Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/upstream-linus
[linux-btrfs-devel.git] / drivers / mtd / nand / davinci_nand.c
blob1f34951ae1a7426f0344a7327c56a5b1105c7bc8
1 /*
2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
4 * Copyright © 2006 Texas Instruments.
6 * Port to 2.6.23 Copyright © 2008 by:
7 * Sander Huijsen <Shuijsen@optelecom-nkf.com>
8 * Troy Kisky <troy.kisky@boundarydevices.com>
9 * Dirk Behme <Dirk.Behme@gmail.com>
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #include <linux/kernel.h>
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/platform_device.h>
30 #include <linux/err.h>
31 #include <linux/clk.h>
32 #include <linux/io.h>
33 #include <linux/mtd/nand.h>
34 #include <linux/mtd/partitions.h>
35 #include <linux/slab.h>
37 #include <mach/nand.h>
38 #include <mach/aemif.h>
41 * This is a device driver for the NAND flash controller found on the
42 * various DaVinci family chips. It handles up to four SoC chipselects,
43 * and some flavors of secondary chipselect (e.g. based on A12) as used
44 * with multichip packages.
46 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
47 * available on chips like the DM355 and OMAP-L137 and needed with the
48 * more error-prone MLC NAND chips.
50 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
51 * outputs in a "wire-AND" configuration, with no per-chip signals.
53 struct davinci_nand_info {
54 struct mtd_info mtd;
55 struct nand_chip chip;
56 struct nand_ecclayout ecclayout;
58 struct device *dev;
59 struct clk *clk;
60 bool partitioned;
62 bool is_readmode;
64 void __iomem *base;
65 void __iomem *vaddr;
67 uint32_t ioaddr;
68 uint32_t current_cs;
70 uint32_t mask_chipsel;
71 uint32_t mask_ale;
72 uint32_t mask_cle;
74 uint32_t core_chipsel;
76 struct davinci_aemif_timing *timing;
79 static DEFINE_SPINLOCK(davinci_nand_lock);
80 static bool ecc4_busy;
82 #define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
85 static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
86 int offset)
88 return __raw_readl(info->base + offset);
91 static inline void davinci_nand_writel(struct davinci_nand_info *info,
92 int offset, unsigned long value)
94 __raw_writel(value, info->base + offset);
97 /*----------------------------------------------------------------------*/
100 * Access to hardware control lines: ALE, CLE, secondary chipselect.
103 static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
104 unsigned int ctrl)
106 struct davinci_nand_info *info = to_davinci_nand(mtd);
107 uint32_t addr = info->current_cs;
108 struct nand_chip *nand = mtd->priv;
110 /* Did the control lines change? */
111 if (ctrl & NAND_CTRL_CHANGE) {
112 if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
113 addr |= info->mask_cle;
114 else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
115 addr |= info->mask_ale;
117 nand->IO_ADDR_W = (void __iomem __force *)addr;
120 if (cmd != NAND_CMD_NONE)
121 iowrite8(cmd, nand->IO_ADDR_W);
124 static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
126 struct davinci_nand_info *info = to_davinci_nand(mtd);
127 uint32_t addr = info->ioaddr;
129 /* maybe kick in a second chipselect */
130 if (chip > 0)
131 addr |= info->mask_chipsel;
132 info->current_cs = addr;
134 info->chip.IO_ADDR_W = (void __iomem __force *)addr;
135 info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
138 /*----------------------------------------------------------------------*/
141 * 1-bit hardware ECC ... context maintained for each core chipselect
144 static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
146 struct davinci_nand_info *info = to_davinci_nand(mtd);
148 return davinci_nand_readl(info, NANDF1ECC_OFFSET
149 + 4 * info->core_chipsel);
152 static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
154 struct davinci_nand_info *info;
155 uint32_t nandcfr;
156 unsigned long flags;
158 info = to_davinci_nand(mtd);
160 /* Reset ECC hardware */
161 nand_davinci_readecc_1bit(mtd);
163 spin_lock_irqsave(&davinci_nand_lock, flags);
165 /* Restart ECC hardware */
166 nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
167 nandcfr |= BIT(8 + info->core_chipsel);
168 davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
170 spin_unlock_irqrestore(&davinci_nand_lock, flags);
174 * Read hardware ECC value and pack into three bytes
176 static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
177 const u_char *dat, u_char *ecc_code)
179 unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
180 unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
182 /* invert so that erased block ecc is correct */
183 ecc24 = ~ecc24;
184 ecc_code[0] = (u_char)(ecc24);
185 ecc_code[1] = (u_char)(ecc24 >> 8);
186 ecc_code[2] = (u_char)(ecc24 >> 16);
188 return 0;
191 static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
192 u_char *read_ecc, u_char *calc_ecc)
194 struct nand_chip *chip = mtd->priv;
195 uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
196 (read_ecc[2] << 16);
197 uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
198 (calc_ecc[2] << 16);
199 uint32_t diff = eccCalc ^ eccNand;
201 if (diff) {
202 if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
203 /* Correctable error */
204 if ((diff >> (12 + 3)) < chip->ecc.size) {
205 dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
206 return 1;
207 } else {
208 return -1;
210 } else if (!(diff & (diff - 1))) {
211 /* Single bit ECC error in the ECC itself,
212 * nothing to fix */
213 return 1;
214 } else {
215 /* Uncorrectable error */
216 return -1;
220 return 0;
223 /*----------------------------------------------------------------------*/
226 * 4-bit hardware ECC ... context maintained over entire AEMIF
228 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
229 * since that forces use of a problematic "infix OOB" layout.
230 * Among other things, it trashes manufacturer bad block markers.
231 * Also, and specific to this hardware, it ECC-protects the "prepad"
232 * in the OOB ... while having ECC protection for parts of OOB would
233 * seem useful, the current MTD stack sometimes wants to update the
234 * OOB without recomputing ECC.
237 static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
239 struct davinci_nand_info *info = to_davinci_nand(mtd);
240 unsigned long flags;
241 u32 val;
243 spin_lock_irqsave(&davinci_nand_lock, flags);
245 /* Start 4-bit ECC calculation for read/write */
246 val = davinci_nand_readl(info, NANDFCR_OFFSET);
247 val &= ~(0x03 << 4);
248 val |= (info->core_chipsel << 4) | BIT(12);
249 davinci_nand_writel(info, NANDFCR_OFFSET, val);
251 info->is_readmode = (mode == NAND_ECC_READ);
253 spin_unlock_irqrestore(&davinci_nand_lock, flags);
256 /* Read raw ECC code after writing to NAND. */
257 static void
258 nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
260 const u32 mask = 0x03ff03ff;
262 code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
263 code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
264 code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
265 code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
268 /* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
269 static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
270 const u_char *dat, u_char *ecc_code)
272 struct davinci_nand_info *info = to_davinci_nand(mtd);
273 u32 raw_ecc[4], *p;
274 unsigned i;
276 /* After a read, terminate ECC calculation by a dummy read
277 * of some 4-bit ECC register. ECC covers everything that
278 * was read; correct() just uses the hardware state, so
279 * ecc_code is not needed.
281 if (info->is_readmode) {
282 davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
283 return 0;
286 /* Pack eight raw 10-bit ecc values into ten bytes, making
287 * two passes which each convert four values (in upper and
288 * lower halves of two 32-bit words) into five bytes. The
289 * ROM boot loader uses this same packing scheme.
291 nand_davinci_readecc_4bit(info, raw_ecc);
292 for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
293 *ecc_code++ = p[0] & 0xff;
294 *ecc_code++ = ((p[0] >> 8) & 0x03) | ((p[0] >> 14) & 0xfc);
295 *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] << 4) & 0xf0);
296 *ecc_code++ = ((p[1] >> 4) & 0x3f) | ((p[1] >> 10) & 0xc0);
297 *ecc_code++ = (p[1] >> 18) & 0xff;
300 return 0;
303 /* Correct up to 4 bits in data we just read, using state left in the
304 * hardware plus the ecc_code computed when it was first written.
306 static int nand_davinci_correct_4bit(struct mtd_info *mtd,
307 u_char *data, u_char *ecc_code, u_char *null)
309 int i;
310 struct davinci_nand_info *info = to_davinci_nand(mtd);
311 unsigned short ecc10[8];
312 unsigned short *ecc16;
313 u32 syndrome[4];
314 u32 ecc_state;
315 unsigned num_errors, corrected;
316 unsigned long timeo;
318 /* All bytes 0xff? It's an erased page; ignore its ECC. */
319 for (i = 0; i < 10; i++) {
320 if (ecc_code[i] != 0xff)
321 goto compare;
323 return 0;
325 compare:
326 /* Unpack ten bytes into eight 10 bit values. We know we're
327 * little-endian, and use type punning for less shifting/masking.
329 if (WARN_ON(0x01 & (unsigned) ecc_code))
330 return -EINVAL;
331 ecc16 = (unsigned short *)ecc_code;
333 ecc10[0] = (ecc16[0] >> 0) & 0x3ff;
334 ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
335 ecc10[2] = (ecc16[1] >> 4) & 0x3ff;
336 ecc10[3] = ((ecc16[1] >> 14) & 0x3) | ((ecc16[2] << 2) & 0x3fc);
337 ecc10[4] = (ecc16[2] >> 8) | ((ecc16[3] << 8) & 0x300);
338 ecc10[5] = (ecc16[3] >> 2) & 0x3ff;
339 ecc10[6] = ((ecc16[3] >> 12) & 0xf) | ((ecc16[4] << 4) & 0x3f0);
340 ecc10[7] = (ecc16[4] >> 6) & 0x3ff;
342 /* Tell ECC controller about the expected ECC codes. */
343 for (i = 7; i >= 0; i--)
344 davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
346 /* Allow time for syndrome calculation ... then read it.
347 * A syndrome of all zeroes 0 means no detected errors.
349 davinci_nand_readl(info, NANDFSR_OFFSET);
350 nand_davinci_readecc_4bit(info, syndrome);
351 if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
352 return 0;
355 * Clear any previous address calculation by doing a dummy read of an
356 * error address register.
358 davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
360 /* Start address calculation, and wait for it to complete.
361 * We _could_ start reading more data while this is working,
362 * to speed up the overall page read.
364 davinci_nand_writel(info, NANDFCR_OFFSET,
365 davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
368 * ECC_STATE field reads 0x3 (Error correction complete) immediately
369 * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
370 * begin trying to poll for the state, you may fall right out of your
371 * loop without any of the correction calculations having taken place.
372 * The recommendation from the hardware team is to initially delay as
373 * long as ECC_STATE reads less than 4. After that, ECC HW has entered
374 * correction state.
376 timeo = jiffies + usecs_to_jiffies(100);
377 do {
378 ecc_state = (davinci_nand_readl(info,
379 NANDFSR_OFFSET) >> 8) & 0x0f;
380 cpu_relax();
381 } while ((ecc_state < 4) && time_before(jiffies, timeo));
383 for (;;) {
384 u32 fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
386 switch ((fsr >> 8) & 0x0f) {
387 case 0: /* no error, should not happen */
388 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
389 return 0;
390 case 1: /* five or more errors detected */
391 davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
392 return -EIO;
393 case 2: /* error addresses computed */
394 case 3:
395 num_errors = 1 + ((fsr >> 16) & 0x03);
396 goto correct;
397 default: /* still working on it */
398 cpu_relax();
399 continue;
403 correct:
404 /* correct each error */
405 for (i = 0, corrected = 0; i < num_errors; i++) {
406 int error_address, error_value;
408 if (i > 1) {
409 error_address = davinci_nand_readl(info,
410 NAND_ERR_ADD2_OFFSET);
411 error_value = davinci_nand_readl(info,
412 NAND_ERR_ERRVAL2_OFFSET);
413 } else {
414 error_address = davinci_nand_readl(info,
415 NAND_ERR_ADD1_OFFSET);
416 error_value = davinci_nand_readl(info,
417 NAND_ERR_ERRVAL1_OFFSET);
420 if (i & 1) {
421 error_address >>= 16;
422 error_value >>= 16;
424 error_address &= 0x3ff;
425 error_address = (512 + 7) - error_address;
427 if (error_address < 512) {
428 data[error_address] ^= error_value;
429 corrected++;
433 return corrected;
436 /*----------------------------------------------------------------------*/
439 * NOTE: NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
440 * how these chips are normally wired. This translates to both 8 and 16
441 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
443 * For now we assume that configuration, or any other one which ignores
444 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
445 * and have that transparently morphed into multiple NAND operations.
447 static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
449 struct nand_chip *chip = mtd->priv;
451 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
452 ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
453 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
454 ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
455 else
456 ioread8_rep(chip->IO_ADDR_R, buf, len);
459 static void nand_davinci_write_buf(struct mtd_info *mtd,
460 const uint8_t *buf, int len)
462 struct nand_chip *chip = mtd->priv;
464 if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
465 iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
466 else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
467 iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
468 else
469 iowrite8_rep(chip->IO_ADDR_R, buf, len);
473 * Check hardware register for wait status. Returns 1 if device is ready,
474 * 0 if it is still busy.
476 static int nand_davinci_dev_ready(struct mtd_info *mtd)
478 struct davinci_nand_info *info = to_davinci_nand(mtd);
480 return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
483 /*----------------------------------------------------------------------*/
485 /* An ECC layout for using 4-bit ECC with small-page flash, storing
486 * ten ECC bytes plus the manufacturer's bad block marker byte, and
487 * and not overlapping the default BBT markers.
489 static struct nand_ecclayout hwecc4_small __initconst = {
490 .eccbytes = 10,
491 .eccpos = { 0, 1, 2, 3, 4,
492 /* offset 5 holds the badblock marker */
493 6, 7,
494 13, 14, 15, },
495 .oobfree = {
496 {.offset = 8, .length = 5, },
497 {.offset = 16, },
501 /* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
502 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
503 * and not overlapping the default BBT markers.
505 static struct nand_ecclayout hwecc4_2048 __initconst = {
506 .eccbytes = 40,
507 .eccpos = {
508 /* at the end of spare sector */
509 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
510 34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
511 44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
512 54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
514 .oobfree = {
515 /* 2 bytes at offset 0 hold manufacturer badblock markers */
516 {.offset = 2, .length = 22, },
517 /* 5 bytes at offset 8 hold BBT markers */
518 /* 8 bytes at offset 16 hold JFFS2 clean markers */
522 static int __init nand_davinci_probe(struct platform_device *pdev)
524 struct davinci_nand_pdata *pdata = pdev->dev.platform_data;
525 struct davinci_nand_info *info;
526 struct resource *res1;
527 struct resource *res2;
528 void __iomem *vaddr;
529 void __iomem *base;
530 int ret;
531 uint32_t val;
532 nand_ecc_modes_t ecc_mode;
533 struct mtd_partition *mtd_parts = NULL;
534 int mtd_parts_nb = 0;
536 /* insist on board-specific configuration */
537 if (!pdata)
538 return -ENODEV;
540 /* which external chipselect will we be managing? */
541 if (pdev->id < 0 || pdev->id > 3)
542 return -ENODEV;
544 info = kzalloc(sizeof(*info), GFP_KERNEL);
545 if (!info) {
546 dev_err(&pdev->dev, "unable to allocate memory\n");
547 ret = -ENOMEM;
548 goto err_nomem;
551 platform_set_drvdata(pdev, info);
553 res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
554 res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
555 if (!res1 || !res2) {
556 dev_err(&pdev->dev, "resource missing\n");
557 ret = -EINVAL;
558 goto err_nomem;
561 vaddr = ioremap(res1->start, resource_size(res1));
562 base = ioremap(res2->start, resource_size(res2));
563 if (!vaddr || !base) {
564 dev_err(&pdev->dev, "ioremap failed\n");
565 ret = -EINVAL;
566 goto err_ioremap;
569 info->dev = &pdev->dev;
570 info->base = base;
571 info->vaddr = vaddr;
573 info->mtd.priv = &info->chip;
574 info->mtd.name = dev_name(&pdev->dev);
575 info->mtd.owner = THIS_MODULE;
577 info->mtd.dev.parent = &pdev->dev;
579 info->chip.IO_ADDR_R = vaddr;
580 info->chip.IO_ADDR_W = vaddr;
581 info->chip.chip_delay = 0;
582 info->chip.select_chip = nand_davinci_select_chip;
584 /* options such as NAND_USE_FLASH_BBT or 16-bit widths */
585 info->chip.options = pdata->options;
586 info->chip.bbt_td = pdata->bbt_td;
587 info->chip.bbt_md = pdata->bbt_md;
588 info->timing = pdata->timing;
590 info->ioaddr = (uint32_t __force) vaddr;
592 info->current_cs = info->ioaddr;
593 info->core_chipsel = pdev->id;
594 info->mask_chipsel = pdata->mask_chipsel;
596 /* use nandboot-capable ALE/CLE masks by default */
597 info->mask_ale = pdata->mask_ale ? : MASK_ALE;
598 info->mask_cle = pdata->mask_cle ? : MASK_CLE;
600 /* Set address of hardware control function */
601 info->chip.cmd_ctrl = nand_davinci_hwcontrol;
602 info->chip.dev_ready = nand_davinci_dev_ready;
604 /* Speed up buffer I/O */
605 info->chip.read_buf = nand_davinci_read_buf;
606 info->chip.write_buf = nand_davinci_write_buf;
608 /* Use board-specific ECC config */
609 ecc_mode = pdata->ecc_mode;
611 ret = -EINVAL;
612 switch (ecc_mode) {
613 case NAND_ECC_NONE:
614 case NAND_ECC_SOFT:
615 pdata->ecc_bits = 0;
616 break;
617 case NAND_ECC_HW:
618 if (pdata->ecc_bits == 4) {
619 /* No sanity checks: CPUs must support this,
620 * and the chips may not use NAND_BUSWIDTH_16.
623 /* No sharing 4-bit hardware between chipselects yet */
624 spin_lock_irq(&davinci_nand_lock);
625 if (ecc4_busy)
626 ret = -EBUSY;
627 else
628 ecc4_busy = true;
629 spin_unlock_irq(&davinci_nand_lock);
631 if (ret == -EBUSY)
632 goto err_ecc;
634 info->chip.ecc.calculate = nand_davinci_calculate_4bit;
635 info->chip.ecc.correct = nand_davinci_correct_4bit;
636 info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
637 info->chip.ecc.bytes = 10;
638 } else {
639 info->chip.ecc.calculate = nand_davinci_calculate_1bit;
640 info->chip.ecc.correct = nand_davinci_correct_1bit;
641 info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
642 info->chip.ecc.bytes = 3;
644 info->chip.ecc.size = 512;
645 break;
646 default:
647 ret = -EINVAL;
648 goto err_ecc;
650 info->chip.ecc.mode = ecc_mode;
652 info->clk = clk_get(&pdev->dev, "aemif");
653 if (IS_ERR(info->clk)) {
654 ret = PTR_ERR(info->clk);
655 dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
656 goto err_clk;
659 ret = clk_enable(info->clk);
660 if (ret < 0) {
661 dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
662 ret);
663 goto err_clk_enable;
667 * Setup Async configuration register in case we did not boot from
668 * NAND and so bootloader did not bother to set it up.
670 val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);
672 /* Extended Wait is not valid and Select Strobe mode is not used */
673 val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
674 if (info->chip.options & NAND_BUSWIDTH_16)
675 val |= 0x1;
677 davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);
679 ret = davinci_aemif_setup_timing(info->timing, info->base,
680 info->core_chipsel);
681 if (ret < 0) {
682 dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
683 goto err_timing;
686 spin_lock_irq(&davinci_nand_lock);
688 /* put CSxNAND into NAND mode */
689 val = davinci_nand_readl(info, NANDFCR_OFFSET);
690 val |= BIT(info->core_chipsel);
691 davinci_nand_writel(info, NANDFCR_OFFSET, val);
693 spin_unlock_irq(&davinci_nand_lock);
695 /* Scan to find existence of the device(s) */
696 ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
697 if (ret < 0) {
698 dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
699 goto err_scan;
702 /* Update ECC layout if needed ... for 1-bit HW ECC, the default
703 * is OK, but it allocates 6 bytes when only 3 are needed (for
704 * each 512 bytes). For the 4-bit HW ECC, that default is not
705 * usable: 10 bytes are needed, not 6.
707 if (pdata->ecc_bits == 4) {
708 int chunks = info->mtd.writesize / 512;
710 if (!chunks || info->mtd.oobsize < 16) {
711 dev_dbg(&pdev->dev, "too small\n");
712 ret = -EINVAL;
713 goto err_scan;
716 /* For small page chips, preserve the manufacturer's
717 * badblock marking data ... and make sure a flash BBT
718 * table marker fits in the free bytes.
720 if (chunks == 1) {
721 info->ecclayout = hwecc4_small;
722 info->ecclayout.oobfree[1].length =
723 info->mtd.oobsize - 16;
724 goto syndrome_done;
726 if (chunks == 4) {
727 info->ecclayout = hwecc4_2048;
728 info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
729 goto syndrome_done;
732 /* 4KiB page chips are not yet supported. The eccpos from
733 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
734 * breaks userspace ioctl interface with mtd-utils. Once we
735 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
736 * for the 4KiB page chips.
738 * TODO: Note that nand_ecclayout has now been expanded and can
739 * hold plenty of OOB entries.
741 dev_warn(&pdev->dev, "no 4-bit ECC support yet "
742 "for 4KiB-page NAND\n");
743 ret = -EIO;
744 goto err_scan;
746 syndrome_done:
747 info->chip.ecc.layout = &info->ecclayout;
750 ret = nand_scan_tail(&info->mtd);
751 if (ret < 0)
752 goto err_scan;
754 if (mtd_has_cmdlinepart()) {
755 static const char *probes[] __initconst = {
756 "cmdlinepart", NULL
759 mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes,
760 &mtd_parts, 0);
763 if (mtd_parts_nb <= 0) {
764 mtd_parts = pdata->parts;
765 mtd_parts_nb = pdata->nr_parts;
768 /* Register any partitions */
769 if (mtd_parts_nb > 0) {
770 ret = mtd_device_register(&info->mtd, mtd_parts,
771 mtd_parts_nb);
772 if (ret == 0)
773 info->partitioned = true;
776 /* If there's no partition info, just package the whole chip
777 * as a single MTD device.
779 if (!info->partitioned)
780 ret = mtd_device_register(&info->mtd, NULL, 0) ? -ENODEV : 0;
782 if (ret < 0)
783 goto err_scan;
785 val = davinci_nand_readl(info, NRCSR_OFFSET);
786 dev_info(&pdev->dev, "controller rev. %d.%d\n",
787 (val >> 8) & 0xff, val & 0xff);
789 return 0;
791 err_scan:
792 err_timing:
793 clk_disable(info->clk);
795 err_clk_enable:
796 clk_put(info->clk);
798 spin_lock_irq(&davinci_nand_lock);
799 if (ecc_mode == NAND_ECC_HW_SYNDROME)
800 ecc4_busy = false;
801 spin_unlock_irq(&davinci_nand_lock);
803 err_ecc:
804 err_clk:
805 err_ioremap:
806 if (base)
807 iounmap(base);
808 if (vaddr)
809 iounmap(vaddr);
811 err_nomem:
812 kfree(info);
813 return ret;
816 static int __exit nand_davinci_remove(struct platform_device *pdev)
818 struct davinci_nand_info *info = platform_get_drvdata(pdev);
819 int status;
821 status = mtd_device_unregister(&info->mtd);
823 spin_lock_irq(&davinci_nand_lock);
824 if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
825 ecc4_busy = false;
826 spin_unlock_irq(&davinci_nand_lock);
828 iounmap(info->base);
829 iounmap(info->vaddr);
831 nand_release(&info->mtd);
833 clk_disable(info->clk);
834 clk_put(info->clk);
836 kfree(info);
838 return 0;
841 static struct platform_driver nand_davinci_driver = {
842 .remove = __exit_p(nand_davinci_remove),
843 .driver = {
844 .name = "davinci_nand",
847 MODULE_ALIAS("platform:davinci_nand");
849 static int __init nand_davinci_init(void)
851 return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
853 module_init(nand_davinci_init);
855 static void __exit nand_davinci_exit(void)
857 platform_driver_unregister(&nand_davinci_driver);
859 module_exit(nand_davinci_exit);
861 MODULE_LICENSE("GPL");
862 MODULE_AUTHOR("Texas Instruments");
863 MODULE_DESCRIPTION("Davinci NAND flash driver");