Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/upstream-linus
[linux-btrfs-devel.git] / drivers / media / video / cx23885 / cx23888-ir.c
blobe37be6fcf67dba7d43b32006d749e79e5db73954
1 /*
2 * Driver for the Conexant CX23885/7/8 PCIe bridge
4 * CX23888 Integrated Consumer Infrared Controller
6 * Copyright (C) 2009 Andy Walls <awalls@md.metrocast.net>
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License
10 * as published by the Free Software Foundation; either version 2
11 * of the License, or (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 * 02110-1301, USA.
24 #include <linux/kfifo.h>
25 #include <linux/slab.h>
27 #include <media/v4l2-device.h>
28 #include <media/v4l2-chip-ident.h>
29 #include <media/rc-core.h>
31 #include "cx23885.h"
33 static unsigned int ir_888_debug;
34 module_param(ir_888_debug, int, 0644);
35 MODULE_PARM_DESC(ir_888_debug, "enable debug messages [CX23888 IR controller]");
37 #define CX23888_IR_REG_BASE 0x170000
39 * These CX23888 register offsets have a straightforward one to one mapping
40 * to the CX23885 register offsets of 0x200 through 0x218
42 #define CX23888_IR_CNTRL_REG 0x170000
43 #define CNTRL_WIN_3_3 0x00000000
44 #define CNTRL_WIN_4_3 0x00000001
45 #define CNTRL_WIN_3_4 0x00000002
46 #define CNTRL_WIN_4_4 0x00000003
47 #define CNTRL_WIN 0x00000003
48 #define CNTRL_EDG_NONE 0x00000000
49 #define CNTRL_EDG_FALL 0x00000004
50 #define CNTRL_EDG_RISE 0x00000008
51 #define CNTRL_EDG_BOTH 0x0000000C
52 #define CNTRL_EDG 0x0000000C
53 #define CNTRL_DMD 0x00000010
54 #define CNTRL_MOD 0x00000020
55 #define CNTRL_RFE 0x00000040
56 #define CNTRL_TFE 0x00000080
57 #define CNTRL_RXE 0x00000100
58 #define CNTRL_TXE 0x00000200
59 #define CNTRL_RIC 0x00000400
60 #define CNTRL_TIC 0x00000800
61 #define CNTRL_CPL 0x00001000
62 #define CNTRL_LBM 0x00002000
63 #define CNTRL_R 0x00004000
64 /* CX23888 specific control flag */
65 #define CNTRL_IVO 0x00008000
67 #define CX23888_IR_TXCLK_REG 0x170004
68 #define TXCLK_TCD 0x0000FFFF
70 #define CX23888_IR_RXCLK_REG 0x170008
71 #define RXCLK_RCD 0x0000FFFF
73 #define CX23888_IR_CDUTY_REG 0x17000C
74 #define CDUTY_CDC 0x0000000F
76 #define CX23888_IR_STATS_REG 0x170010
77 #define STATS_RTO 0x00000001
78 #define STATS_ROR 0x00000002
79 #define STATS_RBY 0x00000004
80 #define STATS_TBY 0x00000008
81 #define STATS_RSR 0x00000010
82 #define STATS_TSR 0x00000020
84 #define CX23888_IR_IRQEN_REG 0x170014
85 #define IRQEN_RTE 0x00000001
86 #define IRQEN_ROE 0x00000002
87 #define IRQEN_RSE 0x00000010
88 #define IRQEN_TSE 0x00000020
90 #define CX23888_IR_FILTR_REG 0x170018
91 #define FILTR_LPF 0x0000FFFF
93 /* This register doesn't follow the pattern; it's 0x23C on a CX23885 */
94 #define CX23888_IR_FIFO_REG 0x170040
95 #define FIFO_RXTX 0x0000FFFF
96 #define FIFO_RXTX_LVL 0x00010000
97 #define FIFO_RXTX_RTO 0x0001FFFF
98 #define FIFO_RX_NDV 0x00020000
99 #define FIFO_RX_DEPTH 8
100 #define FIFO_TX_DEPTH 8
102 /* CX23888 unique registers */
103 #define CX23888_IR_SEEDP_REG 0x17001C
104 #define CX23888_IR_TIMOL_REG 0x170020
105 #define CX23888_IR_WAKE0_REG 0x170024
106 #define CX23888_IR_WAKE1_REG 0x170028
107 #define CX23888_IR_WAKE2_REG 0x17002C
108 #define CX23888_IR_MASK0_REG 0x170030
109 #define CX23888_IR_MASK1_REG 0x170034
110 #define CX23888_IR_MAKS2_REG 0x170038
111 #define CX23888_IR_DPIPG_REG 0x17003C
112 #define CX23888_IR_LEARN_REG 0x170044
114 #define CX23888_VIDCLK_FREQ 108000000 /* 108 MHz, BT.656 */
115 #define CX23888_IR_REFCLK_FREQ (CX23888_VIDCLK_FREQ / 2)
118 * We use this union internally for convenience, but callers to tx_write
119 * and rx_read will be expecting records of type struct ir_raw_event.
120 * Always ensure the size of this union is dictated by struct ir_raw_event.
122 union cx23888_ir_fifo_rec {
123 u32 hw_fifo_data;
124 struct ir_raw_event ir_core_data;
127 #define CX23888_IR_RX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
128 #define CX23888_IR_TX_KFIFO_SIZE (256 * sizeof(union cx23888_ir_fifo_rec))
130 struct cx23888_ir_state {
131 struct v4l2_subdev sd;
132 struct cx23885_dev *dev;
133 u32 id;
134 u32 rev;
136 struct v4l2_subdev_ir_parameters rx_params;
137 struct mutex rx_params_lock;
138 atomic_t rxclk_divider;
139 atomic_t rx_invert;
141 struct kfifo rx_kfifo;
142 spinlock_t rx_kfifo_lock;
144 struct v4l2_subdev_ir_parameters tx_params;
145 struct mutex tx_params_lock;
146 atomic_t txclk_divider;
149 static inline struct cx23888_ir_state *to_state(struct v4l2_subdev *sd)
151 return v4l2_get_subdevdata(sd);
155 * IR register block read and write functions
157 static
158 inline int cx23888_ir_write4(struct cx23885_dev *dev, u32 addr, u32 value)
160 cx_write(addr, value);
161 return 0;
164 static inline u32 cx23888_ir_read4(struct cx23885_dev *dev, u32 addr)
166 return cx_read(addr);
169 static inline int cx23888_ir_and_or4(struct cx23885_dev *dev, u32 addr,
170 u32 and_mask, u32 or_value)
172 cx_andor(addr, ~and_mask, or_value);
173 return 0;
177 * Rx and Tx Clock Divider register computations
179 * Note the largest clock divider value of 0xffff corresponds to:
180 * (0xffff + 1) * 1000 / 108/2 MHz = 1,213,629.629... ns
181 * which fits in 21 bits, so we'll use unsigned int for time arguments.
183 static inline u16 count_to_clock_divider(unsigned int d)
185 if (d > RXCLK_RCD + 1)
186 d = RXCLK_RCD;
187 else if (d < 2)
188 d = 1;
189 else
190 d--;
191 return (u16) d;
194 static inline u16 ns_to_clock_divider(unsigned int ns)
196 return count_to_clock_divider(
197 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
200 static inline unsigned int clock_divider_to_ns(unsigned int divider)
202 /* Period of the Rx or Tx clock in ns */
203 return DIV_ROUND_CLOSEST((divider + 1) * 1000,
204 CX23888_IR_REFCLK_FREQ / 1000000);
207 static inline u16 carrier_freq_to_clock_divider(unsigned int freq)
209 return count_to_clock_divider(
210 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * 16));
213 static inline unsigned int clock_divider_to_carrier_freq(unsigned int divider)
215 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, (divider + 1) * 16);
218 static inline u16 freq_to_clock_divider(unsigned int freq,
219 unsigned int rollovers)
221 return count_to_clock_divider(
222 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ, freq * rollovers));
225 static inline unsigned int clock_divider_to_freq(unsigned int divider,
226 unsigned int rollovers)
228 return DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ,
229 (divider + 1) * rollovers);
233 * Low Pass Filter register calculations
235 * Note the largest count value of 0xffff corresponds to:
236 * 0xffff * 1000 / 108/2 MHz = 1,213,611.11... ns
237 * which fits in 21 bits, so we'll use unsigned int for time arguments.
239 static inline u16 count_to_lpf_count(unsigned int d)
241 if (d > FILTR_LPF)
242 d = FILTR_LPF;
243 else if (d < 4)
244 d = 0;
245 return (u16) d;
248 static inline u16 ns_to_lpf_count(unsigned int ns)
250 return count_to_lpf_count(
251 DIV_ROUND_CLOSEST(CX23888_IR_REFCLK_FREQ / 1000000 * ns, 1000));
254 static inline unsigned int lpf_count_to_ns(unsigned int count)
256 /* Duration of the Low Pass Filter rejection window in ns */
257 return DIV_ROUND_CLOSEST(count * 1000,
258 CX23888_IR_REFCLK_FREQ / 1000000);
261 static inline unsigned int lpf_count_to_us(unsigned int count)
263 /* Duration of the Low Pass Filter rejection window in us */
264 return DIV_ROUND_CLOSEST(count, CX23888_IR_REFCLK_FREQ / 1000000);
268 * FIFO register pulse width count compuations
270 static u32 clock_divider_to_resolution(u16 divider)
273 * Resolution is the duration of 1 tick of the readable portion of
274 * of the pulse width counter as read from the FIFO. The two lsb's are
275 * not readable, hence the << 2. This function returns ns.
277 return DIV_ROUND_CLOSEST((1 << 2) * ((u32) divider + 1) * 1000,
278 CX23888_IR_REFCLK_FREQ / 1000000);
281 static u64 pulse_width_count_to_ns(u16 count, u16 divider)
283 u64 n;
284 u32 rem;
287 * The 2 lsb's of the pulse width timer count are not readable, hence
288 * the (count << 2) | 0x3
290 n = (((u64) count << 2) | 0x3) * (divider + 1) * 1000; /* millicycles */
291 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => ns */
292 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
293 n++;
294 return n;
297 static unsigned int pulse_width_count_to_us(u16 count, u16 divider)
299 u64 n;
300 u32 rem;
303 * The 2 lsb's of the pulse width timer count are not readable, hence
304 * the (count << 2) | 0x3
306 n = (((u64) count << 2) | 0x3) * (divider + 1); /* cycles */
307 rem = do_div(n, CX23888_IR_REFCLK_FREQ / 1000000); /* / MHz => us */
308 if (rem >= CX23888_IR_REFCLK_FREQ / 1000000 / 2)
309 n++;
310 return (unsigned int) n;
314 * Pulse Clocks computations: Combined Pulse Width Count & Rx Clock Counts
316 * The total pulse clock count is an 18 bit pulse width timer count as the most
317 * significant part and (up to) 16 bit clock divider count as a modulus.
318 * When the Rx clock divider ticks down to 0, it increments the 18 bit pulse
319 * width timer count's least significant bit.
321 static u64 ns_to_pulse_clocks(u32 ns)
323 u64 clocks;
324 u32 rem;
325 clocks = CX23888_IR_REFCLK_FREQ / 1000000 * (u64) ns; /* millicycles */
326 rem = do_div(clocks, 1000); /* /1000 = cycles */
327 if (rem >= 1000 / 2)
328 clocks++;
329 return clocks;
332 static u16 pulse_clocks_to_clock_divider(u64 count)
334 u32 rem;
336 rem = do_div(count, (FIFO_RXTX << 2) | 0x3);
338 /* net result needs to be rounded down and decremented by 1 */
339 if (count > RXCLK_RCD + 1)
340 count = RXCLK_RCD;
341 else if (count < 2)
342 count = 1;
343 else
344 count--;
345 return (u16) count;
349 * IR Control Register helpers
351 enum tx_fifo_watermark {
352 TX_FIFO_HALF_EMPTY = 0,
353 TX_FIFO_EMPTY = CNTRL_TIC,
356 enum rx_fifo_watermark {
357 RX_FIFO_HALF_FULL = 0,
358 RX_FIFO_NOT_EMPTY = CNTRL_RIC,
361 static inline void control_tx_irq_watermark(struct cx23885_dev *dev,
362 enum tx_fifo_watermark level)
364 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_TIC, level);
367 static inline void control_rx_irq_watermark(struct cx23885_dev *dev,
368 enum rx_fifo_watermark level)
370 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_RIC, level);
373 static inline void control_tx_enable(struct cx23885_dev *dev, bool enable)
375 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_TXE | CNTRL_TFE),
376 enable ? (CNTRL_TXE | CNTRL_TFE) : 0);
379 static inline void control_rx_enable(struct cx23885_dev *dev, bool enable)
381 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~(CNTRL_RXE | CNTRL_RFE),
382 enable ? (CNTRL_RXE | CNTRL_RFE) : 0);
385 static inline void control_tx_modulation_enable(struct cx23885_dev *dev,
386 bool enable)
388 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_MOD,
389 enable ? CNTRL_MOD : 0);
392 static inline void control_rx_demodulation_enable(struct cx23885_dev *dev,
393 bool enable)
395 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_DMD,
396 enable ? CNTRL_DMD : 0);
399 static inline void control_rx_s_edge_detection(struct cx23885_dev *dev,
400 u32 edge_types)
402 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_EDG_BOTH,
403 edge_types & CNTRL_EDG_BOTH);
406 static void control_rx_s_carrier_window(struct cx23885_dev *dev,
407 unsigned int carrier,
408 unsigned int *carrier_range_low,
409 unsigned int *carrier_range_high)
411 u32 v;
412 unsigned int c16 = carrier * 16;
414 if (*carrier_range_low < DIV_ROUND_CLOSEST(c16, 16 + 3)) {
415 v = CNTRL_WIN_3_4;
416 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 4);
417 } else {
418 v = CNTRL_WIN_3_3;
419 *carrier_range_low = DIV_ROUND_CLOSEST(c16, 16 + 3);
422 if (*carrier_range_high > DIV_ROUND_CLOSEST(c16, 16 - 3)) {
423 v |= CNTRL_WIN_4_3;
424 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 4);
425 } else {
426 v |= CNTRL_WIN_3_3;
427 *carrier_range_high = DIV_ROUND_CLOSEST(c16, 16 - 3);
429 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_WIN, v);
432 static inline void control_tx_polarity_invert(struct cx23885_dev *dev,
433 bool invert)
435 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_CPL,
436 invert ? CNTRL_CPL : 0);
439 static inline void control_tx_level_invert(struct cx23885_dev *dev,
440 bool invert)
442 cx23888_ir_and_or4(dev, CX23888_IR_CNTRL_REG, ~CNTRL_IVO,
443 invert ? CNTRL_IVO : 0);
447 * IR Rx & Tx Clock Register helpers
449 static unsigned int txclk_tx_s_carrier(struct cx23885_dev *dev,
450 unsigned int freq,
451 u16 *divider)
453 *divider = carrier_freq_to_clock_divider(freq);
454 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
455 return clock_divider_to_carrier_freq(*divider);
458 static unsigned int rxclk_rx_s_carrier(struct cx23885_dev *dev,
459 unsigned int freq,
460 u16 *divider)
462 *divider = carrier_freq_to_clock_divider(freq);
463 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
464 return clock_divider_to_carrier_freq(*divider);
467 static u32 txclk_tx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
468 u16 *divider)
470 u64 pulse_clocks;
472 if (ns > IR_MAX_DURATION)
473 ns = IR_MAX_DURATION;
474 pulse_clocks = ns_to_pulse_clocks(ns);
475 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
476 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, *divider);
477 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
480 static u32 rxclk_rx_s_max_pulse_width(struct cx23885_dev *dev, u32 ns,
481 u16 *divider)
483 u64 pulse_clocks;
485 if (ns > IR_MAX_DURATION)
486 ns = IR_MAX_DURATION;
487 pulse_clocks = ns_to_pulse_clocks(ns);
488 *divider = pulse_clocks_to_clock_divider(pulse_clocks);
489 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, *divider);
490 return (u32) pulse_width_count_to_ns(FIFO_RXTX, *divider);
494 * IR Tx Carrier Duty Cycle register helpers
496 static unsigned int cduty_tx_s_duty_cycle(struct cx23885_dev *dev,
497 unsigned int duty_cycle)
499 u32 n;
500 n = DIV_ROUND_CLOSEST(duty_cycle * 100, 625); /* 16ths of 100% */
501 if (n != 0)
502 n--;
503 if (n > 15)
504 n = 15;
505 cx23888_ir_write4(dev, CX23888_IR_CDUTY_REG, n);
506 return DIV_ROUND_CLOSEST((n + 1) * 100, 16);
510 * IR Filter Register helpers
512 static u32 filter_rx_s_min_width(struct cx23885_dev *dev, u32 min_width_ns)
514 u32 count = ns_to_lpf_count(min_width_ns);
515 cx23888_ir_write4(dev, CX23888_IR_FILTR_REG, count);
516 return lpf_count_to_ns(count);
520 * IR IRQ Enable Register helpers
522 static inline void irqenable_rx(struct cx23885_dev *dev, u32 mask)
524 mask &= (IRQEN_RTE | IRQEN_ROE | IRQEN_RSE);
525 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG,
526 ~(IRQEN_RTE | IRQEN_ROE | IRQEN_RSE), mask);
529 static inline void irqenable_tx(struct cx23885_dev *dev, u32 mask)
531 mask &= IRQEN_TSE;
532 cx23888_ir_and_or4(dev, CX23888_IR_IRQEN_REG, ~IRQEN_TSE, mask);
536 * V4L2 Subdevice IR Ops
538 static int cx23888_ir_irq_handler(struct v4l2_subdev *sd, u32 status,
539 bool *handled)
541 struct cx23888_ir_state *state = to_state(sd);
542 struct cx23885_dev *dev = state->dev;
543 unsigned long flags;
545 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
546 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
547 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
549 union cx23888_ir_fifo_rec rx_data[FIFO_RX_DEPTH];
550 unsigned int i, j, k;
551 u32 events, v;
552 int tsr, rsr, rto, ror, tse, rse, rte, roe, kror;
554 tsr = stats & STATS_TSR; /* Tx FIFO Service Request */
555 rsr = stats & STATS_RSR; /* Rx FIFO Service Request */
556 rto = stats & STATS_RTO; /* Rx Pulse Width Timer Time Out */
557 ror = stats & STATS_ROR; /* Rx FIFO Over Run */
559 tse = irqen & IRQEN_TSE; /* Tx FIFO Service Request IRQ Enable */
560 rse = irqen & IRQEN_RSE; /* Rx FIFO Service Reuqest IRQ Enable */
561 rte = irqen & IRQEN_RTE; /* Rx Pulse Width Timer Time Out IRQ Enable */
562 roe = irqen & IRQEN_ROE; /* Rx FIFO Over Run IRQ Enable */
564 *handled = false;
565 v4l2_dbg(2, ir_888_debug, sd, "IRQ Status: %s %s %s %s %s %s\n",
566 tsr ? "tsr" : " ", rsr ? "rsr" : " ",
567 rto ? "rto" : " ", ror ? "ror" : " ",
568 stats & STATS_TBY ? "tby" : " ",
569 stats & STATS_RBY ? "rby" : " ");
571 v4l2_dbg(2, ir_888_debug, sd, "IRQ Enables: %s %s %s %s\n",
572 tse ? "tse" : " ", rse ? "rse" : " ",
573 rte ? "rte" : " ", roe ? "roe" : " ");
576 * Transmitter interrupt service
578 if (tse && tsr) {
580 * TODO:
581 * Check the watermark threshold setting
582 * Pull FIFO_TX_DEPTH or FIFO_TX_DEPTH/2 entries from tx_kfifo
583 * Push the data to the hardware FIFO.
584 * If there was nothing more to send in the tx_kfifo, disable
585 * the TSR IRQ and notify the v4l2_device.
586 * If there was something in the tx_kfifo, check the tx_kfifo
587 * level and notify the v4l2_device, if it is low.
589 /* For now, inhibit TSR interrupt until Tx is implemented */
590 irqenable_tx(dev, 0);
591 events = V4L2_SUBDEV_IR_TX_FIFO_SERVICE_REQ;
592 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_TX_NOTIFY, &events);
593 *handled = true;
597 * Receiver interrupt service
599 kror = 0;
600 if ((rse && rsr) || (rte && rto)) {
602 * Receive data on RSR to clear the STATS_RSR.
603 * Receive data on RTO, since we may not have yet hit the RSR
604 * watermark when we receive the RTO.
606 for (i = 0, v = FIFO_RX_NDV;
607 (v & FIFO_RX_NDV) && !kror; i = 0) {
608 for (j = 0;
609 (v & FIFO_RX_NDV) && j < FIFO_RX_DEPTH; j++) {
610 v = cx23888_ir_read4(dev, CX23888_IR_FIFO_REG);
611 rx_data[i].hw_fifo_data = v & ~FIFO_RX_NDV;
612 i++;
614 if (i == 0)
615 break;
616 j = i * sizeof(union cx23888_ir_fifo_rec);
617 k = kfifo_in_locked(&state->rx_kfifo,
618 (unsigned char *) rx_data, j,
619 &state->rx_kfifo_lock);
620 if (k != j)
621 kror++; /* rx_kfifo over run */
623 *handled = true;
626 events = 0;
627 v = 0;
628 if (kror) {
629 events |= V4L2_SUBDEV_IR_RX_SW_FIFO_OVERRUN;
630 v4l2_err(sd, "IR receiver software FIFO overrun\n");
632 if (roe && ror) {
634 * The RX FIFO Enable (CNTRL_RFE) must be toggled to clear
635 * the Rx FIFO Over Run status (STATS_ROR)
637 v |= CNTRL_RFE;
638 events |= V4L2_SUBDEV_IR_RX_HW_FIFO_OVERRUN;
639 v4l2_err(sd, "IR receiver hardware FIFO overrun\n");
641 if (rte && rto) {
643 * The IR Receiver Enable (CNTRL_RXE) must be toggled to clear
644 * the Rx Pulse Width Timer Time Out (STATS_RTO)
646 v |= CNTRL_RXE;
647 events |= V4L2_SUBDEV_IR_RX_END_OF_RX_DETECTED;
649 if (v) {
650 /* Clear STATS_ROR & STATS_RTO as needed by reseting hardware */
651 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl & ~v);
652 cx23888_ir_write4(dev, CX23888_IR_CNTRL_REG, cntrl);
653 *handled = true;
656 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
657 if (kfifo_len(&state->rx_kfifo) >= CX23888_IR_RX_KFIFO_SIZE / 2)
658 events |= V4L2_SUBDEV_IR_RX_FIFO_SERVICE_REQ;
659 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
661 if (events)
662 v4l2_subdev_notify(sd, V4L2_SUBDEV_IR_RX_NOTIFY, &events);
663 return 0;
666 /* Receiver */
667 static int cx23888_ir_rx_read(struct v4l2_subdev *sd, u8 *buf, size_t count,
668 ssize_t *num)
670 struct cx23888_ir_state *state = to_state(sd);
671 bool invert = (bool) atomic_read(&state->rx_invert);
672 u16 divider = (u16) atomic_read(&state->rxclk_divider);
674 unsigned int i, n;
675 union cx23888_ir_fifo_rec *p;
676 unsigned u, v;
678 n = count / sizeof(union cx23888_ir_fifo_rec)
679 * sizeof(union cx23888_ir_fifo_rec);
680 if (n == 0) {
681 *num = 0;
682 return 0;
685 n = kfifo_out_locked(&state->rx_kfifo, buf, n, &state->rx_kfifo_lock);
687 n /= sizeof(union cx23888_ir_fifo_rec);
688 *num = n * sizeof(union cx23888_ir_fifo_rec);
690 for (p = (union cx23888_ir_fifo_rec *) buf, i = 0; i < n; p++, i++) {
692 if ((p->hw_fifo_data & FIFO_RXTX_RTO) == FIFO_RXTX_RTO) {
693 /* Assume RTO was because of no IR light input */
694 u = 0;
695 v4l2_dbg(2, ir_888_debug, sd, "rx read: end of rx\n");
696 } else {
697 u = (p->hw_fifo_data & FIFO_RXTX_LVL) ? 1 : 0;
698 if (invert)
699 u = u ? 0 : 1;
702 v = (unsigned) pulse_width_count_to_ns(
703 (u16) (p->hw_fifo_data & FIFO_RXTX), divider);
704 if (v > IR_MAX_DURATION)
705 v = IR_MAX_DURATION;
707 init_ir_raw_event(&p->ir_core_data);
708 p->ir_core_data.pulse = u;
709 p->ir_core_data.duration = v;
711 v4l2_dbg(2, ir_888_debug, sd, "rx read: %10u ns %s\n",
712 v, u ? "mark" : "space");
714 return 0;
717 static int cx23888_ir_rx_g_parameters(struct v4l2_subdev *sd,
718 struct v4l2_subdev_ir_parameters *p)
720 struct cx23888_ir_state *state = to_state(sd);
721 mutex_lock(&state->rx_params_lock);
722 memcpy(p, &state->rx_params, sizeof(struct v4l2_subdev_ir_parameters));
723 mutex_unlock(&state->rx_params_lock);
724 return 0;
727 static int cx23888_ir_rx_shutdown(struct v4l2_subdev *sd)
729 struct cx23888_ir_state *state = to_state(sd);
730 struct cx23885_dev *dev = state->dev;
732 mutex_lock(&state->rx_params_lock);
734 /* Disable or slow down all IR Rx circuits and counters */
735 irqenable_rx(dev, 0);
736 control_rx_enable(dev, false);
737 control_rx_demodulation_enable(dev, false);
738 control_rx_s_edge_detection(dev, CNTRL_EDG_NONE);
739 filter_rx_s_min_width(dev, 0);
740 cx23888_ir_write4(dev, CX23888_IR_RXCLK_REG, RXCLK_RCD);
742 state->rx_params.shutdown = true;
744 mutex_unlock(&state->rx_params_lock);
745 return 0;
748 static int cx23888_ir_rx_s_parameters(struct v4l2_subdev *sd,
749 struct v4l2_subdev_ir_parameters *p)
751 struct cx23888_ir_state *state = to_state(sd);
752 struct cx23885_dev *dev = state->dev;
753 struct v4l2_subdev_ir_parameters *o = &state->rx_params;
754 u16 rxclk_divider;
756 if (p->shutdown)
757 return cx23888_ir_rx_shutdown(sd);
759 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
760 return -ENOSYS;
762 mutex_lock(&state->rx_params_lock);
764 o->shutdown = p->shutdown;
766 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
768 o->bytes_per_data_element = p->bytes_per_data_element
769 = sizeof(union cx23888_ir_fifo_rec);
771 /* Before we tweak the hardware, we have to disable the receiver */
772 irqenable_rx(dev, 0);
773 control_rx_enable(dev, false);
775 control_rx_demodulation_enable(dev, p->modulation);
776 o->modulation = p->modulation;
778 if (p->modulation) {
779 p->carrier_freq = rxclk_rx_s_carrier(dev, p->carrier_freq,
780 &rxclk_divider);
782 o->carrier_freq = p->carrier_freq;
784 o->duty_cycle = p->duty_cycle = 50;
786 control_rx_s_carrier_window(dev, p->carrier_freq,
787 &p->carrier_range_lower,
788 &p->carrier_range_upper);
789 o->carrier_range_lower = p->carrier_range_lower;
790 o->carrier_range_upper = p->carrier_range_upper;
792 p->max_pulse_width =
793 (u32) pulse_width_count_to_ns(FIFO_RXTX, rxclk_divider);
794 } else {
795 p->max_pulse_width =
796 rxclk_rx_s_max_pulse_width(dev, p->max_pulse_width,
797 &rxclk_divider);
799 o->max_pulse_width = p->max_pulse_width;
800 atomic_set(&state->rxclk_divider, rxclk_divider);
802 p->noise_filter_min_width =
803 filter_rx_s_min_width(dev, p->noise_filter_min_width);
804 o->noise_filter_min_width = p->noise_filter_min_width;
806 p->resolution = clock_divider_to_resolution(rxclk_divider);
807 o->resolution = p->resolution;
809 /* FIXME - make this dependent on resolution for better performance */
810 control_rx_irq_watermark(dev, RX_FIFO_HALF_FULL);
812 control_rx_s_edge_detection(dev, CNTRL_EDG_BOTH);
814 o->invert_level = p->invert_level;
815 atomic_set(&state->rx_invert, p->invert_level);
817 o->interrupt_enable = p->interrupt_enable;
818 o->enable = p->enable;
819 if (p->enable) {
820 unsigned long flags;
822 spin_lock_irqsave(&state->rx_kfifo_lock, flags);
823 kfifo_reset(&state->rx_kfifo);
824 /* reset tx_fifo too if there is one... */
825 spin_unlock_irqrestore(&state->rx_kfifo_lock, flags);
826 if (p->interrupt_enable)
827 irqenable_rx(dev, IRQEN_RSE | IRQEN_RTE | IRQEN_ROE);
828 control_rx_enable(dev, p->enable);
831 mutex_unlock(&state->rx_params_lock);
832 return 0;
835 /* Transmitter */
836 static int cx23888_ir_tx_write(struct v4l2_subdev *sd, u8 *buf, size_t count,
837 ssize_t *num)
839 struct cx23888_ir_state *state = to_state(sd);
840 struct cx23885_dev *dev = state->dev;
841 /* For now enable the Tx FIFO Service interrupt & pretend we did work */
842 irqenable_tx(dev, IRQEN_TSE);
843 *num = count;
844 return 0;
847 static int cx23888_ir_tx_g_parameters(struct v4l2_subdev *sd,
848 struct v4l2_subdev_ir_parameters *p)
850 struct cx23888_ir_state *state = to_state(sd);
851 mutex_lock(&state->tx_params_lock);
852 memcpy(p, &state->tx_params, sizeof(struct v4l2_subdev_ir_parameters));
853 mutex_unlock(&state->tx_params_lock);
854 return 0;
857 static int cx23888_ir_tx_shutdown(struct v4l2_subdev *sd)
859 struct cx23888_ir_state *state = to_state(sd);
860 struct cx23885_dev *dev = state->dev;
862 mutex_lock(&state->tx_params_lock);
864 /* Disable or slow down all IR Tx circuits and counters */
865 irqenable_tx(dev, 0);
866 control_tx_enable(dev, false);
867 control_tx_modulation_enable(dev, false);
868 cx23888_ir_write4(dev, CX23888_IR_TXCLK_REG, TXCLK_TCD);
870 state->tx_params.shutdown = true;
872 mutex_unlock(&state->tx_params_lock);
873 return 0;
876 static int cx23888_ir_tx_s_parameters(struct v4l2_subdev *sd,
877 struct v4l2_subdev_ir_parameters *p)
879 struct cx23888_ir_state *state = to_state(sd);
880 struct cx23885_dev *dev = state->dev;
881 struct v4l2_subdev_ir_parameters *o = &state->tx_params;
882 u16 txclk_divider;
884 if (p->shutdown)
885 return cx23888_ir_tx_shutdown(sd);
887 if (p->mode != V4L2_SUBDEV_IR_MODE_PULSE_WIDTH)
888 return -ENOSYS;
890 mutex_lock(&state->tx_params_lock);
892 o->shutdown = p->shutdown;
894 o->mode = p->mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH;
896 o->bytes_per_data_element = p->bytes_per_data_element
897 = sizeof(union cx23888_ir_fifo_rec);
899 /* Before we tweak the hardware, we have to disable the transmitter */
900 irqenable_tx(dev, 0);
901 control_tx_enable(dev, false);
903 control_tx_modulation_enable(dev, p->modulation);
904 o->modulation = p->modulation;
906 if (p->modulation) {
907 p->carrier_freq = txclk_tx_s_carrier(dev, p->carrier_freq,
908 &txclk_divider);
909 o->carrier_freq = p->carrier_freq;
911 p->duty_cycle = cduty_tx_s_duty_cycle(dev, p->duty_cycle);
912 o->duty_cycle = p->duty_cycle;
914 p->max_pulse_width =
915 (u32) pulse_width_count_to_ns(FIFO_RXTX, txclk_divider);
916 } else {
917 p->max_pulse_width =
918 txclk_tx_s_max_pulse_width(dev, p->max_pulse_width,
919 &txclk_divider);
921 o->max_pulse_width = p->max_pulse_width;
922 atomic_set(&state->txclk_divider, txclk_divider);
924 p->resolution = clock_divider_to_resolution(txclk_divider);
925 o->resolution = p->resolution;
927 /* FIXME - make this dependent on resolution for better performance */
928 control_tx_irq_watermark(dev, TX_FIFO_HALF_EMPTY);
930 control_tx_polarity_invert(dev, p->invert_carrier_sense);
931 o->invert_carrier_sense = p->invert_carrier_sense;
933 control_tx_level_invert(dev, p->invert_level);
934 o->invert_level = p->invert_level;
936 o->interrupt_enable = p->interrupt_enable;
937 o->enable = p->enable;
938 if (p->enable) {
939 if (p->interrupt_enable)
940 irqenable_tx(dev, IRQEN_TSE);
941 control_tx_enable(dev, p->enable);
944 mutex_unlock(&state->tx_params_lock);
945 return 0;
950 * V4L2 Subdevice Core Ops
952 static int cx23888_ir_log_status(struct v4l2_subdev *sd)
954 struct cx23888_ir_state *state = to_state(sd);
955 struct cx23885_dev *dev = state->dev;
956 char *s;
957 int i, j;
959 u32 cntrl = cx23888_ir_read4(dev, CX23888_IR_CNTRL_REG);
960 u32 txclk = cx23888_ir_read4(dev, CX23888_IR_TXCLK_REG) & TXCLK_TCD;
961 u32 rxclk = cx23888_ir_read4(dev, CX23888_IR_RXCLK_REG) & RXCLK_RCD;
962 u32 cduty = cx23888_ir_read4(dev, CX23888_IR_CDUTY_REG) & CDUTY_CDC;
963 u32 stats = cx23888_ir_read4(dev, CX23888_IR_STATS_REG);
964 u32 irqen = cx23888_ir_read4(dev, CX23888_IR_IRQEN_REG);
965 u32 filtr = cx23888_ir_read4(dev, CX23888_IR_FILTR_REG) & FILTR_LPF;
967 v4l2_info(sd, "IR Receiver:\n");
968 v4l2_info(sd, "\tEnabled: %s\n",
969 cntrl & CNTRL_RXE ? "yes" : "no");
970 v4l2_info(sd, "\tDemodulation from a carrier: %s\n",
971 cntrl & CNTRL_DMD ? "enabled" : "disabled");
972 v4l2_info(sd, "\tFIFO: %s\n",
973 cntrl & CNTRL_RFE ? "enabled" : "disabled");
974 switch (cntrl & CNTRL_EDG) {
975 case CNTRL_EDG_NONE:
976 s = "disabled";
977 break;
978 case CNTRL_EDG_FALL:
979 s = "falling edge";
980 break;
981 case CNTRL_EDG_RISE:
982 s = "rising edge";
983 break;
984 case CNTRL_EDG_BOTH:
985 s = "rising & falling edges";
986 break;
987 default:
988 s = "??? edge";
989 break;
991 v4l2_info(sd, "\tPulse timers' start/stop trigger: %s\n", s);
992 v4l2_info(sd, "\tFIFO data on pulse timer overflow: %s\n",
993 cntrl & CNTRL_R ? "not loaded" : "overflow marker");
994 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
995 cntrl & CNTRL_RIC ? "not empty" : "half full or greater");
996 v4l2_info(sd, "\tLoopback mode: %s\n",
997 cntrl & CNTRL_LBM ? "loopback active" : "normal receive");
998 if (cntrl & CNTRL_DMD) {
999 v4l2_info(sd, "\tExpected carrier (16 clocks): %u Hz\n",
1000 clock_divider_to_carrier_freq(rxclk));
1001 switch (cntrl & CNTRL_WIN) {
1002 case CNTRL_WIN_3_3:
1003 i = 3;
1004 j = 3;
1005 break;
1006 case CNTRL_WIN_4_3:
1007 i = 4;
1008 j = 3;
1009 break;
1010 case CNTRL_WIN_3_4:
1011 i = 3;
1012 j = 4;
1013 break;
1014 case CNTRL_WIN_4_4:
1015 i = 4;
1016 j = 4;
1017 break;
1018 default:
1019 i = 0;
1020 j = 0;
1021 break;
1023 v4l2_info(sd, "\tNext carrier edge window: 16 clocks "
1024 "-%1d/+%1d, %u to %u Hz\n", i, j,
1025 clock_divider_to_freq(rxclk, 16 + j),
1026 clock_divider_to_freq(rxclk, 16 - i));
1028 v4l2_info(sd, "\tMax measurable pulse width: %u us, %llu ns\n",
1029 pulse_width_count_to_us(FIFO_RXTX, rxclk),
1030 pulse_width_count_to_ns(FIFO_RXTX, rxclk));
1031 v4l2_info(sd, "\tLow pass filter: %s\n",
1032 filtr ? "enabled" : "disabled");
1033 if (filtr)
1034 v4l2_info(sd, "\tMin acceptable pulse width (LPF): %u us, "
1035 "%u ns\n",
1036 lpf_count_to_us(filtr),
1037 lpf_count_to_ns(filtr));
1038 v4l2_info(sd, "\tPulse width timer timed-out: %s\n",
1039 stats & STATS_RTO ? "yes" : "no");
1040 v4l2_info(sd, "\tPulse width timer time-out intr: %s\n",
1041 irqen & IRQEN_RTE ? "enabled" : "disabled");
1042 v4l2_info(sd, "\tFIFO overrun: %s\n",
1043 stats & STATS_ROR ? "yes" : "no");
1044 v4l2_info(sd, "\tFIFO overrun interrupt: %s\n",
1045 irqen & IRQEN_ROE ? "enabled" : "disabled");
1046 v4l2_info(sd, "\tBusy: %s\n",
1047 stats & STATS_RBY ? "yes" : "no");
1048 v4l2_info(sd, "\tFIFO service requested: %s\n",
1049 stats & STATS_RSR ? "yes" : "no");
1050 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1051 irqen & IRQEN_RSE ? "enabled" : "disabled");
1053 v4l2_info(sd, "IR Transmitter:\n");
1054 v4l2_info(sd, "\tEnabled: %s\n",
1055 cntrl & CNTRL_TXE ? "yes" : "no");
1056 v4l2_info(sd, "\tModulation onto a carrier: %s\n",
1057 cntrl & CNTRL_MOD ? "enabled" : "disabled");
1058 v4l2_info(sd, "\tFIFO: %s\n",
1059 cntrl & CNTRL_TFE ? "enabled" : "disabled");
1060 v4l2_info(sd, "\tFIFO interrupt watermark: %s\n",
1061 cntrl & CNTRL_TIC ? "not empty" : "half full or less");
1062 v4l2_info(sd, "\tOutput pin level inversion %s\n",
1063 cntrl & CNTRL_IVO ? "yes" : "no");
1064 v4l2_info(sd, "\tCarrier polarity: %s\n",
1065 cntrl & CNTRL_CPL ? "space:burst mark:noburst"
1066 : "space:noburst mark:burst");
1067 if (cntrl & CNTRL_MOD) {
1068 v4l2_info(sd, "\tCarrier (16 clocks): %u Hz\n",
1069 clock_divider_to_carrier_freq(txclk));
1070 v4l2_info(sd, "\tCarrier duty cycle: %2u/16\n",
1071 cduty + 1);
1073 v4l2_info(sd, "\tMax pulse width: %u us, %llu ns\n",
1074 pulse_width_count_to_us(FIFO_RXTX, txclk),
1075 pulse_width_count_to_ns(FIFO_RXTX, txclk));
1076 v4l2_info(sd, "\tBusy: %s\n",
1077 stats & STATS_TBY ? "yes" : "no");
1078 v4l2_info(sd, "\tFIFO service requested: %s\n",
1079 stats & STATS_TSR ? "yes" : "no");
1080 v4l2_info(sd, "\tFIFO service request interrupt: %s\n",
1081 irqen & IRQEN_TSE ? "enabled" : "disabled");
1083 return 0;
1086 static inline int cx23888_ir_dbg_match(const struct v4l2_dbg_match *match)
1088 return match->type == V4L2_CHIP_MATCH_HOST && match->addr == 2;
1091 static int cx23888_ir_g_chip_ident(struct v4l2_subdev *sd,
1092 struct v4l2_dbg_chip_ident *chip)
1094 struct cx23888_ir_state *state = to_state(sd);
1096 if (cx23888_ir_dbg_match(&chip->match)) {
1097 chip->ident = state->id;
1098 chip->revision = state->rev;
1100 return 0;
1103 #ifdef CONFIG_VIDEO_ADV_DEBUG
1104 static int cx23888_ir_g_register(struct v4l2_subdev *sd,
1105 struct v4l2_dbg_register *reg)
1107 struct cx23888_ir_state *state = to_state(sd);
1108 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1110 if (!cx23888_ir_dbg_match(&reg->match))
1111 return -EINVAL;
1112 if ((addr & 0x3) != 0)
1113 return -EINVAL;
1114 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1115 return -EINVAL;
1116 if (!capable(CAP_SYS_ADMIN))
1117 return -EPERM;
1118 reg->size = 4;
1119 reg->val = cx23888_ir_read4(state->dev, addr);
1120 return 0;
1123 static int cx23888_ir_s_register(struct v4l2_subdev *sd,
1124 struct v4l2_dbg_register *reg)
1126 struct cx23888_ir_state *state = to_state(sd);
1127 u32 addr = CX23888_IR_REG_BASE + (u32) reg->reg;
1129 if (!cx23888_ir_dbg_match(&reg->match))
1130 return -EINVAL;
1131 if ((addr & 0x3) != 0)
1132 return -EINVAL;
1133 if (addr < CX23888_IR_CNTRL_REG || addr > CX23888_IR_LEARN_REG)
1134 return -EINVAL;
1135 if (!capable(CAP_SYS_ADMIN))
1136 return -EPERM;
1137 cx23888_ir_write4(state->dev, addr, reg->val);
1138 return 0;
1140 #endif
1142 static const struct v4l2_subdev_core_ops cx23888_ir_core_ops = {
1143 .g_chip_ident = cx23888_ir_g_chip_ident,
1144 .log_status = cx23888_ir_log_status,
1145 #ifdef CONFIG_VIDEO_ADV_DEBUG
1146 .g_register = cx23888_ir_g_register,
1147 .s_register = cx23888_ir_s_register,
1148 #endif
1149 .interrupt_service_routine = cx23888_ir_irq_handler,
1152 static const struct v4l2_subdev_ir_ops cx23888_ir_ir_ops = {
1153 .rx_read = cx23888_ir_rx_read,
1154 .rx_g_parameters = cx23888_ir_rx_g_parameters,
1155 .rx_s_parameters = cx23888_ir_rx_s_parameters,
1157 .tx_write = cx23888_ir_tx_write,
1158 .tx_g_parameters = cx23888_ir_tx_g_parameters,
1159 .tx_s_parameters = cx23888_ir_tx_s_parameters,
1162 static const struct v4l2_subdev_ops cx23888_ir_controller_ops = {
1163 .core = &cx23888_ir_core_ops,
1164 .ir = &cx23888_ir_ir_ops,
1167 static const struct v4l2_subdev_ir_parameters default_rx_params = {
1168 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1169 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1171 .enable = false,
1172 .interrupt_enable = false,
1173 .shutdown = true,
1175 .modulation = true,
1176 .carrier_freq = 36000, /* 36 kHz - RC-5, RC-6, and RC-6A carrier */
1178 /* RC-5: 666,667 ns = 1/36 kHz * 32 cycles * 1 mark * 0.75 */
1179 /* RC-6A: 333,333 ns = 1/36 kHz * 16 cycles * 1 mark * 0.75 */
1180 .noise_filter_min_width = 333333, /* ns */
1181 .carrier_range_lower = 35000,
1182 .carrier_range_upper = 37000,
1183 .invert_level = false,
1186 static const struct v4l2_subdev_ir_parameters default_tx_params = {
1187 .bytes_per_data_element = sizeof(union cx23888_ir_fifo_rec),
1188 .mode = V4L2_SUBDEV_IR_MODE_PULSE_WIDTH,
1190 .enable = false,
1191 .interrupt_enable = false,
1192 .shutdown = true,
1194 .modulation = true,
1195 .carrier_freq = 36000, /* 36 kHz - RC-5 carrier */
1196 .duty_cycle = 25, /* 25 % - RC-5 carrier */
1197 .invert_level = false,
1198 .invert_carrier_sense = false,
1201 int cx23888_ir_probe(struct cx23885_dev *dev)
1203 struct cx23888_ir_state *state;
1204 struct v4l2_subdev *sd;
1205 struct v4l2_subdev_ir_parameters default_params;
1206 int ret;
1208 state = kzalloc(sizeof(struct cx23888_ir_state), GFP_KERNEL);
1209 if (state == NULL)
1210 return -ENOMEM;
1212 spin_lock_init(&state->rx_kfifo_lock);
1213 if (kfifo_alloc(&state->rx_kfifo, CX23888_IR_RX_KFIFO_SIZE, GFP_KERNEL))
1214 return -ENOMEM;
1216 state->dev = dev;
1217 state->id = V4L2_IDENT_CX23888_IR;
1218 state->rev = 0;
1219 sd = &state->sd;
1221 v4l2_subdev_init(sd, &cx23888_ir_controller_ops);
1222 v4l2_set_subdevdata(sd, state);
1223 /* FIXME - fix the formatting of dev->v4l2_dev.name and use it */
1224 snprintf(sd->name, sizeof(sd->name), "%s/888-ir", dev->name);
1225 sd->grp_id = CX23885_HW_888_IR;
1227 ret = v4l2_device_register_subdev(&dev->v4l2_dev, sd);
1228 if (ret == 0) {
1230 * Ensure no interrupts arrive from '888 specific conditions,
1231 * since we ignore them in this driver to have commonality with
1232 * similar IR controller cores.
1234 cx23888_ir_write4(dev, CX23888_IR_IRQEN_REG, 0);
1236 mutex_init(&state->rx_params_lock);
1237 memcpy(&default_params, &default_rx_params,
1238 sizeof(struct v4l2_subdev_ir_parameters));
1239 v4l2_subdev_call(sd, ir, rx_s_parameters, &default_params);
1241 mutex_init(&state->tx_params_lock);
1242 memcpy(&default_params, &default_tx_params,
1243 sizeof(struct v4l2_subdev_ir_parameters));
1244 v4l2_subdev_call(sd, ir, tx_s_parameters, &default_params);
1245 } else {
1246 kfifo_free(&state->rx_kfifo);
1248 return ret;
1251 int cx23888_ir_remove(struct cx23885_dev *dev)
1253 struct v4l2_subdev *sd;
1254 struct cx23888_ir_state *state;
1256 sd = cx23885_find_hw(dev, CX23885_HW_888_IR);
1257 if (sd == NULL)
1258 return -ENODEV;
1260 cx23888_ir_rx_shutdown(sd);
1261 cx23888_ir_tx_shutdown(sd);
1263 state = to_state(sd);
1264 v4l2_device_unregister_subdev(sd);
1265 kfifo_free(&state->rx_kfifo);
1266 kfree(state);
1267 /* Nothing more to free() as state held the actual v4l2_subdev object */
1268 return 0;