Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/upstream-linus
[linux-btrfs-devel.git] / drivers / mtd / nand / sh_flctl.c
blob93b1f74321c2a9e7793b8a867a1a02af15638278
1 /*
2 * SuperH FLCTL nand controller
4 * Copyright (c) 2008 Renesas Solutions Corp.
5 * Copyright (c) 2008 Atom Create Engineering Co., Ltd.
7 * Based on fsl_elbc_nand.c, Copyright (c) 2006-2007 Freescale Semiconductor
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/delay.h>
27 #include <linux/io.h>
28 #include <linux/platform_device.h>
29 #include <linux/slab.h>
31 #include <linux/mtd/mtd.h>
32 #include <linux/mtd/nand.h>
33 #include <linux/mtd/partitions.h>
34 #include <linux/mtd/sh_flctl.h>
36 static struct nand_ecclayout flctl_4secc_oob_16 = {
37 .eccbytes = 10,
38 .eccpos = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9},
39 .oobfree = {
40 {.offset = 12,
41 . length = 4} },
44 static struct nand_ecclayout flctl_4secc_oob_64 = {
45 .eccbytes = 10,
46 .eccpos = {48, 49, 50, 51, 52, 53, 54, 55, 56, 57},
47 .oobfree = {
48 {.offset = 60,
49 . length = 4} },
52 static uint8_t scan_ff_pattern[] = { 0xff, 0xff };
54 static struct nand_bbt_descr flctl_4secc_smallpage = {
55 .options = NAND_BBT_SCAN2NDPAGE,
56 .offs = 11,
57 .len = 1,
58 .pattern = scan_ff_pattern,
61 static struct nand_bbt_descr flctl_4secc_largepage = {
62 .options = NAND_BBT_SCAN2NDPAGE,
63 .offs = 58,
64 .len = 2,
65 .pattern = scan_ff_pattern,
68 static void empty_fifo(struct sh_flctl *flctl)
70 writel(0x000c0000, FLINTDMACR(flctl)); /* FIFO Clear */
71 writel(0x00000000, FLINTDMACR(flctl)); /* Clear Error flags */
74 static void start_translation(struct sh_flctl *flctl)
76 writeb(TRSTRT, FLTRCR(flctl));
79 static void timeout_error(struct sh_flctl *flctl, const char *str)
81 dev_err(&flctl->pdev->dev, "Timeout occurred in %s\n", str);
84 static void wait_completion(struct sh_flctl *flctl)
86 uint32_t timeout = LOOP_TIMEOUT_MAX;
88 while (timeout--) {
89 if (readb(FLTRCR(flctl)) & TREND) {
90 writeb(0x0, FLTRCR(flctl));
91 return;
93 udelay(1);
96 timeout_error(flctl, __func__);
97 writeb(0x0, FLTRCR(flctl));
100 static void set_addr(struct mtd_info *mtd, int column, int page_addr)
102 struct sh_flctl *flctl = mtd_to_flctl(mtd);
103 uint32_t addr = 0;
105 if (column == -1) {
106 addr = page_addr; /* ERASE1 */
107 } else if (page_addr != -1) {
108 /* SEQIN, READ0, etc.. */
109 if (flctl->chip.options & NAND_BUSWIDTH_16)
110 column >>= 1;
111 if (flctl->page_size) {
112 addr = column & 0x0FFF;
113 addr |= (page_addr & 0xff) << 16;
114 addr |= ((page_addr >> 8) & 0xff) << 24;
115 /* big than 128MB */
116 if (flctl->rw_ADRCNT == ADRCNT2_E) {
117 uint32_t addr2;
118 addr2 = (page_addr >> 16) & 0xff;
119 writel(addr2, FLADR2(flctl));
121 } else {
122 addr = column;
123 addr |= (page_addr & 0xff) << 8;
124 addr |= ((page_addr >> 8) & 0xff) << 16;
125 addr |= ((page_addr >> 16) & 0xff) << 24;
128 writel(addr, FLADR(flctl));
131 static void wait_rfifo_ready(struct sh_flctl *flctl)
133 uint32_t timeout = LOOP_TIMEOUT_MAX;
135 while (timeout--) {
136 uint32_t val;
137 /* check FIFO */
138 val = readl(FLDTCNTR(flctl)) >> 16;
139 if (val & 0xFF)
140 return;
141 udelay(1);
143 timeout_error(flctl, __func__);
146 static void wait_wfifo_ready(struct sh_flctl *flctl)
148 uint32_t len, timeout = LOOP_TIMEOUT_MAX;
150 while (timeout--) {
151 /* check FIFO */
152 len = (readl(FLDTCNTR(flctl)) >> 16) & 0xFF;
153 if (len >= 4)
154 return;
155 udelay(1);
157 timeout_error(flctl, __func__);
160 static int wait_recfifo_ready(struct sh_flctl *flctl, int sector_number)
162 uint32_t timeout = LOOP_TIMEOUT_MAX;
163 int checked[4];
164 void __iomem *ecc_reg[4];
165 int i;
166 uint32_t data, size;
168 memset(checked, 0, sizeof(checked));
170 while (timeout--) {
171 size = readl(FLDTCNTR(flctl)) >> 24;
172 if (size & 0xFF)
173 return 0; /* success */
175 if (readl(FL4ECCCR(flctl)) & _4ECCFA)
176 return 1; /* can't correct */
178 udelay(1);
179 if (!(readl(FL4ECCCR(flctl)) & _4ECCEND))
180 continue;
182 /* start error correction */
183 ecc_reg[0] = FL4ECCRESULT0(flctl);
184 ecc_reg[1] = FL4ECCRESULT1(flctl);
185 ecc_reg[2] = FL4ECCRESULT2(flctl);
186 ecc_reg[3] = FL4ECCRESULT3(flctl);
188 for (i = 0; i < 3; i++) {
189 data = readl(ecc_reg[i]);
190 if (data != INIT_FL4ECCRESULT_VAL && !checked[i]) {
191 uint8_t org;
192 int index;
194 if (flctl->page_size)
195 index = (512 * sector_number) +
196 (data >> 16);
197 else
198 index = data >> 16;
200 org = flctl->done_buff[index];
201 flctl->done_buff[index] = org ^ (data & 0xFF);
202 checked[i] = 1;
206 writel(0, FL4ECCCR(flctl));
209 timeout_error(flctl, __func__);
210 return 1; /* timeout */
213 static void wait_wecfifo_ready(struct sh_flctl *flctl)
215 uint32_t timeout = LOOP_TIMEOUT_MAX;
216 uint32_t len;
218 while (timeout--) {
219 /* check FLECFIFO */
220 len = (readl(FLDTCNTR(flctl)) >> 24) & 0xFF;
221 if (len >= 4)
222 return;
223 udelay(1);
225 timeout_error(flctl, __func__);
228 static void read_datareg(struct sh_flctl *flctl, int offset)
230 unsigned long data;
231 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
233 wait_completion(flctl);
235 data = readl(FLDATAR(flctl));
236 *buf = le32_to_cpu(data);
239 static void read_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
241 int i, len_4align;
242 unsigned long *buf = (unsigned long *)&flctl->done_buff[offset];
243 void *fifo_addr = (void *)FLDTFIFO(flctl);
245 len_4align = (rlen + 3) / 4;
247 for (i = 0; i < len_4align; i++) {
248 wait_rfifo_ready(flctl);
249 buf[i] = readl(fifo_addr);
250 buf[i] = be32_to_cpu(buf[i]);
254 static int read_ecfiforeg(struct sh_flctl *flctl, uint8_t *buff, int sector)
256 int i;
257 unsigned long *ecc_buf = (unsigned long *)buff;
258 void *fifo_addr = (void *)FLECFIFO(flctl);
260 for (i = 0; i < 4; i++) {
261 if (wait_recfifo_ready(flctl , sector))
262 return 1;
263 ecc_buf[i] = readl(fifo_addr);
264 ecc_buf[i] = be32_to_cpu(ecc_buf[i]);
267 return 0;
270 static void write_fiforeg(struct sh_flctl *flctl, int rlen, int offset)
272 int i, len_4align;
273 unsigned long *data = (unsigned long *)&flctl->done_buff[offset];
274 void *fifo_addr = (void *)FLDTFIFO(flctl);
276 len_4align = (rlen + 3) / 4;
277 for (i = 0; i < len_4align; i++) {
278 wait_wfifo_ready(flctl);
279 writel(cpu_to_be32(data[i]), fifo_addr);
283 static void set_cmd_regs(struct mtd_info *mtd, uint32_t cmd, uint32_t flcmcdr_val)
285 struct sh_flctl *flctl = mtd_to_flctl(mtd);
286 uint32_t flcmncr_val = readl(FLCMNCR(flctl)) & ~SEL_16BIT;
287 uint32_t flcmdcr_val, addr_len_bytes = 0;
289 /* Set SNAND bit if page size is 2048byte */
290 if (flctl->page_size)
291 flcmncr_val |= SNAND_E;
292 else
293 flcmncr_val &= ~SNAND_E;
295 /* default FLCMDCR val */
296 flcmdcr_val = DOCMD1_E | DOADR_E;
298 /* Set for FLCMDCR */
299 switch (cmd) {
300 case NAND_CMD_ERASE1:
301 addr_len_bytes = flctl->erase_ADRCNT;
302 flcmdcr_val |= DOCMD2_E;
303 break;
304 case NAND_CMD_READ0:
305 case NAND_CMD_READOOB:
306 addr_len_bytes = flctl->rw_ADRCNT;
307 flcmdcr_val |= CDSRC_E;
308 if (flctl->chip.options & NAND_BUSWIDTH_16)
309 flcmncr_val |= SEL_16BIT;
310 break;
311 case NAND_CMD_SEQIN:
312 /* This case is that cmd is READ0 or READ1 or READ00 */
313 flcmdcr_val &= ~DOADR_E; /* ONLY execute 1st cmd */
314 break;
315 case NAND_CMD_PAGEPROG:
316 addr_len_bytes = flctl->rw_ADRCNT;
317 flcmdcr_val |= DOCMD2_E | CDSRC_E | SELRW;
318 if (flctl->chip.options & NAND_BUSWIDTH_16)
319 flcmncr_val |= SEL_16BIT;
320 break;
321 case NAND_CMD_READID:
322 flcmncr_val &= ~SNAND_E;
323 addr_len_bytes = ADRCNT_1;
324 break;
325 case NAND_CMD_STATUS:
326 case NAND_CMD_RESET:
327 flcmncr_val &= ~SNAND_E;
328 flcmdcr_val &= ~(DOADR_E | DOSR_E);
329 break;
330 default:
331 break;
334 /* Set address bytes parameter */
335 flcmdcr_val |= addr_len_bytes;
337 /* Now actually write */
338 writel(flcmncr_val, FLCMNCR(flctl));
339 writel(flcmdcr_val, FLCMDCR(flctl));
340 writel(flcmcdr_val, FLCMCDR(flctl));
343 static int flctl_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
344 uint8_t *buf, int page)
346 int i, eccsize = chip->ecc.size;
347 int eccbytes = chip->ecc.bytes;
348 int eccsteps = chip->ecc.steps;
349 uint8_t *p = buf;
350 struct sh_flctl *flctl = mtd_to_flctl(mtd);
352 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
353 chip->read_buf(mtd, p, eccsize);
355 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
356 if (flctl->hwecc_cant_correct[i])
357 mtd->ecc_stats.failed++;
358 else
359 mtd->ecc_stats.corrected += 0;
362 return 0;
365 static void flctl_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
366 const uint8_t *buf)
368 int i, eccsize = chip->ecc.size;
369 int eccbytes = chip->ecc.bytes;
370 int eccsteps = chip->ecc.steps;
371 const uint8_t *p = buf;
373 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
374 chip->write_buf(mtd, p, eccsize);
377 static void execmd_read_page_sector(struct mtd_info *mtd, int page_addr)
379 struct sh_flctl *flctl = mtd_to_flctl(mtd);
380 int sector, page_sectors;
382 if (flctl->page_size)
383 page_sectors = 4;
384 else
385 page_sectors = 1;
387 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE | _4ECCCORRECT,
388 FLCMNCR(flctl));
390 set_cmd_regs(mtd, NAND_CMD_READ0,
391 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
393 for (sector = 0; sector < page_sectors; sector++) {
394 int ret;
396 empty_fifo(flctl);
397 writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl));
398 writel(page_addr << 2 | sector, FLADR(flctl));
400 start_translation(flctl);
401 read_fiforeg(flctl, 512, 512 * sector);
403 ret = read_ecfiforeg(flctl,
404 &flctl->done_buff[mtd->writesize + 16 * sector],
405 sector);
407 if (ret)
408 flctl->hwecc_cant_correct[sector] = 1;
410 writel(0x0, FL4ECCCR(flctl));
411 wait_completion(flctl);
413 writel(readl(FLCMNCR(flctl)) & ~(ACM_SACCES_MODE | _4ECCCORRECT),
414 FLCMNCR(flctl));
417 static void execmd_read_oob(struct mtd_info *mtd, int page_addr)
419 struct sh_flctl *flctl = mtd_to_flctl(mtd);
421 set_cmd_regs(mtd, NAND_CMD_READ0,
422 (NAND_CMD_READSTART << 8) | NAND_CMD_READ0);
424 empty_fifo(flctl);
425 if (flctl->page_size) {
426 int i;
427 /* In case that the page size is 2k */
428 for (i = 0; i < 16 * 3; i++)
429 flctl->done_buff[i] = 0xFF;
431 set_addr(mtd, 3 * 528 + 512, page_addr);
432 writel(16, FLDTCNTR(flctl));
434 start_translation(flctl);
435 read_fiforeg(flctl, 16, 16 * 3);
436 wait_completion(flctl);
437 } else {
438 /* In case that the page size is 512b */
439 set_addr(mtd, 512, page_addr);
440 writel(16, FLDTCNTR(flctl));
442 start_translation(flctl);
443 read_fiforeg(flctl, 16, 0);
444 wait_completion(flctl);
448 static void execmd_write_page_sector(struct mtd_info *mtd)
450 struct sh_flctl *flctl = mtd_to_flctl(mtd);
451 int i, page_addr = flctl->seqin_page_addr;
452 int sector, page_sectors;
454 if (flctl->page_size)
455 page_sectors = 4;
456 else
457 page_sectors = 1;
459 writel(readl(FLCMNCR(flctl)) | ACM_SACCES_MODE, FLCMNCR(flctl));
461 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
462 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
464 for (sector = 0; sector < page_sectors; sector++) {
465 empty_fifo(flctl);
466 writel(readl(FLCMDCR(flctl)) | 1, FLCMDCR(flctl));
467 writel(page_addr << 2 | sector, FLADR(flctl));
469 start_translation(flctl);
470 write_fiforeg(flctl, 512, 512 * sector);
472 for (i = 0; i < 4; i++) {
473 wait_wecfifo_ready(flctl); /* wait for write ready */
474 writel(0xFFFFFFFF, FLECFIFO(flctl));
476 wait_completion(flctl);
479 writel(readl(FLCMNCR(flctl)) & ~ACM_SACCES_MODE, FLCMNCR(flctl));
482 static void execmd_write_oob(struct mtd_info *mtd)
484 struct sh_flctl *flctl = mtd_to_flctl(mtd);
485 int page_addr = flctl->seqin_page_addr;
486 int sector, page_sectors;
488 if (flctl->page_size) {
489 sector = 3;
490 page_sectors = 4;
491 } else {
492 sector = 0;
493 page_sectors = 1;
496 set_cmd_regs(mtd, NAND_CMD_PAGEPROG,
497 (NAND_CMD_PAGEPROG << 8) | NAND_CMD_SEQIN);
499 for (; sector < page_sectors; sector++) {
500 empty_fifo(flctl);
501 set_addr(mtd, sector * 528 + 512, page_addr);
502 writel(16, FLDTCNTR(flctl)); /* set read size */
504 start_translation(flctl);
505 write_fiforeg(flctl, 16, 16 * sector);
506 wait_completion(flctl);
510 static void flctl_cmdfunc(struct mtd_info *mtd, unsigned int command,
511 int column, int page_addr)
513 struct sh_flctl *flctl = mtd_to_flctl(mtd);
514 uint32_t read_cmd = 0;
516 flctl->read_bytes = 0;
517 if (command != NAND_CMD_PAGEPROG)
518 flctl->index = 0;
520 switch (command) {
521 case NAND_CMD_READ1:
522 case NAND_CMD_READ0:
523 if (flctl->hwecc) {
524 /* read page with hwecc */
525 execmd_read_page_sector(mtd, page_addr);
526 break;
528 empty_fifo(flctl);
529 if (flctl->page_size)
530 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
531 | command);
532 else
533 set_cmd_regs(mtd, command, command);
535 set_addr(mtd, 0, page_addr);
537 flctl->read_bytes = mtd->writesize + mtd->oobsize;
538 if (flctl->chip.options & NAND_BUSWIDTH_16)
539 column >>= 1;
540 flctl->index += column;
541 goto read_normal_exit;
543 case NAND_CMD_READOOB:
544 if (flctl->hwecc) {
545 /* read page with hwecc */
546 execmd_read_oob(mtd, page_addr);
547 break;
550 empty_fifo(flctl);
551 if (flctl->page_size) {
552 set_cmd_regs(mtd, command, (NAND_CMD_READSTART << 8)
553 | NAND_CMD_READ0);
554 set_addr(mtd, mtd->writesize, page_addr);
555 } else {
556 set_cmd_regs(mtd, command, command);
557 set_addr(mtd, 0, page_addr);
559 flctl->read_bytes = mtd->oobsize;
560 goto read_normal_exit;
562 case NAND_CMD_READID:
563 empty_fifo(flctl);
564 set_cmd_regs(mtd, command, command);
565 set_addr(mtd, 0, 0);
567 flctl->read_bytes = 4;
568 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
569 start_translation(flctl);
570 read_datareg(flctl, 0); /* read and end */
571 break;
573 case NAND_CMD_ERASE1:
574 flctl->erase1_page_addr = page_addr;
575 break;
577 case NAND_CMD_ERASE2:
578 set_cmd_regs(mtd, NAND_CMD_ERASE1,
579 (command << 8) | NAND_CMD_ERASE1);
580 set_addr(mtd, -1, flctl->erase1_page_addr);
581 start_translation(flctl);
582 wait_completion(flctl);
583 break;
585 case NAND_CMD_SEQIN:
586 if (!flctl->page_size) {
587 /* output read command */
588 if (column >= mtd->writesize) {
589 column -= mtd->writesize;
590 read_cmd = NAND_CMD_READOOB;
591 } else if (column < 256) {
592 read_cmd = NAND_CMD_READ0;
593 } else {
594 column -= 256;
595 read_cmd = NAND_CMD_READ1;
598 flctl->seqin_column = column;
599 flctl->seqin_page_addr = page_addr;
600 flctl->seqin_read_cmd = read_cmd;
601 break;
603 case NAND_CMD_PAGEPROG:
604 empty_fifo(flctl);
605 if (!flctl->page_size) {
606 set_cmd_regs(mtd, NAND_CMD_SEQIN,
607 flctl->seqin_read_cmd);
608 set_addr(mtd, -1, -1);
609 writel(0, FLDTCNTR(flctl)); /* set 0 size */
610 start_translation(flctl);
611 wait_completion(flctl);
613 if (flctl->hwecc) {
614 /* write page with hwecc */
615 if (flctl->seqin_column == mtd->writesize)
616 execmd_write_oob(mtd);
617 else if (!flctl->seqin_column)
618 execmd_write_page_sector(mtd);
619 else
620 printk(KERN_ERR "Invalid address !?\n");
621 break;
623 set_cmd_regs(mtd, command, (command << 8) | NAND_CMD_SEQIN);
624 set_addr(mtd, flctl->seqin_column, flctl->seqin_page_addr);
625 writel(flctl->index, FLDTCNTR(flctl)); /* set write size */
626 start_translation(flctl);
627 write_fiforeg(flctl, flctl->index, 0);
628 wait_completion(flctl);
629 break;
631 case NAND_CMD_STATUS:
632 set_cmd_regs(mtd, command, command);
633 set_addr(mtd, -1, -1);
635 flctl->read_bytes = 1;
636 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
637 start_translation(flctl);
638 read_datareg(flctl, 0); /* read and end */
639 break;
641 case NAND_CMD_RESET:
642 set_cmd_regs(mtd, command, command);
643 set_addr(mtd, -1, -1);
645 writel(0, FLDTCNTR(flctl)); /* set 0 size */
646 start_translation(flctl);
647 wait_completion(flctl);
648 break;
650 default:
651 break;
653 return;
655 read_normal_exit:
656 writel(flctl->read_bytes, FLDTCNTR(flctl)); /* set read size */
657 start_translation(flctl);
658 read_fiforeg(flctl, flctl->read_bytes, 0);
659 wait_completion(flctl);
660 return;
663 static void flctl_select_chip(struct mtd_info *mtd, int chipnr)
665 struct sh_flctl *flctl = mtd_to_flctl(mtd);
666 uint32_t flcmncr_val = readl(FLCMNCR(flctl));
668 switch (chipnr) {
669 case -1:
670 flcmncr_val &= ~CE0_ENABLE;
671 writel(flcmncr_val, FLCMNCR(flctl));
672 break;
673 case 0:
674 flcmncr_val |= CE0_ENABLE;
675 writel(flcmncr_val, FLCMNCR(flctl));
676 break;
677 default:
678 BUG();
682 static void flctl_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
684 struct sh_flctl *flctl = mtd_to_flctl(mtd);
685 int i, index = flctl->index;
687 for (i = 0; i < len; i++)
688 flctl->done_buff[index + i] = buf[i];
689 flctl->index += len;
692 static uint8_t flctl_read_byte(struct mtd_info *mtd)
694 struct sh_flctl *flctl = mtd_to_flctl(mtd);
695 int index = flctl->index;
696 uint8_t data;
698 data = flctl->done_buff[index];
699 flctl->index++;
700 return data;
703 static uint16_t flctl_read_word(struct mtd_info *mtd)
705 struct sh_flctl *flctl = mtd_to_flctl(mtd);
706 int index = flctl->index;
707 uint16_t data;
708 uint16_t *buf = (uint16_t *)&flctl->done_buff[index];
710 data = *buf;
711 flctl->index += 2;
712 return data;
715 static void flctl_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
717 int i;
719 for (i = 0; i < len; i++)
720 buf[i] = flctl_read_byte(mtd);
723 static int flctl_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
725 int i;
727 for (i = 0; i < len; i++)
728 if (buf[i] != flctl_read_byte(mtd))
729 return -EFAULT;
730 return 0;
733 static void flctl_register_init(struct sh_flctl *flctl, unsigned long val)
735 writel(val, FLCMNCR(flctl));
738 static int flctl_chip_init_tail(struct mtd_info *mtd)
740 struct sh_flctl *flctl = mtd_to_flctl(mtd);
741 struct nand_chip *chip = &flctl->chip;
743 if (mtd->writesize == 512) {
744 flctl->page_size = 0;
745 if (chip->chipsize > (32 << 20)) {
746 /* big than 32MB */
747 flctl->rw_ADRCNT = ADRCNT_4;
748 flctl->erase_ADRCNT = ADRCNT_3;
749 } else if (chip->chipsize > (2 << 16)) {
750 /* big than 128KB */
751 flctl->rw_ADRCNT = ADRCNT_3;
752 flctl->erase_ADRCNT = ADRCNT_2;
753 } else {
754 flctl->rw_ADRCNT = ADRCNT_2;
755 flctl->erase_ADRCNT = ADRCNT_1;
757 } else {
758 flctl->page_size = 1;
759 if (chip->chipsize > (128 << 20)) {
760 /* big than 128MB */
761 flctl->rw_ADRCNT = ADRCNT2_E;
762 flctl->erase_ADRCNT = ADRCNT_3;
763 } else if (chip->chipsize > (8 << 16)) {
764 /* big than 512KB */
765 flctl->rw_ADRCNT = ADRCNT_4;
766 flctl->erase_ADRCNT = ADRCNT_2;
767 } else {
768 flctl->rw_ADRCNT = ADRCNT_3;
769 flctl->erase_ADRCNT = ADRCNT_1;
773 if (flctl->hwecc) {
774 if (mtd->writesize == 512) {
775 chip->ecc.layout = &flctl_4secc_oob_16;
776 chip->badblock_pattern = &flctl_4secc_smallpage;
777 } else {
778 chip->ecc.layout = &flctl_4secc_oob_64;
779 chip->badblock_pattern = &flctl_4secc_largepage;
782 chip->ecc.size = 512;
783 chip->ecc.bytes = 10;
784 chip->ecc.read_page = flctl_read_page_hwecc;
785 chip->ecc.write_page = flctl_write_page_hwecc;
786 chip->ecc.mode = NAND_ECC_HW;
788 /* 4 symbols ECC enabled */
789 writel(readl(FLCMNCR(flctl)) | _4ECCEN | ECCPOS2 | ECCPOS_02,
790 FLCMNCR(flctl));
791 } else {
792 chip->ecc.mode = NAND_ECC_SOFT;
795 return 0;
798 static int __devinit flctl_probe(struct platform_device *pdev)
800 struct resource *res;
801 struct sh_flctl *flctl;
802 struct mtd_info *flctl_mtd;
803 struct nand_chip *nand;
804 struct sh_flctl_platform_data *pdata;
805 int ret = -ENXIO;
807 pdata = pdev->dev.platform_data;
808 if (pdata == NULL) {
809 dev_err(&pdev->dev, "no platform data defined\n");
810 return -EINVAL;
813 flctl = kzalloc(sizeof(struct sh_flctl), GFP_KERNEL);
814 if (!flctl) {
815 dev_err(&pdev->dev, "failed to allocate driver data\n");
816 return -ENOMEM;
819 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
820 if (!res) {
821 dev_err(&pdev->dev, "failed to get I/O memory\n");
822 goto err;
825 flctl->reg = ioremap(res->start, resource_size(res));
826 if (flctl->reg == NULL) {
827 dev_err(&pdev->dev, "failed to remap I/O memory\n");
828 goto err;
831 platform_set_drvdata(pdev, flctl);
832 flctl_mtd = &flctl->mtd;
833 nand = &flctl->chip;
834 flctl_mtd->priv = nand;
835 flctl->pdev = pdev;
836 flctl->hwecc = pdata->has_hwecc;
838 flctl_register_init(flctl, pdata->flcmncr_val);
840 nand->options = NAND_NO_AUTOINCR;
842 /* Set address of hardware control function */
843 /* 20 us command delay time */
844 nand->chip_delay = 20;
846 nand->read_byte = flctl_read_byte;
847 nand->write_buf = flctl_write_buf;
848 nand->read_buf = flctl_read_buf;
849 nand->verify_buf = flctl_verify_buf;
850 nand->select_chip = flctl_select_chip;
851 nand->cmdfunc = flctl_cmdfunc;
853 if (pdata->flcmncr_val & SEL_16BIT) {
854 nand->options |= NAND_BUSWIDTH_16;
855 nand->read_word = flctl_read_word;
858 ret = nand_scan_ident(flctl_mtd, 1, NULL);
859 if (ret)
860 goto err;
862 ret = flctl_chip_init_tail(flctl_mtd);
863 if (ret)
864 goto err;
866 ret = nand_scan_tail(flctl_mtd);
867 if (ret)
868 goto err;
870 mtd_device_register(flctl_mtd, pdata->parts, pdata->nr_parts);
872 return 0;
874 err:
875 kfree(flctl);
876 return ret;
879 static int __devexit flctl_remove(struct platform_device *pdev)
881 struct sh_flctl *flctl = platform_get_drvdata(pdev);
883 nand_release(&flctl->mtd);
884 kfree(flctl);
886 return 0;
889 static struct platform_driver flctl_driver = {
890 .remove = flctl_remove,
891 .driver = {
892 .name = "sh_flctl",
893 .owner = THIS_MODULE,
897 static int __init flctl_nand_init(void)
899 return platform_driver_probe(&flctl_driver, flctl_probe);
902 static void __exit flctl_nand_cleanup(void)
904 platform_driver_unregister(&flctl_driver);
907 module_init(flctl_nand_init);
908 module_exit(flctl_nand_cleanup);
910 MODULE_LICENSE("GPL");
911 MODULE_AUTHOR("Yoshihiro Shimoda");
912 MODULE_DESCRIPTION("SuperH FLCTL driver");
913 MODULE_ALIAS("platform:sh_flctl");