Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/upstream-linus
[linux-btrfs-devel.git] / drivers / mtd / nand / rtc_from4.c
blobc9f9127ff7708ee06fae1bd6e159f8e0619f20e5
1 /*
2 * drivers/mtd/nand/rtc_from4.c
4 * Copyright (C) 2004 Red Hat, Inc.
6 * Derived from drivers/mtd/nand/spia.c
7 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * Overview:
14 * This is a device driver for the AG-AND flash device found on the
15 * Renesas Technology Corp. Flash ROM 4-slot interface board (FROM_BOARD4),
16 * which utilizes the Renesas HN29V1G91T-30 part.
17 * This chip is a 1 GBibit (128MiB x 8 bits) AG-AND flash device.
20 #include <linux/delay.h>
21 #include <linux/kernel.h>
22 #include <linux/init.h>
23 #include <linux/slab.h>
24 #include <linux/rslib.h>
25 #include <linux/bitrev.h>
26 #include <linux/module.h>
27 #include <linux/mtd/mtd.h>
28 #include <linux/mtd/nand.h>
29 #include <linux/mtd/partitions.h>
30 #include <asm/io.h>
33 * MTD structure for Renesas board
35 static struct mtd_info *rtc_from4_mtd = NULL;
37 #define RTC_FROM4_MAX_CHIPS 2
39 /* HS77x9 processor register defines */
40 #define SH77X9_BCR1 ((volatile unsigned short *)(0xFFFFFF60))
41 #define SH77X9_BCR2 ((volatile unsigned short *)(0xFFFFFF62))
42 #define SH77X9_WCR1 ((volatile unsigned short *)(0xFFFFFF64))
43 #define SH77X9_WCR2 ((volatile unsigned short *)(0xFFFFFF66))
44 #define SH77X9_MCR ((volatile unsigned short *)(0xFFFFFF68))
45 #define SH77X9_PCR ((volatile unsigned short *)(0xFFFFFF6C))
46 #define SH77X9_FRQCR ((volatile unsigned short *)(0xFFFFFF80))
49 * Values specific to the Renesas Technology Corp. FROM_BOARD4 (used with HS77x9 processor)
51 /* Address where flash is mapped */
52 #define RTC_FROM4_FIO_BASE 0x14000000
54 /* CLE and ALE are tied to address lines 5 & 4, respectively */
55 #define RTC_FROM4_CLE (1 << 5)
56 #define RTC_FROM4_ALE (1 << 4)
58 /* address lines A24-A22 used for chip selection */
59 #define RTC_FROM4_NAND_ADDR_SLOT3 (0x00800000)
60 #define RTC_FROM4_NAND_ADDR_SLOT4 (0x00C00000)
61 #define RTC_FROM4_NAND_ADDR_FPGA (0x01000000)
62 /* mask address lines A24-A22 used for chip selection */
63 #define RTC_FROM4_NAND_ADDR_MASK (RTC_FROM4_NAND_ADDR_SLOT3 | RTC_FROM4_NAND_ADDR_SLOT4 | RTC_FROM4_NAND_ADDR_FPGA)
65 /* FPGA status register for checking device ready (bit zero) */
66 #define RTC_FROM4_FPGA_SR (RTC_FROM4_NAND_ADDR_FPGA | 0x00000002)
67 #define RTC_FROM4_DEVICE_READY 0x0001
69 /* FPGA Reed-Solomon ECC Control register */
71 #define RTC_FROM4_RS_ECC_CTL (RTC_FROM4_NAND_ADDR_FPGA | 0x00000050)
72 #define RTC_FROM4_RS_ECC_CTL_CLR (1 << 7)
73 #define RTC_FROM4_RS_ECC_CTL_GEN (1 << 6)
74 #define RTC_FROM4_RS_ECC_CTL_FD_E (1 << 5)
76 /* FPGA Reed-Solomon ECC code base */
77 #define RTC_FROM4_RS_ECC (RTC_FROM4_NAND_ADDR_FPGA | 0x00000060)
78 #define RTC_FROM4_RS_ECCN (RTC_FROM4_NAND_ADDR_FPGA | 0x00000080)
80 /* FPGA Reed-Solomon ECC check register */
81 #define RTC_FROM4_RS_ECC_CHK (RTC_FROM4_NAND_ADDR_FPGA | 0x00000070)
82 #define RTC_FROM4_RS_ECC_CHK_ERROR (1 << 7)
84 #define ERR_STAT_ECC_AVAILABLE 0x20
86 /* Undefine for software ECC */
87 #define RTC_FROM4_HWECC 1
89 /* Define as 1 for no virtual erase blocks (in JFFS2) */
90 #define RTC_FROM4_NO_VIRTBLOCKS 0
93 * Module stuff
95 static void __iomem *rtc_from4_fio_base = (void *)P2SEGADDR(RTC_FROM4_FIO_BASE);
97 static const struct mtd_partition partition_info[] = {
99 .name = "Renesas flash partition 1",
100 .offset = 0,
101 .size = MTDPART_SIZ_FULL},
104 #define NUM_PARTITIONS 1
107 * hardware specific flash bbt decriptors
108 * Note: this is to allow debugging by disabling
109 * NAND_BBT_CREATE and/or NAND_BBT_WRITE
112 static uint8_t bbt_pattern[] = { 'B', 'b', 't', '0' };
113 static uint8_t mirror_pattern[] = { '1', 't', 'b', 'B' };
115 static struct nand_bbt_descr rtc_from4_bbt_main_descr = {
116 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
117 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
118 .offs = 40,
119 .len = 4,
120 .veroffs = 44,
121 .maxblocks = 4,
122 .pattern = bbt_pattern
125 static struct nand_bbt_descr rtc_from4_bbt_mirror_descr = {
126 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
127 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
128 .offs = 40,
129 .len = 4,
130 .veroffs = 44,
131 .maxblocks = 4,
132 .pattern = mirror_pattern
135 #ifdef RTC_FROM4_HWECC
137 /* the Reed Solomon control structure */
138 static struct rs_control *rs_decoder;
141 * hardware specific Out Of Band information
143 static struct nand_ecclayout rtc_from4_nand_oobinfo = {
144 .eccbytes = 32,
145 .eccpos = {
146 0, 1, 2, 3, 4, 5, 6, 7,
147 8, 9, 10, 11, 12, 13, 14, 15,
148 16, 17, 18, 19, 20, 21, 22, 23,
149 24, 25, 26, 27, 28, 29, 30, 31},
150 .oobfree = {{32, 32}}
153 #endif
156 * rtc_from4_hwcontrol - hardware specific access to control-lines
157 * @mtd: MTD device structure
158 * @cmd: hardware control command
160 * Address lines (A5 and A4) are used to control Command and Address Latch
161 * Enable on this board, so set the read/write address appropriately.
163 * Chip Enable is also controlled by the Chip Select (CS5) and
164 * Address lines (A24-A22), so no action is required here.
167 static void rtc_from4_hwcontrol(struct mtd_info *mtd, int cmd,
168 unsigned int ctrl)
170 struct nand_chip *chip = (mtd->priv);
172 if (cmd == NAND_CMD_NONE)
173 return;
175 if (ctrl & NAND_CLE)
176 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_CLE);
177 else
178 writeb(cmd, chip->IO_ADDR_W | RTC_FROM4_ALE);
182 * rtc_from4_nand_select_chip - hardware specific chip select
183 * @mtd: MTD device structure
184 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
186 * The chip select is based on address lines A24-A22.
187 * This driver uses flash slots 3 and 4 (A23-A22).
190 static void rtc_from4_nand_select_chip(struct mtd_info *mtd, int chip)
192 struct nand_chip *this = mtd->priv;
194 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R & ~RTC_FROM4_NAND_ADDR_MASK);
195 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W & ~RTC_FROM4_NAND_ADDR_MASK);
197 switch (chip) {
199 case 0: /* select slot 3 chip */
200 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT3);
201 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT3);
202 break;
203 case 1: /* select slot 4 chip */
204 this->IO_ADDR_R = (void __iomem *)((unsigned long)this->IO_ADDR_R | RTC_FROM4_NAND_ADDR_SLOT4);
205 this->IO_ADDR_W = (void __iomem *)((unsigned long)this->IO_ADDR_W | RTC_FROM4_NAND_ADDR_SLOT4);
206 break;
212 * rtc_from4_nand_device_ready - hardware specific ready/busy check
213 * @mtd: MTD device structure
215 * This board provides the Ready/Busy state in the status register
216 * of the FPGA. Bit zero indicates the RDY(1)/BSY(0) signal.
219 static int rtc_from4_nand_device_ready(struct mtd_info *mtd)
221 unsigned short status;
223 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_FPGA_SR));
225 return (status & RTC_FROM4_DEVICE_READY);
230 * deplete - code to perform device recovery in case there was a power loss
231 * @mtd: MTD device structure
232 * @chip: Chip to select (0 == slot 3, 1 == slot 4)
234 * If there was a sudden loss of power during an erase operation, a
235 * "device recovery" operation must be performed when power is restored
236 * to ensure correct operation. This routine performs the required steps
237 * for the requested chip.
239 * See page 86 of the data sheet for details.
242 static void deplete(struct mtd_info *mtd, int chip)
244 struct nand_chip *this = mtd->priv;
246 /* wait until device is ready */
247 while (!this->dev_ready(mtd)) ;
249 this->select_chip(mtd, chip);
251 /* Send the commands for device recovery, phase 1 */
252 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0000);
253 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
255 /* Send the commands for device recovery, phase 2 */
256 this->cmdfunc(mtd, NAND_CMD_DEPLETE1, 0x0000, 0x0004);
257 this->cmdfunc(mtd, NAND_CMD_DEPLETE2, -1, -1);
261 #ifdef RTC_FROM4_HWECC
263 * rtc_from4_enable_hwecc - hardware specific hardware ECC enable function
264 * @mtd: MTD device structure
265 * @mode: I/O mode; read or write
267 * enable hardware ECC for data read or write
270 static void rtc_from4_enable_hwecc(struct mtd_info *mtd, int mode)
272 volatile unsigned short *rs_ecc_ctl = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CTL);
273 unsigned short status;
275 switch (mode) {
276 case NAND_ECC_READ:
277 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_FD_E;
279 *rs_ecc_ctl = status;
280 break;
282 case NAND_ECC_READSYN:
283 status = 0x00;
285 *rs_ecc_ctl = status;
286 break;
288 case NAND_ECC_WRITE:
289 status = RTC_FROM4_RS_ECC_CTL_CLR | RTC_FROM4_RS_ECC_CTL_GEN | RTC_FROM4_RS_ECC_CTL_FD_E;
291 *rs_ecc_ctl = status;
292 break;
294 default:
295 BUG();
296 break;
302 * rtc_from4_calculate_ecc - hardware specific code to read ECC code
303 * @mtd: MTD device structure
304 * @dat: buffer containing the data to generate ECC codes
305 * @ecc_code ECC codes calculated
307 * The ECC code is calculated by the FPGA. All we have to do is read the values
308 * from the FPGA registers.
310 * Note: We read from the inverted registers, since data is inverted before
311 * the code is calculated. So all 0xff data (blank page) results in all 0xff rs code
314 static void rtc_from4_calculate_ecc(struct mtd_info *mtd, const u_char *dat, u_char *ecc_code)
316 volatile unsigned short *rs_eccn = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECCN);
317 unsigned short value;
318 int i;
320 for (i = 0; i < 8; i++) {
321 value = *rs_eccn;
322 ecc_code[i] = (unsigned char)value;
323 rs_eccn++;
325 ecc_code[7] |= 0x0f; /* set the last four bits (not used) */
329 * rtc_from4_correct_data - hardware specific code to correct data using ECC code
330 * @mtd: MTD device structure
331 * @buf: buffer containing the data to generate ECC codes
332 * @ecc1 ECC codes read
333 * @ecc2 ECC codes calculated
335 * The FPGA tells us fast, if there's an error or not. If no, we go back happy
336 * else we read the ecc results from the fpga and call the rs library to decode
337 * and hopefully correct the error.
340 static int rtc_from4_correct_data(struct mtd_info *mtd, const u_char *buf, u_char *ecc1, u_char *ecc2)
342 int i, j, res;
343 unsigned short status;
344 uint16_t par[6], syn[6];
345 uint8_t ecc[8];
346 volatile unsigned short *rs_ecc;
348 status = *((volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC_CHK));
350 if (!(status & RTC_FROM4_RS_ECC_CHK_ERROR)) {
351 return 0;
354 /* Read the syndrom pattern from the FPGA and correct the bitorder */
355 rs_ecc = (volatile unsigned short *)(rtc_from4_fio_base + RTC_FROM4_RS_ECC);
356 for (i = 0; i < 8; i++) {
357 ecc[i] = bitrev8(*rs_ecc);
358 rs_ecc++;
361 /* convert into 6 10bit syndrome fields */
362 par[5] = rs_decoder->index_of[(((uint16_t) ecc[0] >> 0) & 0x0ff) | (((uint16_t) ecc[1] << 8) & 0x300)];
363 par[4] = rs_decoder->index_of[(((uint16_t) ecc[1] >> 2) & 0x03f) | (((uint16_t) ecc[2] << 6) & 0x3c0)];
364 par[3] = rs_decoder->index_of[(((uint16_t) ecc[2] >> 4) & 0x00f) | (((uint16_t) ecc[3] << 4) & 0x3f0)];
365 par[2] = rs_decoder->index_of[(((uint16_t) ecc[3] >> 6) & 0x003) | (((uint16_t) ecc[4] << 2) & 0x3fc)];
366 par[1] = rs_decoder->index_of[(((uint16_t) ecc[5] >> 0) & 0x0ff) | (((uint16_t) ecc[6] << 8) & 0x300)];
367 par[0] = (((uint16_t) ecc[6] >> 2) & 0x03f) | (((uint16_t) ecc[7] << 6) & 0x3c0);
369 /* Convert to computable syndrome */
370 for (i = 0; i < 6; i++) {
371 syn[i] = par[0];
372 for (j = 1; j < 6; j++)
373 if (par[j] != rs_decoder->nn)
374 syn[i] ^= rs_decoder->alpha_to[rs_modnn(rs_decoder, par[j] + i * j)];
376 /* Convert to index form */
377 syn[i] = rs_decoder->index_of[syn[i]];
380 /* Let the library code do its magic. */
381 res = decode_rs8(rs_decoder, (uint8_t *) buf, par, 512, syn, 0, NULL, 0xff, NULL);
382 if (res > 0) {
383 DEBUG(MTD_DEBUG_LEVEL0, "rtc_from4_correct_data: " "ECC corrected %d errors on read\n", res);
385 return res;
389 * rtc_from4_errstat - perform additional error status checks
390 * @mtd: MTD device structure
391 * @this: NAND chip structure
392 * @state: state or the operation
393 * @status: status code returned from read status
394 * @page: startpage inside the chip, must be called with (page & this->pagemask)
396 * Perform additional error status checks on erase and write failures
397 * to determine if errors are correctable. For this device, correctable
398 * 1-bit errors on erase and write are considered acceptable.
400 * note: see pages 34..37 of data sheet for details.
403 static int rtc_from4_errstat(struct mtd_info *mtd, struct nand_chip *this,
404 int state, int status, int page)
406 int er_stat = 0;
407 int rtn, retlen;
408 size_t len;
409 uint8_t *buf;
410 int i;
412 this->cmdfunc(mtd, NAND_CMD_STATUS_CLEAR, -1, -1);
414 if (state == FL_ERASING) {
416 for (i = 0; i < 4; i++) {
417 if (!(status & 1 << (i + 1)))
418 continue;
419 this->cmdfunc(mtd, (NAND_CMD_STATUS_ERROR + i + 1),
420 -1, -1);
421 rtn = this->read_byte(mtd);
422 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
424 /* err_ecc_not_avail */
425 if (!(rtn & ERR_STAT_ECC_AVAILABLE))
426 er_stat |= 1 << (i + 1);
429 } else if (state == FL_WRITING) {
431 unsigned long corrected = mtd->ecc_stats.corrected;
433 /* single bank write logic */
434 this->cmdfunc(mtd, NAND_CMD_STATUS_ERROR, -1, -1);
435 rtn = this->read_byte(mtd);
436 this->cmdfunc(mtd, NAND_CMD_STATUS_RESET, -1, -1);
438 if (!(rtn & ERR_STAT_ECC_AVAILABLE)) {
439 /* err_ecc_not_avail */
440 er_stat |= 1 << 1;
441 goto out;
444 len = mtd->writesize;
445 buf = kmalloc(len, GFP_KERNEL);
446 if (!buf) {
447 printk(KERN_ERR "rtc_from4_errstat: Out of memory!\n");
448 er_stat = 1;
449 goto out;
452 /* recovery read */
453 rtn = nand_do_read(mtd, page, len, &retlen, buf);
455 /* if read failed or > 1-bit error corrected */
456 if (rtn || (mtd->ecc_stats.corrected - corrected) > 1)
457 er_stat |= 1 << 1;
458 kfree(buf);
460 out:
461 rtn = status;
462 if (er_stat == 0) { /* if ECC is available */
463 rtn = (status & ~NAND_STATUS_FAIL); /* clear the error bit */
466 return rtn;
468 #endif
471 * Main initialization routine
473 static int __init rtc_from4_init(void)
475 struct nand_chip *this;
476 unsigned short bcr1, bcr2, wcr2;
477 int i;
478 int ret;
480 /* Allocate memory for MTD device structure and private data */
481 rtc_from4_mtd = kmalloc(sizeof(struct mtd_info) + sizeof(struct nand_chip), GFP_KERNEL);
482 if (!rtc_from4_mtd) {
483 printk("Unable to allocate Renesas NAND MTD device structure.\n");
484 return -ENOMEM;
487 /* Get pointer to private data */
488 this = (struct nand_chip *)(&rtc_from4_mtd[1]);
490 /* Initialize structures */
491 memset(rtc_from4_mtd, 0, sizeof(struct mtd_info));
492 memset(this, 0, sizeof(struct nand_chip));
494 /* Link the private data with the MTD structure */
495 rtc_from4_mtd->priv = this;
496 rtc_from4_mtd->owner = THIS_MODULE;
498 /* set area 5 as PCMCIA mode to clear the spec of tDH(Data hold time;9ns min) */
499 bcr1 = *SH77X9_BCR1 & ~0x0002;
500 bcr1 |= 0x0002;
501 *SH77X9_BCR1 = bcr1;
503 /* set */
504 bcr2 = *SH77X9_BCR2 & ~0x0c00;
505 bcr2 |= 0x0800;
506 *SH77X9_BCR2 = bcr2;
508 /* set area 5 wait states */
509 wcr2 = *SH77X9_WCR2 & ~0x1c00;
510 wcr2 |= 0x1c00;
511 *SH77X9_WCR2 = wcr2;
513 /* Set address of NAND IO lines */
514 this->IO_ADDR_R = rtc_from4_fio_base;
515 this->IO_ADDR_W = rtc_from4_fio_base;
516 /* Set address of hardware control function */
517 this->cmd_ctrl = rtc_from4_hwcontrol;
518 /* Set address of chip select function */
519 this->select_chip = rtc_from4_nand_select_chip;
520 /* command delay time (in us) */
521 this->chip_delay = 100;
522 /* return the status of the Ready/Busy line */
523 this->dev_ready = rtc_from4_nand_device_ready;
525 #ifdef RTC_FROM4_HWECC
526 printk(KERN_INFO "rtc_from4_init: using hardware ECC detection.\n");
528 this->ecc.mode = NAND_ECC_HW_SYNDROME;
529 this->ecc.size = 512;
530 this->ecc.bytes = 8;
531 /* return the status of extra status and ECC checks */
532 this->errstat = rtc_from4_errstat;
533 /* set the nand_oobinfo to support FPGA H/W error detection */
534 this->ecc.layout = &rtc_from4_nand_oobinfo;
535 this->ecc.hwctl = rtc_from4_enable_hwecc;
536 this->ecc.calculate = rtc_from4_calculate_ecc;
537 this->ecc.correct = rtc_from4_correct_data;
539 /* We could create the decoder on demand, if memory is a concern.
540 * This way we have it handy, if an error happens
542 * Symbolsize is 10 (bits)
543 * Primitve polynomial is x^10+x^3+1
544 * first consecutive root is 0
545 * primitve element to generate roots = 1
546 * generator polinomial degree = 6
548 rs_decoder = init_rs(10, 0x409, 0, 1, 6);
549 if (!rs_decoder) {
550 printk(KERN_ERR "Could not create a RS decoder\n");
551 ret = -ENOMEM;
552 goto err_1;
554 #else
555 printk(KERN_INFO "rtc_from4_init: using software ECC detection.\n");
557 this->ecc.mode = NAND_ECC_SOFT;
558 #endif
560 /* set the bad block tables to support debugging */
561 this->bbt_td = &rtc_from4_bbt_main_descr;
562 this->bbt_md = &rtc_from4_bbt_mirror_descr;
564 /* Scan to find existence of the device */
565 if (nand_scan(rtc_from4_mtd, RTC_FROM4_MAX_CHIPS)) {
566 ret = -ENXIO;
567 goto err_2;
570 /* Perform 'device recovery' for each chip in case there was a power loss. */
571 for (i = 0; i < this->numchips; i++) {
572 deplete(rtc_from4_mtd, i);
575 #if RTC_FROM4_NO_VIRTBLOCKS
576 /* use a smaller erase block to minimize wasted space when a block is bad */
577 /* note: this uses eight times as much RAM as using the default and makes */
578 /* mounts take four times as long. */
579 rtc_from4_mtd->flags |= MTD_NO_VIRTBLOCKS;
580 #endif
582 /* Register the partitions */
583 ret = mtd_device_register(rtc_from4_mtd, partition_info,
584 NUM_PARTITIONS);
585 if (ret)
586 goto err_3;
588 /* Return happy */
589 return 0;
590 err_3:
591 nand_release(rtc_from4_mtd);
592 err_2:
593 free_rs(rs_decoder);
594 err_1:
595 kfree(rtc_from4_mtd);
596 return ret;
599 module_init(rtc_from4_init);
602 * Clean up routine
604 static void __exit rtc_from4_cleanup(void)
606 /* Release resource, unregister partitions */
607 nand_release(rtc_from4_mtd);
609 /* Free the MTD device structure */
610 kfree(rtc_from4_mtd);
612 #ifdef RTC_FROM4_HWECC
613 /* Free the reed solomon resources */
614 if (rs_decoder) {
615 free_rs(rs_decoder);
617 #endif
620 module_exit(rtc_from4_cleanup);
622 MODULE_LICENSE("GPL");
623 MODULE_AUTHOR("d.marlin <dmarlin@redhat.com");
624 MODULE_DESCRIPTION("Board-specific glue layer for AG-AND flash on Renesas FROM_BOARD4");