5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
50 #include <linux/mtd/partitions.h>
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8
= {
63 static struct nand_ecclayout nand_oob_16
= {
65 .eccpos
= {0, 1, 2, 3, 6, 7},
71 static struct nand_ecclayout nand_oob_64
= {
74 40, 41, 42, 43, 44, 45, 46, 47,
75 48, 49, 50, 51, 52, 53, 54, 55,
76 56, 57, 58, 59, 60, 61, 62, 63},
82 static struct nand_ecclayout nand_oob_128
= {
85 80, 81, 82, 83, 84, 85, 86, 87,
86 88, 89, 90, 91, 92, 93, 94, 95,
87 96, 97, 98, 99, 100, 101, 102, 103,
88 104, 105, 106, 107, 108, 109, 110, 111,
89 112, 113, 114, 115, 116, 117, 118, 119,
90 120, 121, 122, 123, 124, 125, 126, 127},
96 static int nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
,
99 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
100 struct mtd_oob_ops
*ops
);
103 * For devices which display every fart in the system on a separate LED. Is
104 * compiled away when LED support is disabled.
106 DEFINE_LED_TRIGGER(nand_led_trigger
);
108 static int check_offs_len(struct mtd_info
*mtd
,
109 loff_t ofs
, uint64_t len
)
111 struct nand_chip
*chip
= mtd
->priv
;
114 /* Start address must align on block boundary */
115 if (ofs
& ((1 << chip
->phys_erase_shift
) - 1)) {
116 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Unaligned address\n", __func__
);
120 /* Length must align on block boundary */
121 if (len
& ((1 << chip
->phys_erase_shift
) - 1)) {
122 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Length not block aligned\n",
127 /* Do not allow past end of device */
128 if (ofs
+ len
> mtd
->size
) {
129 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Past end of device\n",
138 * nand_release_device - [GENERIC] release chip
139 * @mtd: MTD device structure
141 * Deselect, release chip lock and wake up anyone waiting on the device
143 static void nand_release_device(struct mtd_info
*mtd
)
145 struct nand_chip
*chip
= mtd
->priv
;
147 /* De-select the NAND device */
148 chip
->select_chip(mtd
, -1);
150 /* Release the controller and the chip */
151 spin_lock(&chip
->controller
->lock
);
152 chip
->controller
->active
= NULL
;
153 chip
->state
= FL_READY
;
154 wake_up(&chip
->controller
->wq
);
155 spin_unlock(&chip
->controller
->lock
);
159 * nand_read_byte - [DEFAULT] read one byte from the chip
160 * @mtd: MTD device structure
162 * Default read function for 8bit buswith
164 static uint8_t nand_read_byte(struct mtd_info
*mtd
)
166 struct nand_chip
*chip
= mtd
->priv
;
167 return readb(chip
->IO_ADDR_R
);
171 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
172 * @mtd: MTD device structure
174 * Default read function for 16bit buswith with
175 * endianess conversion
177 static uint8_t nand_read_byte16(struct mtd_info
*mtd
)
179 struct nand_chip
*chip
= mtd
->priv
;
180 return (uint8_t) cpu_to_le16(readw(chip
->IO_ADDR_R
));
184 * nand_read_word - [DEFAULT] read one word from the chip
185 * @mtd: MTD device structure
187 * Default read function for 16bit buswith without
188 * endianess conversion
190 static u16
nand_read_word(struct mtd_info
*mtd
)
192 struct nand_chip
*chip
= mtd
->priv
;
193 return readw(chip
->IO_ADDR_R
);
197 * nand_select_chip - [DEFAULT] control CE line
198 * @mtd: MTD device structure
199 * @chipnr: chipnumber to select, -1 for deselect
201 * Default select function for 1 chip devices.
203 static void nand_select_chip(struct mtd_info
*mtd
, int chipnr
)
205 struct nand_chip
*chip
= mtd
->priv
;
209 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, 0 | NAND_CTRL_CHANGE
);
220 * nand_write_buf - [DEFAULT] write buffer to chip
221 * @mtd: MTD device structure
223 * @len: number of bytes to write
225 * Default write function for 8bit buswith
227 static void nand_write_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
230 struct nand_chip
*chip
= mtd
->priv
;
232 for (i
= 0; i
< len
; i
++)
233 writeb(buf
[i
], chip
->IO_ADDR_W
);
237 * nand_read_buf - [DEFAULT] read chip data into buffer
238 * @mtd: MTD device structure
239 * @buf: buffer to store date
240 * @len: number of bytes to read
242 * Default read function for 8bit buswith
244 static void nand_read_buf(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
247 struct nand_chip
*chip
= mtd
->priv
;
249 for (i
= 0; i
< len
; i
++)
250 buf
[i
] = readb(chip
->IO_ADDR_R
);
254 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
255 * @mtd: MTD device structure
256 * @buf: buffer containing the data to compare
257 * @len: number of bytes to compare
259 * Default verify function for 8bit buswith
261 static int nand_verify_buf(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
264 struct nand_chip
*chip
= mtd
->priv
;
266 for (i
= 0; i
< len
; i
++)
267 if (buf
[i
] != readb(chip
->IO_ADDR_R
))
273 * nand_write_buf16 - [DEFAULT] write buffer to chip
274 * @mtd: MTD device structure
276 * @len: number of bytes to write
278 * Default write function for 16bit buswith
280 static void nand_write_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
283 struct nand_chip
*chip
= mtd
->priv
;
284 u16
*p
= (u16
*) buf
;
287 for (i
= 0; i
< len
; i
++)
288 writew(p
[i
], chip
->IO_ADDR_W
);
293 * nand_read_buf16 - [DEFAULT] read chip data into buffer
294 * @mtd: MTD device structure
295 * @buf: buffer to store date
296 * @len: number of bytes to read
298 * Default read function for 16bit buswith
300 static void nand_read_buf16(struct mtd_info
*mtd
, uint8_t *buf
, int len
)
303 struct nand_chip
*chip
= mtd
->priv
;
304 u16
*p
= (u16
*) buf
;
307 for (i
= 0; i
< len
; i
++)
308 p
[i
] = readw(chip
->IO_ADDR_R
);
312 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
313 * @mtd: MTD device structure
314 * @buf: buffer containing the data to compare
315 * @len: number of bytes to compare
317 * Default verify function for 16bit buswith
319 static int nand_verify_buf16(struct mtd_info
*mtd
, const uint8_t *buf
, int len
)
322 struct nand_chip
*chip
= mtd
->priv
;
323 u16
*p
= (u16
*) buf
;
326 for (i
= 0; i
< len
; i
++)
327 if (p
[i
] != readw(chip
->IO_ADDR_R
))
334 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
335 * @mtd: MTD device structure
336 * @ofs: offset from device start
337 * @getchip: 0, if the chip is already selected
339 * Check, if the block is bad.
341 static int nand_block_bad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
)
343 int page
, chipnr
, res
= 0;
344 struct nand_chip
*chip
= mtd
->priv
;
347 if (chip
->options
& NAND_BBT_SCANLASTPAGE
)
348 ofs
+= mtd
->erasesize
- mtd
->writesize
;
350 page
= (int)(ofs
>> chip
->page_shift
) & chip
->pagemask
;
353 chipnr
= (int)(ofs
>> chip
->chip_shift
);
355 nand_get_device(chip
, mtd
, FL_READING
);
357 /* Select the NAND device */
358 chip
->select_chip(mtd
, chipnr
);
361 if (chip
->options
& NAND_BUSWIDTH_16
) {
362 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
& 0xFE,
364 bad
= cpu_to_le16(chip
->read_word(mtd
));
365 if (chip
->badblockpos
& 0x1)
370 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, chip
->badblockpos
, page
);
371 bad
= chip
->read_byte(mtd
);
374 if (likely(chip
->badblockbits
== 8))
377 res
= hweight8(bad
) < chip
->badblockbits
;
380 nand_release_device(mtd
);
386 * nand_default_block_markbad - [DEFAULT] mark a block bad
387 * @mtd: MTD device structure
388 * @ofs: offset from device start
390 * This is the default implementation, which can be overridden by
391 * a hardware specific driver.
393 static int nand_default_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
395 struct nand_chip
*chip
= mtd
->priv
;
396 uint8_t buf
[2] = { 0, 0 };
397 int block
, ret
, i
= 0;
399 if (chip
->options
& NAND_BBT_SCANLASTPAGE
)
400 ofs
+= mtd
->erasesize
- mtd
->writesize
;
402 /* Get block number */
403 block
= (int)(ofs
>> chip
->bbt_erase_shift
);
405 chip
->bbt
[block
>> 2] |= 0x01 << ((block
& 0x03) << 1);
407 /* Do we have a flash based bad block table ? */
408 if (chip
->options
& NAND_USE_FLASH_BBT
)
409 ret
= nand_update_bbt(mtd
, ofs
);
411 nand_get_device(chip
, mtd
, FL_WRITING
);
413 /* Write to first two pages and to byte 1 and 6 if necessary.
414 * If we write to more than one location, the first error
415 * encountered quits the procedure. We write two bytes per
416 * location, so we dont have to mess with 16 bit access.
419 chip
->ops
.len
= chip
->ops
.ooblen
= 2;
420 chip
->ops
.datbuf
= NULL
;
421 chip
->ops
.oobbuf
= buf
;
422 chip
->ops
.ooboffs
= chip
->badblockpos
& ~0x01;
424 ret
= nand_do_write_oob(mtd
, ofs
, &chip
->ops
);
426 if (!ret
&& (chip
->options
& NAND_BBT_SCANBYTE1AND6
)) {
427 chip
->ops
.ooboffs
= NAND_SMALL_BADBLOCK_POS
429 ret
= nand_do_write_oob(mtd
, ofs
, &chip
->ops
);
432 ofs
+= mtd
->writesize
;
433 } while (!ret
&& (chip
->options
& NAND_BBT_SCAN2NDPAGE
) &&
436 nand_release_device(mtd
);
439 mtd
->ecc_stats
.badblocks
++;
445 * nand_check_wp - [GENERIC] check if the chip is write protected
446 * @mtd: MTD device structure
447 * Check, if the device is write protected
449 * The function expects, that the device is already selected
451 static int nand_check_wp(struct mtd_info
*mtd
)
453 struct nand_chip
*chip
= mtd
->priv
;
455 /* broken xD cards report WP despite being writable */
456 if (chip
->options
& NAND_BROKEN_XD
)
459 /* Check the WP bit */
460 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
461 return (chip
->read_byte(mtd
) & NAND_STATUS_WP
) ? 0 : 1;
465 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
466 * @mtd: MTD device structure
467 * @ofs: offset from device start
468 * @getchip: 0, if the chip is already selected
469 * @allowbbt: 1, if its allowed to access the bbt area
471 * Check, if the block is bad. Either by reading the bad block table or
472 * calling of the scan function.
474 static int nand_block_checkbad(struct mtd_info
*mtd
, loff_t ofs
, int getchip
,
477 struct nand_chip
*chip
= mtd
->priv
;
480 return chip
->block_bad(mtd
, ofs
, getchip
);
482 /* Return info from the table */
483 return nand_isbad_bbt(mtd
, ofs
, allowbbt
);
487 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
488 * @mtd: MTD device structure
491 * Helper function for nand_wait_ready used when needing to wait in interrupt
494 static void panic_nand_wait_ready(struct mtd_info
*mtd
, unsigned long timeo
)
496 struct nand_chip
*chip
= mtd
->priv
;
499 /* Wait for the device to get ready */
500 for (i
= 0; i
< timeo
; i
++) {
501 if (chip
->dev_ready(mtd
))
503 touch_softlockup_watchdog();
509 * Wait for the ready pin, after a command
510 * The timeout is catched later.
512 void nand_wait_ready(struct mtd_info
*mtd
)
514 struct nand_chip
*chip
= mtd
->priv
;
515 unsigned long timeo
= jiffies
+ 2;
518 if (in_interrupt() || oops_in_progress
)
519 return panic_nand_wait_ready(mtd
, 400);
521 led_trigger_event(nand_led_trigger
, LED_FULL
);
522 /* wait until command is processed or timeout occures */
524 if (chip
->dev_ready(mtd
))
526 touch_softlockup_watchdog();
527 } while (time_before(jiffies
, timeo
));
528 led_trigger_event(nand_led_trigger
, LED_OFF
);
530 EXPORT_SYMBOL_GPL(nand_wait_ready
);
533 * nand_command - [DEFAULT] Send command to NAND device
534 * @mtd: MTD device structure
535 * @command: the command to be sent
536 * @column: the column address for this command, -1 if none
537 * @page_addr: the page address for this command, -1 if none
539 * Send command to NAND device. This function is used for small page
540 * devices (256/512 Bytes per page)
542 static void nand_command(struct mtd_info
*mtd
, unsigned int command
,
543 int column
, int page_addr
)
545 register struct nand_chip
*chip
= mtd
->priv
;
546 int ctrl
= NAND_CTRL_CLE
| NAND_CTRL_CHANGE
;
549 * Write out the command to the device.
551 if (command
== NAND_CMD_SEQIN
) {
554 if (column
>= mtd
->writesize
) {
556 column
-= mtd
->writesize
;
557 readcmd
= NAND_CMD_READOOB
;
558 } else if (column
< 256) {
559 /* First 256 bytes --> READ0 */
560 readcmd
= NAND_CMD_READ0
;
563 readcmd
= NAND_CMD_READ1
;
565 chip
->cmd_ctrl(mtd
, readcmd
, ctrl
);
566 ctrl
&= ~NAND_CTRL_CHANGE
;
568 chip
->cmd_ctrl(mtd
, command
, ctrl
);
571 * Address cycle, when necessary
573 ctrl
= NAND_CTRL_ALE
| NAND_CTRL_CHANGE
;
574 /* Serially input address */
576 /* Adjust columns for 16 bit buswidth */
577 if (chip
->options
& NAND_BUSWIDTH_16
)
579 chip
->cmd_ctrl(mtd
, column
, ctrl
);
580 ctrl
&= ~NAND_CTRL_CHANGE
;
582 if (page_addr
!= -1) {
583 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
584 ctrl
&= ~NAND_CTRL_CHANGE
;
585 chip
->cmd_ctrl(mtd
, page_addr
>> 8, ctrl
);
586 /* One more address cycle for devices > 32MiB */
587 if (chip
->chipsize
> (32 << 20))
588 chip
->cmd_ctrl(mtd
, page_addr
>> 16, ctrl
);
590 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
593 * program and erase have their own busy handlers
594 * status and sequential in needs no delay
598 case NAND_CMD_PAGEPROG
:
599 case NAND_CMD_ERASE1
:
600 case NAND_CMD_ERASE2
:
602 case NAND_CMD_STATUS
:
608 udelay(chip
->chip_delay
);
609 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
610 NAND_CTRL_CLE
| NAND_CTRL_CHANGE
);
612 NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
613 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
))
617 /* This applies to read commands */
620 * If we don't have access to the busy pin, we apply the given
623 if (!chip
->dev_ready
) {
624 udelay(chip
->chip_delay
);
628 /* Apply this short delay always to ensure that we do wait tWB in
629 * any case on any machine. */
632 nand_wait_ready(mtd
);
636 * nand_command_lp - [DEFAULT] Send command to NAND large page device
637 * @mtd: MTD device structure
638 * @command: the command to be sent
639 * @column: the column address for this command, -1 if none
640 * @page_addr: the page address for this command, -1 if none
642 * Send command to NAND device. This is the version for the new large page
643 * devices We dont have the separate regions as we have in the small page
644 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
646 static void nand_command_lp(struct mtd_info
*mtd
, unsigned int command
,
647 int column
, int page_addr
)
649 register struct nand_chip
*chip
= mtd
->priv
;
651 /* Emulate NAND_CMD_READOOB */
652 if (command
== NAND_CMD_READOOB
) {
653 column
+= mtd
->writesize
;
654 command
= NAND_CMD_READ0
;
657 /* Command latch cycle */
658 chip
->cmd_ctrl(mtd
, command
& 0xff,
659 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
661 if (column
!= -1 || page_addr
!= -1) {
662 int ctrl
= NAND_CTRL_CHANGE
| NAND_NCE
| NAND_ALE
;
664 /* Serially input address */
666 /* Adjust columns for 16 bit buswidth */
667 if (chip
->options
& NAND_BUSWIDTH_16
)
669 chip
->cmd_ctrl(mtd
, column
, ctrl
);
670 ctrl
&= ~NAND_CTRL_CHANGE
;
671 chip
->cmd_ctrl(mtd
, column
>> 8, ctrl
);
673 if (page_addr
!= -1) {
674 chip
->cmd_ctrl(mtd
, page_addr
, ctrl
);
675 chip
->cmd_ctrl(mtd
, page_addr
>> 8,
676 NAND_NCE
| NAND_ALE
);
677 /* One more address cycle for devices > 128MiB */
678 if (chip
->chipsize
> (128 << 20))
679 chip
->cmd_ctrl(mtd
, page_addr
>> 16,
680 NAND_NCE
| NAND_ALE
);
683 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
, NAND_NCE
| NAND_CTRL_CHANGE
);
686 * program and erase have their own busy handlers
687 * status, sequential in, and deplete1 need no delay
691 case NAND_CMD_CACHEDPROG
:
692 case NAND_CMD_PAGEPROG
:
693 case NAND_CMD_ERASE1
:
694 case NAND_CMD_ERASE2
:
697 case NAND_CMD_STATUS
:
698 case NAND_CMD_DEPLETE1
:
702 * read error status commands require only a short delay
704 case NAND_CMD_STATUS_ERROR
:
705 case NAND_CMD_STATUS_ERROR0
:
706 case NAND_CMD_STATUS_ERROR1
:
707 case NAND_CMD_STATUS_ERROR2
:
708 case NAND_CMD_STATUS_ERROR3
:
709 udelay(chip
->chip_delay
);
715 udelay(chip
->chip_delay
);
716 chip
->cmd_ctrl(mtd
, NAND_CMD_STATUS
,
717 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
718 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
719 NAND_NCE
| NAND_CTRL_CHANGE
);
720 while (!(chip
->read_byte(mtd
) & NAND_STATUS_READY
))
724 case NAND_CMD_RNDOUT
:
725 /* No ready / busy check necessary */
726 chip
->cmd_ctrl(mtd
, NAND_CMD_RNDOUTSTART
,
727 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
728 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
729 NAND_NCE
| NAND_CTRL_CHANGE
);
733 chip
->cmd_ctrl(mtd
, NAND_CMD_READSTART
,
734 NAND_NCE
| NAND_CLE
| NAND_CTRL_CHANGE
);
735 chip
->cmd_ctrl(mtd
, NAND_CMD_NONE
,
736 NAND_NCE
| NAND_CTRL_CHANGE
);
738 /* This applies to read commands */
741 * If we don't have access to the busy pin, we apply the given
744 if (!chip
->dev_ready
) {
745 udelay(chip
->chip_delay
);
750 /* Apply this short delay always to ensure that we do wait tWB in
751 * any case on any machine. */
754 nand_wait_ready(mtd
);
758 * panic_nand_get_device - [GENERIC] Get chip for selected access
759 * @chip: the nand chip descriptor
760 * @mtd: MTD device structure
761 * @new_state: the state which is requested
763 * Used when in panic, no locks are taken.
765 static void panic_nand_get_device(struct nand_chip
*chip
,
766 struct mtd_info
*mtd
, int new_state
)
768 /* Hardware controller shared among independend devices */
769 chip
->controller
->active
= chip
;
770 chip
->state
= new_state
;
774 * nand_get_device - [GENERIC] Get chip for selected access
775 * @chip: the nand chip descriptor
776 * @mtd: MTD device structure
777 * @new_state: the state which is requested
779 * Get the device and lock it for exclusive access
782 nand_get_device(struct nand_chip
*chip
, struct mtd_info
*mtd
, int new_state
)
784 spinlock_t
*lock
= &chip
->controller
->lock
;
785 wait_queue_head_t
*wq
= &chip
->controller
->wq
;
786 DECLARE_WAITQUEUE(wait
, current
);
790 /* Hardware controller shared among independent devices */
791 if (!chip
->controller
->active
)
792 chip
->controller
->active
= chip
;
794 if (chip
->controller
->active
== chip
&& chip
->state
== FL_READY
) {
795 chip
->state
= new_state
;
799 if (new_state
== FL_PM_SUSPENDED
) {
800 if (chip
->controller
->active
->state
== FL_PM_SUSPENDED
) {
801 chip
->state
= FL_PM_SUSPENDED
;
806 set_current_state(TASK_UNINTERRUPTIBLE
);
807 add_wait_queue(wq
, &wait
);
810 remove_wait_queue(wq
, &wait
);
815 * panic_nand_wait - [GENERIC] wait until the command is done
816 * @mtd: MTD device structure
817 * @chip: NAND chip structure
820 * Wait for command done. This is a helper function for nand_wait used when
821 * we are in interrupt context. May happen when in panic and trying to write
822 * an oops through mtdoops.
824 static void panic_nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
,
828 for (i
= 0; i
< timeo
; i
++) {
829 if (chip
->dev_ready
) {
830 if (chip
->dev_ready(mtd
))
833 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
841 * nand_wait - [DEFAULT] wait until the command is done
842 * @mtd: MTD device structure
843 * @chip: NAND chip structure
845 * Wait for command done. This applies to erase and program only
846 * Erase can take up to 400ms and program up to 20ms according to
847 * general NAND and SmartMedia specs
849 static int nand_wait(struct mtd_info
*mtd
, struct nand_chip
*chip
)
852 unsigned long timeo
= jiffies
;
853 int status
, state
= chip
->state
;
855 if (state
== FL_ERASING
)
856 timeo
+= (HZ
* 400) / 1000;
858 timeo
+= (HZ
* 20) / 1000;
860 led_trigger_event(nand_led_trigger
, LED_FULL
);
862 /* Apply this short delay always to ensure that we do wait tWB in
863 * any case on any machine. */
866 if ((state
== FL_ERASING
) && (chip
->options
& NAND_IS_AND
))
867 chip
->cmdfunc(mtd
, NAND_CMD_STATUS_MULTI
, -1, -1);
869 chip
->cmdfunc(mtd
, NAND_CMD_STATUS
, -1, -1);
871 if (in_interrupt() || oops_in_progress
)
872 panic_nand_wait(mtd
, chip
, timeo
);
874 while (time_before(jiffies
, timeo
)) {
875 if (chip
->dev_ready
) {
876 if (chip
->dev_ready(mtd
))
879 if (chip
->read_byte(mtd
) & NAND_STATUS_READY
)
885 led_trigger_event(nand_led_trigger
, LED_OFF
);
887 status
= (int)chip
->read_byte(mtd
);
892 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
895 * @ofs: offset to start unlock from
896 * @len: length to unlock
897 * @invert: when = 0, unlock the range of blocks within the lower and
898 * upper boundary address
899 * when = 1, unlock the range of blocks outside the boundaries
900 * of the lower and upper boundary address
902 * return - unlock status
904 static int __nand_unlock(struct mtd_info
*mtd
, loff_t ofs
,
905 uint64_t len
, int invert
)
909 struct nand_chip
*chip
= mtd
->priv
;
911 /* Submit address of first page to unlock */
912 page
= ofs
>> chip
->page_shift
;
913 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK1
, -1, page
& chip
->pagemask
);
915 /* Submit address of last page to unlock */
916 page
= (ofs
+ len
) >> chip
->page_shift
;
917 chip
->cmdfunc(mtd
, NAND_CMD_UNLOCK2
, -1,
918 (page
| invert
) & chip
->pagemask
);
920 /* Call wait ready function */
921 status
= chip
->waitfunc(mtd
, chip
);
923 /* See if device thinks it succeeded */
925 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Error status = 0x%08x\n",
934 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
937 * @ofs: offset to start unlock from
938 * @len: length to unlock
940 * return - unlock status
942 int nand_unlock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
946 struct nand_chip
*chip
= mtd
->priv
;
948 DEBUG(MTD_DEBUG_LEVEL3
, "%s: start = 0x%012llx, len = %llu\n",
949 __func__
, (unsigned long long)ofs
, len
);
951 if (check_offs_len(mtd
, ofs
, len
))
954 /* Align to last block address if size addresses end of the device */
955 if (ofs
+ len
== mtd
->size
)
956 len
-= mtd
->erasesize
;
958 nand_get_device(chip
, mtd
, FL_UNLOCKING
);
960 /* Shift to get chip number */
961 chipnr
= ofs
>> chip
->chip_shift
;
963 chip
->select_chip(mtd
, chipnr
);
965 /* Check, if it is write protected */
966 if (nand_check_wp(mtd
)) {
967 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Device is write protected!!!\n",
973 ret
= __nand_unlock(mtd
, ofs
, len
, 0);
976 nand_release_device(mtd
);
980 EXPORT_SYMBOL(nand_unlock
);
983 * nand_lock - [REPLACEABLE] locks all blocks present in the device
986 * @ofs: offset to start unlock from
987 * @len: length to unlock
989 * return - lock status
991 * This feature is not supported in many NAND parts. 'Micron' NAND parts
992 * do have this feature, but it allows only to lock all blocks, not for
993 * specified range for block.
995 * Implementing 'lock' feature by making use of 'unlock', for now.
997 int nand_lock(struct mtd_info
*mtd
, loff_t ofs
, uint64_t len
)
1000 int chipnr
, status
, page
;
1001 struct nand_chip
*chip
= mtd
->priv
;
1003 DEBUG(MTD_DEBUG_LEVEL3
, "%s: start = 0x%012llx, len = %llu\n",
1004 __func__
, (unsigned long long)ofs
, len
);
1006 if (check_offs_len(mtd
, ofs
, len
))
1009 nand_get_device(chip
, mtd
, FL_LOCKING
);
1011 /* Shift to get chip number */
1012 chipnr
= ofs
>> chip
->chip_shift
;
1014 chip
->select_chip(mtd
, chipnr
);
1016 /* Check, if it is write protected */
1017 if (nand_check_wp(mtd
)) {
1018 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Device is write protected!!!\n",
1020 status
= MTD_ERASE_FAILED
;
1025 /* Submit address of first page to lock */
1026 page
= ofs
>> chip
->page_shift
;
1027 chip
->cmdfunc(mtd
, NAND_CMD_LOCK
, -1, page
& chip
->pagemask
);
1029 /* Call wait ready function */
1030 status
= chip
->waitfunc(mtd
, chip
);
1032 /* See if device thinks it succeeded */
1033 if (status
& 0x01) {
1034 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Error status = 0x%08x\n",
1040 ret
= __nand_unlock(mtd
, ofs
, len
, 0x1);
1043 nand_release_device(mtd
);
1047 EXPORT_SYMBOL(nand_lock
);
1050 * nand_read_page_raw - [Intern] read raw page data without ecc
1051 * @mtd: mtd info structure
1052 * @chip: nand chip info structure
1053 * @buf: buffer to store read data
1054 * @page: page number to read
1056 * Not for syndrome calculating ecc controllers, which use a special oob layout
1058 static int nand_read_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1059 uint8_t *buf
, int page
)
1061 chip
->read_buf(mtd
, buf
, mtd
->writesize
);
1062 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1067 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1068 * @mtd: mtd info structure
1069 * @chip: nand chip info structure
1070 * @buf: buffer to store read data
1071 * @page: page number to read
1073 * We need a special oob layout and handling even when OOB isn't used.
1075 static int nand_read_page_raw_syndrome(struct mtd_info
*mtd
,
1076 struct nand_chip
*chip
,
1077 uint8_t *buf
, int page
)
1079 int eccsize
= chip
->ecc
.size
;
1080 int eccbytes
= chip
->ecc
.bytes
;
1081 uint8_t *oob
= chip
->oob_poi
;
1084 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1085 chip
->read_buf(mtd
, buf
, eccsize
);
1088 if (chip
->ecc
.prepad
) {
1089 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1090 oob
+= chip
->ecc
.prepad
;
1093 chip
->read_buf(mtd
, oob
, eccbytes
);
1096 if (chip
->ecc
.postpad
) {
1097 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1098 oob
+= chip
->ecc
.postpad
;
1102 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1104 chip
->read_buf(mtd
, oob
, size
);
1110 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1111 * @mtd: mtd info structure
1112 * @chip: nand chip info structure
1113 * @buf: buffer to store read data
1114 * @page: page number to read
1116 static int nand_read_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1117 uint8_t *buf
, int page
)
1119 int i
, eccsize
= chip
->ecc
.size
;
1120 int eccbytes
= chip
->ecc
.bytes
;
1121 int eccsteps
= chip
->ecc
.steps
;
1123 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1124 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1125 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1127 chip
->ecc
.read_page_raw(mtd
, chip
, buf
, page
);
1129 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1130 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1132 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1133 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1135 eccsteps
= chip
->ecc
.steps
;
1138 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1141 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1143 mtd
->ecc_stats
.failed
++;
1145 mtd
->ecc_stats
.corrected
+= stat
;
1151 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1152 * @mtd: mtd info structure
1153 * @chip: nand chip info structure
1154 * @data_offs: offset of requested data within the page
1155 * @readlen: data length
1156 * @bufpoi: buffer to store read data
1158 static int nand_read_subpage(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1159 uint32_t data_offs
, uint32_t readlen
, uint8_t *bufpoi
)
1161 int start_step
, end_step
, num_steps
;
1162 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1164 int data_col_addr
, i
, gaps
= 0;
1165 int datafrag_len
, eccfrag_len
, aligned_len
, aligned_pos
;
1166 int busw
= (chip
->options
& NAND_BUSWIDTH_16
) ? 2 : 1;
1169 /* Column address wihin the page aligned to ECC size (256bytes). */
1170 start_step
= data_offs
/ chip
->ecc
.size
;
1171 end_step
= (data_offs
+ readlen
- 1) / chip
->ecc
.size
;
1172 num_steps
= end_step
- start_step
+ 1;
1174 /* Data size aligned to ECC ecc.size*/
1175 datafrag_len
= num_steps
* chip
->ecc
.size
;
1176 eccfrag_len
= num_steps
* chip
->ecc
.bytes
;
1178 data_col_addr
= start_step
* chip
->ecc
.size
;
1179 /* If we read not a page aligned data */
1180 if (data_col_addr
!= 0)
1181 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, data_col_addr
, -1);
1183 p
= bufpoi
+ data_col_addr
;
1184 chip
->read_buf(mtd
, p
, datafrag_len
);
1187 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
)
1188 chip
->ecc
.calculate(mtd
, p
, &chip
->buffers
->ecccalc
[i
]);
1190 /* The performance is faster if to position offsets
1191 according to ecc.pos. Let make sure here that
1192 there are no gaps in ecc positions */
1193 for (i
= 0; i
< eccfrag_len
- 1; i
++) {
1194 if (eccpos
[i
+ start_step
* chip
->ecc
.bytes
] + 1 !=
1195 eccpos
[i
+ start_step
* chip
->ecc
.bytes
+ 1]) {
1201 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, mtd
->writesize
, -1);
1202 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1204 /* send the command to read the particular ecc bytes */
1205 /* take care about buswidth alignment in read_buf */
1206 index
= start_step
* chip
->ecc
.bytes
;
1208 aligned_pos
= eccpos
[index
] & ~(busw
- 1);
1209 aligned_len
= eccfrag_len
;
1210 if (eccpos
[index
] & (busw
- 1))
1212 if (eccpos
[index
+ (num_steps
* chip
->ecc
.bytes
)] & (busw
- 1))
1215 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
,
1216 mtd
->writesize
+ aligned_pos
, -1);
1217 chip
->read_buf(mtd
, &chip
->oob_poi
[aligned_pos
], aligned_len
);
1220 for (i
= 0; i
< eccfrag_len
; i
++)
1221 chip
->buffers
->ecccode
[i
] = chip
->oob_poi
[eccpos
[i
+ index
]];
1223 p
= bufpoi
+ data_col_addr
;
1224 for (i
= 0; i
< eccfrag_len
; i
+= chip
->ecc
.bytes
, p
+= chip
->ecc
.size
) {
1227 stat
= chip
->ecc
.correct(mtd
, p
,
1228 &chip
->buffers
->ecccode
[i
], &chip
->buffers
->ecccalc
[i
]);
1230 mtd
->ecc_stats
.failed
++;
1232 mtd
->ecc_stats
.corrected
+= stat
;
1238 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1239 * @mtd: mtd info structure
1240 * @chip: nand chip info structure
1241 * @buf: buffer to store read data
1242 * @page: page number to read
1244 * Not for syndrome calculating ecc controllers which need a special oob layout
1246 static int nand_read_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1247 uint8_t *buf
, int page
)
1249 int i
, eccsize
= chip
->ecc
.size
;
1250 int eccbytes
= chip
->ecc
.bytes
;
1251 int eccsteps
= chip
->ecc
.steps
;
1253 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1254 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1255 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1257 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1258 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1259 chip
->read_buf(mtd
, p
, eccsize
);
1260 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1262 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1264 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1265 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1267 eccsteps
= chip
->ecc
.steps
;
1270 for (i
= 0 ; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1273 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], &ecc_calc
[i
]);
1275 mtd
->ecc_stats
.failed
++;
1277 mtd
->ecc_stats
.corrected
+= stat
;
1283 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1284 * @mtd: mtd info structure
1285 * @chip: nand chip info structure
1286 * @buf: buffer to store read data
1287 * @page: page number to read
1289 * Hardware ECC for large page chips, require OOB to be read first.
1290 * For this ECC mode, the write_page method is re-used from ECC_HW.
1291 * These methods read/write ECC from the OOB area, unlike the
1292 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1293 * "infix ECC" scheme and reads/writes ECC from the data area, by
1294 * overwriting the NAND manufacturer bad block markings.
1296 static int nand_read_page_hwecc_oob_first(struct mtd_info
*mtd
,
1297 struct nand_chip
*chip
, uint8_t *buf
, int page
)
1299 int i
, eccsize
= chip
->ecc
.size
;
1300 int eccbytes
= chip
->ecc
.bytes
;
1301 int eccsteps
= chip
->ecc
.steps
;
1303 uint8_t *ecc_code
= chip
->buffers
->ecccode
;
1304 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1305 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1307 /* Read the OOB area first */
1308 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1309 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1310 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
1312 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1313 ecc_code
[i
] = chip
->oob_poi
[eccpos
[i
]];
1315 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1318 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1319 chip
->read_buf(mtd
, p
, eccsize
);
1320 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1322 stat
= chip
->ecc
.correct(mtd
, p
, &ecc_code
[i
], NULL
);
1324 mtd
->ecc_stats
.failed
++;
1326 mtd
->ecc_stats
.corrected
+= stat
;
1332 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1333 * @mtd: mtd info structure
1334 * @chip: nand chip info structure
1335 * @buf: buffer to store read data
1336 * @page: page number to read
1338 * The hw generator calculates the error syndrome automatically. Therefor
1339 * we need a special oob layout and handling.
1341 static int nand_read_page_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1342 uint8_t *buf
, int page
)
1344 int i
, eccsize
= chip
->ecc
.size
;
1345 int eccbytes
= chip
->ecc
.bytes
;
1346 int eccsteps
= chip
->ecc
.steps
;
1348 uint8_t *oob
= chip
->oob_poi
;
1350 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1353 chip
->ecc
.hwctl(mtd
, NAND_ECC_READ
);
1354 chip
->read_buf(mtd
, p
, eccsize
);
1356 if (chip
->ecc
.prepad
) {
1357 chip
->read_buf(mtd
, oob
, chip
->ecc
.prepad
);
1358 oob
+= chip
->ecc
.prepad
;
1361 chip
->ecc
.hwctl(mtd
, NAND_ECC_READSYN
);
1362 chip
->read_buf(mtd
, oob
, eccbytes
);
1363 stat
= chip
->ecc
.correct(mtd
, p
, oob
, NULL
);
1366 mtd
->ecc_stats
.failed
++;
1368 mtd
->ecc_stats
.corrected
+= stat
;
1372 if (chip
->ecc
.postpad
) {
1373 chip
->read_buf(mtd
, oob
, chip
->ecc
.postpad
);
1374 oob
+= chip
->ecc
.postpad
;
1378 /* Calculate remaining oob bytes */
1379 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1381 chip
->read_buf(mtd
, oob
, i
);
1387 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1388 * @chip: nand chip structure
1389 * @oob: oob destination address
1390 * @ops: oob ops structure
1391 * @len: size of oob to transfer
1393 static uint8_t *nand_transfer_oob(struct nand_chip
*chip
, uint8_t *oob
,
1394 struct mtd_oob_ops
*ops
, size_t len
)
1396 switch (ops
->mode
) {
1400 memcpy(oob
, chip
->oob_poi
+ ops
->ooboffs
, len
);
1403 case MTD_OOB_AUTO
: {
1404 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
1405 uint32_t boffs
= 0, roffs
= ops
->ooboffs
;
1408 for (; free
->length
&& len
; free
++, len
-= bytes
) {
1409 /* Read request not from offset 0 ? */
1410 if (unlikely(roffs
)) {
1411 if (roffs
>= free
->length
) {
1412 roffs
-= free
->length
;
1415 boffs
= free
->offset
+ roffs
;
1416 bytes
= min_t(size_t, len
,
1417 (free
->length
- roffs
));
1420 bytes
= min_t(size_t, len
, free
->length
);
1421 boffs
= free
->offset
;
1423 memcpy(oob
, chip
->oob_poi
+ boffs
, bytes
);
1435 * nand_do_read_ops - [Internal] Read data with ECC
1437 * @mtd: MTD device structure
1438 * @from: offset to read from
1439 * @ops: oob ops structure
1441 * Internal function. Called with chip held.
1443 static int nand_do_read_ops(struct mtd_info
*mtd
, loff_t from
,
1444 struct mtd_oob_ops
*ops
)
1446 int chipnr
, page
, realpage
, col
, bytes
, aligned
;
1447 struct nand_chip
*chip
= mtd
->priv
;
1448 struct mtd_ecc_stats stats
;
1449 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1452 uint32_t readlen
= ops
->len
;
1453 uint32_t oobreadlen
= ops
->ooblen
;
1454 uint32_t max_oobsize
= ops
->mode
== MTD_OOB_AUTO
?
1455 mtd
->oobavail
: mtd
->oobsize
;
1457 uint8_t *bufpoi
, *oob
, *buf
;
1459 stats
= mtd
->ecc_stats
;
1461 chipnr
= (int)(from
>> chip
->chip_shift
);
1462 chip
->select_chip(mtd
, chipnr
);
1464 realpage
= (int)(from
>> chip
->page_shift
);
1465 page
= realpage
& chip
->pagemask
;
1467 col
= (int)(from
& (mtd
->writesize
- 1));
1473 bytes
= min(mtd
->writesize
- col
, readlen
);
1474 aligned
= (bytes
== mtd
->writesize
);
1476 /* Is the current page in the buffer ? */
1477 if (realpage
!= chip
->pagebuf
|| oob
) {
1478 bufpoi
= aligned
? buf
: chip
->buffers
->databuf
;
1480 if (likely(sndcmd
)) {
1481 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0x00, page
);
1485 /* Now read the page into the buffer */
1486 if (unlikely(ops
->mode
== MTD_OOB_RAW
))
1487 ret
= chip
->ecc
.read_page_raw(mtd
, chip
,
1489 else if (!aligned
&& NAND_SUBPAGE_READ(chip
) && !oob
)
1490 ret
= chip
->ecc
.read_subpage(mtd
, chip
,
1491 col
, bytes
, bufpoi
);
1493 ret
= chip
->ecc
.read_page(mtd
, chip
, bufpoi
,
1498 /* Transfer not aligned data */
1500 if (!NAND_SUBPAGE_READ(chip
) && !oob
&&
1501 !(mtd
->ecc_stats
.failed
- stats
.failed
))
1502 chip
->pagebuf
= realpage
;
1503 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1508 if (unlikely(oob
)) {
1510 int toread
= min(oobreadlen
, max_oobsize
);
1513 oob
= nand_transfer_oob(chip
,
1515 oobreadlen
-= toread
;
1519 if (!(chip
->options
& NAND_NO_READRDY
)) {
1521 * Apply delay or wait for ready/busy pin. Do
1522 * this before the AUTOINCR check, so no
1523 * problems arise if a chip which does auto
1524 * increment is marked as NOAUTOINCR by the
1527 if (!chip
->dev_ready
)
1528 udelay(chip
->chip_delay
);
1530 nand_wait_ready(mtd
);
1533 memcpy(buf
, chip
->buffers
->databuf
+ col
, bytes
);
1542 /* For subsequent reads align to page boundary. */
1544 /* Increment page address */
1547 page
= realpage
& chip
->pagemask
;
1548 /* Check, if we cross a chip boundary */
1551 chip
->select_chip(mtd
, -1);
1552 chip
->select_chip(mtd
, chipnr
);
1555 /* Check, if the chip supports auto page increment
1556 * or if we have hit a block boundary.
1558 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1562 ops
->retlen
= ops
->len
- (size_t) readlen
;
1564 ops
->oobretlen
= ops
->ooblen
- oobreadlen
;
1569 if (mtd
->ecc_stats
.failed
- stats
.failed
)
1572 return mtd
->ecc_stats
.corrected
- stats
.corrected
? -EUCLEAN
: 0;
1576 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1577 * @mtd: MTD device structure
1578 * @from: offset to read from
1579 * @len: number of bytes to read
1580 * @retlen: pointer to variable to store the number of read bytes
1581 * @buf: the databuffer to put data
1583 * Get hold of the chip and call nand_do_read
1585 static int nand_read(struct mtd_info
*mtd
, loff_t from
, size_t len
,
1586 size_t *retlen
, uint8_t *buf
)
1588 struct nand_chip
*chip
= mtd
->priv
;
1591 /* Do not allow reads past end of device */
1592 if ((from
+ len
) > mtd
->size
)
1597 nand_get_device(chip
, mtd
, FL_READING
);
1599 chip
->ops
.len
= len
;
1600 chip
->ops
.datbuf
= buf
;
1601 chip
->ops
.oobbuf
= NULL
;
1603 ret
= nand_do_read_ops(mtd
, from
, &chip
->ops
);
1605 *retlen
= chip
->ops
.retlen
;
1607 nand_release_device(mtd
);
1613 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1614 * @mtd: mtd info structure
1615 * @chip: nand chip info structure
1616 * @page: page number to read
1617 * @sndcmd: flag whether to issue read command or not
1619 static int nand_read_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1620 int page
, int sndcmd
)
1623 chip
->cmdfunc(mtd
, NAND_CMD_READOOB
, 0, page
);
1626 chip
->read_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1631 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1633 * @mtd: mtd info structure
1634 * @chip: nand chip info structure
1635 * @page: page number to read
1636 * @sndcmd: flag whether to issue read command or not
1638 static int nand_read_oob_syndrome(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1639 int page
, int sndcmd
)
1641 uint8_t *buf
= chip
->oob_poi
;
1642 int length
= mtd
->oobsize
;
1643 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1644 int eccsize
= chip
->ecc
.size
;
1645 uint8_t *bufpoi
= buf
;
1646 int i
, toread
, sndrnd
= 0, pos
;
1648 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, chip
->ecc
.size
, page
);
1649 for (i
= 0; i
< chip
->ecc
.steps
; i
++) {
1651 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1652 if (mtd
->writesize
> 512)
1653 chip
->cmdfunc(mtd
, NAND_CMD_RNDOUT
, pos
, -1);
1655 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, pos
, page
);
1658 toread
= min_t(int, length
, chunk
);
1659 chip
->read_buf(mtd
, bufpoi
, toread
);
1664 chip
->read_buf(mtd
, bufpoi
, length
);
1670 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1671 * @mtd: mtd info structure
1672 * @chip: nand chip info structure
1673 * @page: page number to write
1675 static int nand_write_oob_std(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1679 const uint8_t *buf
= chip
->oob_poi
;
1680 int length
= mtd
->oobsize
;
1682 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, mtd
->writesize
, page
);
1683 chip
->write_buf(mtd
, buf
, length
);
1684 /* Send command to program the OOB data */
1685 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1687 status
= chip
->waitfunc(mtd
, chip
);
1689 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1693 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1694 * with syndrome - only for large page flash !
1695 * @mtd: mtd info structure
1696 * @chip: nand chip info structure
1697 * @page: page number to write
1699 static int nand_write_oob_syndrome(struct mtd_info
*mtd
,
1700 struct nand_chip
*chip
, int page
)
1702 int chunk
= chip
->ecc
.bytes
+ chip
->ecc
.prepad
+ chip
->ecc
.postpad
;
1703 int eccsize
= chip
->ecc
.size
, length
= mtd
->oobsize
;
1704 int i
, len
, pos
, status
= 0, sndcmd
= 0, steps
= chip
->ecc
.steps
;
1705 const uint8_t *bufpoi
= chip
->oob_poi
;
1708 * data-ecc-data-ecc ... ecc-oob
1710 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1712 if (!chip
->ecc
.prepad
&& !chip
->ecc
.postpad
) {
1713 pos
= steps
* (eccsize
+ chunk
);
1718 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, pos
, page
);
1719 for (i
= 0; i
< steps
; i
++) {
1721 if (mtd
->writesize
<= 512) {
1722 uint32_t fill
= 0xFFFFFFFF;
1726 int num
= min_t(int, len
, 4);
1727 chip
->write_buf(mtd
, (uint8_t *)&fill
,
1732 pos
= eccsize
+ i
* (eccsize
+ chunk
);
1733 chip
->cmdfunc(mtd
, NAND_CMD_RNDIN
, pos
, -1);
1737 len
= min_t(int, length
, chunk
);
1738 chip
->write_buf(mtd
, bufpoi
, len
);
1743 chip
->write_buf(mtd
, bufpoi
, length
);
1745 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
1746 status
= chip
->waitfunc(mtd
, chip
);
1748 return status
& NAND_STATUS_FAIL
? -EIO
: 0;
1752 * nand_do_read_oob - [Intern] NAND read out-of-band
1753 * @mtd: MTD device structure
1754 * @from: offset to read from
1755 * @ops: oob operations description structure
1757 * NAND read out-of-band data from the spare area
1759 static int nand_do_read_oob(struct mtd_info
*mtd
, loff_t from
,
1760 struct mtd_oob_ops
*ops
)
1762 int page
, realpage
, chipnr
, sndcmd
= 1;
1763 struct nand_chip
*chip
= mtd
->priv
;
1764 int blkcheck
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
1765 int readlen
= ops
->ooblen
;
1767 uint8_t *buf
= ops
->oobbuf
;
1769 DEBUG(MTD_DEBUG_LEVEL3
, "%s: from = 0x%08Lx, len = %i\n",
1770 __func__
, (unsigned long long)from
, readlen
);
1772 if (ops
->mode
== MTD_OOB_AUTO
)
1773 len
= chip
->ecc
.layout
->oobavail
;
1777 if (unlikely(ops
->ooboffs
>= len
)) {
1778 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to start read "
1779 "outside oob\n", __func__
);
1783 /* Do not allow reads past end of device */
1784 if (unlikely(from
>= mtd
->size
||
1785 ops
->ooboffs
+ readlen
> ((mtd
->size
>> chip
->page_shift
) -
1786 (from
>> chip
->page_shift
)) * len
)) {
1787 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt read beyond end "
1788 "of device\n", __func__
);
1792 chipnr
= (int)(from
>> chip
->chip_shift
);
1793 chip
->select_chip(mtd
, chipnr
);
1795 /* Shift to get page */
1796 realpage
= (int)(from
>> chip
->page_shift
);
1797 page
= realpage
& chip
->pagemask
;
1800 sndcmd
= chip
->ecc
.read_oob(mtd
, chip
, page
, sndcmd
);
1802 len
= min(len
, readlen
);
1803 buf
= nand_transfer_oob(chip
, buf
, ops
, len
);
1805 if (!(chip
->options
& NAND_NO_READRDY
)) {
1807 * Apply delay or wait for ready/busy pin. Do this
1808 * before the AUTOINCR check, so no problems arise if a
1809 * chip which does auto increment is marked as
1810 * NOAUTOINCR by the board driver.
1812 if (!chip
->dev_ready
)
1813 udelay(chip
->chip_delay
);
1815 nand_wait_ready(mtd
);
1822 /* Increment page address */
1825 page
= realpage
& chip
->pagemask
;
1826 /* Check, if we cross a chip boundary */
1829 chip
->select_chip(mtd
, -1);
1830 chip
->select_chip(mtd
, chipnr
);
1833 /* Check, if the chip supports auto page increment
1834 * or if we have hit a block boundary.
1836 if (!NAND_CANAUTOINCR(chip
) || !(page
& blkcheck
))
1840 ops
->oobretlen
= ops
->ooblen
;
1845 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1846 * @mtd: MTD device structure
1847 * @from: offset to read from
1848 * @ops: oob operation description structure
1850 * NAND read data and/or out-of-band data
1852 static int nand_read_oob(struct mtd_info
*mtd
, loff_t from
,
1853 struct mtd_oob_ops
*ops
)
1855 struct nand_chip
*chip
= mtd
->priv
;
1856 int ret
= -ENOTSUPP
;
1860 /* Do not allow reads past end of device */
1861 if (ops
->datbuf
&& (from
+ ops
->len
) > mtd
->size
) {
1862 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt read "
1863 "beyond end of device\n", __func__
);
1867 nand_get_device(chip
, mtd
, FL_READING
);
1869 switch (ops
->mode
) {
1880 ret
= nand_do_read_oob(mtd
, from
, ops
);
1882 ret
= nand_do_read_ops(mtd
, from
, ops
);
1885 nand_release_device(mtd
);
1891 * nand_write_page_raw - [Intern] raw page write function
1892 * @mtd: mtd info structure
1893 * @chip: nand chip info structure
1896 * Not for syndrome calculating ecc controllers, which use a special oob layout
1898 static void nand_write_page_raw(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1901 chip
->write_buf(mtd
, buf
, mtd
->writesize
);
1902 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1906 * nand_write_page_raw_syndrome - [Intern] raw page write function
1907 * @mtd: mtd info structure
1908 * @chip: nand chip info structure
1911 * We need a special oob layout and handling even when ECC isn't checked.
1913 static void nand_write_page_raw_syndrome(struct mtd_info
*mtd
,
1914 struct nand_chip
*chip
,
1917 int eccsize
= chip
->ecc
.size
;
1918 int eccbytes
= chip
->ecc
.bytes
;
1919 uint8_t *oob
= chip
->oob_poi
;
1922 for (steps
= chip
->ecc
.steps
; steps
> 0; steps
--) {
1923 chip
->write_buf(mtd
, buf
, eccsize
);
1926 if (chip
->ecc
.prepad
) {
1927 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
1928 oob
+= chip
->ecc
.prepad
;
1931 chip
->read_buf(mtd
, oob
, eccbytes
);
1934 if (chip
->ecc
.postpad
) {
1935 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
1936 oob
+= chip
->ecc
.postpad
;
1940 size
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
1942 chip
->write_buf(mtd
, oob
, size
);
1945 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1946 * @mtd: mtd info structure
1947 * @chip: nand chip info structure
1950 static void nand_write_page_swecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1953 int i
, eccsize
= chip
->ecc
.size
;
1954 int eccbytes
= chip
->ecc
.bytes
;
1955 int eccsteps
= chip
->ecc
.steps
;
1956 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1957 const uint8_t *p
= buf
;
1958 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1960 /* Software ecc calculation */
1961 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
)
1962 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1964 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1965 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1967 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
1971 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1972 * @mtd: mtd info structure
1973 * @chip: nand chip info structure
1976 static void nand_write_page_hwecc(struct mtd_info
*mtd
, struct nand_chip
*chip
,
1979 int i
, eccsize
= chip
->ecc
.size
;
1980 int eccbytes
= chip
->ecc
.bytes
;
1981 int eccsteps
= chip
->ecc
.steps
;
1982 uint8_t *ecc_calc
= chip
->buffers
->ecccalc
;
1983 const uint8_t *p
= buf
;
1984 uint32_t *eccpos
= chip
->ecc
.layout
->eccpos
;
1986 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
1987 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
1988 chip
->write_buf(mtd
, p
, eccsize
);
1989 chip
->ecc
.calculate(mtd
, p
, &ecc_calc
[i
]);
1992 for (i
= 0; i
< chip
->ecc
.total
; i
++)
1993 chip
->oob_poi
[eccpos
[i
]] = ecc_calc
[i
];
1995 chip
->write_buf(mtd
, chip
->oob_poi
, mtd
->oobsize
);
1999 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
2000 * @mtd: mtd info structure
2001 * @chip: nand chip info structure
2004 * The hw generator calculates the error syndrome automatically. Therefor
2005 * we need a special oob layout and handling.
2007 static void nand_write_page_syndrome(struct mtd_info
*mtd
,
2008 struct nand_chip
*chip
, const uint8_t *buf
)
2010 int i
, eccsize
= chip
->ecc
.size
;
2011 int eccbytes
= chip
->ecc
.bytes
;
2012 int eccsteps
= chip
->ecc
.steps
;
2013 const uint8_t *p
= buf
;
2014 uint8_t *oob
= chip
->oob_poi
;
2016 for (i
= 0; eccsteps
; eccsteps
--, i
+= eccbytes
, p
+= eccsize
) {
2018 chip
->ecc
.hwctl(mtd
, NAND_ECC_WRITE
);
2019 chip
->write_buf(mtd
, p
, eccsize
);
2021 if (chip
->ecc
.prepad
) {
2022 chip
->write_buf(mtd
, oob
, chip
->ecc
.prepad
);
2023 oob
+= chip
->ecc
.prepad
;
2026 chip
->ecc
.calculate(mtd
, p
, oob
);
2027 chip
->write_buf(mtd
, oob
, eccbytes
);
2030 if (chip
->ecc
.postpad
) {
2031 chip
->write_buf(mtd
, oob
, chip
->ecc
.postpad
);
2032 oob
+= chip
->ecc
.postpad
;
2036 /* Calculate remaining oob bytes */
2037 i
= mtd
->oobsize
- (oob
- chip
->oob_poi
);
2039 chip
->write_buf(mtd
, oob
, i
);
2043 * nand_write_page - [REPLACEABLE] write one page
2044 * @mtd: MTD device structure
2045 * @chip: NAND chip descriptor
2046 * @buf: the data to write
2047 * @page: page number to write
2048 * @cached: cached programming
2049 * @raw: use _raw version of write_page
2051 static int nand_write_page(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2052 const uint8_t *buf
, int page
, int cached
, int raw
)
2056 chip
->cmdfunc(mtd
, NAND_CMD_SEQIN
, 0x00, page
);
2059 chip
->ecc
.write_page_raw(mtd
, chip
, buf
);
2061 chip
->ecc
.write_page(mtd
, chip
, buf
);
2064 * Cached progamming disabled for now, Not sure if its worth the
2065 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2069 if (!cached
|| !(chip
->options
& NAND_CACHEPRG
)) {
2071 chip
->cmdfunc(mtd
, NAND_CMD_PAGEPROG
, -1, -1);
2072 status
= chip
->waitfunc(mtd
, chip
);
2074 * See if operation failed and additional status checks are
2077 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2078 status
= chip
->errstat(mtd
, chip
, FL_WRITING
, status
,
2081 if (status
& NAND_STATUS_FAIL
)
2084 chip
->cmdfunc(mtd
, NAND_CMD_CACHEDPROG
, -1, -1);
2085 status
= chip
->waitfunc(mtd
, chip
);
2088 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2089 /* Send command to read back the data */
2090 chip
->cmdfunc(mtd
, NAND_CMD_READ0
, 0, page
);
2092 if (chip
->verify_buf(mtd
, buf
, mtd
->writesize
))
2099 * nand_fill_oob - [Internal] Transfer client buffer to oob
2100 * @chip: nand chip structure
2101 * @oob: oob data buffer
2102 * @len: oob data write length
2103 * @ops: oob ops structure
2105 static uint8_t *nand_fill_oob(struct nand_chip
*chip
, uint8_t *oob
, size_t len
,
2106 struct mtd_oob_ops
*ops
)
2108 switch (ops
->mode
) {
2112 memcpy(chip
->oob_poi
+ ops
->ooboffs
, oob
, len
);
2115 case MTD_OOB_AUTO
: {
2116 struct nand_oobfree
*free
= chip
->ecc
.layout
->oobfree
;
2117 uint32_t boffs
= 0, woffs
= ops
->ooboffs
;
2120 for (; free
->length
&& len
; free
++, len
-= bytes
) {
2121 /* Write request not from offset 0 ? */
2122 if (unlikely(woffs
)) {
2123 if (woffs
>= free
->length
) {
2124 woffs
-= free
->length
;
2127 boffs
= free
->offset
+ woffs
;
2128 bytes
= min_t(size_t, len
,
2129 (free
->length
- woffs
));
2132 bytes
= min_t(size_t, len
, free
->length
);
2133 boffs
= free
->offset
;
2135 memcpy(chip
->oob_poi
+ boffs
, oob
, bytes
);
2146 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2149 * nand_do_write_ops - [Internal] NAND write with ECC
2150 * @mtd: MTD device structure
2151 * @to: offset to write to
2152 * @ops: oob operations description structure
2154 * NAND write with ECC
2156 static int nand_do_write_ops(struct mtd_info
*mtd
, loff_t to
,
2157 struct mtd_oob_ops
*ops
)
2159 int chipnr
, realpage
, page
, blockmask
, column
;
2160 struct nand_chip
*chip
= mtd
->priv
;
2161 uint32_t writelen
= ops
->len
;
2163 uint32_t oobwritelen
= ops
->ooblen
;
2164 uint32_t oobmaxlen
= ops
->mode
== MTD_OOB_AUTO
?
2165 mtd
->oobavail
: mtd
->oobsize
;
2167 uint8_t *oob
= ops
->oobbuf
;
2168 uint8_t *buf
= ops
->datbuf
;
2175 /* reject writes, which are not page aligned */
2176 if (NOTALIGNED(to
) || NOTALIGNED(ops
->len
)) {
2177 printk(KERN_NOTICE
"%s: Attempt to write not "
2178 "page aligned data\n", __func__
);
2182 column
= to
& (mtd
->writesize
- 1);
2183 subpage
= column
|| (writelen
& (mtd
->writesize
- 1));
2188 chipnr
= (int)(to
>> chip
->chip_shift
);
2189 chip
->select_chip(mtd
, chipnr
);
2191 /* Check, if it is write protected */
2192 if (nand_check_wp(mtd
))
2195 realpage
= (int)(to
>> chip
->page_shift
);
2196 page
= realpage
& chip
->pagemask
;
2197 blockmask
= (1 << (chip
->phys_erase_shift
- chip
->page_shift
)) - 1;
2199 /* Invalidate the page cache, when we write to the cached page */
2200 if (to
<= (chip
->pagebuf
<< chip
->page_shift
) &&
2201 (chip
->pagebuf
<< chip
->page_shift
) < (to
+ ops
->len
))
2204 /* If we're not given explicit OOB data, let it be 0xFF */
2206 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2208 /* Don't allow multipage oob writes with offset */
2209 if (oob
&& ops
->ooboffs
&& (ops
->ooboffs
+ ops
->ooblen
> oobmaxlen
))
2213 int bytes
= mtd
->writesize
;
2214 int cached
= writelen
> bytes
&& page
!= blockmask
;
2215 uint8_t *wbuf
= buf
;
2217 /* Partial page write ? */
2218 if (unlikely(column
|| writelen
< (mtd
->writesize
- 1))) {
2220 bytes
= min_t(int, bytes
- column
, (int) writelen
);
2222 memset(chip
->buffers
->databuf
, 0xff, mtd
->writesize
);
2223 memcpy(&chip
->buffers
->databuf
[column
], buf
, bytes
);
2224 wbuf
= chip
->buffers
->databuf
;
2227 if (unlikely(oob
)) {
2228 size_t len
= min(oobwritelen
, oobmaxlen
);
2229 oob
= nand_fill_oob(chip
, oob
, len
, ops
);
2233 ret
= chip
->write_page(mtd
, chip
, wbuf
, page
, cached
,
2234 (ops
->mode
== MTD_OOB_RAW
));
2246 page
= realpage
& chip
->pagemask
;
2247 /* Check, if we cross a chip boundary */
2250 chip
->select_chip(mtd
, -1);
2251 chip
->select_chip(mtd
, chipnr
);
2255 ops
->retlen
= ops
->len
- writelen
;
2257 ops
->oobretlen
= ops
->ooblen
;
2262 * panic_nand_write - [MTD Interface] NAND write with ECC
2263 * @mtd: MTD device structure
2264 * @to: offset to write to
2265 * @len: number of bytes to write
2266 * @retlen: pointer to variable to store the number of written bytes
2267 * @buf: the data to write
2269 * NAND write with ECC. Used when performing writes in interrupt context, this
2270 * may for example be called by mtdoops when writing an oops while in panic.
2272 static int panic_nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2273 size_t *retlen
, const uint8_t *buf
)
2275 struct nand_chip
*chip
= mtd
->priv
;
2278 /* Do not allow reads past end of device */
2279 if ((to
+ len
) > mtd
->size
)
2284 /* Wait for the device to get ready. */
2285 panic_nand_wait(mtd
, chip
, 400);
2287 /* Grab the device. */
2288 panic_nand_get_device(chip
, mtd
, FL_WRITING
);
2290 chip
->ops
.len
= len
;
2291 chip
->ops
.datbuf
= (uint8_t *)buf
;
2292 chip
->ops
.oobbuf
= NULL
;
2294 ret
= nand_do_write_ops(mtd
, to
, &chip
->ops
);
2296 *retlen
= chip
->ops
.retlen
;
2301 * nand_write - [MTD Interface] NAND write with ECC
2302 * @mtd: MTD device structure
2303 * @to: offset to write to
2304 * @len: number of bytes to write
2305 * @retlen: pointer to variable to store the number of written bytes
2306 * @buf: the data to write
2308 * NAND write with ECC
2310 static int nand_write(struct mtd_info
*mtd
, loff_t to
, size_t len
,
2311 size_t *retlen
, const uint8_t *buf
)
2313 struct nand_chip
*chip
= mtd
->priv
;
2316 /* Do not allow reads past end of device */
2317 if ((to
+ len
) > mtd
->size
)
2322 nand_get_device(chip
, mtd
, FL_WRITING
);
2324 chip
->ops
.len
= len
;
2325 chip
->ops
.datbuf
= (uint8_t *)buf
;
2326 chip
->ops
.oobbuf
= NULL
;
2328 ret
= nand_do_write_ops(mtd
, to
, &chip
->ops
);
2330 *retlen
= chip
->ops
.retlen
;
2332 nand_release_device(mtd
);
2338 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2339 * @mtd: MTD device structure
2340 * @to: offset to write to
2341 * @ops: oob operation description structure
2343 * NAND write out-of-band
2345 static int nand_do_write_oob(struct mtd_info
*mtd
, loff_t to
,
2346 struct mtd_oob_ops
*ops
)
2348 int chipnr
, page
, status
, len
;
2349 struct nand_chip
*chip
= mtd
->priv
;
2351 DEBUG(MTD_DEBUG_LEVEL3
, "%s: to = 0x%08x, len = %i\n",
2352 __func__
, (unsigned int)to
, (int)ops
->ooblen
);
2354 if (ops
->mode
== MTD_OOB_AUTO
)
2355 len
= chip
->ecc
.layout
->oobavail
;
2359 /* Do not allow write past end of page */
2360 if ((ops
->ooboffs
+ ops
->ooblen
) > len
) {
2361 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to write "
2362 "past end of page\n", __func__
);
2366 if (unlikely(ops
->ooboffs
>= len
)) {
2367 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt to start "
2368 "write outside oob\n", __func__
);
2372 /* Do not allow write past end of device */
2373 if (unlikely(to
>= mtd
->size
||
2374 ops
->ooboffs
+ ops
->ooblen
>
2375 ((mtd
->size
>> chip
->page_shift
) -
2376 (to
>> chip
->page_shift
)) * len
)) {
2377 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt write beyond "
2378 "end of device\n", __func__
);
2382 chipnr
= (int)(to
>> chip
->chip_shift
);
2383 chip
->select_chip(mtd
, chipnr
);
2385 /* Shift to get page */
2386 page
= (int)(to
>> chip
->page_shift
);
2389 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2390 * of my DiskOnChip 2000 test units) will clear the whole data page too
2391 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2392 * it in the doc2000 driver in August 1999. dwmw2.
2394 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2396 /* Check, if it is write protected */
2397 if (nand_check_wp(mtd
))
2400 /* Invalidate the page cache, if we write to the cached page */
2401 if (page
== chip
->pagebuf
)
2404 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2405 nand_fill_oob(chip
, ops
->oobbuf
, ops
->ooblen
, ops
);
2406 status
= chip
->ecc
.write_oob(mtd
, chip
, page
& chip
->pagemask
);
2407 memset(chip
->oob_poi
, 0xff, mtd
->oobsize
);
2412 ops
->oobretlen
= ops
->ooblen
;
2418 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2419 * @mtd: MTD device structure
2420 * @to: offset to write to
2421 * @ops: oob operation description structure
2423 static int nand_write_oob(struct mtd_info
*mtd
, loff_t to
,
2424 struct mtd_oob_ops
*ops
)
2426 struct nand_chip
*chip
= mtd
->priv
;
2427 int ret
= -ENOTSUPP
;
2431 /* Do not allow writes past end of device */
2432 if (ops
->datbuf
&& (to
+ ops
->len
) > mtd
->size
) {
2433 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Attempt write beyond "
2434 "end of device\n", __func__
);
2438 nand_get_device(chip
, mtd
, FL_WRITING
);
2440 switch (ops
->mode
) {
2451 ret
= nand_do_write_oob(mtd
, to
, ops
);
2453 ret
= nand_do_write_ops(mtd
, to
, ops
);
2456 nand_release_device(mtd
);
2461 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2462 * @mtd: MTD device structure
2463 * @page: the page address of the block which will be erased
2465 * Standard erase command for NAND chips
2467 static void single_erase_cmd(struct mtd_info
*mtd
, int page
)
2469 struct nand_chip
*chip
= mtd
->priv
;
2470 /* Send commands to erase a block */
2471 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2472 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2476 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2477 * @mtd: MTD device structure
2478 * @page: the page address of the block which will be erased
2480 * AND multi block erase command function
2481 * Erase 4 consecutive blocks
2483 static void multi_erase_cmd(struct mtd_info
*mtd
, int page
)
2485 struct nand_chip
*chip
= mtd
->priv
;
2486 /* Send commands to erase a block */
2487 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2488 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2489 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
++);
2490 chip
->cmdfunc(mtd
, NAND_CMD_ERASE1
, -1, page
);
2491 chip
->cmdfunc(mtd
, NAND_CMD_ERASE2
, -1, -1);
2495 * nand_erase - [MTD Interface] erase block(s)
2496 * @mtd: MTD device structure
2497 * @instr: erase instruction
2499 * Erase one ore more blocks
2501 static int nand_erase(struct mtd_info
*mtd
, struct erase_info
*instr
)
2503 return nand_erase_nand(mtd
, instr
, 0);
2506 #define BBT_PAGE_MASK 0xffffff3f
2508 * nand_erase_nand - [Internal] erase block(s)
2509 * @mtd: MTD device structure
2510 * @instr: erase instruction
2511 * @allowbbt: allow erasing the bbt area
2513 * Erase one ore more blocks
2515 int nand_erase_nand(struct mtd_info
*mtd
, struct erase_info
*instr
,
2518 int page
, status
, pages_per_block
, ret
, chipnr
;
2519 struct nand_chip
*chip
= mtd
->priv
;
2520 loff_t rewrite_bbt
[NAND_MAX_CHIPS
] = {0};
2521 unsigned int bbt_masked_page
= 0xffffffff;
2524 DEBUG(MTD_DEBUG_LEVEL3
, "%s: start = 0x%012llx, len = %llu\n",
2525 __func__
, (unsigned long long)instr
->addr
,
2526 (unsigned long long)instr
->len
);
2528 if (check_offs_len(mtd
, instr
->addr
, instr
->len
))
2531 instr
->fail_addr
= MTD_FAIL_ADDR_UNKNOWN
;
2533 /* Grab the lock and see if the device is available */
2534 nand_get_device(chip
, mtd
, FL_ERASING
);
2536 /* Shift to get first page */
2537 page
= (int)(instr
->addr
>> chip
->page_shift
);
2538 chipnr
= (int)(instr
->addr
>> chip
->chip_shift
);
2540 /* Calculate pages in each block */
2541 pages_per_block
= 1 << (chip
->phys_erase_shift
- chip
->page_shift
);
2543 /* Select the NAND device */
2544 chip
->select_chip(mtd
, chipnr
);
2546 /* Check, if it is write protected */
2547 if (nand_check_wp(mtd
)) {
2548 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Device is write protected!!!\n",
2550 instr
->state
= MTD_ERASE_FAILED
;
2555 * If BBT requires refresh, set the BBT page mask to see if the BBT
2556 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2557 * can not be matched. This is also done when the bbt is actually
2558 * erased to avoid recusrsive updates
2560 if (chip
->options
& BBT_AUTO_REFRESH
&& !allowbbt
)
2561 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] & BBT_PAGE_MASK
;
2563 /* Loop through the pages */
2566 instr
->state
= MTD_ERASING
;
2570 * heck if we have a bad block, we do not erase bad blocks !
2572 if (nand_block_checkbad(mtd
, ((loff_t
) page
) <<
2573 chip
->page_shift
, 0, allowbbt
)) {
2574 printk(KERN_WARNING
"%s: attempt to erase a bad block "
2575 "at page 0x%08x\n", __func__
, page
);
2576 instr
->state
= MTD_ERASE_FAILED
;
2581 * Invalidate the page cache, if we erase the block which
2582 * contains the current cached page
2584 if (page
<= chip
->pagebuf
&& chip
->pagebuf
<
2585 (page
+ pages_per_block
))
2588 chip
->erase_cmd(mtd
, page
& chip
->pagemask
);
2590 status
= chip
->waitfunc(mtd
, chip
);
2593 * See if operation failed and additional status checks are
2596 if ((status
& NAND_STATUS_FAIL
) && (chip
->errstat
))
2597 status
= chip
->errstat(mtd
, chip
, FL_ERASING
,
2600 /* See if block erase succeeded */
2601 if (status
& NAND_STATUS_FAIL
) {
2602 DEBUG(MTD_DEBUG_LEVEL0
, "%s: Failed erase, "
2603 "page 0x%08x\n", __func__
, page
);
2604 instr
->state
= MTD_ERASE_FAILED
;
2606 ((loff_t
)page
<< chip
->page_shift
);
2611 * If BBT requires refresh, set the BBT rewrite flag to the
2614 if (bbt_masked_page
!= 0xffffffff &&
2615 (page
& BBT_PAGE_MASK
) == bbt_masked_page
)
2616 rewrite_bbt
[chipnr
] =
2617 ((loff_t
)page
<< chip
->page_shift
);
2619 /* Increment page address and decrement length */
2620 len
-= (1 << chip
->phys_erase_shift
);
2621 page
+= pages_per_block
;
2623 /* Check, if we cross a chip boundary */
2624 if (len
&& !(page
& chip
->pagemask
)) {
2626 chip
->select_chip(mtd
, -1);
2627 chip
->select_chip(mtd
, chipnr
);
2630 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2631 * page mask to see if this BBT should be rewritten
2633 if (bbt_masked_page
!= 0xffffffff &&
2634 (chip
->bbt_td
->options
& NAND_BBT_PERCHIP
))
2635 bbt_masked_page
= chip
->bbt_td
->pages
[chipnr
] &
2639 instr
->state
= MTD_ERASE_DONE
;
2643 ret
= instr
->state
== MTD_ERASE_DONE
? 0 : -EIO
;
2645 /* Deselect and wake up anyone waiting on the device */
2646 nand_release_device(mtd
);
2648 /* Do call back function */
2650 mtd_erase_callback(instr
);
2653 * If BBT requires refresh and erase was successful, rewrite any
2654 * selected bad block tables
2656 if (bbt_masked_page
== 0xffffffff || ret
)
2659 for (chipnr
= 0; chipnr
< chip
->numchips
; chipnr
++) {
2660 if (!rewrite_bbt
[chipnr
])
2662 /* update the BBT for chip */
2663 DEBUG(MTD_DEBUG_LEVEL0
, "%s: nand_update_bbt "
2664 "(%d:0x%0llx 0x%0x)\n", __func__
, chipnr
,
2665 rewrite_bbt
[chipnr
], chip
->bbt_td
->pages
[chipnr
]);
2666 nand_update_bbt(mtd
, rewrite_bbt
[chipnr
]);
2669 /* Return more or less happy */
2674 * nand_sync - [MTD Interface] sync
2675 * @mtd: MTD device structure
2677 * Sync is actually a wait for chip ready function
2679 static void nand_sync(struct mtd_info
*mtd
)
2681 struct nand_chip
*chip
= mtd
->priv
;
2683 DEBUG(MTD_DEBUG_LEVEL3
, "%s: called\n", __func__
);
2685 /* Grab the lock and see if the device is available */
2686 nand_get_device(chip
, mtd
, FL_SYNCING
);
2687 /* Release it and go back */
2688 nand_release_device(mtd
);
2692 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2693 * @mtd: MTD device structure
2694 * @offs: offset relative to mtd start
2696 static int nand_block_isbad(struct mtd_info
*mtd
, loff_t offs
)
2698 /* Check for invalid offset */
2699 if (offs
> mtd
->size
)
2702 return nand_block_checkbad(mtd
, offs
, 1, 0);
2706 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2707 * @mtd: MTD device structure
2708 * @ofs: offset relative to mtd start
2710 static int nand_block_markbad(struct mtd_info
*mtd
, loff_t ofs
)
2712 struct nand_chip
*chip
= mtd
->priv
;
2715 ret
= nand_block_isbad(mtd
, ofs
);
2717 /* If it was bad already, return success and do nothing. */
2723 return chip
->block_markbad(mtd
, ofs
);
2727 * nand_suspend - [MTD Interface] Suspend the NAND flash
2728 * @mtd: MTD device structure
2730 static int nand_suspend(struct mtd_info
*mtd
)
2732 struct nand_chip
*chip
= mtd
->priv
;
2734 return nand_get_device(chip
, mtd
, FL_PM_SUSPENDED
);
2738 * nand_resume - [MTD Interface] Resume the NAND flash
2739 * @mtd: MTD device structure
2741 static void nand_resume(struct mtd_info
*mtd
)
2743 struct nand_chip
*chip
= mtd
->priv
;
2745 if (chip
->state
== FL_PM_SUSPENDED
)
2746 nand_release_device(mtd
);
2748 printk(KERN_ERR
"%s called for a chip which is not "
2749 "in suspended state\n", __func__
);
2753 * Set default functions
2755 static void nand_set_defaults(struct nand_chip
*chip
, int busw
)
2757 /* check for proper chip_delay setup, set 20us if not */
2758 if (!chip
->chip_delay
)
2759 chip
->chip_delay
= 20;
2761 /* check, if a user supplied command function given */
2762 if (chip
->cmdfunc
== NULL
)
2763 chip
->cmdfunc
= nand_command
;
2765 /* check, if a user supplied wait function given */
2766 if (chip
->waitfunc
== NULL
)
2767 chip
->waitfunc
= nand_wait
;
2769 if (!chip
->select_chip
)
2770 chip
->select_chip
= nand_select_chip
;
2771 if (!chip
->read_byte
)
2772 chip
->read_byte
= busw
? nand_read_byte16
: nand_read_byte
;
2773 if (!chip
->read_word
)
2774 chip
->read_word
= nand_read_word
;
2775 if (!chip
->block_bad
)
2776 chip
->block_bad
= nand_block_bad
;
2777 if (!chip
->block_markbad
)
2778 chip
->block_markbad
= nand_default_block_markbad
;
2779 if (!chip
->write_buf
)
2780 chip
->write_buf
= busw
? nand_write_buf16
: nand_write_buf
;
2781 if (!chip
->read_buf
)
2782 chip
->read_buf
= busw
? nand_read_buf16
: nand_read_buf
;
2783 if (!chip
->verify_buf
)
2784 chip
->verify_buf
= busw
? nand_verify_buf16
: nand_verify_buf
;
2785 if (!chip
->scan_bbt
)
2786 chip
->scan_bbt
= nand_default_bbt
;
2788 if (!chip
->controller
) {
2789 chip
->controller
= &chip
->hwcontrol
;
2790 spin_lock_init(&chip
->controller
->lock
);
2791 init_waitqueue_head(&chip
->controller
->wq
);
2797 * sanitize ONFI strings so we can safely print them
2799 static void sanitize_string(uint8_t *s
, size_t len
)
2803 /* null terminate */
2806 /* remove non printable chars */
2807 for (i
= 0; i
< len
- 1; i
++) {
2808 if (s
[i
] < ' ' || s
[i
] > 127)
2812 /* remove trailing spaces */
2816 static u16
onfi_crc16(u16 crc
, u8
const *p
, size_t len
)
2821 for (i
= 0; i
< 8; i
++)
2822 crc
= (crc
<< 1) ^ ((crc
& 0x8000) ? 0x8005 : 0);
2829 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise
2831 static int nand_flash_detect_onfi(struct mtd_info
*mtd
, struct nand_chip
*chip
,
2834 struct nand_onfi_params
*p
= &chip
->onfi_params
;
2838 /* try ONFI for unknow chip or LP */
2839 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x20, -1);
2840 if (chip
->read_byte(mtd
) != 'O' || chip
->read_byte(mtd
) != 'N' ||
2841 chip
->read_byte(mtd
) != 'F' || chip
->read_byte(mtd
) != 'I')
2844 printk(KERN_INFO
"ONFI flash detected\n");
2845 chip
->cmdfunc(mtd
, NAND_CMD_PARAM
, 0, -1);
2846 for (i
= 0; i
< 3; i
++) {
2847 chip
->read_buf(mtd
, (uint8_t *)p
, sizeof(*p
));
2848 if (onfi_crc16(ONFI_CRC_BASE
, (uint8_t *)p
, 254) ==
2849 le16_to_cpu(p
->crc
)) {
2850 printk(KERN_INFO
"ONFI param page %d valid\n", i
);
2859 val
= le16_to_cpu(p
->revision
);
2861 chip
->onfi_version
= 23;
2862 else if (val
& (1 << 4))
2863 chip
->onfi_version
= 22;
2864 else if (val
& (1 << 3))
2865 chip
->onfi_version
= 21;
2866 else if (val
& (1 << 2))
2867 chip
->onfi_version
= 20;
2868 else if (val
& (1 << 1))
2869 chip
->onfi_version
= 10;
2871 chip
->onfi_version
= 0;
2873 if (!chip
->onfi_version
) {
2874 printk(KERN_INFO
"%s: unsupported ONFI version: %d\n",
2879 sanitize_string(p
->manufacturer
, sizeof(p
->manufacturer
));
2880 sanitize_string(p
->model
, sizeof(p
->model
));
2882 mtd
->name
= p
->model
;
2883 mtd
->writesize
= le32_to_cpu(p
->byte_per_page
);
2884 mtd
->erasesize
= le32_to_cpu(p
->pages_per_block
) * mtd
->writesize
;
2885 mtd
->oobsize
= le16_to_cpu(p
->spare_bytes_per_page
);
2886 chip
->chipsize
= (uint64_t)le32_to_cpu(p
->blocks_per_lun
) * mtd
->erasesize
;
2888 if (le16_to_cpu(p
->features
) & 1)
2889 busw
= NAND_BUSWIDTH_16
;
2891 chip
->options
&= ~NAND_CHIPOPTIONS_MSK
;
2892 chip
->options
|= (NAND_NO_READRDY
|
2893 NAND_NO_AUTOINCR
) & NAND_CHIPOPTIONS_MSK
;
2899 * Get the flash and manufacturer id and lookup if the type is supported
2901 static struct nand_flash_dev
*nand_get_flash_type(struct mtd_info
*mtd
,
2902 struct nand_chip
*chip
,
2904 int *maf_id
, int *dev_id
,
2905 struct nand_flash_dev
*type
)
2911 /* Select the device */
2912 chip
->select_chip(mtd
, 0);
2915 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2918 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
2920 /* Send the command for reading device ID */
2921 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2923 /* Read manufacturer and device IDs */
2924 *maf_id
= chip
->read_byte(mtd
);
2925 *dev_id
= chip
->read_byte(mtd
);
2927 /* Try again to make sure, as some systems the bus-hold or other
2928 * interface concerns can cause random data which looks like a
2929 * possibly credible NAND flash to appear. If the two results do
2930 * not match, ignore the device completely.
2933 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2935 for (i
= 0; i
< 2; i
++)
2936 id_data
[i
] = chip
->read_byte(mtd
);
2938 if (id_data
[0] != *maf_id
|| id_data
[1] != *dev_id
) {
2939 printk(KERN_INFO
"%s: second ID read did not match "
2940 "%02x,%02x against %02x,%02x\n", __func__
,
2941 *maf_id
, *dev_id
, id_data
[0], id_data
[1]);
2942 return ERR_PTR(-ENODEV
);
2946 type
= nand_flash_ids
;
2948 for (; type
->name
!= NULL
; type
++)
2949 if (*dev_id
== type
->id
)
2952 chip
->onfi_version
= 0;
2953 if (!type
->name
|| !type
->pagesize
) {
2954 /* Check is chip is ONFI compliant */
2955 ret
= nand_flash_detect_onfi(mtd
, chip
, busw
);
2960 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
2962 /* Read entire ID string */
2964 for (i
= 0; i
< 8; i
++)
2965 id_data
[i
] = chip
->read_byte(mtd
);
2968 return ERR_PTR(-ENODEV
);
2971 mtd
->name
= type
->name
;
2973 chip
->chipsize
= (uint64_t)type
->chipsize
<< 20;
2975 if (!type
->pagesize
&& chip
->init_size
) {
2976 /* set the pagesize, oobsize, erasesize by the driver*/
2977 busw
= chip
->init_size(mtd
, chip
, id_data
);
2978 } else if (!type
->pagesize
) {
2980 /* The 3rd id byte holds MLC / multichip data */
2981 chip
->cellinfo
= id_data
[2];
2982 /* The 4th id byte is the important one */
2986 * Field definitions are in the following datasheets:
2987 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2988 * New style (6 byte ID): Samsung K9GBG08U0M (p.40)
2990 * Check for wraparound + Samsung ID + nonzero 6th byte
2991 * to decide what to do.
2993 if (id_data
[0] == id_data
[6] && id_data
[1] == id_data
[7] &&
2994 id_data
[0] == NAND_MFR_SAMSUNG
&&
2995 (chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
2996 id_data
[5] != 0x00) {
2998 mtd
->writesize
= 2048 << (extid
& 0x03);
3001 switch (extid
& 0x03) {
3016 /* Calc blocksize */
3017 mtd
->erasesize
= (128 * 1024) <<
3018 (((extid
>> 1) & 0x04) | (extid
& 0x03));
3022 mtd
->writesize
= 1024 << (extid
& 0x03);
3025 mtd
->oobsize
= (8 << (extid
& 0x01)) *
3026 (mtd
->writesize
>> 9);
3028 /* Calc blocksize. Blocksize is multiples of 64KiB */
3029 mtd
->erasesize
= (64 * 1024) << (extid
& 0x03);
3031 /* Get buswidth information */
3032 busw
= (extid
& 0x01) ? NAND_BUSWIDTH_16
: 0;
3036 * Old devices have chip data hardcoded in the device id table
3038 mtd
->erasesize
= type
->erasesize
;
3039 mtd
->writesize
= type
->pagesize
;
3040 mtd
->oobsize
= mtd
->writesize
/ 32;
3041 busw
= type
->options
& NAND_BUSWIDTH_16
;
3044 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3045 * some Spansion chips have erasesize that conflicts with size
3046 * listed in nand_ids table
3047 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3049 if (*maf_id
== NAND_MFR_AMD
&& id_data
[4] != 0x00 &&
3050 id_data
[5] == 0x00 && id_data
[6] == 0x00 &&
3051 id_data
[7] == 0x00 && mtd
->writesize
== 512) {
3052 mtd
->erasesize
= 128 * 1024;
3053 mtd
->erasesize
<<= ((id_data
[3] & 0x03) << 1);
3056 /* Get chip options, preserve non chip based options */
3057 chip
->options
&= ~NAND_CHIPOPTIONS_MSK
;
3058 chip
->options
|= type
->options
& NAND_CHIPOPTIONS_MSK
;
3060 /* Check if chip is a not a samsung device. Do not clear the
3061 * options for chips which are not having an extended id.
3063 if (*maf_id
!= NAND_MFR_SAMSUNG
&& !type
->pagesize
)
3064 chip
->options
&= ~NAND_SAMSUNG_LP_OPTIONS
;
3068 * Set chip as a default. Board drivers can override it, if necessary
3070 chip
->options
|= NAND_NO_AUTOINCR
;
3072 /* Try to identify manufacturer */
3073 for (maf_idx
= 0; nand_manuf_ids
[maf_idx
].id
!= 0x0; maf_idx
++) {
3074 if (nand_manuf_ids
[maf_idx
].id
== *maf_id
)
3079 * Check, if buswidth is correct. Hardware drivers should set
3082 if (busw
!= (chip
->options
& NAND_BUSWIDTH_16
)) {
3083 printk(KERN_INFO
"NAND device: Manufacturer ID:"
3084 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
,
3085 *dev_id
, nand_manuf_ids
[maf_idx
].name
, mtd
->name
);
3086 printk(KERN_WARNING
"NAND bus width %d instead %d bit\n",
3087 (chip
->options
& NAND_BUSWIDTH_16
) ? 16 : 8,
3089 return ERR_PTR(-EINVAL
);
3092 /* Calculate the address shift from the page size */
3093 chip
->page_shift
= ffs(mtd
->writesize
) - 1;
3094 /* Convert chipsize to number of pages per chip -1. */
3095 chip
->pagemask
= (chip
->chipsize
>> chip
->page_shift
) - 1;
3097 chip
->bbt_erase_shift
= chip
->phys_erase_shift
=
3098 ffs(mtd
->erasesize
) - 1;
3099 if (chip
->chipsize
& 0xffffffff)
3100 chip
->chip_shift
= ffs((unsigned)chip
->chipsize
) - 1;
3102 chip
->chip_shift
= ffs((unsigned)(chip
->chipsize
>> 32));
3103 chip
->chip_shift
+= 32 - 1;
3106 chip
->badblockbits
= 8;
3108 /* Set the bad block position */
3109 if (mtd
->writesize
> 512 || (busw
& NAND_BUSWIDTH_16
))
3110 chip
->badblockpos
= NAND_LARGE_BADBLOCK_POS
;
3112 chip
->badblockpos
= NAND_SMALL_BADBLOCK_POS
;
3115 * Bad block marker is stored in the last page of each block
3116 * on Samsung and Hynix MLC devices; stored in first two pages
3117 * of each block on Micron devices with 2KiB pages and on
3118 * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3119 * only the first page.
3121 if ((chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
3122 (*maf_id
== NAND_MFR_SAMSUNG
||
3123 *maf_id
== NAND_MFR_HYNIX
))
3124 chip
->options
|= NAND_BBT_SCANLASTPAGE
;
3125 else if ((!(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
) &&
3126 (*maf_id
== NAND_MFR_SAMSUNG
||
3127 *maf_id
== NAND_MFR_HYNIX
||
3128 *maf_id
== NAND_MFR_TOSHIBA
||
3129 *maf_id
== NAND_MFR_AMD
)) ||
3130 (mtd
->writesize
== 2048 &&
3131 *maf_id
== NAND_MFR_MICRON
))
3132 chip
->options
|= NAND_BBT_SCAN2NDPAGE
;
3135 * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
3137 if (!(busw
& NAND_BUSWIDTH_16
) &&
3138 *maf_id
== NAND_MFR_STMICRO
&&
3139 mtd
->writesize
== 2048) {
3140 chip
->options
|= NAND_BBT_SCANBYTE1AND6
;
3141 chip
->badblockpos
= 0;
3144 /* Check for AND chips with 4 page planes */
3145 if (chip
->options
& NAND_4PAGE_ARRAY
)
3146 chip
->erase_cmd
= multi_erase_cmd
;
3148 chip
->erase_cmd
= single_erase_cmd
;
3150 /* Do not replace user supplied command function ! */
3151 if (mtd
->writesize
> 512 && chip
->cmdfunc
== nand_command
)
3152 chip
->cmdfunc
= nand_command_lp
;
3154 /* TODO onfi flash name */
3155 printk(KERN_INFO
"NAND device: Manufacturer ID:"
3156 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id
, *dev_id
,
3157 nand_manuf_ids
[maf_idx
].name
,
3158 chip
->onfi_version
? chip
->onfi_params
.model
: type
->name
);
3164 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3165 * @mtd: MTD device structure
3166 * @maxchips: Number of chips to scan for
3167 * @table: Alternative NAND ID table
3169 * This is the first phase of the normal nand_scan() function. It
3170 * reads the flash ID and sets up MTD fields accordingly.
3172 * The mtd->owner field must be set to the module of the caller.
3174 int nand_scan_ident(struct mtd_info
*mtd
, int maxchips
,
3175 struct nand_flash_dev
*table
)
3177 int i
, busw
, nand_maf_id
, nand_dev_id
;
3178 struct nand_chip
*chip
= mtd
->priv
;
3179 struct nand_flash_dev
*type
;
3181 /* Get buswidth to select the correct functions */
3182 busw
= chip
->options
& NAND_BUSWIDTH_16
;
3183 /* Set the default functions */
3184 nand_set_defaults(chip
, busw
);
3186 /* Read the flash type */
3187 type
= nand_get_flash_type(mtd
, chip
, busw
,
3188 &nand_maf_id
, &nand_dev_id
, table
);
3191 if (!(chip
->options
& NAND_SCAN_SILENT_NODEV
))
3192 printk(KERN_WARNING
"No NAND device found.\n");
3193 chip
->select_chip(mtd
, -1);
3194 return PTR_ERR(type
);
3197 /* Check for a chip array */
3198 for (i
= 1; i
< maxchips
; i
++) {
3199 chip
->select_chip(mtd
, i
);
3200 /* See comment in nand_get_flash_type for reset */
3201 chip
->cmdfunc(mtd
, NAND_CMD_RESET
, -1, -1);
3202 /* Send the command for reading device ID */
3203 chip
->cmdfunc(mtd
, NAND_CMD_READID
, 0x00, -1);
3204 /* Read manufacturer and device IDs */
3205 if (nand_maf_id
!= chip
->read_byte(mtd
) ||
3206 nand_dev_id
!= chip
->read_byte(mtd
))
3210 printk(KERN_INFO
"%d NAND chips detected\n", i
);
3212 /* Store the number of chips and calc total size for mtd */
3214 mtd
->size
= i
* chip
->chipsize
;
3218 EXPORT_SYMBOL(nand_scan_ident
);
3222 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3223 * @mtd: MTD device structure
3225 * This is the second phase of the normal nand_scan() function. It
3226 * fills out all the uninitialized function pointers with the defaults
3227 * and scans for a bad block table if appropriate.
3229 int nand_scan_tail(struct mtd_info
*mtd
)
3232 struct nand_chip
*chip
= mtd
->priv
;
3234 if (!(chip
->options
& NAND_OWN_BUFFERS
))
3235 chip
->buffers
= kmalloc(sizeof(*chip
->buffers
), GFP_KERNEL
);
3239 /* Set the internal oob buffer location, just after the page data */
3240 chip
->oob_poi
= chip
->buffers
->databuf
+ mtd
->writesize
;
3243 * If no default placement scheme is given, select an appropriate one
3245 if (!chip
->ecc
.layout
&& (chip
->ecc
.mode
!= NAND_ECC_SOFT_BCH
)) {
3246 switch (mtd
->oobsize
) {
3248 chip
->ecc
.layout
= &nand_oob_8
;
3251 chip
->ecc
.layout
= &nand_oob_16
;
3254 chip
->ecc
.layout
= &nand_oob_64
;
3257 chip
->ecc
.layout
= &nand_oob_128
;
3260 printk(KERN_WARNING
"No oob scheme defined for "
3261 "oobsize %d\n", mtd
->oobsize
);
3266 if (!chip
->write_page
)
3267 chip
->write_page
= nand_write_page
;
3270 * check ECC mode, default to software if 3byte/512byte hardware ECC is
3271 * selected and we have 256 byte pagesize fallback to software ECC
3274 switch (chip
->ecc
.mode
) {
3275 case NAND_ECC_HW_OOB_FIRST
:
3276 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3277 if (!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
3279 printk(KERN_WARNING
"No ECC functions supplied; "
3280 "Hardware ECC not possible\n");
3283 if (!chip
->ecc
.read_page
)
3284 chip
->ecc
.read_page
= nand_read_page_hwecc_oob_first
;
3287 /* Use standard hwecc read page function ? */
3288 if (!chip
->ecc
.read_page
)
3289 chip
->ecc
.read_page
= nand_read_page_hwecc
;
3290 if (!chip
->ecc
.write_page
)
3291 chip
->ecc
.write_page
= nand_write_page_hwecc
;
3292 if (!chip
->ecc
.read_page_raw
)
3293 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3294 if (!chip
->ecc
.write_page_raw
)
3295 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3296 if (!chip
->ecc
.read_oob
)
3297 chip
->ecc
.read_oob
= nand_read_oob_std
;
3298 if (!chip
->ecc
.write_oob
)
3299 chip
->ecc
.write_oob
= nand_write_oob_std
;
3301 case NAND_ECC_HW_SYNDROME
:
3302 if ((!chip
->ecc
.calculate
|| !chip
->ecc
.correct
||
3303 !chip
->ecc
.hwctl
) &&
3304 (!chip
->ecc
.read_page
||
3305 chip
->ecc
.read_page
== nand_read_page_hwecc
||
3306 !chip
->ecc
.write_page
||
3307 chip
->ecc
.write_page
== nand_write_page_hwecc
)) {
3308 printk(KERN_WARNING
"No ECC functions supplied; "
3309 "Hardware ECC not possible\n");
3312 /* Use standard syndrome read/write page function ? */
3313 if (!chip
->ecc
.read_page
)
3314 chip
->ecc
.read_page
= nand_read_page_syndrome
;
3315 if (!chip
->ecc
.write_page
)
3316 chip
->ecc
.write_page
= nand_write_page_syndrome
;
3317 if (!chip
->ecc
.read_page_raw
)
3318 chip
->ecc
.read_page_raw
= nand_read_page_raw_syndrome
;
3319 if (!chip
->ecc
.write_page_raw
)
3320 chip
->ecc
.write_page_raw
= nand_write_page_raw_syndrome
;
3321 if (!chip
->ecc
.read_oob
)
3322 chip
->ecc
.read_oob
= nand_read_oob_syndrome
;
3323 if (!chip
->ecc
.write_oob
)
3324 chip
->ecc
.write_oob
= nand_write_oob_syndrome
;
3326 if (mtd
->writesize
>= chip
->ecc
.size
)
3328 printk(KERN_WARNING
"%d byte HW ECC not possible on "
3329 "%d byte page size, fallback to SW ECC\n",
3330 chip
->ecc
.size
, mtd
->writesize
);
3331 chip
->ecc
.mode
= NAND_ECC_SOFT
;
3334 chip
->ecc
.calculate
= nand_calculate_ecc
;
3335 chip
->ecc
.correct
= nand_correct_data
;
3336 chip
->ecc
.read_page
= nand_read_page_swecc
;
3337 chip
->ecc
.read_subpage
= nand_read_subpage
;
3338 chip
->ecc
.write_page
= nand_write_page_swecc
;
3339 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3340 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3341 chip
->ecc
.read_oob
= nand_read_oob_std
;
3342 chip
->ecc
.write_oob
= nand_write_oob_std
;
3343 if (!chip
->ecc
.size
)
3344 chip
->ecc
.size
= 256;
3345 chip
->ecc
.bytes
= 3;
3348 case NAND_ECC_SOFT_BCH
:
3349 if (!mtd_nand_has_bch()) {
3350 printk(KERN_WARNING
"CONFIG_MTD_ECC_BCH not enabled\n");
3353 chip
->ecc
.calculate
= nand_bch_calculate_ecc
;
3354 chip
->ecc
.correct
= nand_bch_correct_data
;
3355 chip
->ecc
.read_page
= nand_read_page_swecc
;
3356 chip
->ecc
.read_subpage
= nand_read_subpage
;
3357 chip
->ecc
.write_page
= nand_write_page_swecc
;
3358 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3359 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3360 chip
->ecc
.read_oob
= nand_read_oob_std
;
3361 chip
->ecc
.write_oob
= nand_write_oob_std
;
3363 * Board driver should supply ecc.size and ecc.bytes values to
3364 * select how many bits are correctable; see nand_bch_init()
3366 * Otherwise, default to 4 bits for large page devices
3368 if (!chip
->ecc
.size
&& (mtd
->oobsize
>= 64)) {
3369 chip
->ecc
.size
= 512;
3370 chip
->ecc
.bytes
= 7;
3372 chip
->ecc
.priv
= nand_bch_init(mtd
,
3376 if (!chip
->ecc
.priv
) {
3377 printk(KERN_WARNING
"BCH ECC initialization failed!\n");
3383 printk(KERN_WARNING
"NAND_ECC_NONE selected by board driver. "
3384 "This is not recommended !!\n");
3385 chip
->ecc
.read_page
= nand_read_page_raw
;
3386 chip
->ecc
.write_page
= nand_write_page_raw
;
3387 chip
->ecc
.read_oob
= nand_read_oob_std
;
3388 chip
->ecc
.read_page_raw
= nand_read_page_raw
;
3389 chip
->ecc
.write_page_raw
= nand_write_page_raw
;
3390 chip
->ecc
.write_oob
= nand_write_oob_std
;
3391 chip
->ecc
.size
= mtd
->writesize
;
3392 chip
->ecc
.bytes
= 0;
3396 printk(KERN_WARNING
"Invalid NAND_ECC_MODE %d\n",
3402 * The number of bytes available for a client to place data into
3403 * the out of band area
3405 chip
->ecc
.layout
->oobavail
= 0;
3406 for (i
= 0; chip
->ecc
.layout
->oobfree
[i
].length
3407 && i
< ARRAY_SIZE(chip
->ecc
.layout
->oobfree
); i
++)
3408 chip
->ecc
.layout
->oobavail
+=
3409 chip
->ecc
.layout
->oobfree
[i
].length
;
3410 mtd
->oobavail
= chip
->ecc
.layout
->oobavail
;
3413 * Set the number of read / write steps for one page depending on ECC
3416 chip
->ecc
.steps
= mtd
->writesize
/ chip
->ecc
.size
;
3417 if (chip
->ecc
.steps
* chip
->ecc
.size
!= mtd
->writesize
) {
3418 printk(KERN_WARNING
"Invalid ecc parameters\n");
3421 chip
->ecc
.total
= chip
->ecc
.steps
* chip
->ecc
.bytes
;
3424 * Allow subpage writes up to ecc.steps. Not possible for MLC
3427 if (!(chip
->options
& NAND_NO_SUBPAGE_WRITE
) &&
3428 !(chip
->cellinfo
& NAND_CI_CELLTYPE_MSK
)) {
3429 switch (chip
->ecc
.steps
) {
3431 mtd
->subpage_sft
= 1;
3436 mtd
->subpage_sft
= 2;
3440 chip
->subpagesize
= mtd
->writesize
>> mtd
->subpage_sft
;
3442 /* Initialize state */
3443 chip
->state
= FL_READY
;
3445 /* De-select the device */
3446 chip
->select_chip(mtd
, -1);
3448 /* Invalidate the pagebuffer reference */
3451 /* Fill in remaining MTD driver data */
3452 mtd
->type
= MTD_NANDFLASH
;
3453 mtd
->flags
= (chip
->options
& NAND_ROM
) ? MTD_CAP_ROM
:
3455 mtd
->erase
= nand_erase
;
3457 mtd
->unpoint
= NULL
;
3458 mtd
->read
= nand_read
;
3459 mtd
->write
= nand_write
;
3460 mtd
->panic_write
= panic_nand_write
;
3461 mtd
->read_oob
= nand_read_oob
;
3462 mtd
->write_oob
= nand_write_oob
;
3463 mtd
->sync
= nand_sync
;
3466 mtd
->suspend
= nand_suspend
;
3467 mtd
->resume
= nand_resume
;
3468 mtd
->block_isbad
= nand_block_isbad
;
3469 mtd
->block_markbad
= nand_block_markbad
;
3470 mtd
->writebufsize
= mtd
->writesize
;
3472 /* propagate ecc.layout to mtd_info */
3473 mtd
->ecclayout
= chip
->ecc
.layout
;
3475 /* Check, if we should skip the bad block table scan */
3476 if (chip
->options
& NAND_SKIP_BBTSCAN
)
3479 /* Build bad block table */
3480 return chip
->scan_bbt(mtd
);
3482 EXPORT_SYMBOL(nand_scan_tail
);
3484 /* is_module_text_address() isn't exported, and it's mostly a pointless
3485 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3486 * to call us from in-kernel code if the core NAND support is modular. */
3488 #define caller_is_module() (1)
3490 #define caller_is_module() \
3491 is_module_text_address((unsigned long)__builtin_return_address(0))
3495 * nand_scan - [NAND Interface] Scan for the NAND device
3496 * @mtd: MTD device structure
3497 * @maxchips: Number of chips to scan for
3499 * This fills out all the uninitialized function pointers
3500 * with the defaults.
3501 * The flash ID is read and the mtd/chip structures are
3502 * filled with the appropriate values.
3503 * The mtd->owner field must be set to the module of the caller
3506 int nand_scan(struct mtd_info
*mtd
, int maxchips
)
3510 /* Many callers got this wrong, so check for it for a while... */
3511 if (!mtd
->owner
&& caller_is_module()) {
3512 printk(KERN_CRIT
"%s called with NULL mtd->owner!\n",
3517 ret
= nand_scan_ident(mtd
, maxchips
, NULL
);
3519 ret
= nand_scan_tail(mtd
);
3522 EXPORT_SYMBOL(nand_scan
);
3525 * nand_release - [NAND Interface] Free resources held by the NAND device
3526 * @mtd: MTD device structure
3528 void nand_release(struct mtd_info
*mtd
)
3530 struct nand_chip
*chip
= mtd
->priv
;
3532 if (chip
->ecc
.mode
== NAND_ECC_SOFT_BCH
)
3533 nand_bch_free((struct nand_bch_control
*)chip
->ecc
.priv
);
3535 mtd_device_unregister(mtd
);
3537 /* Free bad block table memory */
3539 if (!(chip
->options
& NAND_OWN_BUFFERS
))
3540 kfree(chip
->buffers
);
3542 /* Free bad block descriptor memory */
3543 if (chip
->badblock_pattern
&& chip
->badblock_pattern
->options
3544 & NAND_BBT_DYNAMICSTRUCT
)
3545 kfree(chip
->badblock_pattern
);
3547 EXPORT_SYMBOL_GPL(nand_release
);
3549 static int __init
nand_base_init(void)
3551 led_trigger_register_simple("nand-disk", &nand_led_trigger
);
3555 static void __exit
nand_base_exit(void)
3557 led_trigger_unregister_simple(nand_led_trigger
);
3560 module_init(nand_base_init
);
3561 module_exit(nand_base_exit
);
3563 MODULE_LICENSE("GPL");
3564 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3565 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3566 MODULE_DESCRIPTION("Generic NAND flash driver code");