Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/upstream-linus
[linux-btrfs-devel.git] / drivers / mtd / nand / tmio_nand.c
blob11e8371b56834e8b0c79f64fe4d54393be849630
1 /*
2 * Toshiba TMIO NAND flash controller driver
4 * Slightly murky pre-git history of the driver:
6 * Copyright (c) Ian Molton 2004, 2005, 2008
7 * Original work, independent of sharps code. Included hardware ECC support.
8 * Hard ECC did not work for writes in the early revisions.
9 * Copyright (c) Dirk Opfer 2005.
10 * Modifications developed from sharps code but
11 * NOT containing any, ported onto Ians base.
12 * Copyright (c) Chris Humbert 2005
13 * Copyright (c) Dmitry Baryshkov 2008
14 * Minor fixes
16 * Parts copyright Sebastian Carlier
18 * This file is licensed under
19 * the terms of the GNU General Public License version 2. This program
20 * is licensed "as is" without any warranty of any kind, whether express
21 * or implied.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/platform_device.h>
29 #include <linux/mfd/core.h>
30 #include <linux/mfd/tmio.h>
31 #include <linux/delay.h>
32 #include <linux/io.h>
33 #include <linux/irq.h>
34 #include <linux/interrupt.h>
35 #include <linux/ioport.h>
36 #include <linux/mtd/mtd.h>
37 #include <linux/mtd/nand.h>
38 #include <linux/mtd/nand_ecc.h>
39 #include <linux/mtd/partitions.h>
40 #include <linux/slab.h>
42 /*--------------------------------------------------------------------------*/
45 * NAND Flash Host Controller Configuration Register
47 #define CCR_COMMAND 0x04 /* w Command */
48 #define CCR_BASE 0x10 /* l NAND Flash Control Reg Base Addr */
49 #define CCR_INTP 0x3d /* b Interrupt Pin */
50 #define CCR_INTE 0x48 /* b Interrupt Enable */
51 #define CCR_EC 0x4a /* b Event Control */
52 #define CCR_ICC 0x4c /* b Internal Clock Control */
53 #define CCR_ECCC 0x5b /* b ECC Control */
54 #define CCR_NFTC 0x60 /* b NAND Flash Transaction Control */
55 #define CCR_NFM 0x61 /* b NAND Flash Monitor */
56 #define CCR_NFPSC 0x62 /* b NAND Flash Power Supply Control */
57 #define CCR_NFDC 0x63 /* b NAND Flash Detect Control */
60 * NAND Flash Control Register
62 #define FCR_DATA 0x00 /* bwl Data Register */
63 #define FCR_MODE 0x04 /* b Mode Register */
64 #define FCR_STATUS 0x05 /* b Status Register */
65 #define FCR_ISR 0x06 /* b Interrupt Status Register */
66 #define FCR_IMR 0x07 /* b Interrupt Mask Register */
68 /* FCR_MODE Register Command List */
69 #define FCR_MODE_DATA 0x94 /* Data Data_Mode */
70 #define FCR_MODE_COMMAND 0x95 /* Data Command_Mode */
71 #define FCR_MODE_ADDRESS 0x96 /* Data Address_Mode */
73 #define FCR_MODE_HWECC_CALC 0xB4 /* HW-ECC Data */
74 #define FCR_MODE_HWECC_RESULT 0xD4 /* HW-ECC Calc result Read_Mode */
75 #define FCR_MODE_HWECC_RESET 0xF4 /* HW-ECC Reset */
77 #define FCR_MODE_POWER_ON 0x0C /* Power Supply ON to SSFDC card */
78 #define FCR_MODE_POWER_OFF 0x08 /* Power Supply OFF to SSFDC card */
80 #define FCR_MODE_LED_OFF 0x00 /* LED OFF */
81 #define FCR_MODE_LED_ON 0x04 /* LED ON */
83 #define FCR_MODE_EJECT_ON 0x68 /* Ejection events active */
84 #define FCR_MODE_EJECT_OFF 0x08 /* Ejection events ignored */
86 #define FCR_MODE_LOCK 0x6C /* Lock_Mode. Eject Switch Invalid */
87 #define FCR_MODE_UNLOCK 0x0C /* UnLock_Mode. Eject Switch is valid */
89 #define FCR_MODE_CONTROLLER_ID 0x40 /* Controller ID Read */
90 #define FCR_MODE_STANDBY 0x00 /* SSFDC card Changes Standby State */
92 #define FCR_MODE_WE 0x80
93 #define FCR_MODE_ECC1 0x40
94 #define FCR_MODE_ECC0 0x20
95 #define FCR_MODE_CE 0x10
96 #define FCR_MODE_PCNT1 0x08
97 #define FCR_MODE_PCNT0 0x04
98 #define FCR_MODE_ALE 0x02
99 #define FCR_MODE_CLE 0x01
101 #define FCR_STATUS_BUSY 0x80
103 /*--------------------------------------------------------------------------*/
105 struct tmio_nand {
106 struct mtd_info mtd;
107 struct nand_chip chip;
109 struct platform_device *dev;
111 void __iomem *ccr;
112 void __iomem *fcr;
113 unsigned long fcr_base;
115 unsigned int irq;
117 /* for tmio_nand_read_byte */
118 u8 read;
119 unsigned read_good:1;
122 #define mtd_to_tmio(m) container_of(m, struct tmio_nand, mtd)
124 #ifdef CONFIG_MTD_CMDLINE_PARTS
125 static const char *part_probes[] = { "cmdlinepart", NULL };
126 #endif
128 /*--------------------------------------------------------------------------*/
130 static void tmio_nand_hwcontrol(struct mtd_info *mtd, int cmd,
131 unsigned int ctrl)
133 struct tmio_nand *tmio = mtd_to_tmio(mtd);
134 struct nand_chip *chip = mtd->priv;
136 if (ctrl & NAND_CTRL_CHANGE) {
137 u8 mode;
139 if (ctrl & NAND_NCE) {
140 mode = FCR_MODE_DATA;
142 if (ctrl & NAND_CLE)
143 mode |= FCR_MODE_CLE;
144 else
145 mode &= ~FCR_MODE_CLE;
147 if (ctrl & NAND_ALE)
148 mode |= FCR_MODE_ALE;
149 else
150 mode &= ~FCR_MODE_ALE;
151 } else {
152 mode = FCR_MODE_STANDBY;
155 tmio_iowrite8(mode, tmio->fcr + FCR_MODE);
156 tmio->read_good = 0;
159 if (cmd != NAND_CMD_NONE)
160 tmio_iowrite8(cmd, chip->IO_ADDR_W);
163 static int tmio_nand_dev_ready(struct mtd_info *mtd)
165 struct tmio_nand *tmio = mtd_to_tmio(mtd);
167 return !(tmio_ioread8(tmio->fcr + FCR_STATUS) & FCR_STATUS_BUSY);
170 static irqreturn_t tmio_irq(int irq, void *__tmio)
172 struct tmio_nand *tmio = __tmio;
173 struct nand_chip *nand_chip = &tmio->chip;
175 /* disable RDYREQ interrupt */
176 tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
178 if (unlikely(!waitqueue_active(&nand_chip->controller->wq)))
179 dev_warn(&tmio->dev->dev, "spurious interrupt\n");
181 wake_up(&nand_chip->controller->wq);
182 return IRQ_HANDLED;
186 *The TMIO core has a RDYREQ interrupt on the posedge of #SMRB.
187 *This interrupt is normally disabled, but for long operations like
188 *erase and write, we enable it to wake us up. The irq handler
189 *disables the interrupt.
191 static int
192 tmio_nand_wait(struct mtd_info *mtd, struct nand_chip *nand_chip)
194 struct tmio_nand *tmio = mtd_to_tmio(mtd);
195 long timeout;
197 /* enable RDYREQ interrupt */
198 tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
199 tmio_iowrite8(0x81, tmio->fcr + FCR_IMR);
201 timeout = wait_event_timeout(nand_chip->controller->wq,
202 tmio_nand_dev_ready(mtd),
203 msecs_to_jiffies(nand_chip->state == FL_ERASING ? 400 : 20));
205 if (unlikely(!tmio_nand_dev_ready(mtd))) {
206 tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
207 dev_warn(&tmio->dev->dev, "still busy with %s after %d ms\n",
208 nand_chip->state == FL_ERASING ? "erase" : "program",
209 nand_chip->state == FL_ERASING ? 400 : 20);
211 } else if (unlikely(!timeout)) {
212 tmio_iowrite8(0x00, tmio->fcr + FCR_IMR);
213 dev_warn(&tmio->dev->dev, "timeout waiting for interrupt\n");
216 nand_chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
217 return nand_chip->read_byte(mtd);
221 *The TMIO controller combines two 8-bit data bytes into one 16-bit
222 *word. This function separates them so nand_base.c works as expected,
223 *especially its NAND_CMD_READID routines.
225 *To prevent stale data from being read, tmio_nand_hwcontrol() clears
226 *tmio->read_good.
228 static u_char tmio_nand_read_byte(struct mtd_info *mtd)
230 struct tmio_nand *tmio = mtd_to_tmio(mtd);
231 unsigned int data;
233 if (tmio->read_good--)
234 return tmio->read;
236 data = tmio_ioread16(tmio->fcr + FCR_DATA);
237 tmio->read = data >> 8;
238 return data;
242 *The TMIO controller converts an 8-bit NAND interface to a 16-bit
243 *bus interface, so all data reads and writes must be 16-bit wide.
244 *Thus, we implement 16-bit versions of the read, write, and verify
245 *buffer functions.
247 static void
248 tmio_nand_write_buf(struct mtd_info *mtd, const u_char *buf, int len)
250 struct tmio_nand *tmio = mtd_to_tmio(mtd);
252 tmio_iowrite16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
255 static void tmio_nand_read_buf(struct mtd_info *mtd, u_char *buf, int len)
257 struct tmio_nand *tmio = mtd_to_tmio(mtd);
259 tmio_ioread16_rep(tmio->fcr + FCR_DATA, buf, len >> 1);
262 static int
263 tmio_nand_verify_buf(struct mtd_info *mtd, const u_char *buf, int len)
265 struct tmio_nand *tmio = mtd_to_tmio(mtd);
266 u16 *p = (u16 *) buf;
268 for (len >>= 1; len; len--)
269 if (*(p++) != tmio_ioread16(tmio->fcr + FCR_DATA))
270 return -EFAULT;
271 return 0;
274 static void tmio_nand_enable_hwecc(struct mtd_info *mtd, int mode)
276 struct tmio_nand *tmio = mtd_to_tmio(mtd);
278 tmio_iowrite8(FCR_MODE_HWECC_RESET, tmio->fcr + FCR_MODE);
279 tmio_ioread8(tmio->fcr + FCR_DATA); /* dummy read */
280 tmio_iowrite8(FCR_MODE_HWECC_CALC, tmio->fcr + FCR_MODE);
283 static int tmio_nand_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
284 u_char *ecc_code)
286 struct tmio_nand *tmio = mtd_to_tmio(mtd);
287 unsigned int ecc;
289 tmio_iowrite8(FCR_MODE_HWECC_RESULT, tmio->fcr + FCR_MODE);
291 ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
292 ecc_code[1] = ecc; /* 000-255 LP7-0 */
293 ecc_code[0] = ecc >> 8; /* 000-255 LP15-8 */
294 ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
295 ecc_code[2] = ecc; /* 000-255 CP5-0,11b */
296 ecc_code[4] = ecc >> 8; /* 256-511 LP7-0 */
297 ecc = tmio_ioread16(tmio->fcr + FCR_DATA);
298 ecc_code[3] = ecc; /* 256-511 LP15-8 */
299 ecc_code[5] = ecc >> 8; /* 256-511 CP5-0,11b */
301 tmio_iowrite8(FCR_MODE_DATA, tmio->fcr + FCR_MODE);
302 return 0;
305 static int tmio_nand_correct_data(struct mtd_info *mtd, unsigned char *buf,
306 unsigned char *read_ecc, unsigned char *calc_ecc)
308 int r0, r1;
310 /* assume ecc.size = 512 and ecc.bytes = 6 */
311 r0 = __nand_correct_data(buf, read_ecc, calc_ecc, 256);
312 if (r0 < 0)
313 return r0;
314 r1 = __nand_correct_data(buf + 256, read_ecc + 3, calc_ecc + 3, 256);
315 if (r1 < 0)
316 return r1;
317 return r0 + r1;
320 static int tmio_hw_init(struct platform_device *dev, struct tmio_nand *tmio)
322 const struct mfd_cell *cell = mfd_get_cell(dev);
323 int ret;
325 if (cell->enable) {
326 ret = cell->enable(dev);
327 if (ret)
328 return ret;
331 /* (4Ch) CLKRUN Enable 1st spcrunc */
332 tmio_iowrite8(0x81, tmio->ccr + CCR_ICC);
334 /* (10h)BaseAddress 0x1000 spba.spba2 */
335 tmio_iowrite16(tmio->fcr_base, tmio->ccr + CCR_BASE);
336 tmio_iowrite16(tmio->fcr_base >> 16, tmio->ccr + CCR_BASE + 2);
338 /* (04h)Command Register I/O spcmd */
339 tmio_iowrite8(0x02, tmio->ccr + CCR_COMMAND);
341 /* (62h) Power Supply Control ssmpwc */
342 /* HardPowerOFF - SuspendOFF - PowerSupplyWait_4MS */
343 tmio_iowrite8(0x02, tmio->ccr + CCR_NFPSC);
345 /* (63h) Detect Control ssmdtc */
346 tmio_iowrite8(0x02, tmio->ccr + CCR_NFDC);
348 /* Interrupt status register clear sintst */
349 tmio_iowrite8(0x0f, tmio->fcr + FCR_ISR);
351 /* After power supply, Media are reset smode */
352 tmio_iowrite8(FCR_MODE_POWER_ON, tmio->fcr + FCR_MODE);
353 tmio_iowrite8(FCR_MODE_COMMAND, tmio->fcr + FCR_MODE);
354 tmio_iowrite8(NAND_CMD_RESET, tmio->fcr + FCR_DATA);
356 /* Standby Mode smode */
357 tmio_iowrite8(FCR_MODE_STANDBY, tmio->fcr + FCR_MODE);
359 mdelay(5);
361 return 0;
364 static void tmio_hw_stop(struct platform_device *dev, struct tmio_nand *tmio)
366 const struct mfd_cell *cell = mfd_get_cell(dev);
368 tmio_iowrite8(FCR_MODE_POWER_OFF, tmio->fcr + FCR_MODE);
369 if (cell->disable)
370 cell->disable(dev);
373 static int tmio_probe(struct platform_device *dev)
375 struct tmio_nand_data *data = dev->dev.platform_data;
376 struct resource *fcr = platform_get_resource(dev,
377 IORESOURCE_MEM, 0);
378 struct resource *ccr = platform_get_resource(dev,
379 IORESOURCE_MEM, 1);
380 int irq = platform_get_irq(dev, 0);
381 struct tmio_nand *tmio;
382 struct mtd_info *mtd;
383 struct nand_chip *nand_chip;
384 struct mtd_partition *parts;
385 int nbparts = 0;
386 int retval;
388 if (data == NULL)
389 dev_warn(&dev->dev, "NULL platform data!\n");
391 tmio = kzalloc(sizeof *tmio, GFP_KERNEL);
392 if (!tmio) {
393 retval = -ENOMEM;
394 goto err_kzalloc;
397 tmio->dev = dev;
399 platform_set_drvdata(dev, tmio);
400 mtd = &tmio->mtd;
401 nand_chip = &tmio->chip;
402 mtd->priv = nand_chip;
403 mtd->name = "tmio-nand";
405 tmio->ccr = ioremap(ccr->start, resource_size(ccr));
406 if (!tmio->ccr) {
407 retval = -EIO;
408 goto err_iomap_ccr;
411 tmio->fcr_base = fcr->start & 0xfffff;
412 tmio->fcr = ioremap(fcr->start, resource_size(fcr));
413 if (!tmio->fcr) {
414 retval = -EIO;
415 goto err_iomap_fcr;
418 retval = tmio_hw_init(dev, tmio);
419 if (retval)
420 goto err_hwinit;
422 /* Set address of NAND IO lines */
423 nand_chip->IO_ADDR_R = tmio->fcr;
424 nand_chip->IO_ADDR_W = tmio->fcr;
426 /* Set address of hardware control function */
427 nand_chip->cmd_ctrl = tmio_nand_hwcontrol;
428 nand_chip->dev_ready = tmio_nand_dev_ready;
429 nand_chip->read_byte = tmio_nand_read_byte;
430 nand_chip->write_buf = tmio_nand_write_buf;
431 nand_chip->read_buf = tmio_nand_read_buf;
432 nand_chip->verify_buf = tmio_nand_verify_buf;
434 /* set eccmode using hardware ECC */
435 nand_chip->ecc.mode = NAND_ECC_HW;
436 nand_chip->ecc.size = 512;
437 nand_chip->ecc.bytes = 6;
438 nand_chip->ecc.hwctl = tmio_nand_enable_hwecc;
439 nand_chip->ecc.calculate = tmio_nand_calculate_ecc;
440 nand_chip->ecc.correct = tmio_nand_correct_data;
442 if (data)
443 nand_chip->badblock_pattern = data->badblock_pattern;
445 /* 15 us command delay time */
446 nand_chip->chip_delay = 15;
448 retval = request_irq(irq, &tmio_irq,
449 IRQF_DISABLED, dev_name(&dev->dev), tmio);
450 if (retval) {
451 dev_err(&dev->dev, "request_irq error %d\n", retval);
452 goto err_irq;
455 tmio->irq = irq;
456 nand_chip->waitfunc = tmio_nand_wait;
458 /* Scan to find existence of the device */
459 if (nand_scan(mtd, 1)) {
460 retval = -ENODEV;
461 goto err_scan;
463 /* Register the partitions */
464 #ifdef CONFIG_MTD_CMDLINE_PARTS
465 nbparts = parse_mtd_partitions(mtd, part_probes, &parts, 0);
466 #endif
467 if (nbparts <= 0 && data) {
468 parts = data->partition;
469 nbparts = data->num_partitions;
472 retval = mtd_device_register(mtd, parts, nbparts);
473 if (!retval)
474 return retval;
476 nand_release(mtd);
478 err_scan:
479 if (tmio->irq)
480 free_irq(tmio->irq, tmio);
481 err_irq:
482 tmio_hw_stop(dev, tmio);
483 err_hwinit:
484 iounmap(tmio->fcr);
485 err_iomap_fcr:
486 iounmap(tmio->ccr);
487 err_iomap_ccr:
488 kfree(tmio);
489 err_kzalloc:
490 return retval;
493 static int tmio_remove(struct platform_device *dev)
495 struct tmio_nand *tmio = platform_get_drvdata(dev);
497 nand_release(&tmio->mtd);
498 if (tmio->irq)
499 free_irq(tmio->irq, tmio);
500 tmio_hw_stop(dev, tmio);
501 iounmap(tmio->fcr);
502 iounmap(tmio->ccr);
503 kfree(tmio);
504 return 0;
507 #ifdef CONFIG_PM
508 static int tmio_suspend(struct platform_device *dev, pm_message_t state)
510 const struct mfd_cell *cell = mfd_get_cell(dev);
512 if (cell->suspend)
513 cell->suspend(dev);
515 tmio_hw_stop(dev, platform_get_drvdata(dev));
516 return 0;
519 static int tmio_resume(struct platform_device *dev)
521 const struct mfd_cell *cell = mfd_get_cell(dev);
523 /* FIXME - is this required or merely another attack of the broken
524 * SHARP platform? Looks suspicious.
526 tmio_hw_init(dev, platform_get_drvdata(dev));
528 if (cell->resume)
529 cell->resume(dev);
531 return 0;
533 #else
534 #define tmio_suspend NULL
535 #define tmio_resume NULL
536 #endif
538 static struct platform_driver tmio_driver = {
539 .driver.name = "tmio-nand",
540 .driver.owner = THIS_MODULE,
541 .probe = tmio_probe,
542 .remove = tmio_remove,
543 .suspend = tmio_suspend,
544 .resume = tmio_resume,
547 static int __init tmio_init(void)
549 return platform_driver_register(&tmio_driver);
552 static void __exit tmio_exit(void)
554 platform_driver_unregister(&tmio_driver);
557 module_init(tmio_init);
558 module_exit(tmio_exit);
560 MODULE_LICENSE("GPL v2");
561 MODULE_AUTHOR("Ian Molton, Dirk Opfer, Chris Humbert, Dmitry Baryshkov");
562 MODULE_DESCRIPTION("NAND flash driver on Toshiba Mobile IO controller");
563 MODULE_ALIAS("platform:tmio-nand");