",
375 le32_to_cpu(sup->orph_lebs));
376 printk(KERN_DEBUG "\tjhead_cnt %u\n",
377 le32_to_cpu(sup->jhead_cnt));
378 printk(KERN_DEBUG "\tfanout %u\n",
379 le32_to_cpu(sup->fanout));
380 printk(KERN_DEBUG "\tlsave_cnt %u\n",
381 le32_to_cpu(sup->lsave_cnt));
382 printk(KERN_DEBUG "\tdefault_compr %u\n",
383 (int)le16_to_cpu(sup->default_compr));
384 printk(KERN_DEBUG "\trp_size %llu\n",
385 (unsigned long long)le64_to_cpu(sup->rp_size));
386 printk(KERN_DEBUG "\trp_uid %u\n",
387 le32_to_cpu(sup->rp_uid));
388 printk(KERN_DEBUG "\trp_gid %u\n",
389 le32_to_cpu(sup->rp_gid));
390 printk(KERN_DEBUG "\tfmt_version %u\n",
391 le32_to_cpu(sup->fmt_version));
392 printk(KERN_DEBUG "\ttime_gran %u\n",
393 le32_to_cpu(sup->time_gran));
394 printk(KERN_DEBUG "\tUUID %pUB\n",
395 sup->uuid);
396 break;
398 case UBIFS_MST_NODE:
400 const struct ubifs_mst_node *mst = node;
402 printk(KERN_DEBUG "\thighest_inum %llu\n",
403 (unsigned long long)le64_to_cpu(mst->highest_inum));
404 printk(KERN_DEBUG "\tcommit number %llu\n",
405 (unsigned long long)le64_to_cpu(mst->cmt_no));
406 printk(KERN_DEBUG "\tflags %#x\n",
407 le32_to_cpu(mst->flags));
408 printk(KERN_DEBUG "\tlog_lnum %u\n",
409 le32_to_cpu(mst->log_lnum));
410 printk(KERN_DEBUG "\troot_lnum %u\n",
411 le32_to_cpu(mst->root_lnum));
412 printk(KERN_DEBUG "\troot_offs %u\n",
413 le32_to_cpu(mst->root_offs));
414 printk(KERN_DEBUG "\troot_len %u\n",
415 le32_to_cpu(mst->root_len));
416 printk(KERN_DEBUG "\tgc_lnum %u\n",
417 le32_to_cpu(mst->gc_lnum));
418 printk(KERN_DEBUG "\tihead_lnum %u\n",
419 le32_to_cpu(mst->ihead_lnum));
420 printk(KERN_DEBUG "\tihead_offs %u\n",
421 le32_to_cpu(mst->ihead_offs));
422 printk(KERN_DEBUG "\tindex_size %llu\n",
423 (unsigned long long)le64_to_cpu(mst->index_size));
424 printk(KERN_DEBUG "\tlpt_lnum %u\n",
425 le32_to_cpu(mst->lpt_lnum));
426 printk(KERN_DEBUG "\tlpt_offs %u\n",
427 le32_to_cpu(mst->lpt_offs));
428 printk(KERN_DEBUG "\tnhead_lnum %u\n",
429 le32_to_cpu(mst->nhead_lnum));
430 printk(KERN_DEBUG "\tnhead_offs %u\n",
431 le32_to_cpu(mst->nhead_offs));
432 printk(KERN_DEBUG "\tltab_lnum %u\n",
433 le32_to_cpu(mst->ltab_lnum));
434 printk(KERN_DEBUG "\tltab_offs %u\n",
435 le32_to_cpu(mst->ltab_offs));
436 printk(KERN_DEBUG "\tlsave_lnum %u\n",
437 le32_to_cpu(mst->lsave_lnum));
438 printk(KERN_DEBUG "\tlsave_offs %u\n",
439 le32_to_cpu(mst->lsave_offs));
440 printk(KERN_DEBUG "\tlscan_lnum %u\n",
441 le32_to_cpu(mst->lscan_lnum));
442 printk(KERN_DEBUG "\tleb_cnt %u\n",
443 le32_to_cpu(mst->leb_cnt));
444 printk(KERN_DEBUG "\tempty_lebs %u\n",
445 le32_to_cpu(mst->empty_lebs));
446 printk(KERN_DEBUG "\tidx_lebs %u\n",
447 le32_to_cpu(mst->idx_lebs));
448 printk(KERN_DEBUG "\ttotal_free %llu\n",
449 (unsigned long long)le64_to_cpu(mst->total_free));
450 printk(KERN_DEBUG "\ttotal_dirty %llu\n",
451 (unsigned long long)le64_to_cpu(mst->total_dirty));
452 printk(KERN_DEBUG "\ttotal_used %llu\n",
453 (unsigned long long)le64_to_cpu(mst->total_used));
454 printk(KERN_DEBUG "\ttotal_dead %llu\n",
455 (unsigned long long)le64_to_cpu(mst->total_dead));
456 printk(KERN_DEBUG "\ttotal_dark %llu\n",
457 (unsigned long long)le64_to_cpu(mst->total_dark));
458 break;
460 case UBIFS_REF_NODE:
462 const struct ubifs_ref_node *ref = node;
464 printk(KERN_DEBUG "\tlnum %u\n",
465 le32_to_cpu(ref->lnum));
466 printk(KERN_DEBUG "\toffs %u\n",
467 le32_to_cpu(ref->offs));
468 printk(KERN_DEBUG "\tjhead %u\n",
469 le32_to_cpu(ref->jhead));
470 break;
472 case UBIFS_INO_NODE:
474 const struct ubifs_ino_node *ino = node;
476 key_read(c, &ino->key, &key);
477 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
478 printk(KERN_DEBUG "\tcreat_sqnum %llu\n",
479 (unsigned long long)le64_to_cpu(ino->creat_sqnum));
480 printk(KERN_DEBUG "\tsize %llu\n",
481 (unsigned long long)le64_to_cpu(ino->size));
482 printk(KERN_DEBUG "\tnlink %u\n",
483 le32_to_cpu(ino->nlink));
484 printk(KERN_DEBUG "\tatime %lld.%u\n",
485 (long long)le64_to_cpu(ino->atime_sec),
486 le32_to_cpu(ino->atime_nsec));
487 printk(KERN_DEBUG "\tmtime %lld.%u\n",
488 (long long)le64_to_cpu(ino->mtime_sec),
489 le32_to_cpu(ino->mtime_nsec));
490 printk(KERN_DEBUG "\tctime %lld.%u\n",
491 (long long)le64_to_cpu(ino->ctime_sec),
492 le32_to_cpu(ino->ctime_nsec));
493 printk(KERN_DEBUG "\tuid %u\n",
494 le32_to_cpu(ino->uid));
495 printk(KERN_DEBUG "\tgid %u\n",
496 le32_to_cpu(ino->gid));
497 printk(KERN_DEBUG "\tmode %u\n",
498 le32_to_cpu(ino->mode));
499 printk(KERN_DEBUG "\tflags %#x\n",
500 le32_to_cpu(ino->flags));
501 printk(KERN_DEBUG "\txattr_cnt %u\n",
502 le32_to_cpu(ino->xattr_cnt));
503 printk(KERN_DEBUG "\txattr_size %u\n",
504 le32_to_cpu(ino->xattr_size));
505 printk(KERN_DEBUG "\txattr_names %u\n",
506 le32_to_cpu(ino->xattr_names));
507 printk(KERN_DEBUG "\tcompr_type %#x\n",
508 (int)le16_to_cpu(ino->compr_type));
509 printk(KERN_DEBUG "\tdata len %u\n",
510 le32_to_cpu(ino->data_len));
511 break;
513 case UBIFS_DENT_NODE:
514 case UBIFS_XENT_NODE:
516 const struct ubifs_dent_node *dent = node;
517 int nlen = le16_to_cpu(dent->nlen);
519 key_read(c, &dent->key, &key);
520 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
521 printk(KERN_DEBUG "\tinum %llu\n",
522 (unsigned long long)le64_to_cpu(dent->inum));
523 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type);
524 printk(KERN_DEBUG "\tnlen %d\n", nlen);
525 printk(KERN_DEBUG "\tname ");
527 if (nlen > UBIFS_MAX_NLEN)
528 printk(KERN_DEBUG "(bad name length, not printing, "
529 "bad or corrupted node)");
530 else {
531 for (i = 0; i < nlen && dent->name[i]; i++)
532 printk(KERN_CONT "%c", dent->name[i]);
534 printk(KERN_CONT "\n");
536 break;
538 case UBIFS_DATA_NODE:
540 const struct ubifs_data_node *dn = node;
541 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
543 key_read(c, &dn->key, &key);
544 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key));
545 printk(KERN_DEBUG "\tsize %u\n",
546 le32_to_cpu(dn->size));
547 printk(KERN_DEBUG "\tcompr_typ %d\n",
548 (int)le16_to_cpu(dn->compr_type));
549 printk(KERN_DEBUG "\tdata size %d\n",
550 dlen);
551 printk(KERN_DEBUG "\tdata:\n");
552 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
553 (void *)&dn->data, dlen, 0);
554 break;
556 case UBIFS_TRUN_NODE:
558 const struct ubifs_trun_node *trun = node;
560 printk(KERN_DEBUG "\tinum %u\n",
561 le32_to_cpu(trun->inum));
562 printk(KERN_DEBUG "\told_size %llu\n",
563 (unsigned long long)le64_to_cpu(trun->old_size));
564 printk(KERN_DEBUG "\tnew_size %llu\n",
565 (unsigned long long)le64_to_cpu(trun->new_size));
566 break;
568 case UBIFS_IDX_NODE:
570 const struct ubifs_idx_node *idx = node;
572 n = le16_to_cpu(idx->child_cnt);
573 printk(KERN_DEBUG "\tchild_cnt %d\n", n);
574 printk(KERN_DEBUG "\tlevel %d\n",
575 (int)le16_to_cpu(idx->level));
576 printk(KERN_DEBUG "\tBranches:\n");
578 for (i = 0; i < n && i < c->fanout - 1; i++) {
579 const struct ubifs_branch *br;
581 br = ubifs_idx_branch(c, idx, i);
582 key_read(c, &br->key, &key);
583 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
584 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
585 le32_to_cpu(br->len), DBGKEY(&key));
587 break;
589 case UBIFS_CS_NODE:
590 break;
591 case UBIFS_ORPH_NODE:
593 const struct ubifs_orph_node *orph = node;
595 printk(KERN_DEBUG "\tcommit number %llu\n",
596 (unsigned long long)
597 le64_to_cpu(orph->cmt_no) & LLONG_MAX);
598 printk(KERN_DEBUG "\tlast node flag %llu\n",
599 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
600 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
601 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
602 for (i = 0; i < n; i++)
603 printk(KERN_DEBUG "\t ino %llu\n",
604 (unsigned long long)le64_to_cpu(orph->inos[i]));
605 break;
607 default:
608 printk(KERN_DEBUG "node type %d was not recognized\n",
609 (int)ch->node_type);
611 spin_unlock(&dbg_lock);
614 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
616 spin_lock(&dbg_lock);
617 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
618 req->new_ino, req->dirtied_ino);
619 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n",
620 req->new_ino_d, req->dirtied_ino_d);
621 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n",
622 req->new_page, req->dirtied_page);
623 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n",
624 req->new_dent, req->mod_dent);
625 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth);
626 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n",
627 req->data_growth, req->dd_growth);
628 spin_unlock(&dbg_lock);
631 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
633 spin_lock(&dbg_lock);
634 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
635 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
636 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
637 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
638 lst->total_dirty);
639 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
640 "total_dead %lld\n", lst->total_used, lst->total_dark,
641 lst->total_dead);
642 spin_unlock(&dbg_lock);
645 void dbg_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
647 int i;
648 struct rb_node *rb;
649 struct ubifs_bud *bud;
650 struct ubifs_gced_idx_leb *idx_gc;
651 long long available, outstanding, free;
653 spin_lock(&c->space_lock);
654 spin_lock(&dbg_lock);
655 printk(KERN_DEBUG "(pid %d) Budgeting info: data budget sum %lld, "
656 "total budget sum %lld\n", current->pid,
657 bi->data_growth + bi->dd_growth,
658 bi->data_growth + bi->dd_growth + bi->idx_growth);
659 printk(KERN_DEBUG "\tbudg_data_growth %lld, budg_dd_growth %lld, "
660 "budg_idx_growth %lld\n", bi->data_growth, bi->dd_growth,
661 bi->idx_growth);
662 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %llu, "
663 "uncommitted_idx %lld\n", bi->min_idx_lebs, bi->old_idx_sz,
664 bi->uncommitted_idx);
665 printk(KERN_DEBUG "\tpage_budget %d, inode_budget %d, dent_budget %d\n",
666 bi->page_budget, bi->inode_budget, bi->dent_budget);
667 printk(KERN_DEBUG "\tnospace %u, nospace_rp %u\n",
668 bi->nospace, bi->nospace_rp);
669 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
670 c->dark_wm, c->dead_wm, c->max_idx_node_sz);
672 if (bi != &c->bi)
674 * If we are dumping saved budgeting data, do not print
675 * additional information which is about the current state, not
676 * the old one which corresponded to the saved budgeting data.
678 goto out_unlock;
680 printk(KERN_DEBUG "\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
681 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
682 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
683 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
684 atomic_long_read(&c->dirty_zn_cnt),
685 atomic_long_read(&c->clean_zn_cnt));
686 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
687 c->gc_lnum, c->ihead_lnum);
689 /* If we are in R/O mode, journal heads do not exist */
690 if (c->jheads)
691 for (i = 0; i < c->jhead_cnt; i++)
692 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n",
693 dbg_jhead(c->jheads[i].wbuf.jhead),
694 c->jheads[i].wbuf.lnum);
695 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
696 bud = rb_entry(rb, struct ubifs_bud, rb);
697 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
699 list_for_each_entry(bud, &c->old_buds, list)
700 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
701 list_for_each_entry(idx_gc, &c->idx_gc, list)
702 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
703 idx_gc->lnum, idx_gc->unmap);
704 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
706 /* Print budgeting predictions */
707 available = ubifs_calc_available(c, c->bi.min_idx_lebs);
708 outstanding = c->bi.data_growth + c->bi.dd_growth;
709 free = ubifs_get_free_space_nolock(c);
710 printk(KERN_DEBUG "Budgeting predictions:\n");
711 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
712 available, outstanding, free);
713 out_unlock:
714 spin_unlock(&dbg_lock);
715 spin_unlock(&c->space_lock);
718 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
720 int i, spc, dark = 0, dead = 0;
721 struct rb_node *rb;
722 struct ubifs_bud *bud;
724 spc = lp->free + lp->dirty;
725 if (spc < c->dead_wm)
726 dead = spc;
727 else
728 dark = ubifs_calc_dark(c, spc);
730 if (lp->flags & LPROPS_INDEX)
731 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
732 "free + dirty %-8d flags %#x (", lp->lnum, lp->free,
733 lp->dirty, c->leb_size - spc, spc, lp->flags);
734 else
735 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d "
736 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
737 "flags %#-4x (", lp->lnum, lp->free, lp->dirty,
738 c->leb_size - spc, spc, dark, dead,
739 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
741 if (lp->flags & LPROPS_TAKEN) {
742 if (lp->flags & LPROPS_INDEX)
743 printk(KERN_CONT "index, taken");
744 else
745 printk(KERN_CONT "taken");
746 } else {
747 const char *s;
749 if (lp->flags & LPROPS_INDEX) {
750 switch (lp->flags & LPROPS_CAT_MASK) {
751 case LPROPS_DIRTY_IDX:
752 s = "dirty index";
753 break;
754 case LPROPS_FRDI_IDX:
755 s = "freeable index";
756 break;
757 default:
758 s = "index";
760 } else {
761 switch (lp->flags & LPROPS_CAT_MASK) {
762 case LPROPS_UNCAT:
763 s = "not categorized";
764 break;
765 case LPROPS_DIRTY:
766 s = "dirty";
767 break;
768 case LPROPS_FREE:
769 s = "free";
770 break;
771 case LPROPS_EMPTY:
772 s = "empty";
773 break;
774 case LPROPS_FREEABLE:
775 s = "freeable";
776 break;
777 default:
778 s = NULL;
779 break;
782 printk(KERN_CONT "%s", s);
785 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
786 bud = rb_entry(rb, struct ubifs_bud, rb);
787 if (bud->lnum == lp->lnum) {
788 int head = 0;
789 for (i = 0; i < c->jhead_cnt; i++) {
791 * Note, if we are in R/O mode or in the middle
792 * of mounting/re-mounting, the write-buffers do
793 * not exist.
795 if (c->jheads &&
796 lp->lnum == c->jheads[i].wbuf.lnum) {
797 printk(KERN_CONT ", jhead %s",
798 dbg_jhead(i));
799 head = 1;
802 if (!head)
803 printk(KERN_CONT ", bud of jhead %s",
804 dbg_jhead(bud->jhead));
807 if (lp->lnum == c->gc_lnum)
808 printk(KERN_CONT ", GC LEB");
809 printk(KERN_CONT ")\n");
812 void dbg_dump_lprops(struct ubifs_info *c)
814 int lnum, err;
815 struct ubifs_lprops lp;
816 struct ubifs_lp_stats lst;
818 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
819 current->pid);
820 ubifs_get_lp_stats(c, &lst);
821 dbg_dump_lstats(&lst);
823 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
824 err = ubifs_read_one_lp(c, lnum, &lp);
825 if (err)
826 ubifs_err("cannot read lprops for LEB %d", lnum);
828 dbg_dump_lprop(c, &lp);
830 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
831 current->pid);
834 void dbg_dump_lpt_info(struct ubifs_info *c)
836 int i;
838 spin_lock(&dbg_lock);
839 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
840 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz);
841 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz);
842 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz);
843 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz);
844 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz);
845 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt);
846 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght);
847 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt);
848 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt);
849 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt);
850 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt);
851 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt);
852 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits);
853 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
854 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
855 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits);
856 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits);
857 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits);
858 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
859 printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
860 c->nhead_lnum, c->nhead_offs);
861 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
862 c->ltab_lnum, c->ltab_offs);
863 if (c->big_lpt)
864 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
865 c->lsave_lnum, c->lsave_offs);
866 for (i = 0; i < c->lpt_lebs; i++)
867 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
868 "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
869 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
870 spin_unlock(&dbg_lock);
873 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
875 struct ubifs_scan_leb *sleb;
876 struct ubifs_scan_node *snod;
877 void *buf;
879 if (dbg_is_tst_rcvry(c))
880 return;
882 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
883 current->pid, lnum);
885 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
886 if (!buf) {
887 ubifs_err("cannot allocate memory for dumping LEB %d", lnum);
888 return;
891 sleb = ubifs_scan(c, lnum, 0, buf, 0);
892 if (IS_ERR(sleb)) {
893 ubifs_err("scan error %d", (int)PTR_ERR(sleb));
894 goto out;
897 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
898 sleb->nodes_cnt, sleb->endpt);
900 list_for_each_entry(snod, &sleb->nodes, list) {
901 cond_resched();
902 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
903 snod->offs, snod->len);
904 dbg_dump_node(c, snod->node);
907 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
908 current->pid, lnum);
909 ubifs_scan_destroy(sleb);
911 out:
912 vfree(buf);
913 return;
916 void dbg_dump_znode(const struct ubifs_info *c,
917 const struct ubifs_znode *znode)
919 int n;
920 const struct ubifs_zbranch *zbr;
922 spin_lock(&dbg_lock);
923 if (znode->parent)
924 zbr = &znode->parent->zbranch[znode->iip];
925 else
926 zbr = &c->zroot;
928 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
929 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
930 zbr->len, znode->parent, znode->iip, znode->level,
931 znode->child_cnt, znode->flags);
933 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
934 spin_unlock(&dbg_lock);
935 return;
938 printk(KERN_DEBUG "zbranches:\n");
939 for (n = 0; n < znode->child_cnt; n++) {
940 zbr = &znode->zbranch[n];
941 if (znode->level > 0)
942 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
943 "%s\n", n, zbr->znode, zbr->lnum,
944 zbr->offs, zbr->len,
945 DBGKEY(&zbr->key));
946 else
947 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
948 "%s\n", n, zbr->znode, zbr->lnum,
949 zbr->offs, zbr->len,
950 DBGKEY(&zbr->key));
952 spin_unlock(&dbg_lock);
955 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
957 int i;
959 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
960 current->pid, cat, heap->cnt);
961 for (i = 0; i < heap->cnt; i++) {
962 struct ubifs_lprops *lprops = heap->arr[i];
964 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
965 "flags %d\n", i, lprops->lnum, lprops->hpos,
966 lprops->free, lprops->dirty, lprops->flags);
968 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
971 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
972 struct ubifs_nnode *parent, int iip)
974 int i;
976 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
977 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
978 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
979 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
980 pnode->flags, iip, pnode->level, pnode->num);
981 for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
982 struct ubifs_lprops *lp = &pnode->lprops[i];
984 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
985 i, lp->free, lp->dirty, lp->flags, lp->lnum);
989 void dbg_dump_tnc(struct ubifs_info *c)
991 struct ubifs_znode *znode;
992 int level;
994 printk(KERN_DEBUG "\n");
995 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
996 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
997 level = znode->level;
998 printk(KERN_DEBUG "== Level %d ==\n", level);
999 while (znode) {
1000 if (level != znode->level) {
1001 level = znode->level;
1002 printk(KERN_DEBUG "== Level %d ==\n", level);
1004 dbg_dump_znode(c, znode);
1005 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
1007 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
1010 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
1011 void *priv)
1013 dbg_dump_znode(c, znode);
1014 return 0;
1018 * dbg_dump_index - dump the on-flash index.
1019 * @c: UBIFS file-system description object
1021 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1022 * which dumps only in-memory znodes and does not read znodes which from flash.
1024 void dbg_dump_index(struct ubifs_info *c)
1026 dbg_walk_index(c, NULL, dump_znode, NULL);
1030 * dbg_save_space_info - save information about flash space.
1031 * @c: UBIFS file-system description object
1033 * This function saves information about UBIFS free space, dirty space, etc, in
1034 * order to check it later.
1036 void dbg_save_space_info(struct ubifs_info *c)
1038 struct ubifs_debug_info *d = c->dbg;
1039 int freeable_cnt;
1041 spin_lock(&c->space_lock);
1042 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
1043 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
1044 d->saved_idx_gc_cnt = c->idx_gc_cnt;
1047 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1048 * affects the free space calculations, and UBIFS might not know about
1049 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1050 * only when we read their lprops, and we do this only lazily, upon the
1051 * need. So at any given point of time @c->freeable_cnt might be not
1052 * exactly accurate.
1054 * Just one example about the issue we hit when we did not zero
1055 * @c->freeable_cnt.
1056 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1057 * amount of free space in @d->saved_free
1058 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1059 * information from flash, where we cache LEBs from various
1060 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1061 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1062 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1063 * -> 'ubifs_add_to_cat()').
1064 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1065 * becomes %1.
1066 * 4. We calculate the amount of free space when the re-mount is
1067 * finished in 'dbg_check_space_info()' and it does not match
1068 * @d->saved_free.
1070 freeable_cnt = c->freeable_cnt;
1071 c->freeable_cnt = 0;
1072 d->saved_free = ubifs_get_free_space_nolock(c);
1073 c->freeable_cnt = freeable_cnt;
1074 spin_unlock(&c->space_lock);
1078 * dbg_check_space_info - check flash space information.
1079 * @c: UBIFS file-system description object
1081 * This function compares current flash space information with the information
1082 * which was saved when the 'dbg_save_space_info()' function was called.
1083 * Returns zero if the information has not changed, and %-EINVAL it it has
1084 * changed.
1086 int dbg_check_space_info(struct ubifs_info *c)
1088 struct ubifs_debug_info *d = c->dbg;
1089 struct ubifs_lp_stats lst;
1090 long long free;
1091 int freeable_cnt;
1093 spin_lock(&c->space_lock);
1094 freeable_cnt = c->freeable_cnt;
1095 c->freeable_cnt = 0;
1096 free = ubifs_get_free_space_nolock(c);
1097 c->freeable_cnt = freeable_cnt;
1098 spin_unlock(&c->space_lock);
1100 if (free != d->saved_free) {
1101 ubifs_err("free space changed from %lld to %lld",
1102 d->saved_free, free);
1103 goto out;
1106 return 0;
1108 out:
1109 ubifs_msg("saved lprops statistics dump");
1110 dbg_dump_lstats(&d->saved_lst);
1111 ubifs_msg("saved budgeting info dump");
1112 dbg_dump_budg(c, &d->saved_bi);
1113 ubifs_msg("saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1114 ubifs_msg("current lprops statistics dump");
1115 ubifs_get_lp_stats(c, &lst);
1116 dbg_dump_lstats(&lst);
1117 ubifs_msg("current budgeting info dump");
1118 dbg_dump_budg(c, &c->bi);
1119 dump_stack();
1120 return -EINVAL;
1124 * dbg_check_synced_i_size - check synchronized inode size.
1125 * @c: UBIFS file-system description object
1126 * @inode: inode to check
1128 * If inode is clean, synchronized inode size has to be equivalent to current
1129 * inode size. This function has to be called only for locked inodes (@i_mutex
1130 * has to be locked). Returns %0 if synchronized inode size if correct, and
1131 * %-EINVAL if not.
1133 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1135 int err = 0;
1136 struct ubifs_inode *ui = ubifs_inode(inode);
1138 if (!dbg_is_chk_gen(c))
1139 return 0;
1140 if (!S_ISREG(inode->i_mode))
1141 return 0;
1143 mutex_lock(&ui->ui_mutex);
1144 spin_lock(&ui->ui_lock);
1145 if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1146 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1147 "is clean", ui->ui_size, ui->synced_i_size);
1148 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1149 inode->i_mode, i_size_read(inode));
1150 dbg_dump_stack();
1151 err = -EINVAL;
1153 spin_unlock(&ui->ui_lock);
1154 mutex_unlock(&ui->ui_mutex);
1155 return err;
1159 * dbg_check_dir - check directory inode size and link count.
1160 * @c: UBIFS file-system description object
1161 * @dir: the directory to calculate size for
1162 * @size: the result is returned here
1164 * This function makes sure that directory size and link count are correct.
1165 * Returns zero in case of success and a negative error code in case of
1166 * failure.
1168 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1169 * calling this function.
1171 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1173 unsigned int nlink = 2;
1174 union ubifs_key key;
1175 struct ubifs_dent_node *dent, *pdent = NULL;
1176 struct qstr nm = { .name = NULL };
1177 loff_t size = UBIFS_INO_NODE_SZ;
1179 if (!dbg_is_chk_gen(c))
1180 return 0;
1182 if (!S_ISDIR(dir->i_mode))
1183 return 0;
1185 lowest_dent_key(c, &key, dir->i_ino);
1186 while (1) {
1187 int err;
1189 dent = ubifs_tnc_next_ent(c, &key, &nm);
1190 if (IS_ERR(dent)) {
1191 err = PTR_ERR(dent);
1192 if (err == -ENOENT)
1193 break;
1194 return err;
1197 nm.name = dent->name;
1198 nm.len = le16_to_cpu(dent->nlen);
1199 size += CALC_DENT_SIZE(nm.len);
1200 if (dent->type == UBIFS_ITYPE_DIR)
1201 nlink += 1;
1202 kfree(pdent);
1203 pdent = dent;
1204 key_read(c, &dent->key, &key);
1206 kfree(pdent);
1208 if (i_size_read(dir) != size) {
1209 ubifs_err("directory inode %lu has size %llu, "
1210 "but calculated size is %llu", dir->i_ino,
1211 (unsigned long long)i_size_read(dir),
1212 (unsigned long long)size);
1213 dbg_dump_inode(c, dir);
1214 dump_stack();
1215 return -EINVAL;
1217 if (dir->i_nlink != nlink) {
1218 ubifs_err("directory inode %lu has nlink %u, but calculated "
1219 "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
1220 dbg_dump_inode(c, dir);
1221 dump_stack();
1222 return -EINVAL;
1225 return 0;
1229 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1230 * @c: UBIFS file-system description object
1231 * @zbr1: first zbranch
1232 * @zbr2: following zbranch
1234 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1235 * names of the direntries/xentries which are referred by the keys. This
1236 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1237 * sure the name of direntry/xentry referred by @zbr1 is less than
1238 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1239 * and a negative error code in case of failure.
1241 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1242 struct ubifs_zbranch *zbr2)
1244 int err, nlen1, nlen2, cmp;
1245 struct ubifs_dent_node *dent1, *dent2;
1246 union ubifs_key key;
1248 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
1249 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1250 if (!dent1)
1251 return -ENOMEM;
1252 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1253 if (!dent2) {
1254 err = -ENOMEM;
1255 goto out_free;
1258 err = ubifs_tnc_read_node(c, zbr1, dent1);
1259 if (err)
1260 goto out_free;
1261 err = ubifs_validate_entry(c, dent1);
1262 if (err)
1263 goto out_free;
1265 err = ubifs_tnc_read_node(c, zbr2, dent2);
1266 if (err)
1267 goto out_free;
1268 err = ubifs_validate_entry(c, dent2);
1269 if (err)
1270 goto out_free;
1272 /* Make sure node keys are the same as in zbranch */
1273 err = 1;
1274 key_read(c, &dent1->key, &key);
1275 if (keys_cmp(c, &zbr1->key, &key)) {
1276 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1277 zbr1->offs, DBGKEY(&key));
1278 dbg_err("but it should have key %s according to tnc",
1279 DBGKEY(&zbr1->key));
1280 dbg_dump_node(c, dent1);
1281 goto out_free;
1284 key_read(c, &dent2->key, &key);
1285 if (keys_cmp(c, &zbr2->key, &key)) {
1286 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1287 zbr1->offs, DBGKEY(&key));
1288 dbg_err("but it should have key %s according to tnc",
1289 DBGKEY(&zbr2->key));
1290 dbg_dump_node(c, dent2);
1291 goto out_free;
1294 nlen1 = le16_to_cpu(dent1->nlen);
1295 nlen2 = le16_to_cpu(dent2->nlen);
1297 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1298 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1299 err = 0;
1300 goto out_free;
1302 if (cmp == 0 && nlen1 == nlen2)
1303 dbg_err("2 xent/dent nodes with the same name");
1304 else
1305 dbg_err("bad order of colliding key %s",
1306 DBGKEY(&key));
1308 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1309 dbg_dump_node(c, dent1);
1310 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1311 dbg_dump_node(c, dent2);
1313 out_free:
1314 kfree(dent2);
1315 kfree(dent1);
1316 return err;
1320 * dbg_check_znode - check if znode is all right.
1321 * @c: UBIFS file-system description object
1322 * @zbr: zbranch which points to this znode
1324 * This function makes sure that znode referred to by @zbr is all right.
1325 * Returns zero if it is, and %-EINVAL if it is not.
1327 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1329 struct ubifs_znode *znode = zbr->znode;
1330 struct ubifs_znode *zp = znode->parent;
1331 int n, err, cmp;
1333 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1334 err = 1;
1335 goto out;
1337 if (znode->level < 0) {
1338 err = 2;
1339 goto out;
1341 if (znode->iip < 0 || znode->iip >= c->fanout) {
1342 err = 3;
1343 goto out;
1346 if (zbr->len == 0)
1347 /* Only dirty zbranch may have no on-flash nodes */
1348 if (!ubifs_zn_dirty(znode)) {
1349 err = 4;
1350 goto out;
1353 if (ubifs_zn_dirty(znode)) {
1355 * If znode is dirty, its parent has to be dirty as well. The
1356 * order of the operation is important, so we have to have
1357 * memory barriers.
1359 smp_mb();
1360 if (zp && !ubifs_zn_dirty(zp)) {
1362 * The dirty flag is atomic and is cleared outside the
1363 * TNC mutex, so znode's dirty flag may now have
1364 * been cleared. The child is always cleared before the
1365 * parent, so we just need to check again.
1367 smp_mb();
1368 if (ubifs_zn_dirty(znode)) {
1369 err = 5;
1370 goto out;
1375 if (zp) {
1376 const union ubifs_key *min, *max;
1378 if (znode->level != zp->level - 1) {
1379 err = 6;
1380 goto out;
1383 /* Make sure the 'parent' pointer in our znode is correct */
1384 err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1385 if (!err) {
1386 /* This zbranch does not exist in the parent */
1387 err = 7;
1388 goto out;
1391 if (znode->iip >= zp->child_cnt) {
1392 err = 8;
1393 goto out;
1396 if (znode->iip != n) {
1397 /* This may happen only in case of collisions */
1398 if (keys_cmp(c, &zp->zbranch[n].key,
1399 &zp->zbranch[znode->iip].key)) {
1400 err = 9;
1401 goto out;
1403 n = znode->iip;
1407 * Make sure that the first key in our znode is greater than or
1408 * equal to the key in the pointing zbranch.
1410 min = &zbr->key;
1411 cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1412 if (cmp == 1) {
1413 err = 10;
1414 goto out;
1417 if (n + 1 < zp->child_cnt) {
1418 max = &zp->zbranch[n + 1].key;
1421 * Make sure the last key in our znode is less or
1422 * equivalent than the key in the zbranch which goes
1423 * after our pointing zbranch.
1425 cmp = keys_cmp(c, max,
1426 &znode->zbranch[znode->child_cnt - 1].key);
1427 if (cmp == -1) {
1428 err = 11;
1429 goto out;
1432 } else {
1433 /* This may only be root znode */
1434 if (zbr != &c->zroot) {
1435 err = 12;
1436 goto out;
1441 * Make sure that next key is greater or equivalent then the previous
1442 * one.
1444 for (n = 1; n < znode->child_cnt; n++) {
1445 cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1446 &znode->zbranch[n].key);
1447 if (cmp > 0) {
1448 err = 13;
1449 goto out;
1451 if (cmp == 0) {
1452 /* This can only be keys with colliding hash */
1453 if (!is_hash_key(c, &znode->zbranch[n].key)) {
1454 err = 14;
1455 goto out;
1458 if (znode->level != 0 || c->replaying)
1459 continue;
1462 * Colliding keys should follow binary order of
1463 * corresponding xentry/dentry names.
1465 err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1466 &znode->zbranch[n]);
1467 if (err < 0)
1468 return err;
1469 if (err) {
1470 err = 15;
1471 goto out;
1476 for (n = 0; n < znode->child_cnt; n++) {
1477 if (!znode->zbranch[n].znode &&
1478 (znode->zbranch[n].lnum == 0 ||
1479 znode->zbranch[n].len == 0)) {
1480 err = 16;
1481 goto out;
1484 if (znode->zbranch[n].lnum != 0 &&
1485 znode->zbranch[n].len == 0) {
1486 err = 17;
1487 goto out;
1490 if (znode->zbranch[n].lnum == 0 &&
1491 znode->zbranch[n].len != 0) {
1492 err = 18;
1493 goto out;
1496 if (znode->zbranch[n].lnum == 0 &&
1497 znode->zbranch[n].offs != 0) {
1498 err = 19;
1499 goto out;
1502 if (znode->level != 0 && znode->zbranch[n].znode)
1503 if (znode->zbranch[n].znode->parent != znode) {
1504 err = 20;
1505 goto out;
1509 return 0;
1511 out:
1512 ubifs_err("failed, error %d", err);
1513 ubifs_msg("dump of the znode");
1514 dbg_dump_znode(c, znode);
1515 if (zp) {
1516 ubifs_msg("dump of the parent znode");
1517 dbg_dump_znode(c, zp);
1519 dump_stack();
1520 return -EINVAL;
1524 * dbg_check_tnc - check TNC tree.
1525 * @c: UBIFS file-system description object
1526 * @extra: do extra checks that are possible at start commit
1528 * This function traverses whole TNC tree and checks every znode. Returns zero
1529 * if everything is all right and %-EINVAL if something is wrong with TNC.
1531 int dbg_check_tnc(struct ubifs_info *c, int extra)
1533 struct ubifs_znode *znode;
1534 long clean_cnt = 0, dirty_cnt = 0;
1535 int err, last;
1537 if (!dbg_is_chk_index(c))
1538 return 0;
1540 ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1541 if (!c->zroot.znode)
1542 return 0;
1544 znode = ubifs_tnc_postorder_first(c->zroot.znode);
1545 while (1) {
1546 struct ubifs_znode *prev;
1547 struct ubifs_zbranch *zbr;
1549 if (!znode->parent)
1550 zbr = &c->zroot;
1551 else
1552 zbr = &znode->parent->zbranch[znode->iip];
1554 err = dbg_check_znode(c, zbr);
1555 if (err)
1556 return err;
1558 if (extra) {
1559 if (ubifs_zn_dirty(znode))
1560 dirty_cnt += 1;
1561 else
1562 clean_cnt += 1;
1565 prev = znode;
1566 znode = ubifs_tnc_postorder_next(znode);
1567 if (!znode)
1568 break;
1571 * If the last key of this znode is equivalent to the first key
1572 * of the next znode (collision), then check order of the keys.
1574 last = prev->child_cnt - 1;
1575 if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1576 !keys_cmp(c, &prev->zbranch[last].key,
1577 &znode->zbranch[0].key)) {
1578 err = dbg_check_key_order(c, &prev->zbranch[last],
1579 &znode->zbranch[0]);
1580 if (err < 0)
1581 return err;
1582 if (err) {
1583 ubifs_msg("first znode");
1584 dbg_dump_znode(c, prev);
1585 ubifs_msg("second znode");
1586 dbg_dump_znode(c, znode);
1587 return -EINVAL;
1592 if (extra) {
1593 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1594 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1595 atomic_long_read(&c->clean_zn_cnt),
1596 clean_cnt);
1597 return -EINVAL;
1599 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1600 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1601 atomic_long_read(&c->dirty_zn_cnt),
1602 dirty_cnt);
1603 return -EINVAL;
1607 return 0;
1611 * dbg_walk_index - walk the on-flash index.
1612 * @c: UBIFS file-system description object
1613 * @leaf_cb: called for each leaf node
1614 * @znode_cb: called for each indexing node
1615 * @priv: private data which is passed to callbacks
1617 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1618 * node and @znode_cb for each indexing node. Returns zero in case of success
1619 * and a negative error code in case of failure.
1621 * It would be better if this function removed every znode it pulled to into
1622 * the TNC, so that the behavior more closely matched the non-debugging
1623 * behavior.
1625 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1626 dbg_znode_callback znode_cb, void *priv)
1628 int err;
1629 struct ubifs_zbranch *zbr;
1630 struct ubifs_znode *znode, *child;
1632 mutex_lock(&c->tnc_mutex);
1633 /* If the root indexing node is not in TNC - pull it */
1634 if (!c->zroot.znode) {
1635 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1636 if (IS_ERR(c->zroot.znode)) {
1637 err = PTR_ERR(c->zroot.znode);
1638 c->zroot.znode = NULL;
1639 goto out_unlock;
1644 * We are going to traverse the indexing tree in the postorder manner.
1645 * Go down and find the leftmost indexing node where we are going to
1646 * start from.
1648 znode = c->zroot.znode;
1649 while (znode->level > 0) {
1650 zbr = &znode->zbranch[0];
1651 child = zbr->znode;
1652 if (!child) {
1653 child = ubifs_load_znode(c, zbr, znode, 0);
1654 if (IS_ERR(child)) {
1655 err = PTR_ERR(child);
1656 goto out_unlock;
1658 zbr->znode = child;
1661 znode = child;
1664 /* Iterate over all indexing nodes */
1665 while (1) {
1666 int idx;
1668 cond_resched();
1670 if (znode_cb) {
1671 err = znode_cb(c, znode, priv);
1672 if (err) {
1673 ubifs_err("znode checking function returned "
1674 "error %d", err);
1675 dbg_dump_znode(c, znode);
1676 goto out_dump;
1679 if (leaf_cb && znode->level == 0) {
1680 for (idx = 0; idx < znode->child_cnt; idx++) {
1681 zbr = &znode->zbranch[idx];
1682 err = leaf_cb(c, zbr, priv);
1683 if (err) {
1684 ubifs_err("leaf checking function "
1685 "returned error %d, for leaf "
1686 "at LEB %d:%d",
1687 err, zbr->lnum, zbr->offs);
1688 goto out_dump;
1693 if (!znode->parent)
1694 break;
1696 idx = znode->iip + 1;
1697 znode = znode->parent;
1698 if (idx < znode->child_cnt) {
1699 /* Switch to the next index in the parent */
1700 zbr = &znode->zbranch[idx];
1701 child = zbr->znode;
1702 if (!child) {
1703 child = ubifs_load_znode(c, zbr, znode, idx);
1704 if (IS_ERR(child)) {
1705 err = PTR_ERR(child);
1706 goto out_unlock;
1708 zbr->znode = child;
1710 znode = child;
1711 } else
1713 * This is the last child, switch to the parent and
1714 * continue.
1716 continue;
1718 /* Go to the lowest leftmost znode in the new sub-tree */
1719 while (znode->level > 0) {
1720 zbr = &znode->zbranch[0];
1721 child = zbr->znode;
1722 if (!child) {
1723 child = ubifs_load_znode(c, zbr, znode, 0);
1724 if (IS_ERR(child)) {
1725 err = PTR_ERR(child);
1726 goto out_unlock;
1728 zbr->znode = child;
1730 znode = child;
1734 mutex_unlock(&c->tnc_mutex);
1735 return 0;
1737 out_dump:
1738 if (znode->parent)
1739 zbr = &znode->parent->zbranch[znode->iip];
1740 else
1741 zbr = &c->zroot;
1742 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1743 dbg_dump_znode(c, znode);
1744 out_unlock:
1745 mutex_unlock(&c->tnc_mutex);
1746 return err;
1750 * add_size - add znode size to partially calculated index size.
1751 * @c: UBIFS file-system description object
1752 * @znode: znode to add size for
1753 * @priv: partially calculated index size
1755 * This is a helper function for 'dbg_check_idx_size()' which is called for
1756 * every indexing node and adds its size to the 'long long' variable pointed to
1757 * by @priv.
1759 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1761 long long *idx_size = priv;
1762 int add;
1764 add = ubifs_idx_node_sz(c, znode->child_cnt);
1765 add = ALIGN(add, 8);
1766 *idx_size += add;
1767 return 0;
1771 * dbg_check_idx_size - check index size.
1772 * @c: UBIFS file-system description object
1773 * @idx_size: size to check
1775 * This function walks the UBIFS index, calculates its size and checks that the
1776 * size is equivalent to @idx_size. Returns zero in case of success and a
1777 * negative error code in case of failure.
1779 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1781 int err;
1782 long long calc = 0;
1784 if (!dbg_is_chk_index(c))
1785 return 0;
1787 err = dbg_walk_index(c, NULL, add_size, &calc);
1788 if (err) {
1789 ubifs_err("error %d while walking the index", err);
1790 return err;
1793 if (calc != idx_size) {
1794 ubifs_err("index size check failed: calculated size is %lld, "
1795 "should be %lld", calc, idx_size);
1796 dump_stack();
1797 return -EINVAL;
1800 return 0;
1804 * struct fsck_inode - information about an inode used when checking the file-system.
1805 * @rb: link in the RB-tree of inodes
1806 * @inum: inode number
1807 * @mode: inode type, permissions, etc
1808 * @nlink: inode link count
1809 * @xattr_cnt: count of extended attributes
1810 * @references: how many directory/xattr entries refer this inode (calculated
1811 * while walking the index)
1812 * @calc_cnt: for directory inode count of child directories
1813 * @size: inode size (read from on-flash inode)
1814 * @xattr_sz: summary size of all extended attributes (read from on-flash
1815 * inode)
1816 * @calc_sz: for directories calculated directory size
1817 * @calc_xcnt: count of extended attributes
1818 * @calc_xsz: calculated summary size of all extended attributes
1819 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1820 * inode (read from on-flash inode)
1821 * @calc_xnms: calculated sum of lengths of all extended attribute names
1823 struct fsck_inode {
1824 struct rb_node rb;
1825 ino_t inum;
1826 umode_t mode;
1827 unsigned int nlink;
1828 unsigned int xattr_cnt;
1829 int references;
1830 int calc_cnt;
1831 long long size;
1832 unsigned int xattr_sz;
1833 long long calc_sz;
1834 long long calc_xcnt;
1835 long long calc_xsz;
1836 unsigned int xattr_nms;
1837 long long calc_xnms;
1841 * struct fsck_data - private FS checking information.
1842 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1844 struct fsck_data {
1845 struct rb_root inodes;
1849 * add_inode - add inode information to RB-tree of inodes.
1850 * @c: UBIFS file-system description object
1851 * @fsckd: FS checking information
1852 * @ino: raw UBIFS inode to add
1854 * This is a helper function for 'check_leaf()' which adds information about
1855 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1856 * case of success and a negative error code in case of failure.
1858 static struct fsck_inode *add_inode(struct ubifs_info *c,
1859 struct fsck_data *fsckd,
1860 struct ubifs_ino_node *ino)
1862 struct rb_node **p, *parent = NULL;
1863 struct fsck_inode *fscki;
1864 ino_t inum = key_inum_flash(c, &ino->key);
1865 struct inode *inode;
1866 struct ubifs_inode *ui;
1868 p = &fsckd->inodes.rb_node;
1869 while (*p) {
1870 parent = *p;
1871 fscki = rb_entry(parent, struct fsck_inode, rb);
1872 if (inum < fscki->inum)
1873 p = &(*p)->rb_left;
1874 else if (inum > fscki->inum)
1875 p = &(*p)->rb_right;
1876 else
1877 return fscki;
1880 if (inum > c->highest_inum) {
1881 ubifs_err("too high inode number, max. is %lu",
1882 (unsigned long)c->highest_inum);
1883 return ERR_PTR(-EINVAL);
1886 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1887 if (!fscki)
1888 return ERR_PTR(-ENOMEM);
1890 inode = ilookup(c->vfs_sb, inum);
1892 fscki->inum = inum;
1894 * If the inode is present in the VFS inode cache, use it instead of
1895 * the on-flash inode which might be out-of-date. E.g., the size might
1896 * be out-of-date. If we do not do this, the following may happen, for
1897 * example:
1898 * 1. A power cut happens
1899 * 2. We mount the file-system R/O, the replay process fixes up the
1900 * inode size in the VFS cache, but on on-flash.
1901 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1902 * size.
1904 if (!inode) {
1905 fscki->nlink = le32_to_cpu(ino->nlink);
1906 fscki->size = le64_to_cpu(ino->size);
1907 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1908 fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1909 fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1910 fscki->mode = le32_to_cpu(ino->mode);
1911 } else {
1912 ui = ubifs_inode(inode);
1913 fscki->nlink = inode->i_nlink;
1914 fscki->size = inode->i_size;
1915 fscki->xattr_cnt = ui->xattr_cnt;
1916 fscki->xattr_sz = ui->xattr_size;
1917 fscki->xattr_nms = ui->xattr_names;
1918 fscki->mode = inode->i_mode;
1919 iput(inode);
1922 if (S_ISDIR(fscki->mode)) {
1923 fscki->calc_sz = UBIFS_INO_NODE_SZ;
1924 fscki->calc_cnt = 2;
1927 rb_link_node(&fscki->rb, parent, p);
1928 rb_insert_color(&fscki->rb, &fsckd->inodes);
1930 return fscki;
1934 * search_inode - search inode in the RB-tree of inodes.
1935 * @fsckd: FS checking information
1936 * @inum: inode number to search
1938 * This is a helper function for 'check_leaf()' which searches inode @inum in
1939 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1940 * the inode was not found.
1942 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1944 struct rb_node *p;
1945 struct fsck_inode *fscki;
1947 p = fsckd->inodes.rb_node;
1948 while (p) {
1949 fscki = rb_entry(p, struct fsck_inode, rb);
1950 if (inum < fscki->inum)
1951 p = p->rb_left;
1952 else if (inum > fscki->inum)
1953 p = p->rb_right;
1954 else
1955 return fscki;
1957 return NULL;
1961 * read_add_inode - read inode node and add it to RB-tree of inodes.
1962 * @c: UBIFS file-system description object
1963 * @fsckd: FS checking information
1964 * @inum: inode number to read
1966 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1967 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1968 * information pointer in case of success and a negative error code in case of
1969 * failure.
1971 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1972 struct fsck_data *fsckd, ino_t inum)
1974 int n, err;
1975 union ubifs_key key;
1976 struct ubifs_znode *znode;
1977 struct ubifs_zbranch *zbr;
1978 struct ubifs_ino_node *ino;
1979 struct fsck_inode *fscki;
1981 fscki = search_inode(fsckd, inum);
1982 if (fscki)
1983 return fscki;
1985 ino_key_init(c, &key, inum);
1986 err = ubifs_lookup_level0(c, &key, &znode, &n);
1987 if (!err) {
1988 ubifs_err("inode %lu not found in index", (unsigned long)inum);
1989 return ERR_PTR(-ENOENT);
1990 } else if (err < 0) {
1991 ubifs_err("error %d while looking up inode %lu",
1992 err, (unsigned long)inum);
1993 return ERR_PTR(err);
1996 zbr = &znode->zbranch[n];
1997 if (zbr->len < UBIFS_INO_NODE_SZ) {
1998 ubifs_err("bad node %lu node length %d",
1999 (unsigned long)inum, zbr->len);
2000 return ERR_PTR(-EINVAL);
2003 ino = kmalloc(zbr->len, GFP_NOFS);
2004 if (!ino)
2005 return ERR_PTR(-ENOMEM);
2007 err = ubifs_tnc_read_node(c, zbr, ino);
2008 if (err) {
2009 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2010 zbr->lnum, zbr->offs, err);
2011 kfree(ino);
2012 return ERR_PTR(err);
2015 fscki = add_inode(c, fsckd, ino);
2016 kfree(ino);
2017 if (IS_ERR(fscki)) {
2018 ubifs_err("error %ld while adding inode %lu node",
2019 PTR_ERR(fscki), (unsigned long)inum);
2020 return fscki;
2023 return fscki;
2027 * check_leaf - check leaf node.
2028 * @c: UBIFS file-system description object
2029 * @zbr: zbranch of the leaf node to check
2030 * @priv: FS checking information
2032 * This is a helper function for 'dbg_check_filesystem()' which is called for
2033 * every single leaf node while walking the indexing tree. It checks that the
2034 * leaf node referred from the indexing tree exists, has correct CRC, and does
2035 * some other basic validation. This function is also responsible for building
2036 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2037 * calculates reference count, size, etc for each inode in order to later
2038 * compare them to the information stored inside the inodes and detect possible
2039 * inconsistencies. Returns zero in case of success and a negative error code
2040 * in case of failure.
2042 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
2043 void *priv)
2045 ino_t inum;
2046 void *node;
2047 struct ubifs_ch *ch;
2048 int err, type = key_type(c, &zbr->key);
2049 struct fsck_inode *fscki;
2051 if (zbr->len < UBIFS_CH_SZ) {
2052 ubifs_err("bad leaf length %d (LEB %d:%d)",
2053 zbr->len, zbr->lnum, zbr->offs);
2054 return -EINVAL;
2057 node = kmalloc(zbr->len, GFP_NOFS);
2058 if (!node)
2059 return -ENOMEM;
2061 err = ubifs_tnc_read_node(c, zbr, node);
2062 if (err) {
2063 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2064 zbr->lnum, zbr->offs, err);
2065 goto out_free;
2068 /* If this is an inode node, add it to RB-tree of inodes */
2069 if (type == UBIFS_INO_KEY) {
2070 fscki = add_inode(c, priv, node);
2071 if (IS_ERR(fscki)) {
2072 err = PTR_ERR(fscki);
2073 ubifs_err("error %d while adding inode node", err);
2074 goto out_dump;
2076 goto out;
2079 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2080 type != UBIFS_DATA_KEY) {
2081 ubifs_err("unexpected node type %d at LEB %d:%d",
2082 type, zbr->lnum, zbr->offs);
2083 err = -EINVAL;
2084 goto out_free;
2087 ch = node;
2088 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2089 ubifs_err("too high sequence number, max. is %llu",
2090 c->max_sqnum);
2091 err = -EINVAL;
2092 goto out_dump;
2095 if (type == UBIFS_DATA_KEY) {
2096 long long blk_offs;
2097 struct ubifs_data_node *dn = node;
2100 * Search the inode node this data node belongs to and insert
2101 * it to the RB-tree of inodes.
2103 inum = key_inum_flash(c, &dn->key);
2104 fscki = read_add_inode(c, priv, inum);
2105 if (IS_ERR(fscki)) {
2106 err = PTR_ERR(fscki);
2107 ubifs_err("error %d while processing data node and "
2108 "trying to find inode node %lu",
2109 err, (unsigned long)inum);
2110 goto out_dump;
2113 /* Make sure the data node is within inode size */
2114 blk_offs = key_block_flash(c, &dn->key);
2115 blk_offs <<= UBIFS_BLOCK_SHIFT;
2116 blk_offs += le32_to_cpu(dn->size);
2117 if (blk_offs > fscki->size) {
2118 ubifs_err("data node at LEB %d:%d is not within inode "
2119 "size %lld", zbr->lnum, zbr->offs,
2120 fscki->size);
2121 err = -EINVAL;
2122 goto out_dump;
2124 } else {
2125 int nlen;
2126 struct ubifs_dent_node *dent = node;
2127 struct fsck_inode *fscki1;
2129 err = ubifs_validate_entry(c, dent);
2130 if (err)
2131 goto out_dump;
2134 * Search the inode node this entry refers to and the parent
2135 * inode node and insert them to the RB-tree of inodes.
2137 inum = le64_to_cpu(dent->inum);
2138 fscki = read_add_inode(c, priv, inum);
2139 if (IS_ERR(fscki)) {
2140 err = PTR_ERR(fscki);
2141 ubifs_err("error %d while processing entry node and "
2142 "trying to find inode node %lu",
2143 err, (unsigned long)inum);
2144 goto out_dump;
2147 /* Count how many direntries or xentries refers this inode */
2148 fscki->references += 1;
2150 inum = key_inum_flash(c, &dent->key);
2151 fscki1 = read_add_inode(c, priv, inum);
2152 if (IS_ERR(fscki1)) {
2153 err = PTR_ERR(fscki1);
2154 ubifs_err("error %d while processing entry node and "
2155 "trying to find parent inode node %lu",
2156 err, (unsigned long)inum);
2157 goto out_dump;
2160 nlen = le16_to_cpu(dent->nlen);
2161 if (type == UBIFS_XENT_KEY) {
2162 fscki1->calc_xcnt += 1;
2163 fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2164 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2165 fscki1->calc_xnms += nlen;
2166 } else {
2167 fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2168 if (dent->type == UBIFS_ITYPE_DIR)
2169 fscki1->calc_cnt += 1;
2173 out:
2174 kfree(node);
2175 return 0;
2177 out_dump:
2178 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2179 dbg_dump_node(c, node);
2180 out_free:
2181 kfree(node);
2182 return err;
2186 * free_inodes - free RB-tree of inodes.
2187 * @fsckd: FS checking information
2189 static void free_inodes(struct fsck_data *fsckd)
2191 struct rb_node *this = fsckd->inodes.rb_node;
2192 struct fsck_inode *fscki;
2194 while (this) {
2195 if (this->rb_left)
2196 this = this->rb_left;
2197 else if (this->rb_right)
2198 this = this->rb_right;
2199 else {
2200 fscki = rb_entry(this, struct fsck_inode, rb);
2201 this = rb_parent(this);
2202 if (this) {
2203 if (this->rb_left == &fscki->rb)
2204 this->rb_left = NULL;
2205 else
2206 this->rb_right = NULL;
2208 kfree(fscki);
2214 * check_inodes - checks all inodes.
2215 * @c: UBIFS file-system description object
2216 * @fsckd: FS checking information
2218 * This is a helper function for 'dbg_check_filesystem()' which walks the
2219 * RB-tree of inodes after the index scan has been finished, and checks that
2220 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2221 * %-EINVAL if not, and a negative error code in case of failure.
2223 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2225 int n, err;
2226 union ubifs_key key;
2227 struct ubifs_znode *znode;
2228 struct ubifs_zbranch *zbr;
2229 struct ubifs_ino_node *ino;
2230 struct fsck_inode *fscki;
2231 struct rb_node *this = rb_first(&fsckd->inodes);
2233 while (this) {
2234 fscki = rb_entry(this, struct fsck_inode, rb);
2235 this = rb_next(this);
2237 if (S_ISDIR(fscki->mode)) {
2239 * Directories have to have exactly one reference (they
2240 * cannot have hardlinks), although root inode is an
2241 * exception.
2243 if (fscki->inum != UBIFS_ROOT_INO &&
2244 fscki->references != 1) {
2245 ubifs_err("directory inode %lu has %d "
2246 "direntries which refer it, but "
2247 "should be 1",
2248 (unsigned long)fscki->inum,
2249 fscki->references);
2250 goto out_dump;
2252 if (fscki->inum == UBIFS_ROOT_INO &&
2253 fscki->references != 0) {
2254 ubifs_err("root inode %lu has non-zero (%d) "
2255 "direntries which refer it",
2256 (unsigned long)fscki->inum,
2257 fscki->references);
2258 goto out_dump;
2260 if (fscki->calc_sz != fscki->size) {
2261 ubifs_err("directory inode %lu size is %lld, "
2262 "but calculated size is %lld",
2263 (unsigned long)fscki->inum,
2264 fscki->size, fscki->calc_sz);
2265 goto out_dump;
2267 if (fscki->calc_cnt != fscki->nlink) {
2268 ubifs_err("directory inode %lu nlink is %d, "
2269 "but calculated nlink is %d",
2270 (unsigned long)fscki->inum,
2271 fscki->nlink, fscki->calc_cnt);
2272 goto out_dump;
2274 } else {
2275 if (fscki->references != fscki->nlink) {
2276 ubifs_err("inode %lu nlink is %d, but "
2277 "calculated nlink is %d",
2278 (unsigned long)fscki->inum,
2279 fscki->nlink, fscki->references);
2280 goto out_dump;
2283 if (fscki->xattr_sz != fscki->calc_xsz) {
2284 ubifs_err("inode %lu has xattr size %u, but "
2285 "calculated size is %lld",
2286 (unsigned long)fscki->inum, fscki->xattr_sz,
2287 fscki->calc_xsz);
2288 goto out_dump;
2290 if (fscki->xattr_cnt != fscki->calc_xcnt) {
2291 ubifs_err("inode %lu has %u xattrs, but "
2292 "calculated count is %lld",
2293 (unsigned long)fscki->inum,
2294 fscki->xattr_cnt, fscki->calc_xcnt);
2295 goto out_dump;
2297 if (fscki->xattr_nms != fscki->calc_xnms) {
2298 ubifs_err("inode %lu has xattr names' size %u, but "
2299 "calculated names' size is %lld",
2300 (unsigned long)fscki->inum, fscki->xattr_nms,
2301 fscki->calc_xnms);
2302 goto out_dump;
2306 return 0;
2308 out_dump:
2309 /* Read the bad inode and dump it */
2310 ino_key_init(c, &key, fscki->inum);
2311 err = ubifs_lookup_level0(c, &key, &znode, &n);
2312 if (!err) {
2313 ubifs_err("inode %lu not found in index",
2314 (unsigned long)fscki->inum);
2315 return -ENOENT;
2316 } else if (err < 0) {
2317 ubifs_err("error %d while looking up inode %lu",
2318 err, (unsigned long)fscki->inum);
2319 return err;
2322 zbr = &znode->zbranch[n];
2323 ino = kmalloc(zbr->len, GFP_NOFS);
2324 if (!ino)
2325 return -ENOMEM;
2327 err = ubifs_tnc_read_node(c, zbr, ino);
2328 if (err) {
2329 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2330 zbr->lnum, zbr->offs, err);
2331 kfree(ino);
2332 return err;
2335 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2336 (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2337 dbg_dump_node(c, ino);
2338 kfree(ino);
2339 return -EINVAL;
2343 * dbg_check_filesystem - check the file-system.
2344 * @c: UBIFS file-system description object
2346 * This function checks the file system, namely:
2347 * o makes sure that all leaf nodes exist and their CRCs are correct;
2348 * o makes sure inode nlink, size, xattr size/count are correct (for all
2349 * inodes).
2351 * The function reads whole indexing tree and all nodes, so it is pretty
2352 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2353 * not, and a negative error code in case of failure.
2355 int dbg_check_filesystem(struct ubifs_info *c)
2357 int err;
2358 struct fsck_data fsckd;
2360 if (!dbg_is_chk_fs(c))
2361 return 0;
2363 fsckd.inodes = RB_ROOT;
2364 err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2365 if (err)
2366 goto out_free;
2368 err = check_inodes(c, &fsckd);
2369 if (err)
2370 goto out_free;
2372 free_inodes(&fsckd);
2373 return 0;
2375 out_free:
2376 ubifs_err("file-system check failed with error %d", err);
2377 dump_stack();
2378 free_inodes(&fsckd);
2379 return err;
2383 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2384 * @c: UBIFS file-system description object
2385 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2387 * This function returns zero if the list of data nodes is sorted correctly,
2388 * and %-EINVAL if not.
2390 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2392 struct list_head *cur;
2393 struct ubifs_scan_node *sa, *sb;
2395 if (!dbg_is_chk_gen(c))
2396 return 0;
2398 for (cur = head->next; cur->next != head; cur = cur->next) {
2399 ino_t inuma, inumb;
2400 uint32_t blka, blkb;
2402 cond_resched();
2403 sa = container_of(cur, struct ubifs_scan_node, list);
2404 sb = container_of(cur->next, struct ubifs_scan_node, list);
2406 if (sa->type != UBIFS_DATA_NODE) {
2407 ubifs_err("bad node type %d", sa->type);
2408 dbg_dump_node(c, sa->node);
2409 return -EINVAL;
2411 if (sb->type != UBIFS_DATA_NODE) {
2412 ubifs_err("bad node type %d", sb->type);
2413 dbg_dump_node(c, sb->node);
2414 return -EINVAL;
2417 inuma = key_inum(c, &sa->key);
2418 inumb = key_inum(c, &sb->key);
2420 if (inuma < inumb)
2421 continue;
2422 if (inuma > inumb) {
2423 ubifs_err("larger inum %lu goes before inum %lu",
2424 (unsigned long)inuma, (unsigned long)inumb);
2425 goto error_dump;
2428 blka = key_block(c, &sa->key);
2429 blkb = key_block(c, &sb->key);
2431 if (blka > blkb) {
2432 ubifs_err("larger block %u goes before %u", blka, blkb);
2433 goto error_dump;
2435 if (blka == blkb) {
2436 ubifs_err("two data nodes for the same block");
2437 goto error_dump;
2441 return 0;
2443 error_dump:
2444 dbg_dump_node(c, sa->node);
2445 dbg_dump_node(c, sb->node);
2446 return -EINVAL;
2450 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2451 * @c: UBIFS file-system description object
2452 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2454 * This function returns zero if the list of non-data nodes is sorted correctly,
2455 * and %-EINVAL if not.
2457 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2459 struct list_head *cur;
2460 struct ubifs_scan_node *sa, *sb;
2462 if (!dbg_is_chk_gen(c))
2463 return 0;
2465 for (cur = head->next; cur->next != head; cur = cur->next) {
2466 ino_t inuma, inumb;
2467 uint32_t hasha, hashb;
2469 cond_resched();
2470 sa = container_of(cur, struct ubifs_scan_node, list);
2471 sb = container_of(cur->next, struct ubifs_scan_node, list);
2473 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2474 sa->type != UBIFS_XENT_NODE) {
2475 ubifs_err("bad node type %d", sa->type);
2476 dbg_dump_node(c, sa->node);
2477 return -EINVAL;
2479 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2480 sa->type != UBIFS_XENT_NODE) {
2481 ubifs_err("bad node type %d", sb->type);
2482 dbg_dump_node(c, sb->node);
2483 return -EINVAL;
2486 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2487 ubifs_err("non-inode node goes before inode node");
2488 goto error_dump;
2491 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2492 continue;
2494 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2495 /* Inode nodes are sorted in descending size order */
2496 if (sa->len < sb->len) {
2497 ubifs_err("smaller inode node goes first");
2498 goto error_dump;
2500 continue;
2504 * This is either a dentry or xentry, which should be sorted in
2505 * ascending (parent ino, hash) order.
2507 inuma = key_inum(c, &sa->key);
2508 inumb = key_inum(c, &sb->key);
2510 if (inuma < inumb)
2511 continue;
2512 if (inuma > inumb) {
2513 ubifs_err("larger inum %lu goes before inum %lu",
2514 (unsigned long)inuma, (unsigned long)inumb);
2515 goto error_dump;
2518 hasha = key_block(c, &sa->key);
2519 hashb = key_block(c, &sb->key);
2521 if (hasha > hashb) {
2522 ubifs_err("larger hash %u goes before %u",
2523 hasha, hashb);
2524 goto error_dump;
2528 return 0;
2530 error_dump:
2531 ubifs_msg("dumping first node");
2532 dbg_dump_node(c, sa->node);
2533 ubifs_msg("dumping second node");
2534 dbg_dump_node(c, sb->node);
2535 return -EINVAL;
2536 return 0;
2539 static inline int chance(unsigned int n, unsigned int out_of)
2541 return !!((random32() % out_of) + 1 <= n);
2545 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2547 struct ubifs_debug_info *d = c->dbg;
2549 ubifs_assert(dbg_is_tst_rcvry(c));
2551 if (!d->pc_cnt) {
2552 /* First call - decide delay to the power cut */
2553 if (chance(1, 2)) {
2554 unsigned long delay;
2556 if (chance(1, 2)) {
2557 d->pc_delay = 1;
2558 /* Fail withing 1 minute */
2559 delay = random32() % 60000;
2560 d->pc_timeout = jiffies;
2561 d->pc_timeout += msecs_to_jiffies(delay);
2562 ubifs_warn("failing after %lums", delay);
2563 } else {
2564 d->pc_delay = 2;
2565 delay = random32() % 10000;
2566 /* Fail within 10000 operations */
2567 d->pc_cnt_max = delay;
2568 ubifs_warn("failing after %lu calls", delay);
2572 d->pc_cnt += 1;
2575 /* Determine if failure delay has expired */
2576 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2577 return 0;
2578 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2579 return 0;
2581 if (lnum == UBIFS_SB_LNUM) {
2582 if (write && chance(1, 2))
2583 return 0;
2584 if (chance(19, 20))
2585 return 0;
2586 ubifs_warn("failing in super block LEB %d", lnum);
2587 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2588 if (chance(19, 20))
2589 return 0;
2590 ubifs_warn("failing in master LEB %d", lnum);
2591 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2592 if (write && chance(99, 100))
2593 return 0;
2594 if (chance(399, 400))
2595 return 0;
2596 ubifs_warn("failing in log LEB %d", lnum);
2597 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2598 if (write && chance(7, 8))
2599 return 0;
2600 if (chance(19, 20))
2601 return 0;
2602 ubifs_warn("failing in LPT LEB %d", lnum);
2603 } else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2604 if (write && chance(1, 2))
2605 return 0;
2606 if (chance(9, 10))
2607 return 0;
2608 ubifs_warn("failing in orphan LEB %d", lnum);
2609 } else if (lnum == c->ihead_lnum) {
2610 if (chance(99, 100))
2611 return 0;
2612 ubifs_warn("failing in index head LEB %d", lnum);
2613 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2614 if (chance(9, 10))
2615 return 0;
2616 ubifs_warn("failing in GC head LEB %d", lnum);
2617 } else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2618 !ubifs_search_bud(c, lnum)) {
2619 if (chance(19, 20))
2620 return 0;
2621 ubifs_warn("failing in non-bud LEB %d", lnum);
2622 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2623 c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2624 if (chance(999, 1000))
2625 return 0;
2626 ubifs_warn("failing in bud LEB %d commit running", lnum);
2627 } else {
2628 if (chance(9999, 10000))
2629 return 0;
2630 ubifs_warn("failing in bud LEB %d commit not running", lnum);
2633 d->pc_happened = 1;
2634 ubifs_warn("========== Power cut emulated ==========");
2635 dump_stack();
2636 return 1;
2639 static void cut_data(const void *buf, unsigned int len)
2641 unsigned int from, to, i, ffs = chance(1, 2);
2642 unsigned char *p = (void *)buf;
2644 from = random32() % (len + 1);
2645 if (chance(1, 2))
2646 to = random32() % (len - from + 1);
2647 else
2648 to = len;
2650 if (from < to)
2651 ubifs_warn("filled bytes %u-%u with %s", from, to - 1,
2652 ffs ? "0xFFs" : "random data");
2654 if (ffs)
2655 for (i = from; i < to; i++)
2656 p[i] = 0xFF;
2657 else
2658 for (i = from; i < to; i++)
2659 p[i] = random32() % 0x100;
2662 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2663 int offs, int len, int dtype)
2665 int err, failing;
2667 if (c->dbg->pc_happened)
2668 return -EROFS;
2670 failing = power_cut_emulated(c, lnum, 1);
2671 if (failing)
2672 cut_data(buf, len);
2673 err = ubi_leb_write(c->ubi, lnum, buf, offs, len, dtype);
2674 if (err)
2675 return err;
2676 if (failing)
2677 return -EROFS;
2678 return 0;
2681 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2682 int len, int dtype)
2684 int err;
2686 if (c->dbg->pc_happened)
2687 return -EROFS;
2688 if (power_cut_emulated(c, lnum, 1))
2689 return -EROFS;
2690 err = ubi_leb_change(c->ubi, lnum, buf, len, dtype);
2691 if (err)
2692 return err;
2693 if (power_cut_emulated(c, lnum, 1))
2694 return -EROFS;
2695 return 0;
2698 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2700 int err;
2702 if (c->dbg->pc_happened)
2703 return -EROFS;
2704 if (power_cut_emulated(c, lnum, 0))
2705 return -EROFS;
2706 err = ubi_leb_unmap(c->ubi, lnum);
2707 if (err)
2708 return err;
2709 if (power_cut_emulated(c, lnum, 0))
2710 return -EROFS;
2711 return 0;
2714 int dbg_leb_map(struct ubifs_info *c, int lnum, int dtype)
2716 int err;
2718 if (c->dbg->pc_happened)
2719 return -EROFS;
2720 if (power_cut_emulated(c, lnum, 0))
2721 return -EROFS;
2722 err = ubi_leb_map(c->ubi, lnum, dtype);
2723 if (err)
2724 return err;
2725 if (power_cut_emulated(c, lnum, 0))
2726 return -EROFS;
2727 return 0;
2731 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2732 * contain the stuff specific to particular file-system mounts.
2734 static struct dentry *dfs_rootdir;
2736 static int dfs_file_open(struct inode *inode, struct file *file)
2738 file->private_data = inode->i_private;
2739 return nonseekable_open(inode, file);
2743 * provide_user_output - provide output to the user reading a debugfs file.
2744 * @val: boolean value for the answer
2745 * @u: the buffer to store the answer at
2746 * @count: size of the buffer
2747 * @ppos: position in the @u output buffer
2749 * This is a simple helper function which stores @val boolean value in the user
2750 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2751 * bytes written to @u in case of success and a negative error code in case of
2752 * failure.
2754 static int provide_user_output(int val, char __user *u, size_t count,
2755 loff_t *ppos)
2757 char buf[3];
2759 if (val)
2760 buf[0] = '1';
2761 else
2762 buf[0] = '0';
2763 buf[1] = '\n';
2764 buf[2] = 0x00;
2766 return simple_read_from_buffer(u, count, ppos, buf, 2);
2769 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2770 loff_t *ppos)
2772 struct dentry *dent = file->f_path.dentry;
2773 struct ubifs_info *c = file->private_data;
2774 struct ubifs_debug_info *d = c->dbg;
2775 int val;
2777 if (dent == d->dfs_chk_gen)
2778 val = d->chk_gen;
2779 else if (dent == d->dfs_chk_index)
2780 val = d->chk_index;
2781 else if (dent == d->dfs_chk_orph)
2782 val = d->chk_orph;
2783 else if (dent == d->dfs_chk_lprops)
2784 val = d->chk_lprops;
2785 else if (dent == d->dfs_chk_fs)
2786 val = d->chk_fs;
2787 else if (dent == d->dfs_tst_rcvry)
2788 val = d->tst_rcvry;
2789 else
2790 return -EINVAL;
2792 return provide_user_output(val, u, count, ppos);
2796 * interpret_user_input - interpret user debugfs file input.
2797 * @u: user-provided buffer with the input
2798 * @count: buffer size
2800 * This is a helper function which interpret user input to a boolean UBIFS
2801 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2802 * in case of failure.
2804 static int interpret_user_input(const char __user *u, size_t count)
2806 size_t buf_size;
2807 char buf[8];
2809 buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2810 if (copy_from_user(buf, u, buf_size))
2811 return -EFAULT;
2813 if (buf[0] == '1')
2814 return 1;
2815 else if (buf[0] == '0')
2816 return 0;
2818 return -EINVAL;
2821 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2822 size_t count, loff_t *ppos)
2824 struct ubifs_info *c = file->private_data;
2825 struct ubifs_debug_info *d = c->dbg;
2826 struct dentry *dent = file->f_path.dentry;
2827 int val;
2830 * TODO: this is racy - the file-system might have already been
2831 * unmounted and we'd oops in this case. The plan is to fix it with
2832 * help of 'iterate_supers_type()' which we should have in v3.0: when
2833 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2834 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2835 * superblocks and fine the one with the same UUID, and take the
2836 * locking right.
2838 * The other way to go suggested by Al Viro is to create a separate
2839 * 'ubifs-debug' file-system instead.
2841 if (file->f_path.dentry == d->dfs_dump_lprops) {
2842 dbg_dump_lprops(c);
2843 return count;
2845 if (file->f_path.dentry == d->dfs_dump_budg) {
2846 dbg_dump_budg(c, &c->bi);
2847 return count;
2849 if (file->f_path.dentry == d->dfs_dump_tnc) {
2850 mutex_lock(&c->tnc_mutex);
2851 dbg_dump_tnc(c);
2852 mutex_unlock(&c->tnc_mutex);
2853 return count;
2856 val = interpret_user_input(u, count);
2857 if (val < 0)
2858 return val;
2860 if (dent == d->dfs_chk_gen)
2861 d->chk_gen = val;
2862 else if (dent == d->dfs_chk_index)
2863 d->chk_index = val;
2864 else if (dent == d->dfs_chk_orph)
2865 d->chk_orph = val;
2866 else if (dent == d->dfs_chk_lprops)
2867 d->chk_lprops = val;
2868 else if (dent == d->dfs_chk_fs)
2869 d->chk_fs = val;
2870 else if (dent == d->dfs_tst_rcvry)
2871 d->tst_rcvry = val;
2872 else
2873 return -EINVAL;
2875 return count;
2878 static const struct file_operations dfs_fops = {
2879 .open = dfs_file_open,
2880 .read = dfs_file_read,
2881 .write = dfs_file_write,
2882 .owner = THIS_MODULE,
2883 .llseek = no_llseek,
2887 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2888 * @c: UBIFS file-system description object
2890 * This function creates all debugfs files for this instance of UBIFS. Returns
2891 * zero in case of success and a negative error code in case of failure.
2893 * Note, the only reason we have not merged this function with the
2894 * 'ubifs_debugging_init()' function is because it is better to initialize
2895 * debugfs interfaces at the very end of the mount process, and remove them at
2896 * the very beginning of the mount process.
2898 int dbg_debugfs_init_fs(struct ubifs_info *c)
2900 int err, n;
2901 const char *fname;
2902 struct dentry *dent;
2903 struct ubifs_debug_info *d = c->dbg;
2905 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2906 c->vi.ubi_num, c->vi.vol_id);
2907 if (n == UBIFS_DFS_DIR_LEN) {
2908 /* The array size is too small */
2909 fname = UBIFS_DFS_DIR_NAME;
2910 dent = ERR_PTR(-EINVAL);
2911 goto out;
2914 fname = d->dfs_dir_name;
2915 dent = debugfs_create_dir(fname, dfs_rootdir);
2916 if (IS_ERR_OR_NULL(dent))
2917 goto out;
2918 d->dfs_dir = dent;
2920 fname = "dump_lprops";
2921 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2922 if (IS_ERR_OR_NULL(dent))
2923 goto out_remove;
2924 d->dfs_dump_lprops = dent;
2926 fname = "dump_budg";
2927 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2928 if (IS_ERR_OR_NULL(dent))
2929 goto out_remove;
2930 d->dfs_dump_budg = dent;
2932 fname = "dump_tnc";
2933 dent = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, &dfs_fops);
2934 if (IS_ERR_OR_NULL(dent))
2935 goto out_remove;
2936 d->dfs_dump_tnc = dent;
2938 fname = "chk_general";
2939 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2940 &dfs_fops);
2941 if (IS_ERR_OR_NULL(dent))
2942 goto out_remove;
2943 d->dfs_chk_gen = dent;
2945 fname = "chk_index";
2946 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2947 &dfs_fops);
2948 if (IS_ERR_OR_NULL(dent))
2949 goto out_remove;
2950 d->dfs_chk_index = dent;
2952 fname = "chk_orphans";
2953 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2954 &dfs_fops);
2955 if (IS_ERR_OR_NULL(dent))
2956 goto out_remove;
2957 d->dfs_chk_orph = dent;
2959 fname = "chk_lprops";
2960 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2961 &dfs_fops);
2962 if (IS_ERR_OR_NULL(dent))
2963 goto out_remove;
2964 d->dfs_chk_lprops = dent;
2966 fname = "chk_fs";
2967 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2968 &dfs_fops);
2969 if (IS_ERR_OR_NULL(dent))
2970 goto out_remove;
2971 d->dfs_chk_fs = dent;
2973 fname = "tst_recovery";
2974 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, d->dfs_dir, c,
2975 &dfs_fops);
2976 if (IS_ERR_OR_NULL(dent))
2977 goto out_remove;
2978 d->dfs_tst_rcvry = dent;
2980 return 0;
2982 out_remove:
2983 debugfs_remove_recursive(d->dfs_dir);
2984 out:
2985 err = dent ? PTR_ERR(dent) : -ENODEV;
2986 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2987 fname, err);
2988 return err;
2992 * dbg_debugfs_exit_fs - remove all debugfs files.
2993 * @c: UBIFS file-system description object
2995 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2997 debugfs_remove_recursive(c->dbg->dfs_dir);
3000 struct ubifs_global_debug_info ubifs_dbg;
3002 static struct dentry *dfs_chk_gen;
3003 static struct dentry *dfs_chk_index;
3004 static struct dentry *dfs_chk_orph;
3005 static struct dentry *dfs_chk_lprops;
3006 static struct dentry *dfs_chk_fs;
3007 static struct dentry *dfs_tst_rcvry;
3009 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
3010 size_t count, loff_t *ppos)
3012 struct dentry *dent = file->f_path.dentry;
3013 int val;
3015 if (dent == dfs_chk_gen)
3016 val = ubifs_dbg.chk_gen;
3017 else if (dent == dfs_chk_index)
3018 val = ubifs_dbg.chk_index;
3019 else if (dent == dfs_chk_orph)
3020 val = ubifs_dbg.chk_orph;
3021 else if (dent == dfs_chk_lprops)
3022 val = ubifs_dbg.chk_lprops;
3023 else if (dent == dfs_chk_fs)
3024 val = ubifs_dbg.chk_fs;
3025 else if (dent == dfs_tst_rcvry)
3026 val = ubifs_dbg.tst_rcvry;
3027 else
3028 return -EINVAL;
3030 return provide_user_output(val, u, count, ppos);
3033 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
3034 size_t count, loff_t *ppos)
3036 struct dentry *dent = file->f_path.dentry;
3037 int val;
3039 val = interpret_user_input(u, count);
3040 if (val < 0)
3041 return val;
3043 if (dent == dfs_chk_gen)
3044 ubifs_dbg.chk_gen = val;
3045 else if (dent == dfs_chk_index)
3046 ubifs_dbg.chk_index = val;
3047 else if (dent == dfs_chk_orph)
3048 ubifs_dbg.chk_orph = val;
3049 else if (dent == dfs_chk_lprops)
3050 ubifs_dbg.chk_lprops = val;
3051 else if (dent == dfs_chk_fs)
3052 ubifs_dbg.chk_fs = val;
3053 else if (dent == dfs_tst_rcvry)
3054 ubifs_dbg.tst_rcvry = val;
3055 else
3056 return -EINVAL;
3058 return count;
3061 static const struct file_operations dfs_global_fops = {
3062 .read = dfs_global_file_read,
3063 .write = dfs_global_file_write,
3064 .owner = THIS_MODULE,
3065 .llseek = no_llseek,
3069 * dbg_debugfs_init - initialize debugfs file-system.
3071 * UBIFS uses debugfs file-system to expose various debugging knobs to
3072 * user-space. This function creates "ubifs" directory in the debugfs
3073 * file-system. Returns zero in case of success and a negative error code in
3074 * case of failure.
3076 int dbg_debugfs_init(void)
3078 int err;
3079 const char *fname;
3080 struct dentry *dent;
3082 fname = "ubifs";
3083 dent = debugfs_create_dir(fname, NULL);
3084 if (IS_ERR_OR_NULL(dent))
3085 goto out;
3086 dfs_rootdir = dent;
3088 fname = "chk_general";
3089 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3090 &dfs_global_fops);
3091 if (IS_ERR_OR_NULL(dent))
3092 goto out_remove;
3093 dfs_chk_gen = dent;
3095 fname = "chk_index";
3096 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3097 &dfs_global_fops);
3098 if (IS_ERR_OR_NULL(dent))
3099 goto out_remove;
3100 dfs_chk_index = dent;
3102 fname = "chk_orphans";
3103 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3104 &dfs_global_fops);
3105 if (IS_ERR_OR_NULL(dent))
3106 goto out_remove;
3107 dfs_chk_orph = dent;
3109 fname = "chk_lprops";
3110 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3111 &dfs_global_fops);
3112 if (IS_ERR_OR_NULL(dent))
3113 goto out_remove;
3114 dfs_chk_lprops = dent;
3116 fname = "chk_fs";
3117 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3118 &dfs_global_fops);
3119 if (IS_ERR_OR_NULL(dent))
3120 goto out_remove;
3121 dfs_chk_fs = dent;
3123 fname = "tst_recovery";
3124 dent = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, NULL,
3125 &dfs_global_fops);
3126 if (IS_ERR_OR_NULL(dent))
3127 goto out_remove;
3128 dfs_tst_rcvry = dent;
3130 return 0;
3132 out_remove:
3133 debugfs_remove_recursive(dfs_rootdir);
3134 out:
3135 err = dent ? PTR_ERR(dent) : -ENODEV;
3136 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3137 fname, err);
3138 return err;
3142 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3144 void dbg_debugfs_exit(void)
3146 debugfs_remove_recursive(dfs_rootdir);
3150 * ubifs_debugging_init - initialize UBIFS debugging.
3151 * @c: UBIFS file-system description object
3153 * This function initializes debugging-related data for the file system.
3154 * Returns zero in case of success and a negative error code in case of
3155 * failure.
3157 int ubifs_debugging_init(struct ubifs_info *c)
3159 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3160 if (!c->dbg)
3161 return -ENOMEM;
3163 return 0;
3167 * ubifs_debugging_exit - free debugging data.
3168 * @c: UBIFS file-system description object
3170 void ubifs_debugging_exit(struct ubifs_info *c)
3172 kfree(c->dbg);
3175 #endif /* CONFIG_UBIFS_FS_DEBUG */