Merge branch 'upstream' of git://git.linux-mips.org/pub/scm/upstream-linus
[linux-btrfs-devel.git] / drivers / pci / pci.c
blobe9651f0a88177097b0f3db03153554a6e54a6137
1 /*
2 * PCI Bus Services, see include/linux/pci.h for further explanation.
4 * Copyright 1993 -- 1997 Drew Eckhardt, Frederic Potter,
5 * David Mosberger-Tang
7 * Copyright 1997 -- 2000 Martin Mares <mj@ucw.cz>
8 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/pci.h>
14 #include <linux/pm.h>
15 #include <linux/slab.h>
16 #include <linux/module.h>
17 #include <linux/spinlock.h>
18 #include <linux/string.h>
19 #include <linux/log2.h>
20 #include <linux/pci-aspm.h>
21 #include <linux/pm_wakeup.h>
22 #include <linux/interrupt.h>
23 #include <linux/device.h>
24 #include <linux/pm_runtime.h>
25 #include <asm/setup.h>
26 #include "pci.h"
28 const char *pci_power_names[] = {
29 "error", "D0", "D1", "D2", "D3hot", "D3cold", "unknown",
31 EXPORT_SYMBOL_GPL(pci_power_names);
33 int isa_dma_bridge_buggy;
34 EXPORT_SYMBOL(isa_dma_bridge_buggy);
36 int pci_pci_problems;
37 EXPORT_SYMBOL(pci_pci_problems);
39 unsigned int pci_pm_d3_delay;
41 static void pci_pme_list_scan(struct work_struct *work);
43 static LIST_HEAD(pci_pme_list);
44 static DEFINE_MUTEX(pci_pme_list_mutex);
45 static DECLARE_DELAYED_WORK(pci_pme_work, pci_pme_list_scan);
47 struct pci_pme_device {
48 struct list_head list;
49 struct pci_dev *dev;
52 #define PME_TIMEOUT 1000 /* How long between PME checks */
54 static void pci_dev_d3_sleep(struct pci_dev *dev)
56 unsigned int delay = dev->d3_delay;
58 if (delay < pci_pm_d3_delay)
59 delay = pci_pm_d3_delay;
61 msleep(delay);
64 #ifdef CONFIG_PCI_DOMAINS
65 int pci_domains_supported = 1;
66 #endif
68 #define DEFAULT_CARDBUS_IO_SIZE (256)
69 #define DEFAULT_CARDBUS_MEM_SIZE (64*1024*1024)
70 /* pci=cbmemsize=nnM,cbiosize=nn can override this */
71 unsigned long pci_cardbus_io_size = DEFAULT_CARDBUS_IO_SIZE;
72 unsigned long pci_cardbus_mem_size = DEFAULT_CARDBUS_MEM_SIZE;
74 #define DEFAULT_HOTPLUG_IO_SIZE (256)
75 #define DEFAULT_HOTPLUG_MEM_SIZE (2*1024*1024)
76 /* pci=hpmemsize=nnM,hpiosize=nn can override this */
77 unsigned long pci_hotplug_io_size = DEFAULT_HOTPLUG_IO_SIZE;
78 unsigned long pci_hotplug_mem_size = DEFAULT_HOTPLUG_MEM_SIZE;
80 enum pcie_bus_config_types pcie_bus_config = PCIE_BUS_TUNE_OFF;
83 * The default CLS is used if arch didn't set CLS explicitly and not
84 * all pci devices agree on the same value. Arch can override either
85 * the dfl or actual value as it sees fit. Don't forget this is
86 * measured in 32-bit words, not bytes.
88 u8 pci_dfl_cache_line_size __devinitdata = L1_CACHE_BYTES >> 2;
89 u8 pci_cache_line_size;
91 /**
92 * pci_bus_max_busnr - returns maximum PCI bus number of given bus' children
93 * @bus: pointer to PCI bus structure to search
95 * Given a PCI bus, returns the highest PCI bus number present in the set
96 * including the given PCI bus and its list of child PCI buses.
98 unsigned char pci_bus_max_busnr(struct pci_bus* bus)
100 struct list_head *tmp;
101 unsigned char max, n;
103 max = bus->subordinate;
104 list_for_each(tmp, &bus->children) {
105 n = pci_bus_max_busnr(pci_bus_b(tmp));
106 if(n > max)
107 max = n;
109 return max;
111 EXPORT_SYMBOL_GPL(pci_bus_max_busnr);
113 #ifdef CONFIG_HAS_IOMEM
114 void __iomem *pci_ioremap_bar(struct pci_dev *pdev, int bar)
117 * Make sure the BAR is actually a memory resource, not an IO resource
119 if (!(pci_resource_flags(pdev, bar) & IORESOURCE_MEM)) {
120 WARN_ON(1);
121 return NULL;
123 return ioremap_nocache(pci_resource_start(pdev, bar),
124 pci_resource_len(pdev, bar));
126 EXPORT_SYMBOL_GPL(pci_ioremap_bar);
127 #endif
129 #if 0
131 * pci_max_busnr - returns maximum PCI bus number
133 * Returns the highest PCI bus number present in the system global list of
134 * PCI buses.
136 unsigned char __devinit
137 pci_max_busnr(void)
139 struct pci_bus *bus = NULL;
140 unsigned char max, n;
142 max = 0;
143 while ((bus = pci_find_next_bus(bus)) != NULL) {
144 n = pci_bus_max_busnr(bus);
145 if(n > max)
146 max = n;
148 return max;
151 #endif /* 0 */
153 #define PCI_FIND_CAP_TTL 48
155 static int __pci_find_next_cap_ttl(struct pci_bus *bus, unsigned int devfn,
156 u8 pos, int cap, int *ttl)
158 u8 id;
160 while ((*ttl)--) {
161 pci_bus_read_config_byte(bus, devfn, pos, &pos);
162 if (pos < 0x40)
163 break;
164 pos &= ~3;
165 pci_bus_read_config_byte(bus, devfn, pos + PCI_CAP_LIST_ID,
166 &id);
167 if (id == 0xff)
168 break;
169 if (id == cap)
170 return pos;
171 pos += PCI_CAP_LIST_NEXT;
173 return 0;
176 static int __pci_find_next_cap(struct pci_bus *bus, unsigned int devfn,
177 u8 pos, int cap)
179 int ttl = PCI_FIND_CAP_TTL;
181 return __pci_find_next_cap_ttl(bus, devfn, pos, cap, &ttl);
184 int pci_find_next_capability(struct pci_dev *dev, u8 pos, int cap)
186 return __pci_find_next_cap(dev->bus, dev->devfn,
187 pos + PCI_CAP_LIST_NEXT, cap);
189 EXPORT_SYMBOL_GPL(pci_find_next_capability);
191 static int __pci_bus_find_cap_start(struct pci_bus *bus,
192 unsigned int devfn, u8 hdr_type)
194 u16 status;
196 pci_bus_read_config_word(bus, devfn, PCI_STATUS, &status);
197 if (!(status & PCI_STATUS_CAP_LIST))
198 return 0;
200 switch (hdr_type) {
201 case PCI_HEADER_TYPE_NORMAL:
202 case PCI_HEADER_TYPE_BRIDGE:
203 return PCI_CAPABILITY_LIST;
204 case PCI_HEADER_TYPE_CARDBUS:
205 return PCI_CB_CAPABILITY_LIST;
206 default:
207 return 0;
210 return 0;
214 * pci_find_capability - query for devices' capabilities
215 * @dev: PCI device to query
216 * @cap: capability code
218 * Tell if a device supports a given PCI capability.
219 * Returns the address of the requested capability structure within the
220 * device's PCI configuration space or 0 in case the device does not
221 * support it. Possible values for @cap:
223 * %PCI_CAP_ID_PM Power Management
224 * %PCI_CAP_ID_AGP Accelerated Graphics Port
225 * %PCI_CAP_ID_VPD Vital Product Data
226 * %PCI_CAP_ID_SLOTID Slot Identification
227 * %PCI_CAP_ID_MSI Message Signalled Interrupts
228 * %PCI_CAP_ID_CHSWP CompactPCI HotSwap
229 * %PCI_CAP_ID_PCIX PCI-X
230 * %PCI_CAP_ID_EXP PCI Express
232 int pci_find_capability(struct pci_dev *dev, int cap)
234 int pos;
236 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
237 if (pos)
238 pos = __pci_find_next_cap(dev->bus, dev->devfn, pos, cap);
240 return pos;
244 * pci_bus_find_capability - query for devices' capabilities
245 * @bus: the PCI bus to query
246 * @devfn: PCI device to query
247 * @cap: capability code
249 * Like pci_find_capability() but works for pci devices that do not have a
250 * pci_dev structure set up yet.
252 * Returns the address of the requested capability structure within the
253 * device's PCI configuration space or 0 in case the device does not
254 * support it.
256 int pci_bus_find_capability(struct pci_bus *bus, unsigned int devfn, int cap)
258 int pos;
259 u8 hdr_type;
261 pci_bus_read_config_byte(bus, devfn, PCI_HEADER_TYPE, &hdr_type);
263 pos = __pci_bus_find_cap_start(bus, devfn, hdr_type & 0x7f);
264 if (pos)
265 pos = __pci_find_next_cap(bus, devfn, pos, cap);
267 return pos;
271 * pci_find_ext_capability - Find an extended capability
272 * @dev: PCI device to query
273 * @cap: capability code
275 * Returns the address of the requested extended capability structure
276 * within the device's PCI configuration space or 0 if the device does
277 * not support it. Possible values for @cap:
279 * %PCI_EXT_CAP_ID_ERR Advanced Error Reporting
280 * %PCI_EXT_CAP_ID_VC Virtual Channel
281 * %PCI_EXT_CAP_ID_DSN Device Serial Number
282 * %PCI_EXT_CAP_ID_PWR Power Budgeting
284 int pci_find_ext_capability(struct pci_dev *dev, int cap)
286 u32 header;
287 int ttl;
288 int pos = PCI_CFG_SPACE_SIZE;
290 /* minimum 8 bytes per capability */
291 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
293 if (dev->cfg_size <= PCI_CFG_SPACE_SIZE)
294 return 0;
296 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
297 return 0;
300 * If we have no capabilities, this is indicated by cap ID,
301 * cap version and next pointer all being 0.
303 if (header == 0)
304 return 0;
306 while (ttl-- > 0) {
307 if (PCI_EXT_CAP_ID(header) == cap)
308 return pos;
310 pos = PCI_EXT_CAP_NEXT(header);
311 if (pos < PCI_CFG_SPACE_SIZE)
312 break;
314 if (pci_read_config_dword(dev, pos, &header) != PCIBIOS_SUCCESSFUL)
315 break;
318 return 0;
320 EXPORT_SYMBOL_GPL(pci_find_ext_capability);
323 * pci_bus_find_ext_capability - find an extended capability
324 * @bus: the PCI bus to query
325 * @devfn: PCI device to query
326 * @cap: capability code
328 * Like pci_find_ext_capability() but works for pci devices that do not have a
329 * pci_dev structure set up yet.
331 * Returns the address of the requested capability structure within the
332 * device's PCI configuration space or 0 in case the device does not
333 * support it.
335 int pci_bus_find_ext_capability(struct pci_bus *bus, unsigned int devfn,
336 int cap)
338 u32 header;
339 int ttl;
340 int pos = PCI_CFG_SPACE_SIZE;
342 /* minimum 8 bytes per capability */
343 ttl = (PCI_CFG_SPACE_EXP_SIZE - PCI_CFG_SPACE_SIZE) / 8;
345 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
346 return 0;
347 if (header == 0xffffffff || header == 0)
348 return 0;
350 while (ttl-- > 0) {
351 if (PCI_EXT_CAP_ID(header) == cap)
352 return pos;
354 pos = PCI_EXT_CAP_NEXT(header);
355 if (pos < PCI_CFG_SPACE_SIZE)
356 break;
358 if (!pci_bus_read_config_dword(bus, devfn, pos, &header))
359 break;
362 return 0;
365 static int __pci_find_next_ht_cap(struct pci_dev *dev, int pos, int ht_cap)
367 int rc, ttl = PCI_FIND_CAP_TTL;
368 u8 cap, mask;
370 if (ht_cap == HT_CAPTYPE_SLAVE || ht_cap == HT_CAPTYPE_HOST)
371 mask = HT_3BIT_CAP_MASK;
372 else
373 mask = HT_5BIT_CAP_MASK;
375 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn, pos,
376 PCI_CAP_ID_HT, &ttl);
377 while (pos) {
378 rc = pci_read_config_byte(dev, pos + 3, &cap);
379 if (rc != PCIBIOS_SUCCESSFUL)
380 return 0;
382 if ((cap & mask) == ht_cap)
383 return pos;
385 pos = __pci_find_next_cap_ttl(dev->bus, dev->devfn,
386 pos + PCI_CAP_LIST_NEXT,
387 PCI_CAP_ID_HT, &ttl);
390 return 0;
393 * pci_find_next_ht_capability - query a device's Hypertransport capabilities
394 * @dev: PCI device to query
395 * @pos: Position from which to continue searching
396 * @ht_cap: Hypertransport capability code
398 * To be used in conjunction with pci_find_ht_capability() to search for
399 * all capabilities matching @ht_cap. @pos should always be a value returned
400 * from pci_find_ht_capability().
402 * NB. To be 100% safe against broken PCI devices, the caller should take
403 * steps to avoid an infinite loop.
405 int pci_find_next_ht_capability(struct pci_dev *dev, int pos, int ht_cap)
407 return __pci_find_next_ht_cap(dev, pos + PCI_CAP_LIST_NEXT, ht_cap);
409 EXPORT_SYMBOL_GPL(pci_find_next_ht_capability);
412 * pci_find_ht_capability - query a device's Hypertransport capabilities
413 * @dev: PCI device to query
414 * @ht_cap: Hypertransport capability code
416 * Tell if a device supports a given Hypertransport capability.
417 * Returns an address within the device's PCI configuration space
418 * or 0 in case the device does not support the request capability.
419 * The address points to the PCI capability, of type PCI_CAP_ID_HT,
420 * which has a Hypertransport capability matching @ht_cap.
422 int pci_find_ht_capability(struct pci_dev *dev, int ht_cap)
424 int pos;
426 pos = __pci_bus_find_cap_start(dev->bus, dev->devfn, dev->hdr_type);
427 if (pos)
428 pos = __pci_find_next_ht_cap(dev, pos, ht_cap);
430 return pos;
432 EXPORT_SYMBOL_GPL(pci_find_ht_capability);
435 * pci_find_parent_resource - return resource region of parent bus of given region
436 * @dev: PCI device structure contains resources to be searched
437 * @res: child resource record for which parent is sought
439 * For given resource region of given device, return the resource
440 * region of parent bus the given region is contained in or where
441 * it should be allocated from.
443 struct resource *
444 pci_find_parent_resource(const struct pci_dev *dev, struct resource *res)
446 const struct pci_bus *bus = dev->bus;
447 int i;
448 struct resource *best = NULL, *r;
450 pci_bus_for_each_resource(bus, r, i) {
451 if (!r)
452 continue;
453 if (res->start && !(res->start >= r->start && res->end <= r->end))
454 continue; /* Not contained */
455 if ((res->flags ^ r->flags) & (IORESOURCE_IO | IORESOURCE_MEM))
456 continue; /* Wrong type */
457 if (!((res->flags ^ r->flags) & IORESOURCE_PREFETCH))
458 return r; /* Exact match */
459 /* We can't insert a non-prefetch resource inside a prefetchable parent .. */
460 if (r->flags & IORESOURCE_PREFETCH)
461 continue;
462 /* .. but we can put a prefetchable resource inside a non-prefetchable one */
463 if (!best)
464 best = r;
466 return best;
470 * pci_restore_bars - restore a devices BAR values (e.g. after wake-up)
471 * @dev: PCI device to have its BARs restored
473 * Restore the BAR values for a given device, so as to make it
474 * accessible by its driver.
476 static void
477 pci_restore_bars(struct pci_dev *dev)
479 int i;
481 for (i = 0; i < PCI_BRIDGE_RESOURCES; i++)
482 pci_update_resource(dev, i);
485 static struct pci_platform_pm_ops *pci_platform_pm;
487 int pci_set_platform_pm(struct pci_platform_pm_ops *ops)
489 if (!ops->is_manageable || !ops->set_state || !ops->choose_state
490 || !ops->sleep_wake || !ops->can_wakeup)
491 return -EINVAL;
492 pci_platform_pm = ops;
493 return 0;
496 static inline bool platform_pci_power_manageable(struct pci_dev *dev)
498 return pci_platform_pm ? pci_platform_pm->is_manageable(dev) : false;
501 static inline int platform_pci_set_power_state(struct pci_dev *dev,
502 pci_power_t t)
504 return pci_platform_pm ? pci_platform_pm->set_state(dev, t) : -ENOSYS;
507 static inline pci_power_t platform_pci_choose_state(struct pci_dev *dev)
509 return pci_platform_pm ?
510 pci_platform_pm->choose_state(dev) : PCI_POWER_ERROR;
513 static inline bool platform_pci_can_wakeup(struct pci_dev *dev)
515 return pci_platform_pm ? pci_platform_pm->can_wakeup(dev) : false;
518 static inline int platform_pci_sleep_wake(struct pci_dev *dev, bool enable)
520 return pci_platform_pm ?
521 pci_platform_pm->sleep_wake(dev, enable) : -ENODEV;
524 static inline int platform_pci_run_wake(struct pci_dev *dev, bool enable)
526 return pci_platform_pm ?
527 pci_platform_pm->run_wake(dev, enable) : -ENODEV;
531 * pci_raw_set_power_state - Use PCI PM registers to set the power state of
532 * given PCI device
533 * @dev: PCI device to handle.
534 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
536 * RETURN VALUE:
537 * -EINVAL if the requested state is invalid.
538 * -EIO if device does not support PCI PM or its PM capabilities register has a
539 * wrong version, or device doesn't support the requested state.
540 * 0 if device already is in the requested state.
541 * 0 if device's power state has been successfully changed.
543 static int pci_raw_set_power_state(struct pci_dev *dev, pci_power_t state)
545 u16 pmcsr;
546 bool need_restore = false;
548 /* Check if we're already there */
549 if (dev->current_state == state)
550 return 0;
552 if (!dev->pm_cap)
553 return -EIO;
555 if (state < PCI_D0 || state > PCI_D3hot)
556 return -EINVAL;
558 /* Validate current state:
559 * Can enter D0 from any state, but if we can only go deeper
560 * to sleep if we're already in a low power state
562 if (state != PCI_D0 && dev->current_state <= PCI_D3cold
563 && dev->current_state > state) {
564 dev_err(&dev->dev, "invalid power transition "
565 "(from state %d to %d)\n", dev->current_state, state);
566 return -EINVAL;
569 /* check if this device supports the desired state */
570 if ((state == PCI_D1 && !dev->d1_support)
571 || (state == PCI_D2 && !dev->d2_support))
572 return -EIO;
574 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
576 /* If we're (effectively) in D3, force entire word to 0.
577 * This doesn't affect PME_Status, disables PME_En, and
578 * sets PowerState to 0.
580 switch (dev->current_state) {
581 case PCI_D0:
582 case PCI_D1:
583 case PCI_D2:
584 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
585 pmcsr |= state;
586 break;
587 case PCI_D3hot:
588 case PCI_D3cold:
589 case PCI_UNKNOWN: /* Boot-up */
590 if ((pmcsr & PCI_PM_CTRL_STATE_MASK) == PCI_D3hot
591 && !(pmcsr & PCI_PM_CTRL_NO_SOFT_RESET))
592 need_restore = true;
593 /* Fall-through: force to D0 */
594 default:
595 pmcsr = 0;
596 break;
599 /* enter specified state */
600 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
602 /* Mandatory power management transition delays */
603 /* see PCI PM 1.1 5.6.1 table 18 */
604 if (state == PCI_D3hot || dev->current_state == PCI_D3hot)
605 pci_dev_d3_sleep(dev);
606 else if (state == PCI_D2 || dev->current_state == PCI_D2)
607 udelay(PCI_PM_D2_DELAY);
609 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
610 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
611 if (dev->current_state != state && printk_ratelimit())
612 dev_info(&dev->dev, "Refused to change power state, "
613 "currently in D%d\n", dev->current_state);
615 /* According to section 5.4.1 of the "PCI BUS POWER MANAGEMENT
616 * INTERFACE SPECIFICATION, REV. 1.2", a device transitioning
617 * from D3hot to D0 _may_ perform an internal reset, thereby
618 * going to "D0 Uninitialized" rather than "D0 Initialized".
619 * For example, at least some versions of the 3c905B and the
620 * 3c556B exhibit this behaviour.
622 * At least some laptop BIOSen (e.g. the Thinkpad T21) leave
623 * devices in a D3hot state at boot. Consequently, we need to
624 * restore at least the BARs so that the device will be
625 * accessible to its driver.
627 if (need_restore)
628 pci_restore_bars(dev);
630 if (dev->bus->self)
631 pcie_aspm_pm_state_change(dev->bus->self);
633 return 0;
637 * pci_update_current_state - Read PCI power state of given device from its
638 * PCI PM registers and cache it
639 * @dev: PCI device to handle.
640 * @state: State to cache in case the device doesn't have the PM capability
642 void pci_update_current_state(struct pci_dev *dev, pci_power_t state)
644 if (dev->pm_cap) {
645 u16 pmcsr;
647 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
648 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
649 } else {
650 dev->current_state = state;
655 * pci_platform_power_transition - Use platform to change device power state
656 * @dev: PCI device to handle.
657 * @state: State to put the device into.
659 static int pci_platform_power_transition(struct pci_dev *dev, pci_power_t state)
661 int error;
663 if (platform_pci_power_manageable(dev)) {
664 error = platform_pci_set_power_state(dev, state);
665 if (!error)
666 pci_update_current_state(dev, state);
667 } else {
668 error = -ENODEV;
669 /* Fall back to PCI_D0 if native PM is not supported */
670 if (!dev->pm_cap)
671 dev->current_state = PCI_D0;
674 return error;
678 * __pci_start_power_transition - Start power transition of a PCI device
679 * @dev: PCI device to handle.
680 * @state: State to put the device into.
682 static void __pci_start_power_transition(struct pci_dev *dev, pci_power_t state)
684 if (state == PCI_D0)
685 pci_platform_power_transition(dev, PCI_D0);
689 * __pci_complete_power_transition - Complete power transition of a PCI device
690 * @dev: PCI device to handle.
691 * @state: State to put the device into.
693 * This function should not be called directly by device drivers.
695 int __pci_complete_power_transition(struct pci_dev *dev, pci_power_t state)
697 return state >= PCI_D0 ?
698 pci_platform_power_transition(dev, state) : -EINVAL;
700 EXPORT_SYMBOL_GPL(__pci_complete_power_transition);
703 * pci_set_power_state - Set the power state of a PCI device
704 * @dev: PCI device to handle.
705 * @state: PCI power state (D0, D1, D2, D3hot) to put the device into.
707 * Transition a device to a new power state, using the platform firmware and/or
708 * the device's PCI PM registers.
710 * RETURN VALUE:
711 * -EINVAL if the requested state is invalid.
712 * -EIO if device does not support PCI PM or its PM capabilities register has a
713 * wrong version, or device doesn't support the requested state.
714 * 0 if device already is in the requested state.
715 * 0 if device's power state has been successfully changed.
717 int pci_set_power_state(struct pci_dev *dev, pci_power_t state)
719 int error;
721 /* bound the state we're entering */
722 if (state > PCI_D3hot)
723 state = PCI_D3hot;
724 else if (state < PCI_D0)
725 state = PCI_D0;
726 else if ((state == PCI_D1 || state == PCI_D2) && pci_no_d1d2(dev))
728 * If the device or the parent bridge do not support PCI PM,
729 * ignore the request if we're doing anything other than putting
730 * it into D0 (which would only happen on boot).
732 return 0;
734 __pci_start_power_transition(dev, state);
736 /* This device is quirked not to be put into D3, so
737 don't put it in D3 */
738 if (state == PCI_D3hot && (dev->dev_flags & PCI_DEV_FLAGS_NO_D3))
739 return 0;
741 error = pci_raw_set_power_state(dev, state);
743 if (!__pci_complete_power_transition(dev, state))
744 error = 0;
746 * When aspm_policy is "powersave" this call ensures
747 * that ASPM is configured.
749 if (!error && dev->bus->self)
750 pcie_aspm_powersave_config_link(dev->bus->self);
752 return error;
756 * pci_choose_state - Choose the power state of a PCI device
757 * @dev: PCI device to be suspended
758 * @state: target sleep state for the whole system. This is the value
759 * that is passed to suspend() function.
761 * Returns PCI power state suitable for given device and given system
762 * message.
765 pci_power_t pci_choose_state(struct pci_dev *dev, pm_message_t state)
767 pci_power_t ret;
769 if (!pci_find_capability(dev, PCI_CAP_ID_PM))
770 return PCI_D0;
772 ret = platform_pci_choose_state(dev);
773 if (ret != PCI_POWER_ERROR)
774 return ret;
776 switch (state.event) {
777 case PM_EVENT_ON:
778 return PCI_D0;
779 case PM_EVENT_FREEZE:
780 case PM_EVENT_PRETHAW:
781 /* REVISIT both freeze and pre-thaw "should" use D0 */
782 case PM_EVENT_SUSPEND:
783 case PM_EVENT_HIBERNATE:
784 return PCI_D3hot;
785 default:
786 dev_info(&dev->dev, "unrecognized suspend event %d\n",
787 state.event);
788 BUG();
790 return PCI_D0;
793 EXPORT_SYMBOL(pci_choose_state);
795 #define PCI_EXP_SAVE_REGS 7
797 #define pcie_cap_has_devctl(type, flags) 1
798 #define pcie_cap_has_lnkctl(type, flags) \
799 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
800 (type == PCI_EXP_TYPE_ROOT_PORT || \
801 type == PCI_EXP_TYPE_ENDPOINT || \
802 type == PCI_EXP_TYPE_LEG_END))
803 #define pcie_cap_has_sltctl(type, flags) \
804 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
805 ((type == PCI_EXP_TYPE_ROOT_PORT) || \
806 (type == PCI_EXP_TYPE_DOWNSTREAM && \
807 (flags & PCI_EXP_FLAGS_SLOT))))
808 #define pcie_cap_has_rtctl(type, flags) \
809 ((flags & PCI_EXP_FLAGS_VERS) > 1 || \
810 (type == PCI_EXP_TYPE_ROOT_PORT || \
811 type == PCI_EXP_TYPE_RC_EC))
812 #define pcie_cap_has_devctl2(type, flags) \
813 ((flags & PCI_EXP_FLAGS_VERS) > 1)
814 #define pcie_cap_has_lnkctl2(type, flags) \
815 ((flags & PCI_EXP_FLAGS_VERS) > 1)
816 #define pcie_cap_has_sltctl2(type, flags) \
817 ((flags & PCI_EXP_FLAGS_VERS) > 1)
819 static int pci_save_pcie_state(struct pci_dev *dev)
821 int pos, i = 0;
822 struct pci_cap_saved_state *save_state;
823 u16 *cap;
824 u16 flags;
826 pos = pci_pcie_cap(dev);
827 if (!pos)
828 return 0;
830 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
831 if (!save_state) {
832 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
833 return -ENOMEM;
835 cap = (u16 *)&save_state->cap.data[0];
837 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
839 if (pcie_cap_has_devctl(dev->pcie_type, flags))
840 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &cap[i++]);
841 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
842 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL, &cap[i++]);
843 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
844 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL, &cap[i++]);
845 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
846 pci_read_config_word(dev, pos + PCI_EXP_RTCTL, &cap[i++]);
847 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
848 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &cap[i++]);
849 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
850 pci_read_config_word(dev, pos + PCI_EXP_LNKCTL2, &cap[i++]);
851 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
852 pci_read_config_word(dev, pos + PCI_EXP_SLTCTL2, &cap[i++]);
854 return 0;
857 static void pci_restore_pcie_state(struct pci_dev *dev)
859 int i = 0, pos;
860 struct pci_cap_saved_state *save_state;
861 u16 *cap;
862 u16 flags;
864 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_EXP);
865 pos = pci_find_capability(dev, PCI_CAP_ID_EXP);
866 if (!save_state || pos <= 0)
867 return;
868 cap = (u16 *)&save_state->cap.data[0];
870 pci_read_config_word(dev, pos + PCI_EXP_FLAGS, &flags);
872 if (pcie_cap_has_devctl(dev->pcie_type, flags))
873 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, cap[i++]);
874 if (pcie_cap_has_lnkctl(dev->pcie_type, flags))
875 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL, cap[i++]);
876 if (pcie_cap_has_sltctl(dev->pcie_type, flags))
877 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL, cap[i++]);
878 if (pcie_cap_has_rtctl(dev->pcie_type, flags))
879 pci_write_config_word(dev, pos + PCI_EXP_RTCTL, cap[i++]);
880 if (pcie_cap_has_devctl2(dev->pcie_type, flags))
881 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, cap[i++]);
882 if (pcie_cap_has_lnkctl2(dev->pcie_type, flags))
883 pci_write_config_word(dev, pos + PCI_EXP_LNKCTL2, cap[i++]);
884 if (pcie_cap_has_sltctl2(dev->pcie_type, flags))
885 pci_write_config_word(dev, pos + PCI_EXP_SLTCTL2, cap[i++]);
889 static int pci_save_pcix_state(struct pci_dev *dev)
891 int pos;
892 struct pci_cap_saved_state *save_state;
894 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
895 if (pos <= 0)
896 return 0;
898 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
899 if (!save_state) {
900 dev_err(&dev->dev, "buffer not found in %s\n", __func__);
901 return -ENOMEM;
904 pci_read_config_word(dev, pos + PCI_X_CMD,
905 (u16 *)save_state->cap.data);
907 return 0;
910 static void pci_restore_pcix_state(struct pci_dev *dev)
912 int i = 0, pos;
913 struct pci_cap_saved_state *save_state;
914 u16 *cap;
916 save_state = pci_find_saved_cap(dev, PCI_CAP_ID_PCIX);
917 pos = pci_find_capability(dev, PCI_CAP_ID_PCIX);
918 if (!save_state || pos <= 0)
919 return;
920 cap = (u16 *)&save_state->cap.data[0];
922 pci_write_config_word(dev, pos + PCI_X_CMD, cap[i++]);
927 * pci_save_state - save the PCI configuration space of a device before suspending
928 * @dev: - PCI device that we're dealing with
931 pci_save_state(struct pci_dev *dev)
933 int i;
934 /* XXX: 100% dword access ok here? */
935 for (i = 0; i < 16; i++)
936 pci_read_config_dword(dev, i * 4, &dev->saved_config_space[i]);
937 dev->state_saved = true;
938 if ((i = pci_save_pcie_state(dev)) != 0)
939 return i;
940 if ((i = pci_save_pcix_state(dev)) != 0)
941 return i;
942 return 0;
945 /**
946 * pci_restore_state - Restore the saved state of a PCI device
947 * @dev: - PCI device that we're dealing with
949 void pci_restore_state(struct pci_dev *dev)
951 int i;
952 u32 val;
954 if (!dev->state_saved)
955 return;
957 /* PCI Express register must be restored first */
958 pci_restore_pcie_state(dev);
961 * The Base Address register should be programmed before the command
962 * register(s)
964 for (i = 15; i >= 0; i--) {
965 pci_read_config_dword(dev, i * 4, &val);
966 if (val != dev->saved_config_space[i]) {
967 dev_printk(KERN_DEBUG, &dev->dev, "restoring config "
968 "space at offset %#x (was %#x, writing %#x)\n",
969 i, val, (int)dev->saved_config_space[i]);
970 pci_write_config_dword(dev,i * 4,
971 dev->saved_config_space[i]);
974 pci_restore_pcix_state(dev);
975 pci_restore_msi_state(dev);
976 pci_restore_iov_state(dev);
978 dev->state_saved = false;
981 struct pci_saved_state {
982 u32 config_space[16];
983 struct pci_cap_saved_data cap[0];
987 * pci_store_saved_state - Allocate and return an opaque struct containing
988 * the device saved state.
989 * @dev: PCI device that we're dealing with
991 * Rerturn NULL if no state or error.
993 struct pci_saved_state *pci_store_saved_state(struct pci_dev *dev)
995 struct pci_saved_state *state;
996 struct pci_cap_saved_state *tmp;
997 struct pci_cap_saved_data *cap;
998 struct hlist_node *pos;
999 size_t size;
1001 if (!dev->state_saved)
1002 return NULL;
1004 size = sizeof(*state) + sizeof(struct pci_cap_saved_data);
1006 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next)
1007 size += sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1009 state = kzalloc(size, GFP_KERNEL);
1010 if (!state)
1011 return NULL;
1013 memcpy(state->config_space, dev->saved_config_space,
1014 sizeof(state->config_space));
1016 cap = state->cap;
1017 hlist_for_each_entry(tmp, pos, &dev->saved_cap_space, next) {
1018 size_t len = sizeof(struct pci_cap_saved_data) + tmp->cap.size;
1019 memcpy(cap, &tmp->cap, len);
1020 cap = (struct pci_cap_saved_data *)((u8 *)cap + len);
1022 /* Empty cap_save terminates list */
1024 return state;
1026 EXPORT_SYMBOL_GPL(pci_store_saved_state);
1029 * pci_load_saved_state - Reload the provided save state into struct pci_dev.
1030 * @dev: PCI device that we're dealing with
1031 * @state: Saved state returned from pci_store_saved_state()
1033 int pci_load_saved_state(struct pci_dev *dev, struct pci_saved_state *state)
1035 struct pci_cap_saved_data *cap;
1037 dev->state_saved = false;
1039 if (!state)
1040 return 0;
1042 memcpy(dev->saved_config_space, state->config_space,
1043 sizeof(state->config_space));
1045 cap = state->cap;
1046 while (cap->size) {
1047 struct pci_cap_saved_state *tmp;
1049 tmp = pci_find_saved_cap(dev, cap->cap_nr);
1050 if (!tmp || tmp->cap.size != cap->size)
1051 return -EINVAL;
1053 memcpy(tmp->cap.data, cap->data, tmp->cap.size);
1054 cap = (struct pci_cap_saved_data *)((u8 *)cap +
1055 sizeof(struct pci_cap_saved_data) + cap->size);
1058 dev->state_saved = true;
1059 return 0;
1061 EXPORT_SYMBOL_GPL(pci_load_saved_state);
1064 * pci_load_and_free_saved_state - Reload the save state pointed to by state,
1065 * and free the memory allocated for it.
1066 * @dev: PCI device that we're dealing with
1067 * @state: Pointer to saved state returned from pci_store_saved_state()
1069 int pci_load_and_free_saved_state(struct pci_dev *dev,
1070 struct pci_saved_state **state)
1072 int ret = pci_load_saved_state(dev, *state);
1073 kfree(*state);
1074 *state = NULL;
1075 return ret;
1077 EXPORT_SYMBOL_GPL(pci_load_and_free_saved_state);
1079 static int do_pci_enable_device(struct pci_dev *dev, int bars)
1081 int err;
1083 err = pci_set_power_state(dev, PCI_D0);
1084 if (err < 0 && err != -EIO)
1085 return err;
1086 err = pcibios_enable_device(dev, bars);
1087 if (err < 0)
1088 return err;
1089 pci_fixup_device(pci_fixup_enable, dev);
1091 return 0;
1095 * pci_reenable_device - Resume abandoned device
1096 * @dev: PCI device to be resumed
1098 * Note this function is a backend of pci_default_resume and is not supposed
1099 * to be called by normal code, write proper resume handler and use it instead.
1101 int pci_reenable_device(struct pci_dev *dev)
1103 if (pci_is_enabled(dev))
1104 return do_pci_enable_device(dev, (1 << PCI_NUM_RESOURCES) - 1);
1105 return 0;
1108 static int __pci_enable_device_flags(struct pci_dev *dev,
1109 resource_size_t flags)
1111 int err;
1112 int i, bars = 0;
1115 * Power state could be unknown at this point, either due to a fresh
1116 * boot or a device removal call. So get the current power state
1117 * so that things like MSI message writing will behave as expected
1118 * (e.g. if the device really is in D0 at enable time).
1120 if (dev->pm_cap) {
1121 u16 pmcsr;
1122 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1123 dev->current_state = (pmcsr & PCI_PM_CTRL_STATE_MASK);
1126 if (atomic_add_return(1, &dev->enable_cnt) > 1)
1127 return 0; /* already enabled */
1129 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1130 if (dev->resource[i].flags & flags)
1131 bars |= (1 << i);
1133 err = do_pci_enable_device(dev, bars);
1134 if (err < 0)
1135 atomic_dec(&dev->enable_cnt);
1136 return err;
1140 * pci_enable_device_io - Initialize a device for use with IO space
1141 * @dev: PCI device to be initialized
1143 * Initialize device before it's used by a driver. Ask low-level code
1144 * to enable I/O resources. Wake up the device if it was suspended.
1145 * Beware, this function can fail.
1147 int pci_enable_device_io(struct pci_dev *dev)
1149 return __pci_enable_device_flags(dev, IORESOURCE_IO);
1153 * pci_enable_device_mem - Initialize a device for use with Memory space
1154 * @dev: PCI device to be initialized
1156 * Initialize device before it's used by a driver. Ask low-level code
1157 * to enable Memory resources. Wake up the device if it was suspended.
1158 * Beware, this function can fail.
1160 int pci_enable_device_mem(struct pci_dev *dev)
1162 return __pci_enable_device_flags(dev, IORESOURCE_MEM);
1166 * pci_enable_device - Initialize device before it's used by a driver.
1167 * @dev: PCI device to be initialized
1169 * Initialize device before it's used by a driver. Ask low-level code
1170 * to enable I/O and memory. Wake up the device if it was suspended.
1171 * Beware, this function can fail.
1173 * Note we don't actually enable the device many times if we call
1174 * this function repeatedly (we just increment the count).
1176 int pci_enable_device(struct pci_dev *dev)
1178 return __pci_enable_device_flags(dev, IORESOURCE_MEM | IORESOURCE_IO);
1182 * Managed PCI resources. This manages device on/off, intx/msi/msix
1183 * on/off and BAR regions. pci_dev itself records msi/msix status, so
1184 * there's no need to track it separately. pci_devres is initialized
1185 * when a device is enabled using managed PCI device enable interface.
1187 struct pci_devres {
1188 unsigned int enabled:1;
1189 unsigned int pinned:1;
1190 unsigned int orig_intx:1;
1191 unsigned int restore_intx:1;
1192 u32 region_mask;
1195 static void pcim_release(struct device *gendev, void *res)
1197 struct pci_dev *dev = container_of(gendev, struct pci_dev, dev);
1198 struct pci_devres *this = res;
1199 int i;
1201 if (dev->msi_enabled)
1202 pci_disable_msi(dev);
1203 if (dev->msix_enabled)
1204 pci_disable_msix(dev);
1206 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
1207 if (this->region_mask & (1 << i))
1208 pci_release_region(dev, i);
1210 if (this->restore_intx)
1211 pci_intx(dev, this->orig_intx);
1213 if (this->enabled && !this->pinned)
1214 pci_disable_device(dev);
1217 static struct pci_devres * get_pci_dr(struct pci_dev *pdev)
1219 struct pci_devres *dr, *new_dr;
1221 dr = devres_find(&pdev->dev, pcim_release, NULL, NULL);
1222 if (dr)
1223 return dr;
1225 new_dr = devres_alloc(pcim_release, sizeof(*new_dr), GFP_KERNEL);
1226 if (!new_dr)
1227 return NULL;
1228 return devres_get(&pdev->dev, new_dr, NULL, NULL);
1231 static struct pci_devres * find_pci_dr(struct pci_dev *pdev)
1233 if (pci_is_managed(pdev))
1234 return devres_find(&pdev->dev, pcim_release, NULL, NULL);
1235 return NULL;
1239 * pcim_enable_device - Managed pci_enable_device()
1240 * @pdev: PCI device to be initialized
1242 * Managed pci_enable_device().
1244 int pcim_enable_device(struct pci_dev *pdev)
1246 struct pci_devres *dr;
1247 int rc;
1249 dr = get_pci_dr(pdev);
1250 if (unlikely(!dr))
1251 return -ENOMEM;
1252 if (dr->enabled)
1253 return 0;
1255 rc = pci_enable_device(pdev);
1256 if (!rc) {
1257 pdev->is_managed = 1;
1258 dr->enabled = 1;
1260 return rc;
1264 * pcim_pin_device - Pin managed PCI device
1265 * @pdev: PCI device to pin
1267 * Pin managed PCI device @pdev. Pinned device won't be disabled on
1268 * driver detach. @pdev must have been enabled with
1269 * pcim_enable_device().
1271 void pcim_pin_device(struct pci_dev *pdev)
1273 struct pci_devres *dr;
1275 dr = find_pci_dr(pdev);
1276 WARN_ON(!dr || !dr->enabled);
1277 if (dr)
1278 dr->pinned = 1;
1282 * pcibios_disable_device - disable arch specific PCI resources for device dev
1283 * @dev: the PCI device to disable
1285 * Disables architecture specific PCI resources for the device. This
1286 * is the default implementation. Architecture implementations can
1287 * override this.
1289 void __attribute__ ((weak)) pcibios_disable_device (struct pci_dev *dev) {}
1291 static void do_pci_disable_device(struct pci_dev *dev)
1293 u16 pci_command;
1295 pci_read_config_word(dev, PCI_COMMAND, &pci_command);
1296 if (pci_command & PCI_COMMAND_MASTER) {
1297 pci_command &= ~PCI_COMMAND_MASTER;
1298 pci_write_config_word(dev, PCI_COMMAND, pci_command);
1301 pcibios_disable_device(dev);
1305 * pci_disable_enabled_device - Disable device without updating enable_cnt
1306 * @dev: PCI device to disable
1308 * NOTE: This function is a backend of PCI power management routines and is
1309 * not supposed to be called drivers.
1311 void pci_disable_enabled_device(struct pci_dev *dev)
1313 if (pci_is_enabled(dev))
1314 do_pci_disable_device(dev);
1318 * pci_disable_device - Disable PCI device after use
1319 * @dev: PCI device to be disabled
1321 * Signal to the system that the PCI device is not in use by the system
1322 * anymore. This only involves disabling PCI bus-mastering, if active.
1324 * Note we don't actually disable the device until all callers of
1325 * pci_enable_device() have called pci_disable_device().
1327 void
1328 pci_disable_device(struct pci_dev *dev)
1330 struct pci_devres *dr;
1332 dr = find_pci_dr(dev);
1333 if (dr)
1334 dr->enabled = 0;
1336 if (atomic_sub_return(1, &dev->enable_cnt) != 0)
1337 return;
1339 do_pci_disable_device(dev);
1341 dev->is_busmaster = 0;
1345 * pcibios_set_pcie_reset_state - set reset state for device dev
1346 * @dev: the PCIe device reset
1347 * @state: Reset state to enter into
1350 * Sets the PCIe reset state for the device. This is the default
1351 * implementation. Architecture implementations can override this.
1353 int __attribute__ ((weak)) pcibios_set_pcie_reset_state(struct pci_dev *dev,
1354 enum pcie_reset_state state)
1356 return -EINVAL;
1360 * pci_set_pcie_reset_state - set reset state for device dev
1361 * @dev: the PCIe device reset
1362 * @state: Reset state to enter into
1365 * Sets the PCI reset state for the device.
1367 int pci_set_pcie_reset_state(struct pci_dev *dev, enum pcie_reset_state state)
1369 return pcibios_set_pcie_reset_state(dev, state);
1373 * pci_check_pme_status - Check if given device has generated PME.
1374 * @dev: Device to check.
1376 * Check the PME status of the device and if set, clear it and clear PME enable
1377 * (if set). Return 'true' if PME status and PME enable were both set or
1378 * 'false' otherwise.
1380 bool pci_check_pme_status(struct pci_dev *dev)
1382 int pmcsr_pos;
1383 u16 pmcsr;
1384 bool ret = false;
1386 if (!dev->pm_cap)
1387 return false;
1389 pmcsr_pos = dev->pm_cap + PCI_PM_CTRL;
1390 pci_read_config_word(dev, pmcsr_pos, &pmcsr);
1391 if (!(pmcsr & PCI_PM_CTRL_PME_STATUS))
1392 return false;
1394 /* Clear PME status. */
1395 pmcsr |= PCI_PM_CTRL_PME_STATUS;
1396 if (pmcsr & PCI_PM_CTRL_PME_ENABLE) {
1397 /* Disable PME to avoid interrupt flood. */
1398 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1399 ret = true;
1402 pci_write_config_word(dev, pmcsr_pos, pmcsr);
1404 return ret;
1408 * pci_pme_wakeup - Wake up a PCI device if its PME Status bit is set.
1409 * @dev: Device to handle.
1410 * @ign: Ignored.
1412 * Check if @dev has generated PME and queue a resume request for it in that
1413 * case.
1415 static int pci_pme_wakeup(struct pci_dev *dev, void *ign)
1417 if (pci_check_pme_status(dev)) {
1418 pci_wakeup_event(dev);
1419 pm_request_resume(&dev->dev);
1421 return 0;
1425 * pci_pme_wakeup_bus - Walk given bus and wake up devices on it, if necessary.
1426 * @bus: Top bus of the subtree to walk.
1428 void pci_pme_wakeup_bus(struct pci_bus *bus)
1430 if (bus)
1431 pci_walk_bus(bus, pci_pme_wakeup, NULL);
1435 * pci_pme_capable - check the capability of PCI device to generate PME#
1436 * @dev: PCI device to handle.
1437 * @state: PCI state from which device will issue PME#.
1439 bool pci_pme_capable(struct pci_dev *dev, pci_power_t state)
1441 if (!dev->pm_cap)
1442 return false;
1444 return !!(dev->pme_support & (1 << state));
1447 static void pci_pme_list_scan(struct work_struct *work)
1449 struct pci_pme_device *pme_dev;
1451 mutex_lock(&pci_pme_list_mutex);
1452 if (!list_empty(&pci_pme_list)) {
1453 list_for_each_entry(pme_dev, &pci_pme_list, list)
1454 pci_pme_wakeup(pme_dev->dev, NULL);
1455 schedule_delayed_work(&pci_pme_work, msecs_to_jiffies(PME_TIMEOUT));
1457 mutex_unlock(&pci_pme_list_mutex);
1461 * pci_external_pme - is a device an external PCI PME source?
1462 * @dev: PCI device to check
1466 static bool pci_external_pme(struct pci_dev *dev)
1468 if (pci_is_pcie(dev) || dev->bus->number == 0)
1469 return false;
1470 return true;
1474 * pci_pme_active - enable or disable PCI device's PME# function
1475 * @dev: PCI device to handle.
1476 * @enable: 'true' to enable PME# generation; 'false' to disable it.
1478 * The caller must verify that the device is capable of generating PME# before
1479 * calling this function with @enable equal to 'true'.
1481 void pci_pme_active(struct pci_dev *dev, bool enable)
1483 u16 pmcsr;
1485 if (!dev->pm_cap)
1486 return;
1488 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &pmcsr);
1489 /* Clear PME_Status by writing 1 to it and enable PME# */
1490 pmcsr |= PCI_PM_CTRL_PME_STATUS | PCI_PM_CTRL_PME_ENABLE;
1491 if (!enable)
1492 pmcsr &= ~PCI_PM_CTRL_PME_ENABLE;
1494 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, pmcsr);
1496 /* PCI (as opposed to PCIe) PME requires that the device have
1497 its PME# line hooked up correctly. Not all hardware vendors
1498 do this, so the PME never gets delivered and the device
1499 remains asleep. The easiest way around this is to
1500 periodically walk the list of suspended devices and check
1501 whether any have their PME flag set. The assumption is that
1502 we'll wake up often enough anyway that this won't be a huge
1503 hit, and the power savings from the devices will still be a
1504 win. */
1506 if (pci_external_pme(dev)) {
1507 struct pci_pme_device *pme_dev;
1508 if (enable) {
1509 pme_dev = kmalloc(sizeof(struct pci_pme_device),
1510 GFP_KERNEL);
1511 if (!pme_dev)
1512 goto out;
1513 pme_dev->dev = dev;
1514 mutex_lock(&pci_pme_list_mutex);
1515 list_add(&pme_dev->list, &pci_pme_list);
1516 if (list_is_singular(&pci_pme_list))
1517 schedule_delayed_work(&pci_pme_work,
1518 msecs_to_jiffies(PME_TIMEOUT));
1519 mutex_unlock(&pci_pme_list_mutex);
1520 } else {
1521 mutex_lock(&pci_pme_list_mutex);
1522 list_for_each_entry(pme_dev, &pci_pme_list, list) {
1523 if (pme_dev->dev == dev) {
1524 list_del(&pme_dev->list);
1525 kfree(pme_dev);
1526 break;
1529 mutex_unlock(&pci_pme_list_mutex);
1533 out:
1534 dev_printk(KERN_DEBUG, &dev->dev, "PME# %s\n",
1535 enable ? "enabled" : "disabled");
1539 * __pci_enable_wake - enable PCI device as wakeup event source
1540 * @dev: PCI device affected
1541 * @state: PCI state from which device will issue wakeup events
1542 * @runtime: True if the events are to be generated at run time
1543 * @enable: True to enable event generation; false to disable
1545 * This enables the device as a wakeup event source, or disables it.
1546 * When such events involves platform-specific hooks, those hooks are
1547 * called automatically by this routine.
1549 * Devices with legacy power management (no standard PCI PM capabilities)
1550 * always require such platform hooks.
1552 * RETURN VALUE:
1553 * 0 is returned on success
1554 * -EINVAL is returned if device is not supposed to wake up the system
1555 * Error code depending on the platform is returned if both the platform and
1556 * the native mechanism fail to enable the generation of wake-up events
1558 int __pci_enable_wake(struct pci_dev *dev, pci_power_t state,
1559 bool runtime, bool enable)
1561 int ret = 0;
1563 if (enable && !runtime && !device_may_wakeup(&dev->dev))
1564 return -EINVAL;
1566 /* Don't do the same thing twice in a row for one device. */
1567 if (!!enable == !!dev->wakeup_prepared)
1568 return 0;
1571 * According to "PCI System Architecture" 4th ed. by Tom Shanley & Don
1572 * Anderson we should be doing PME# wake enable followed by ACPI wake
1573 * enable. To disable wake-up we call the platform first, for symmetry.
1576 if (enable) {
1577 int error;
1579 if (pci_pme_capable(dev, state))
1580 pci_pme_active(dev, true);
1581 else
1582 ret = 1;
1583 error = runtime ? platform_pci_run_wake(dev, true) :
1584 platform_pci_sleep_wake(dev, true);
1585 if (ret)
1586 ret = error;
1587 if (!ret)
1588 dev->wakeup_prepared = true;
1589 } else {
1590 if (runtime)
1591 platform_pci_run_wake(dev, false);
1592 else
1593 platform_pci_sleep_wake(dev, false);
1594 pci_pme_active(dev, false);
1595 dev->wakeup_prepared = false;
1598 return ret;
1600 EXPORT_SYMBOL(__pci_enable_wake);
1603 * pci_wake_from_d3 - enable/disable device to wake up from D3_hot or D3_cold
1604 * @dev: PCI device to prepare
1605 * @enable: True to enable wake-up event generation; false to disable
1607 * Many drivers want the device to wake up the system from D3_hot or D3_cold
1608 * and this function allows them to set that up cleanly - pci_enable_wake()
1609 * should not be called twice in a row to enable wake-up due to PCI PM vs ACPI
1610 * ordering constraints.
1612 * This function only returns error code if the device is not capable of
1613 * generating PME# from both D3_hot and D3_cold, and the platform is unable to
1614 * enable wake-up power for it.
1616 int pci_wake_from_d3(struct pci_dev *dev, bool enable)
1618 return pci_pme_capable(dev, PCI_D3cold) ?
1619 pci_enable_wake(dev, PCI_D3cold, enable) :
1620 pci_enable_wake(dev, PCI_D3hot, enable);
1624 * pci_target_state - find an appropriate low power state for a given PCI dev
1625 * @dev: PCI device
1627 * Use underlying platform code to find a supported low power state for @dev.
1628 * If the platform can't manage @dev, return the deepest state from which it
1629 * can generate wake events, based on any available PME info.
1631 pci_power_t pci_target_state(struct pci_dev *dev)
1633 pci_power_t target_state = PCI_D3hot;
1635 if (platform_pci_power_manageable(dev)) {
1637 * Call the platform to choose the target state of the device
1638 * and enable wake-up from this state if supported.
1640 pci_power_t state = platform_pci_choose_state(dev);
1642 switch (state) {
1643 case PCI_POWER_ERROR:
1644 case PCI_UNKNOWN:
1645 break;
1646 case PCI_D1:
1647 case PCI_D2:
1648 if (pci_no_d1d2(dev))
1649 break;
1650 default:
1651 target_state = state;
1653 } else if (!dev->pm_cap) {
1654 target_state = PCI_D0;
1655 } else if (device_may_wakeup(&dev->dev)) {
1657 * Find the deepest state from which the device can generate
1658 * wake-up events, make it the target state and enable device
1659 * to generate PME#.
1661 if (dev->pme_support) {
1662 while (target_state
1663 && !(dev->pme_support & (1 << target_state)))
1664 target_state--;
1668 return target_state;
1672 * pci_prepare_to_sleep - prepare PCI device for system-wide transition into a sleep state
1673 * @dev: Device to handle.
1675 * Choose the power state appropriate for the device depending on whether
1676 * it can wake up the system and/or is power manageable by the platform
1677 * (PCI_D3hot is the default) and put the device into that state.
1679 int pci_prepare_to_sleep(struct pci_dev *dev)
1681 pci_power_t target_state = pci_target_state(dev);
1682 int error;
1684 if (target_state == PCI_POWER_ERROR)
1685 return -EIO;
1687 pci_enable_wake(dev, target_state, device_may_wakeup(&dev->dev));
1689 error = pci_set_power_state(dev, target_state);
1691 if (error)
1692 pci_enable_wake(dev, target_state, false);
1694 return error;
1698 * pci_back_from_sleep - turn PCI device on during system-wide transition into working state
1699 * @dev: Device to handle.
1701 * Disable device's system wake-up capability and put it into D0.
1703 int pci_back_from_sleep(struct pci_dev *dev)
1705 pci_enable_wake(dev, PCI_D0, false);
1706 return pci_set_power_state(dev, PCI_D0);
1710 * pci_finish_runtime_suspend - Carry out PCI-specific part of runtime suspend.
1711 * @dev: PCI device being suspended.
1713 * Prepare @dev to generate wake-up events at run time and put it into a low
1714 * power state.
1716 int pci_finish_runtime_suspend(struct pci_dev *dev)
1718 pci_power_t target_state = pci_target_state(dev);
1719 int error;
1721 if (target_state == PCI_POWER_ERROR)
1722 return -EIO;
1724 __pci_enable_wake(dev, target_state, true, pci_dev_run_wake(dev));
1726 error = pci_set_power_state(dev, target_state);
1728 if (error)
1729 __pci_enable_wake(dev, target_state, true, false);
1731 return error;
1735 * pci_dev_run_wake - Check if device can generate run-time wake-up events.
1736 * @dev: Device to check.
1738 * Return true if the device itself is cabable of generating wake-up events
1739 * (through the platform or using the native PCIe PME) or if the device supports
1740 * PME and one of its upstream bridges can generate wake-up events.
1742 bool pci_dev_run_wake(struct pci_dev *dev)
1744 struct pci_bus *bus = dev->bus;
1746 if (device_run_wake(&dev->dev))
1747 return true;
1749 if (!dev->pme_support)
1750 return false;
1752 while (bus->parent) {
1753 struct pci_dev *bridge = bus->self;
1755 if (device_run_wake(&bridge->dev))
1756 return true;
1758 bus = bus->parent;
1761 /* We have reached the root bus. */
1762 if (bus->bridge)
1763 return device_run_wake(bus->bridge);
1765 return false;
1767 EXPORT_SYMBOL_GPL(pci_dev_run_wake);
1770 * pci_pm_init - Initialize PM functions of given PCI device
1771 * @dev: PCI device to handle.
1773 void pci_pm_init(struct pci_dev *dev)
1775 int pm;
1776 u16 pmc;
1778 pm_runtime_forbid(&dev->dev);
1779 device_enable_async_suspend(&dev->dev);
1780 dev->wakeup_prepared = false;
1782 dev->pm_cap = 0;
1784 /* find PCI PM capability in list */
1785 pm = pci_find_capability(dev, PCI_CAP_ID_PM);
1786 if (!pm)
1787 return;
1788 /* Check device's ability to generate PME# */
1789 pci_read_config_word(dev, pm + PCI_PM_PMC, &pmc);
1791 if ((pmc & PCI_PM_CAP_VER_MASK) > 3) {
1792 dev_err(&dev->dev, "unsupported PM cap regs version (%u)\n",
1793 pmc & PCI_PM_CAP_VER_MASK);
1794 return;
1797 dev->pm_cap = pm;
1798 dev->d3_delay = PCI_PM_D3_WAIT;
1800 dev->d1_support = false;
1801 dev->d2_support = false;
1802 if (!pci_no_d1d2(dev)) {
1803 if (pmc & PCI_PM_CAP_D1)
1804 dev->d1_support = true;
1805 if (pmc & PCI_PM_CAP_D2)
1806 dev->d2_support = true;
1808 if (dev->d1_support || dev->d2_support)
1809 dev_printk(KERN_DEBUG, &dev->dev, "supports%s%s\n",
1810 dev->d1_support ? " D1" : "",
1811 dev->d2_support ? " D2" : "");
1814 pmc &= PCI_PM_CAP_PME_MASK;
1815 if (pmc) {
1816 dev_printk(KERN_DEBUG, &dev->dev,
1817 "PME# supported from%s%s%s%s%s\n",
1818 (pmc & PCI_PM_CAP_PME_D0) ? " D0" : "",
1819 (pmc & PCI_PM_CAP_PME_D1) ? " D1" : "",
1820 (pmc & PCI_PM_CAP_PME_D2) ? " D2" : "",
1821 (pmc & PCI_PM_CAP_PME_D3) ? " D3hot" : "",
1822 (pmc & PCI_PM_CAP_PME_D3cold) ? " D3cold" : "");
1823 dev->pme_support = pmc >> PCI_PM_CAP_PME_SHIFT;
1825 * Make device's PM flags reflect the wake-up capability, but
1826 * let the user space enable it to wake up the system as needed.
1828 device_set_wakeup_capable(&dev->dev, true);
1829 /* Disable the PME# generation functionality */
1830 pci_pme_active(dev, false);
1831 } else {
1832 dev->pme_support = 0;
1837 * platform_pci_wakeup_init - init platform wakeup if present
1838 * @dev: PCI device
1840 * Some devices don't have PCI PM caps but can still generate wakeup
1841 * events through platform methods (like ACPI events). If @dev supports
1842 * platform wakeup events, set the device flag to indicate as much. This
1843 * may be redundant if the device also supports PCI PM caps, but double
1844 * initialization should be safe in that case.
1846 void platform_pci_wakeup_init(struct pci_dev *dev)
1848 if (!platform_pci_can_wakeup(dev))
1849 return;
1851 device_set_wakeup_capable(&dev->dev, true);
1852 platform_pci_sleep_wake(dev, false);
1856 * pci_add_save_buffer - allocate buffer for saving given capability registers
1857 * @dev: the PCI device
1858 * @cap: the capability to allocate the buffer for
1859 * @size: requested size of the buffer
1861 static int pci_add_cap_save_buffer(
1862 struct pci_dev *dev, char cap, unsigned int size)
1864 int pos;
1865 struct pci_cap_saved_state *save_state;
1867 pos = pci_find_capability(dev, cap);
1868 if (pos <= 0)
1869 return 0;
1871 save_state = kzalloc(sizeof(*save_state) + size, GFP_KERNEL);
1872 if (!save_state)
1873 return -ENOMEM;
1875 save_state->cap.cap_nr = cap;
1876 save_state->cap.size = size;
1877 pci_add_saved_cap(dev, save_state);
1879 return 0;
1883 * pci_allocate_cap_save_buffers - allocate buffers for saving capabilities
1884 * @dev: the PCI device
1886 void pci_allocate_cap_save_buffers(struct pci_dev *dev)
1888 int error;
1890 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_EXP,
1891 PCI_EXP_SAVE_REGS * sizeof(u16));
1892 if (error)
1893 dev_err(&dev->dev,
1894 "unable to preallocate PCI Express save buffer\n");
1896 error = pci_add_cap_save_buffer(dev, PCI_CAP_ID_PCIX, sizeof(u16));
1897 if (error)
1898 dev_err(&dev->dev,
1899 "unable to preallocate PCI-X save buffer\n");
1903 * pci_enable_ari - enable ARI forwarding if hardware support it
1904 * @dev: the PCI device
1906 void pci_enable_ari(struct pci_dev *dev)
1908 int pos;
1909 u32 cap;
1910 u16 flags, ctrl;
1911 struct pci_dev *bridge;
1913 if (!pci_is_pcie(dev) || dev->devfn)
1914 return;
1916 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ARI);
1917 if (!pos)
1918 return;
1920 bridge = dev->bus->self;
1921 if (!bridge || !pci_is_pcie(bridge))
1922 return;
1924 pos = pci_pcie_cap(bridge);
1925 if (!pos)
1926 return;
1928 /* ARI is a PCIe v2 feature */
1929 pci_read_config_word(bridge, pos + PCI_EXP_FLAGS, &flags);
1930 if ((flags & PCI_EXP_FLAGS_VERS) < 2)
1931 return;
1933 pci_read_config_dword(bridge, pos + PCI_EXP_DEVCAP2, &cap);
1934 if (!(cap & PCI_EXP_DEVCAP2_ARI))
1935 return;
1937 pci_read_config_word(bridge, pos + PCI_EXP_DEVCTL2, &ctrl);
1938 ctrl |= PCI_EXP_DEVCTL2_ARI;
1939 pci_write_config_word(bridge, pos + PCI_EXP_DEVCTL2, ctrl);
1941 bridge->ari_enabled = 1;
1945 * pci_enable_ido - enable ID-based ordering on a device
1946 * @dev: the PCI device
1947 * @type: which types of IDO to enable
1949 * Enable ID-based ordering on @dev. @type can contain the bits
1950 * %PCI_EXP_IDO_REQUEST and/or %PCI_EXP_IDO_COMPLETION to indicate
1951 * which types of transactions are allowed to be re-ordered.
1953 void pci_enable_ido(struct pci_dev *dev, unsigned long type)
1955 int pos;
1956 u16 ctrl;
1958 pos = pci_pcie_cap(dev);
1959 if (!pos)
1960 return;
1962 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1963 if (type & PCI_EXP_IDO_REQUEST)
1964 ctrl |= PCI_EXP_IDO_REQ_EN;
1965 if (type & PCI_EXP_IDO_COMPLETION)
1966 ctrl |= PCI_EXP_IDO_CMP_EN;
1967 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1969 EXPORT_SYMBOL(pci_enable_ido);
1972 * pci_disable_ido - disable ID-based ordering on a device
1973 * @dev: the PCI device
1974 * @type: which types of IDO to disable
1976 void pci_disable_ido(struct pci_dev *dev, unsigned long type)
1978 int pos;
1979 u16 ctrl;
1981 if (!pci_is_pcie(dev))
1982 return;
1984 pos = pci_pcie_cap(dev);
1985 if (!pos)
1986 return;
1988 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
1989 if (type & PCI_EXP_IDO_REQUEST)
1990 ctrl &= ~PCI_EXP_IDO_REQ_EN;
1991 if (type & PCI_EXP_IDO_COMPLETION)
1992 ctrl &= ~PCI_EXP_IDO_CMP_EN;
1993 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
1995 EXPORT_SYMBOL(pci_disable_ido);
1998 * pci_enable_obff - enable optimized buffer flush/fill
1999 * @dev: PCI device
2000 * @type: type of signaling to use
2002 * Try to enable @type OBFF signaling on @dev. It will try using WAKE#
2003 * signaling if possible, falling back to message signaling only if
2004 * WAKE# isn't supported. @type should indicate whether the PCIe link
2005 * be brought out of L0s or L1 to send the message. It should be either
2006 * %PCI_EXP_OBFF_SIGNAL_ALWAYS or %PCI_OBFF_SIGNAL_L0.
2008 * If your device can benefit from receiving all messages, even at the
2009 * power cost of bringing the link back up from a low power state, use
2010 * %PCI_EXP_OBFF_SIGNAL_ALWAYS. Otherwise, use %PCI_OBFF_SIGNAL_L0 (the
2011 * preferred type).
2013 * RETURNS:
2014 * Zero on success, appropriate error number on failure.
2016 int pci_enable_obff(struct pci_dev *dev, enum pci_obff_signal_type type)
2018 int pos;
2019 u32 cap;
2020 u16 ctrl;
2021 int ret;
2023 if (!pci_is_pcie(dev))
2024 return -ENOTSUPP;
2026 pos = pci_pcie_cap(dev);
2027 if (!pos)
2028 return -ENOTSUPP;
2030 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2031 if (!(cap & PCI_EXP_OBFF_MASK))
2032 return -ENOTSUPP; /* no OBFF support at all */
2034 /* Make sure the topology supports OBFF as well */
2035 if (dev->bus) {
2036 ret = pci_enable_obff(dev->bus->self, type);
2037 if (ret)
2038 return ret;
2041 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2042 if (cap & PCI_EXP_OBFF_WAKE)
2043 ctrl |= PCI_EXP_OBFF_WAKE_EN;
2044 else {
2045 switch (type) {
2046 case PCI_EXP_OBFF_SIGNAL_L0:
2047 if (!(ctrl & PCI_EXP_OBFF_WAKE_EN))
2048 ctrl |= PCI_EXP_OBFF_MSGA_EN;
2049 break;
2050 case PCI_EXP_OBFF_SIGNAL_ALWAYS:
2051 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2052 ctrl |= PCI_EXP_OBFF_MSGB_EN;
2053 break;
2054 default:
2055 WARN(1, "bad OBFF signal type\n");
2056 return -ENOTSUPP;
2059 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2061 return 0;
2063 EXPORT_SYMBOL(pci_enable_obff);
2066 * pci_disable_obff - disable optimized buffer flush/fill
2067 * @dev: PCI device
2069 * Disable OBFF on @dev.
2071 void pci_disable_obff(struct pci_dev *dev)
2073 int pos;
2074 u16 ctrl;
2076 if (!pci_is_pcie(dev))
2077 return;
2079 pos = pci_pcie_cap(dev);
2080 if (!pos)
2081 return;
2083 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2084 ctrl &= ~PCI_EXP_OBFF_WAKE_EN;
2085 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2087 EXPORT_SYMBOL(pci_disable_obff);
2090 * pci_ltr_supported - check whether a device supports LTR
2091 * @dev: PCI device
2093 * RETURNS:
2094 * True if @dev supports latency tolerance reporting, false otherwise.
2096 bool pci_ltr_supported(struct pci_dev *dev)
2098 int pos;
2099 u32 cap;
2101 if (!pci_is_pcie(dev))
2102 return false;
2104 pos = pci_pcie_cap(dev);
2105 if (!pos)
2106 return false;
2108 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP2, &cap);
2110 return cap & PCI_EXP_DEVCAP2_LTR;
2112 EXPORT_SYMBOL(pci_ltr_supported);
2115 * pci_enable_ltr - enable latency tolerance reporting
2116 * @dev: PCI device
2118 * Enable LTR on @dev if possible, which means enabling it first on
2119 * upstream ports.
2121 * RETURNS:
2122 * Zero on success, errno on failure.
2124 int pci_enable_ltr(struct pci_dev *dev)
2126 int pos;
2127 u16 ctrl;
2128 int ret;
2130 if (!pci_ltr_supported(dev))
2131 return -ENOTSUPP;
2133 pos = pci_pcie_cap(dev);
2134 if (!pos)
2135 return -ENOTSUPP;
2137 /* Only primary function can enable/disable LTR */
2138 if (PCI_FUNC(dev->devfn) != 0)
2139 return -EINVAL;
2141 /* Enable upstream ports first */
2142 if (dev->bus) {
2143 ret = pci_enable_ltr(dev->bus->self);
2144 if (ret)
2145 return ret;
2148 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2149 ctrl |= PCI_EXP_LTR_EN;
2150 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2152 return 0;
2154 EXPORT_SYMBOL(pci_enable_ltr);
2157 * pci_disable_ltr - disable latency tolerance reporting
2158 * @dev: PCI device
2160 void pci_disable_ltr(struct pci_dev *dev)
2162 int pos;
2163 u16 ctrl;
2165 if (!pci_ltr_supported(dev))
2166 return;
2168 pos = pci_pcie_cap(dev);
2169 if (!pos)
2170 return;
2172 /* Only primary function can enable/disable LTR */
2173 if (PCI_FUNC(dev->devfn) != 0)
2174 return;
2176 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL2, &ctrl);
2177 ctrl &= ~PCI_EXP_LTR_EN;
2178 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL2, ctrl);
2180 EXPORT_SYMBOL(pci_disable_ltr);
2182 static int __pci_ltr_scale(int *val)
2184 int scale = 0;
2186 while (*val > 1023) {
2187 *val = (*val + 31) / 32;
2188 scale++;
2190 return scale;
2194 * pci_set_ltr - set LTR latency values
2195 * @dev: PCI device
2196 * @snoop_lat_ns: snoop latency in nanoseconds
2197 * @nosnoop_lat_ns: nosnoop latency in nanoseconds
2199 * Figure out the scale and set the LTR values accordingly.
2201 int pci_set_ltr(struct pci_dev *dev, int snoop_lat_ns, int nosnoop_lat_ns)
2203 int pos, ret, snoop_scale, nosnoop_scale;
2204 u16 val;
2206 if (!pci_ltr_supported(dev))
2207 return -ENOTSUPP;
2209 snoop_scale = __pci_ltr_scale(&snoop_lat_ns);
2210 nosnoop_scale = __pci_ltr_scale(&nosnoop_lat_ns);
2212 if (snoop_lat_ns > PCI_LTR_VALUE_MASK ||
2213 nosnoop_lat_ns > PCI_LTR_VALUE_MASK)
2214 return -EINVAL;
2216 if ((snoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)) ||
2217 (nosnoop_scale > (PCI_LTR_SCALE_MASK >> PCI_LTR_SCALE_SHIFT)))
2218 return -EINVAL;
2220 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_LTR);
2221 if (!pos)
2222 return -ENOTSUPP;
2224 val = (snoop_scale << PCI_LTR_SCALE_SHIFT) | snoop_lat_ns;
2225 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_SNOOP_LAT, val);
2226 if (ret != 4)
2227 return -EIO;
2229 val = (nosnoop_scale << PCI_LTR_SCALE_SHIFT) | nosnoop_lat_ns;
2230 ret = pci_write_config_word(dev, pos + PCI_LTR_MAX_NOSNOOP_LAT, val);
2231 if (ret != 4)
2232 return -EIO;
2234 return 0;
2236 EXPORT_SYMBOL(pci_set_ltr);
2238 static int pci_acs_enable;
2241 * pci_request_acs - ask for ACS to be enabled if supported
2243 void pci_request_acs(void)
2245 pci_acs_enable = 1;
2249 * pci_enable_acs - enable ACS if hardware support it
2250 * @dev: the PCI device
2252 void pci_enable_acs(struct pci_dev *dev)
2254 int pos;
2255 u16 cap;
2256 u16 ctrl;
2258 if (!pci_acs_enable)
2259 return;
2261 if (!pci_is_pcie(dev))
2262 return;
2264 pos = pci_find_ext_capability(dev, PCI_EXT_CAP_ID_ACS);
2265 if (!pos)
2266 return;
2268 pci_read_config_word(dev, pos + PCI_ACS_CAP, &cap);
2269 pci_read_config_word(dev, pos + PCI_ACS_CTRL, &ctrl);
2271 /* Source Validation */
2272 ctrl |= (cap & PCI_ACS_SV);
2274 /* P2P Request Redirect */
2275 ctrl |= (cap & PCI_ACS_RR);
2277 /* P2P Completion Redirect */
2278 ctrl |= (cap & PCI_ACS_CR);
2280 /* Upstream Forwarding */
2281 ctrl |= (cap & PCI_ACS_UF);
2283 pci_write_config_word(dev, pos + PCI_ACS_CTRL, ctrl);
2287 * pci_swizzle_interrupt_pin - swizzle INTx for device behind bridge
2288 * @dev: the PCI device
2289 * @pin: the INTx pin (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2291 * Perform INTx swizzling for a device behind one level of bridge. This is
2292 * required by section 9.1 of the PCI-to-PCI bridge specification for devices
2293 * behind bridges on add-in cards. For devices with ARI enabled, the slot
2294 * number is always 0 (see the Implementation Note in section 2.2.8.1 of
2295 * the PCI Express Base Specification, Revision 2.1)
2297 u8 pci_swizzle_interrupt_pin(struct pci_dev *dev, u8 pin)
2299 int slot;
2301 if (pci_ari_enabled(dev->bus))
2302 slot = 0;
2303 else
2304 slot = PCI_SLOT(dev->devfn);
2306 return (((pin - 1) + slot) % 4) + 1;
2310 pci_get_interrupt_pin(struct pci_dev *dev, struct pci_dev **bridge)
2312 u8 pin;
2314 pin = dev->pin;
2315 if (!pin)
2316 return -1;
2318 while (!pci_is_root_bus(dev->bus)) {
2319 pin = pci_swizzle_interrupt_pin(dev, pin);
2320 dev = dev->bus->self;
2322 *bridge = dev;
2323 return pin;
2327 * pci_common_swizzle - swizzle INTx all the way to root bridge
2328 * @dev: the PCI device
2329 * @pinp: pointer to the INTx pin value (1=INTA, 2=INTB, 3=INTD, 4=INTD)
2331 * Perform INTx swizzling for a device. This traverses through all PCI-to-PCI
2332 * bridges all the way up to a PCI root bus.
2334 u8 pci_common_swizzle(struct pci_dev *dev, u8 *pinp)
2336 u8 pin = *pinp;
2338 while (!pci_is_root_bus(dev->bus)) {
2339 pin = pci_swizzle_interrupt_pin(dev, pin);
2340 dev = dev->bus->self;
2342 *pinp = pin;
2343 return PCI_SLOT(dev->devfn);
2347 * pci_release_region - Release a PCI bar
2348 * @pdev: PCI device whose resources were previously reserved by pci_request_region
2349 * @bar: BAR to release
2351 * Releases the PCI I/O and memory resources previously reserved by a
2352 * successful call to pci_request_region. Call this function only
2353 * after all use of the PCI regions has ceased.
2355 void pci_release_region(struct pci_dev *pdev, int bar)
2357 struct pci_devres *dr;
2359 if (pci_resource_len(pdev, bar) == 0)
2360 return;
2361 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO)
2362 release_region(pci_resource_start(pdev, bar),
2363 pci_resource_len(pdev, bar));
2364 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM)
2365 release_mem_region(pci_resource_start(pdev, bar),
2366 pci_resource_len(pdev, bar));
2368 dr = find_pci_dr(pdev);
2369 if (dr)
2370 dr->region_mask &= ~(1 << bar);
2374 * __pci_request_region - Reserved PCI I/O and memory resource
2375 * @pdev: PCI device whose resources are to be reserved
2376 * @bar: BAR to be reserved
2377 * @res_name: Name to be associated with resource.
2378 * @exclusive: whether the region access is exclusive or not
2380 * Mark the PCI region associated with PCI device @pdev BR @bar as
2381 * being reserved by owner @res_name. Do not access any
2382 * address inside the PCI regions unless this call returns
2383 * successfully.
2385 * If @exclusive is set, then the region is marked so that userspace
2386 * is explicitly not allowed to map the resource via /dev/mem or
2387 * sysfs MMIO access.
2389 * Returns 0 on success, or %EBUSY on error. A warning
2390 * message is also printed on failure.
2392 static int __pci_request_region(struct pci_dev *pdev, int bar, const char *res_name,
2393 int exclusive)
2395 struct pci_devres *dr;
2397 if (pci_resource_len(pdev, bar) == 0)
2398 return 0;
2400 if (pci_resource_flags(pdev, bar) & IORESOURCE_IO) {
2401 if (!request_region(pci_resource_start(pdev, bar),
2402 pci_resource_len(pdev, bar), res_name))
2403 goto err_out;
2405 else if (pci_resource_flags(pdev, bar) & IORESOURCE_MEM) {
2406 if (!__request_mem_region(pci_resource_start(pdev, bar),
2407 pci_resource_len(pdev, bar), res_name,
2408 exclusive))
2409 goto err_out;
2412 dr = find_pci_dr(pdev);
2413 if (dr)
2414 dr->region_mask |= 1 << bar;
2416 return 0;
2418 err_out:
2419 dev_warn(&pdev->dev, "BAR %d: can't reserve %pR\n", bar,
2420 &pdev->resource[bar]);
2421 return -EBUSY;
2425 * pci_request_region - Reserve PCI I/O and memory resource
2426 * @pdev: PCI device whose resources are to be reserved
2427 * @bar: BAR to be reserved
2428 * @res_name: Name to be associated with resource
2430 * Mark the PCI region associated with PCI device @pdev BAR @bar as
2431 * being reserved by owner @res_name. Do not access any
2432 * address inside the PCI regions unless this call returns
2433 * successfully.
2435 * Returns 0 on success, or %EBUSY on error. A warning
2436 * message is also printed on failure.
2438 int pci_request_region(struct pci_dev *pdev, int bar, const char *res_name)
2440 return __pci_request_region(pdev, bar, res_name, 0);
2444 * pci_request_region_exclusive - Reserved PCI I/O and memory resource
2445 * @pdev: PCI device whose resources are to be reserved
2446 * @bar: BAR to be reserved
2447 * @res_name: Name to be associated with resource.
2449 * Mark the PCI region associated with PCI device @pdev BR @bar as
2450 * being reserved by owner @res_name. Do not access any
2451 * address inside the PCI regions unless this call returns
2452 * successfully.
2454 * Returns 0 on success, or %EBUSY on error. A warning
2455 * message is also printed on failure.
2457 * The key difference that _exclusive makes it that userspace is
2458 * explicitly not allowed to map the resource via /dev/mem or
2459 * sysfs.
2461 int pci_request_region_exclusive(struct pci_dev *pdev, int bar, const char *res_name)
2463 return __pci_request_region(pdev, bar, res_name, IORESOURCE_EXCLUSIVE);
2466 * pci_release_selected_regions - Release selected PCI I/O and memory resources
2467 * @pdev: PCI device whose resources were previously reserved
2468 * @bars: Bitmask of BARs to be released
2470 * Release selected PCI I/O and memory resources previously reserved.
2471 * Call this function only after all use of the PCI regions has ceased.
2473 void pci_release_selected_regions(struct pci_dev *pdev, int bars)
2475 int i;
2477 for (i = 0; i < 6; i++)
2478 if (bars & (1 << i))
2479 pci_release_region(pdev, i);
2482 int __pci_request_selected_regions(struct pci_dev *pdev, int bars,
2483 const char *res_name, int excl)
2485 int i;
2487 for (i = 0; i < 6; i++)
2488 if (bars & (1 << i))
2489 if (__pci_request_region(pdev, i, res_name, excl))
2490 goto err_out;
2491 return 0;
2493 err_out:
2494 while(--i >= 0)
2495 if (bars & (1 << i))
2496 pci_release_region(pdev, i);
2498 return -EBUSY;
2503 * pci_request_selected_regions - Reserve selected PCI I/O and memory resources
2504 * @pdev: PCI device whose resources are to be reserved
2505 * @bars: Bitmask of BARs to be requested
2506 * @res_name: Name to be associated with resource
2508 int pci_request_selected_regions(struct pci_dev *pdev, int bars,
2509 const char *res_name)
2511 return __pci_request_selected_regions(pdev, bars, res_name, 0);
2514 int pci_request_selected_regions_exclusive(struct pci_dev *pdev,
2515 int bars, const char *res_name)
2517 return __pci_request_selected_regions(pdev, bars, res_name,
2518 IORESOURCE_EXCLUSIVE);
2522 * pci_release_regions - Release reserved PCI I/O and memory resources
2523 * @pdev: PCI device whose resources were previously reserved by pci_request_regions
2525 * Releases all PCI I/O and memory resources previously reserved by a
2526 * successful call to pci_request_regions. Call this function only
2527 * after all use of the PCI regions has ceased.
2530 void pci_release_regions(struct pci_dev *pdev)
2532 pci_release_selected_regions(pdev, (1 << 6) - 1);
2536 * pci_request_regions - Reserved PCI I/O and memory resources
2537 * @pdev: PCI device whose resources are to be reserved
2538 * @res_name: Name to be associated with resource.
2540 * Mark all PCI regions associated with PCI device @pdev as
2541 * being reserved by owner @res_name. Do not access any
2542 * address inside the PCI regions unless this call returns
2543 * successfully.
2545 * Returns 0 on success, or %EBUSY on error. A warning
2546 * message is also printed on failure.
2548 int pci_request_regions(struct pci_dev *pdev, const char *res_name)
2550 return pci_request_selected_regions(pdev, ((1 << 6) - 1), res_name);
2554 * pci_request_regions_exclusive - Reserved PCI I/O and memory resources
2555 * @pdev: PCI device whose resources are to be reserved
2556 * @res_name: Name to be associated with resource.
2558 * Mark all PCI regions associated with PCI device @pdev as
2559 * being reserved by owner @res_name. Do not access any
2560 * address inside the PCI regions unless this call returns
2561 * successfully.
2563 * pci_request_regions_exclusive() will mark the region so that
2564 * /dev/mem and the sysfs MMIO access will not be allowed.
2566 * Returns 0 on success, or %EBUSY on error. A warning
2567 * message is also printed on failure.
2569 int pci_request_regions_exclusive(struct pci_dev *pdev, const char *res_name)
2571 return pci_request_selected_regions_exclusive(pdev,
2572 ((1 << 6) - 1), res_name);
2575 static void __pci_set_master(struct pci_dev *dev, bool enable)
2577 u16 old_cmd, cmd;
2579 pci_read_config_word(dev, PCI_COMMAND, &old_cmd);
2580 if (enable)
2581 cmd = old_cmd | PCI_COMMAND_MASTER;
2582 else
2583 cmd = old_cmd & ~PCI_COMMAND_MASTER;
2584 if (cmd != old_cmd) {
2585 dev_dbg(&dev->dev, "%s bus mastering\n",
2586 enable ? "enabling" : "disabling");
2587 pci_write_config_word(dev, PCI_COMMAND, cmd);
2589 dev->is_busmaster = enable;
2593 * pci_set_master - enables bus-mastering for device dev
2594 * @dev: the PCI device to enable
2596 * Enables bus-mastering on the device and calls pcibios_set_master()
2597 * to do the needed arch specific settings.
2599 void pci_set_master(struct pci_dev *dev)
2601 __pci_set_master(dev, true);
2602 pcibios_set_master(dev);
2606 * pci_clear_master - disables bus-mastering for device dev
2607 * @dev: the PCI device to disable
2609 void pci_clear_master(struct pci_dev *dev)
2611 __pci_set_master(dev, false);
2615 * pci_set_cacheline_size - ensure the CACHE_LINE_SIZE register is programmed
2616 * @dev: the PCI device for which MWI is to be enabled
2618 * Helper function for pci_set_mwi.
2619 * Originally copied from drivers/net/acenic.c.
2620 * Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>.
2622 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2624 int pci_set_cacheline_size(struct pci_dev *dev)
2626 u8 cacheline_size;
2628 if (!pci_cache_line_size)
2629 return -EINVAL;
2631 /* Validate current setting: the PCI_CACHE_LINE_SIZE must be
2632 equal to or multiple of the right value. */
2633 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2634 if (cacheline_size >= pci_cache_line_size &&
2635 (cacheline_size % pci_cache_line_size) == 0)
2636 return 0;
2638 /* Write the correct value. */
2639 pci_write_config_byte(dev, PCI_CACHE_LINE_SIZE, pci_cache_line_size);
2640 /* Read it back. */
2641 pci_read_config_byte(dev, PCI_CACHE_LINE_SIZE, &cacheline_size);
2642 if (cacheline_size == pci_cache_line_size)
2643 return 0;
2645 dev_printk(KERN_DEBUG, &dev->dev, "cache line size of %d is not "
2646 "supported\n", pci_cache_line_size << 2);
2648 return -EINVAL;
2650 EXPORT_SYMBOL_GPL(pci_set_cacheline_size);
2652 #ifdef PCI_DISABLE_MWI
2653 int pci_set_mwi(struct pci_dev *dev)
2655 return 0;
2658 int pci_try_set_mwi(struct pci_dev *dev)
2660 return 0;
2663 void pci_clear_mwi(struct pci_dev *dev)
2667 #else
2670 * pci_set_mwi - enables memory-write-invalidate PCI transaction
2671 * @dev: the PCI device for which MWI is enabled
2673 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2675 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2678 pci_set_mwi(struct pci_dev *dev)
2680 int rc;
2681 u16 cmd;
2683 rc = pci_set_cacheline_size(dev);
2684 if (rc)
2685 return rc;
2687 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2688 if (! (cmd & PCI_COMMAND_INVALIDATE)) {
2689 dev_dbg(&dev->dev, "enabling Mem-Wr-Inval\n");
2690 cmd |= PCI_COMMAND_INVALIDATE;
2691 pci_write_config_word(dev, PCI_COMMAND, cmd);
2694 return 0;
2698 * pci_try_set_mwi - enables memory-write-invalidate PCI transaction
2699 * @dev: the PCI device for which MWI is enabled
2701 * Enables the Memory-Write-Invalidate transaction in %PCI_COMMAND.
2702 * Callers are not required to check the return value.
2704 * RETURNS: An appropriate -ERRNO error value on error, or zero for success.
2706 int pci_try_set_mwi(struct pci_dev *dev)
2708 int rc = pci_set_mwi(dev);
2709 return rc;
2713 * pci_clear_mwi - disables Memory-Write-Invalidate for device dev
2714 * @dev: the PCI device to disable
2716 * Disables PCI Memory-Write-Invalidate transaction on the device
2718 void
2719 pci_clear_mwi(struct pci_dev *dev)
2721 u16 cmd;
2723 pci_read_config_word(dev, PCI_COMMAND, &cmd);
2724 if (cmd & PCI_COMMAND_INVALIDATE) {
2725 cmd &= ~PCI_COMMAND_INVALIDATE;
2726 pci_write_config_word(dev, PCI_COMMAND, cmd);
2729 #endif /* ! PCI_DISABLE_MWI */
2732 * pci_intx - enables/disables PCI INTx for device dev
2733 * @pdev: the PCI device to operate on
2734 * @enable: boolean: whether to enable or disable PCI INTx
2736 * Enables/disables PCI INTx for device dev
2738 void
2739 pci_intx(struct pci_dev *pdev, int enable)
2741 u16 pci_command, new;
2743 pci_read_config_word(pdev, PCI_COMMAND, &pci_command);
2745 if (enable) {
2746 new = pci_command & ~PCI_COMMAND_INTX_DISABLE;
2747 } else {
2748 new = pci_command | PCI_COMMAND_INTX_DISABLE;
2751 if (new != pci_command) {
2752 struct pci_devres *dr;
2754 pci_write_config_word(pdev, PCI_COMMAND, new);
2756 dr = find_pci_dr(pdev);
2757 if (dr && !dr->restore_intx) {
2758 dr->restore_intx = 1;
2759 dr->orig_intx = !enable;
2765 * pci_msi_off - disables any msi or msix capabilities
2766 * @dev: the PCI device to operate on
2768 * If you want to use msi see pci_enable_msi and friends.
2769 * This is a lower level primitive that allows us to disable
2770 * msi operation at the device level.
2772 void pci_msi_off(struct pci_dev *dev)
2774 int pos;
2775 u16 control;
2777 pos = pci_find_capability(dev, PCI_CAP_ID_MSI);
2778 if (pos) {
2779 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &control);
2780 control &= ~PCI_MSI_FLAGS_ENABLE;
2781 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, control);
2783 pos = pci_find_capability(dev, PCI_CAP_ID_MSIX);
2784 if (pos) {
2785 pci_read_config_word(dev, pos + PCI_MSIX_FLAGS, &control);
2786 control &= ~PCI_MSIX_FLAGS_ENABLE;
2787 pci_write_config_word(dev, pos + PCI_MSIX_FLAGS, control);
2790 EXPORT_SYMBOL_GPL(pci_msi_off);
2792 int pci_set_dma_max_seg_size(struct pci_dev *dev, unsigned int size)
2794 return dma_set_max_seg_size(&dev->dev, size);
2796 EXPORT_SYMBOL(pci_set_dma_max_seg_size);
2798 int pci_set_dma_seg_boundary(struct pci_dev *dev, unsigned long mask)
2800 return dma_set_seg_boundary(&dev->dev, mask);
2802 EXPORT_SYMBOL(pci_set_dma_seg_boundary);
2804 static int pcie_flr(struct pci_dev *dev, int probe)
2806 int i;
2807 int pos;
2808 u32 cap;
2809 u16 status, control;
2811 pos = pci_pcie_cap(dev);
2812 if (!pos)
2813 return -ENOTTY;
2815 pci_read_config_dword(dev, pos + PCI_EXP_DEVCAP, &cap);
2816 if (!(cap & PCI_EXP_DEVCAP_FLR))
2817 return -ENOTTY;
2819 if (probe)
2820 return 0;
2822 /* Wait for Transaction Pending bit clean */
2823 for (i = 0; i < 4; i++) {
2824 if (i)
2825 msleep((1 << (i - 1)) * 100);
2827 pci_read_config_word(dev, pos + PCI_EXP_DEVSTA, &status);
2828 if (!(status & PCI_EXP_DEVSTA_TRPND))
2829 goto clear;
2832 dev_err(&dev->dev, "transaction is not cleared; "
2833 "proceeding with reset anyway\n");
2835 clear:
2836 pci_read_config_word(dev, pos + PCI_EXP_DEVCTL, &control);
2837 control |= PCI_EXP_DEVCTL_BCR_FLR;
2838 pci_write_config_word(dev, pos + PCI_EXP_DEVCTL, control);
2840 msleep(100);
2842 return 0;
2845 static int pci_af_flr(struct pci_dev *dev, int probe)
2847 int i;
2848 int pos;
2849 u8 cap;
2850 u8 status;
2852 pos = pci_find_capability(dev, PCI_CAP_ID_AF);
2853 if (!pos)
2854 return -ENOTTY;
2856 pci_read_config_byte(dev, pos + PCI_AF_CAP, &cap);
2857 if (!(cap & PCI_AF_CAP_TP) || !(cap & PCI_AF_CAP_FLR))
2858 return -ENOTTY;
2860 if (probe)
2861 return 0;
2863 /* Wait for Transaction Pending bit clean */
2864 for (i = 0; i < 4; i++) {
2865 if (i)
2866 msleep((1 << (i - 1)) * 100);
2868 pci_read_config_byte(dev, pos + PCI_AF_STATUS, &status);
2869 if (!(status & PCI_AF_STATUS_TP))
2870 goto clear;
2873 dev_err(&dev->dev, "transaction is not cleared; "
2874 "proceeding with reset anyway\n");
2876 clear:
2877 pci_write_config_byte(dev, pos + PCI_AF_CTRL, PCI_AF_CTRL_FLR);
2878 msleep(100);
2880 return 0;
2884 * pci_pm_reset - Put device into PCI_D3 and back into PCI_D0.
2885 * @dev: Device to reset.
2886 * @probe: If set, only check if the device can be reset this way.
2888 * If @dev supports native PCI PM and its PCI_PM_CTRL_NO_SOFT_RESET flag is
2889 * unset, it will be reinitialized internally when going from PCI_D3hot to
2890 * PCI_D0. If that's the case and the device is not in a low-power state
2891 * already, force it into PCI_D3hot and back to PCI_D0, causing it to be reset.
2893 * NOTE: This causes the caller to sleep for twice the device power transition
2894 * cooldown period, which for the D0->D3hot and D3hot->D0 transitions is 10 ms
2895 * by devault (i.e. unless the @dev's d3_delay field has a different value).
2896 * Moreover, only devices in D0 can be reset by this function.
2898 static int pci_pm_reset(struct pci_dev *dev, int probe)
2900 u16 csr;
2902 if (!dev->pm_cap)
2903 return -ENOTTY;
2905 pci_read_config_word(dev, dev->pm_cap + PCI_PM_CTRL, &csr);
2906 if (csr & PCI_PM_CTRL_NO_SOFT_RESET)
2907 return -ENOTTY;
2909 if (probe)
2910 return 0;
2912 if (dev->current_state != PCI_D0)
2913 return -EINVAL;
2915 csr &= ~PCI_PM_CTRL_STATE_MASK;
2916 csr |= PCI_D3hot;
2917 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2918 pci_dev_d3_sleep(dev);
2920 csr &= ~PCI_PM_CTRL_STATE_MASK;
2921 csr |= PCI_D0;
2922 pci_write_config_word(dev, dev->pm_cap + PCI_PM_CTRL, csr);
2923 pci_dev_d3_sleep(dev);
2925 return 0;
2928 static int pci_parent_bus_reset(struct pci_dev *dev, int probe)
2930 u16 ctrl;
2931 struct pci_dev *pdev;
2933 if (pci_is_root_bus(dev->bus) || dev->subordinate || !dev->bus->self)
2934 return -ENOTTY;
2936 list_for_each_entry(pdev, &dev->bus->devices, bus_list)
2937 if (pdev != dev)
2938 return -ENOTTY;
2940 if (probe)
2941 return 0;
2943 pci_read_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, &ctrl);
2944 ctrl |= PCI_BRIDGE_CTL_BUS_RESET;
2945 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2946 msleep(100);
2948 ctrl &= ~PCI_BRIDGE_CTL_BUS_RESET;
2949 pci_write_config_word(dev->bus->self, PCI_BRIDGE_CONTROL, ctrl);
2950 msleep(100);
2952 return 0;
2955 static int pci_dev_reset(struct pci_dev *dev, int probe)
2957 int rc;
2959 might_sleep();
2961 if (!probe) {
2962 pci_block_user_cfg_access(dev);
2963 /* block PM suspend, driver probe, etc. */
2964 device_lock(&dev->dev);
2967 rc = pci_dev_specific_reset(dev, probe);
2968 if (rc != -ENOTTY)
2969 goto done;
2971 rc = pcie_flr(dev, probe);
2972 if (rc != -ENOTTY)
2973 goto done;
2975 rc = pci_af_flr(dev, probe);
2976 if (rc != -ENOTTY)
2977 goto done;
2979 rc = pci_pm_reset(dev, probe);
2980 if (rc != -ENOTTY)
2981 goto done;
2983 rc = pci_parent_bus_reset(dev, probe);
2984 done:
2985 if (!probe) {
2986 device_unlock(&dev->dev);
2987 pci_unblock_user_cfg_access(dev);
2990 return rc;
2994 * __pci_reset_function - reset a PCI device function
2995 * @dev: PCI device to reset
2997 * Some devices allow an individual function to be reset without affecting
2998 * other functions in the same device. The PCI device must be responsive
2999 * to PCI config space in order to use this function.
3001 * The device function is presumed to be unused when this function is called.
3002 * Resetting the device will make the contents of PCI configuration space
3003 * random, so any caller of this must be prepared to reinitialise the
3004 * device including MSI, bus mastering, BARs, decoding IO and memory spaces,
3005 * etc.
3007 * Returns 0 if the device function was successfully reset or negative if the
3008 * device doesn't support resetting a single function.
3010 int __pci_reset_function(struct pci_dev *dev)
3012 return pci_dev_reset(dev, 0);
3014 EXPORT_SYMBOL_GPL(__pci_reset_function);
3017 * pci_probe_reset_function - check whether the device can be safely reset
3018 * @dev: PCI device to reset
3020 * Some devices allow an individual function to be reset without affecting
3021 * other functions in the same device. The PCI device must be responsive
3022 * to PCI config space in order to use this function.
3024 * Returns 0 if the device function can be reset or negative if the
3025 * device doesn't support resetting a single function.
3027 int pci_probe_reset_function(struct pci_dev *dev)
3029 return pci_dev_reset(dev, 1);
3033 * pci_reset_function - quiesce and reset a PCI device function
3034 * @dev: PCI device to reset
3036 * Some devices allow an individual function to be reset without affecting
3037 * other functions in the same device. The PCI device must be responsive
3038 * to PCI config space in order to use this function.
3040 * This function does not just reset the PCI portion of a device, but
3041 * clears all the state associated with the device. This function differs
3042 * from __pci_reset_function in that it saves and restores device state
3043 * over the reset.
3045 * Returns 0 if the device function was successfully reset or negative if the
3046 * device doesn't support resetting a single function.
3048 int pci_reset_function(struct pci_dev *dev)
3050 int rc;
3052 rc = pci_dev_reset(dev, 1);
3053 if (rc)
3054 return rc;
3056 pci_save_state(dev);
3059 * both INTx and MSI are disabled after the Interrupt Disable bit
3060 * is set and the Bus Master bit is cleared.
3062 pci_write_config_word(dev, PCI_COMMAND, PCI_COMMAND_INTX_DISABLE);
3064 rc = pci_dev_reset(dev, 0);
3066 pci_restore_state(dev);
3068 return rc;
3070 EXPORT_SYMBOL_GPL(pci_reset_function);
3073 * pcix_get_max_mmrbc - get PCI-X maximum designed memory read byte count
3074 * @dev: PCI device to query
3076 * Returns mmrbc: maximum designed memory read count in bytes
3077 * or appropriate error value.
3079 int pcix_get_max_mmrbc(struct pci_dev *dev)
3081 int cap;
3082 u32 stat;
3084 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3085 if (!cap)
3086 return -EINVAL;
3088 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3089 return -EINVAL;
3091 return 512 << ((stat & PCI_X_STATUS_MAX_READ) >> 21);
3093 EXPORT_SYMBOL(pcix_get_max_mmrbc);
3096 * pcix_get_mmrbc - get PCI-X maximum memory read byte count
3097 * @dev: PCI device to query
3099 * Returns mmrbc: maximum memory read count in bytes
3100 * or appropriate error value.
3102 int pcix_get_mmrbc(struct pci_dev *dev)
3104 int cap;
3105 u16 cmd;
3107 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3108 if (!cap)
3109 return -EINVAL;
3111 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3112 return -EINVAL;
3114 return 512 << ((cmd & PCI_X_CMD_MAX_READ) >> 2);
3116 EXPORT_SYMBOL(pcix_get_mmrbc);
3119 * pcix_set_mmrbc - set PCI-X maximum memory read byte count
3120 * @dev: PCI device to query
3121 * @mmrbc: maximum memory read count in bytes
3122 * valid values are 512, 1024, 2048, 4096
3124 * If possible sets maximum memory read byte count, some bridges have erratas
3125 * that prevent this.
3127 int pcix_set_mmrbc(struct pci_dev *dev, int mmrbc)
3129 int cap;
3130 u32 stat, v, o;
3131 u16 cmd;
3133 if (mmrbc < 512 || mmrbc > 4096 || !is_power_of_2(mmrbc))
3134 return -EINVAL;
3136 v = ffs(mmrbc) - 10;
3138 cap = pci_find_capability(dev, PCI_CAP_ID_PCIX);
3139 if (!cap)
3140 return -EINVAL;
3142 if (pci_read_config_dword(dev, cap + PCI_X_STATUS, &stat))
3143 return -EINVAL;
3145 if (v > (stat & PCI_X_STATUS_MAX_READ) >> 21)
3146 return -E2BIG;
3148 if (pci_read_config_word(dev, cap + PCI_X_CMD, &cmd))
3149 return -EINVAL;
3151 o = (cmd & PCI_X_CMD_MAX_READ) >> 2;
3152 if (o != v) {
3153 if (v > o && dev->bus &&
3154 (dev->bus->bus_flags & PCI_BUS_FLAGS_NO_MMRBC))
3155 return -EIO;
3157 cmd &= ~PCI_X_CMD_MAX_READ;
3158 cmd |= v << 2;
3159 if (pci_write_config_word(dev, cap + PCI_X_CMD, cmd))
3160 return -EIO;
3162 return 0;
3164 EXPORT_SYMBOL(pcix_set_mmrbc);
3167 * pcie_get_readrq - get PCI Express read request size
3168 * @dev: PCI device to query
3170 * Returns maximum memory read request in bytes
3171 * or appropriate error value.
3173 int pcie_get_readrq(struct pci_dev *dev)
3175 int ret, cap;
3176 u16 ctl;
3178 cap = pci_pcie_cap(dev);
3179 if (!cap)
3180 return -EINVAL;
3182 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3183 if (!ret)
3184 ret = 128 << ((ctl & PCI_EXP_DEVCTL_READRQ) >> 12);
3186 return ret;
3188 EXPORT_SYMBOL(pcie_get_readrq);
3191 * pcie_set_readrq - set PCI Express maximum memory read request
3192 * @dev: PCI device to query
3193 * @rq: maximum memory read count in bytes
3194 * valid values are 128, 256, 512, 1024, 2048, 4096
3196 * If possible sets maximum memory read request in bytes
3198 int pcie_set_readrq(struct pci_dev *dev, int rq)
3200 int cap, err = -EINVAL;
3201 u16 ctl, v;
3203 if (rq < 128 || rq > 4096 || !is_power_of_2(rq))
3204 goto out;
3206 v = (ffs(rq) - 8) << 12;
3208 cap = pci_pcie_cap(dev);
3209 if (!cap)
3210 goto out;
3212 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3213 if (err)
3214 goto out;
3216 if ((ctl & PCI_EXP_DEVCTL_READRQ) != v) {
3217 ctl &= ~PCI_EXP_DEVCTL_READRQ;
3218 ctl |= v;
3219 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3222 out:
3223 return err;
3225 EXPORT_SYMBOL(pcie_set_readrq);
3228 * pcie_get_mps - get PCI Express maximum payload size
3229 * @dev: PCI device to query
3231 * Returns maximum payload size in bytes
3232 * or appropriate error value.
3234 int pcie_get_mps(struct pci_dev *dev)
3236 int ret, cap;
3237 u16 ctl;
3239 cap = pci_pcie_cap(dev);
3240 if (!cap)
3241 return -EINVAL;
3243 ret = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3244 if (!ret)
3245 ret = 128 << ((ctl & PCI_EXP_DEVCTL_PAYLOAD) >> 5);
3247 return ret;
3251 * pcie_set_mps - set PCI Express maximum payload size
3252 * @dev: PCI device to query
3253 * @mps: maximum payload size in bytes
3254 * valid values are 128, 256, 512, 1024, 2048, 4096
3256 * If possible sets maximum payload size
3258 int pcie_set_mps(struct pci_dev *dev, int mps)
3260 int cap, err = -EINVAL;
3261 u16 ctl, v;
3263 if (mps < 128 || mps > 4096 || !is_power_of_2(mps))
3264 goto out;
3266 v = ffs(mps) - 8;
3267 if (v > dev->pcie_mpss)
3268 goto out;
3269 v <<= 5;
3271 cap = pci_pcie_cap(dev);
3272 if (!cap)
3273 goto out;
3275 err = pci_read_config_word(dev, cap + PCI_EXP_DEVCTL, &ctl);
3276 if (err)
3277 goto out;
3279 if ((ctl & PCI_EXP_DEVCTL_PAYLOAD) != v) {
3280 ctl &= ~PCI_EXP_DEVCTL_PAYLOAD;
3281 ctl |= v;
3282 err = pci_write_config_word(dev, cap + PCI_EXP_DEVCTL, ctl);
3284 out:
3285 return err;
3289 * pci_select_bars - Make BAR mask from the type of resource
3290 * @dev: the PCI device for which BAR mask is made
3291 * @flags: resource type mask to be selected
3293 * This helper routine makes bar mask from the type of resource.
3295 int pci_select_bars(struct pci_dev *dev, unsigned long flags)
3297 int i, bars = 0;
3298 for (i = 0; i < PCI_NUM_RESOURCES; i++)
3299 if (pci_resource_flags(dev, i) & flags)
3300 bars |= (1 << i);
3301 return bars;
3305 * pci_resource_bar - get position of the BAR associated with a resource
3306 * @dev: the PCI device
3307 * @resno: the resource number
3308 * @type: the BAR type to be filled in
3310 * Returns BAR position in config space, or 0 if the BAR is invalid.
3312 int pci_resource_bar(struct pci_dev *dev, int resno, enum pci_bar_type *type)
3314 int reg;
3316 if (resno < PCI_ROM_RESOURCE) {
3317 *type = pci_bar_unknown;
3318 return PCI_BASE_ADDRESS_0 + 4 * resno;
3319 } else if (resno == PCI_ROM_RESOURCE) {
3320 *type = pci_bar_mem32;
3321 return dev->rom_base_reg;
3322 } else if (resno < PCI_BRIDGE_RESOURCES) {
3323 /* device specific resource */
3324 reg = pci_iov_resource_bar(dev, resno, type);
3325 if (reg)
3326 return reg;
3329 dev_err(&dev->dev, "BAR %d: invalid resource\n", resno);
3330 return 0;
3333 /* Some architectures require additional programming to enable VGA */
3334 static arch_set_vga_state_t arch_set_vga_state;
3336 void __init pci_register_set_vga_state(arch_set_vga_state_t func)
3338 arch_set_vga_state = func; /* NULL disables */
3341 static int pci_set_vga_state_arch(struct pci_dev *dev, bool decode,
3342 unsigned int command_bits, u32 flags)
3344 if (arch_set_vga_state)
3345 return arch_set_vga_state(dev, decode, command_bits,
3346 flags);
3347 return 0;
3351 * pci_set_vga_state - set VGA decode state on device and parents if requested
3352 * @dev: the PCI device
3353 * @decode: true = enable decoding, false = disable decoding
3354 * @command_bits: PCI_COMMAND_IO and/or PCI_COMMAND_MEMORY
3355 * @flags: traverse ancestors and change bridges
3356 * CHANGE_BRIDGE_ONLY / CHANGE_BRIDGE
3358 int pci_set_vga_state(struct pci_dev *dev, bool decode,
3359 unsigned int command_bits, u32 flags)
3361 struct pci_bus *bus;
3362 struct pci_dev *bridge;
3363 u16 cmd;
3364 int rc;
3366 WARN_ON((flags & PCI_VGA_STATE_CHANGE_DECODES) & (command_bits & ~(PCI_COMMAND_IO|PCI_COMMAND_MEMORY)));
3368 /* ARCH specific VGA enables */
3369 rc = pci_set_vga_state_arch(dev, decode, command_bits, flags);
3370 if (rc)
3371 return rc;
3373 if (flags & PCI_VGA_STATE_CHANGE_DECODES) {
3374 pci_read_config_word(dev, PCI_COMMAND, &cmd);
3375 if (decode == true)
3376 cmd |= command_bits;
3377 else
3378 cmd &= ~command_bits;
3379 pci_write_config_word(dev, PCI_COMMAND, cmd);
3382 if (!(flags & PCI_VGA_STATE_CHANGE_BRIDGE))
3383 return 0;
3385 bus = dev->bus;
3386 while (bus) {
3387 bridge = bus->self;
3388 if (bridge) {
3389 pci_read_config_word(bridge, PCI_BRIDGE_CONTROL,
3390 &cmd);
3391 if (decode == true)
3392 cmd |= PCI_BRIDGE_CTL_VGA;
3393 else
3394 cmd &= ~PCI_BRIDGE_CTL_VGA;
3395 pci_write_config_word(bridge, PCI_BRIDGE_CONTROL,
3396 cmd);
3398 bus = bus->parent;
3400 return 0;
3403 #define RESOURCE_ALIGNMENT_PARAM_SIZE COMMAND_LINE_SIZE
3404 static char resource_alignment_param[RESOURCE_ALIGNMENT_PARAM_SIZE] = {0};
3405 static DEFINE_SPINLOCK(resource_alignment_lock);
3408 * pci_specified_resource_alignment - get resource alignment specified by user.
3409 * @dev: the PCI device to get
3411 * RETURNS: Resource alignment if it is specified.
3412 * Zero if it is not specified.
3414 resource_size_t pci_specified_resource_alignment(struct pci_dev *dev)
3416 int seg, bus, slot, func, align_order, count;
3417 resource_size_t align = 0;
3418 char *p;
3420 spin_lock(&resource_alignment_lock);
3421 p = resource_alignment_param;
3422 while (*p) {
3423 count = 0;
3424 if (sscanf(p, "%d%n", &align_order, &count) == 1 &&
3425 p[count] == '@') {
3426 p += count + 1;
3427 } else {
3428 align_order = -1;
3430 if (sscanf(p, "%x:%x:%x.%x%n",
3431 &seg, &bus, &slot, &func, &count) != 4) {
3432 seg = 0;
3433 if (sscanf(p, "%x:%x.%x%n",
3434 &bus, &slot, &func, &count) != 3) {
3435 /* Invalid format */
3436 printk(KERN_ERR "PCI: Can't parse resource_alignment parameter: %s\n",
3438 break;
3441 p += count;
3442 if (seg == pci_domain_nr(dev->bus) &&
3443 bus == dev->bus->number &&
3444 slot == PCI_SLOT(dev->devfn) &&
3445 func == PCI_FUNC(dev->devfn)) {
3446 if (align_order == -1) {
3447 align = PAGE_SIZE;
3448 } else {
3449 align = 1 << align_order;
3451 /* Found */
3452 break;
3454 if (*p != ';' && *p != ',') {
3455 /* End of param or invalid format */
3456 break;
3458 p++;
3460 spin_unlock(&resource_alignment_lock);
3461 return align;
3465 * pci_is_reassigndev - check if specified PCI is target device to reassign
3466 * @dev: the PCI device to check
3468 * RETURNS: non-zero for PCI device is a target device to reassign,
3469 * or zero is not.
3471 int pci_is_reassigndev(struct pci_dev *dev)
3473 return (pci_specified_resource_alignment(dev) != 0);
3476 ssize_t pci_set_resource_alignment_param(const char *buf, size_t count)
3478 if (count > RESOURCE_ALIGNMENT_PARAM_SIZE - 1)
3479 count = RESOURCE_ALIGNMENT_PARAM_SIZE - 1;
3480 spin_lock(&resource_alignment_lock);
3481 strncpy(resource_alignment_param, buf, count);
3482 resource_alignment_param[count] = '\0';
3483 spin_unlock(&resource_alignment_lock);
3484 return count;
3487 ssize_t pci_get_resource_alignment_param(char *buf, size_t size)
3489 size_t count;
3490 spin_lock(&resource_alignment_lock);
3491 count = snprintf(buf, size, "%s", resource_alignment_param);
3492 spin_unlock(&resource_alignment_lock);
3493 return count;
3496 static ssize_t pci_resource_alignment_show(struct bus_type *bus, char *buf)
3498 return pci_get_resource_alignment_param(buf, PAGE_SIZE);
3501 static ssize_t pci_resource_alignment_store(struct bus_type *bus,
3502 const char *buf, size_t count)
3504 return pci_set_resource_alignment_param(buf, count);
3507 BUS_ATTR(resource_alignment, 0644, pci_resource_alignment_show,
3508 pci_resource_alignment_store);
3510 static int __init pci_resource_alignment_sysfs_init(void)
3512 return bus_create_file(&pci_bus_type,
3513 &bus_attr_resource_alignment);
3516 late_initcall(pci_resource_alignment_sysfs_init);
3518 static void __devinit pci_no_domains(void)
3520 #ifdef CONFIG_PCI_DOMAINS
3521 pci_domains_supported = 0;
3522 #endif
3526 * pci_ext_cfg_enabled - can we access extended PCI config space?
3527 * @dev: The PCI device of the root bridge.
3529 * Returns 1 if we can access PCI extended config space (offsets
3530 * greater than 0xff). This is the default implementation. Architecture
3531 * implementations can override this.
3533 int __attribute__ ((weak)) pci_ext_cfg_avail(struct pci_dev *dev)
3535 return 1;
3538 void __weak pci_fixup_cardbus(struct pci_bus *bus)
3541 EXPORT_SYMBOL(pci_fixup_cardbus);
3543 static int __init pci_setup(char *str)
3545 while (str) {
3546 char *k = strchr(str, ',');
3547 if (k)
3548 *k++ = 0;
3549 if (*str && (str = pcibios_setup(str)) && *str) {
3550 if (!strcmp(str, "nomsi")) {
3551 pci_no_msi();
3552 } else if (!strcmp(str, "noaer")) {
3553 pci_no_aer();
3554 } else if (!strncmp(str, "realloc", 7)) {
3555 pci_realloc();
3556 } else if (!strcmp(str, "nodomains")) {
3557 pci_no_domains();
3558 } else if (!strncmp(str, "cbiosize=", 9)) {
3559 pci_cardbus_io_size = memparse(str + 9, &str);
3560 } else if (!strncmp(str, "cbmemsize=", 10)) {
3561 pci_cardbus_mem_size = memparse(str + 10, &str);
3562 } else if (!strncmp(str, "resource_alignment=", 19)) {
3563 pci_set_resource_alignment_param(str + 19,
3564 strlen(str + 19));
3565 } else if (!strncmp(str, "ecrc=", 5)) {
3566 pcie_ecrc_get_policy(str + 5);
3567 } else if (!strncmp(str, "hpiosize=", 9)) {
3568 pci_hotplug_io_size = memparse(str + 9, &str);
3569 } else if (!strncmp(str, "hpmemsize=", 10)) {
3570 pci_hotplug_mem_size = memparse(str + 10, &str);
3571 } else if (!strncmp(str, "pcie_bus_tune_off", 17)) {
3572 pcie_bus_config = PCIE_BUS_TUNE_OFF;
3573 } else if (!strncmp(str, "pcie_bus_safe", 13)) {
3574 pcie_bus_config = PCIE_BUS_SAFE;
3575 } else if (!strncmp(str, "pcie_bus_perf", 13)) {
3576 pcie_bus_config = PCIE_BUS_PERFORMANCE;
3577 } else if (!strncmp(str, "pcie_bus_peer2peer", 18)) {
3578 pcie_bus_config = PCIE_BUS_PEER2PEER;
3579 } else {
3580 printk(KERN_ERR "PCI: Unknown option `%s'\n",
3581 str);
3584 str = k;
3586 return 0;
3588 early_param("pci", pci_setup);
3590 EXPORT_SYMBOL(pci_reenable_device);
3591 EXPORT_SYMBOL(pci_enable_device_io);
3592 EXPORT_SYMBOL(pci_enable_device_mem);
3593 EXPORT_SYMBOL(pci_enable_device);
3594 EXPORT_SYMBOL(pcim_enable_device);
3595 EXPORT_SYMBOL(pcim_pin_device);
3596 EXPORT_SYMBOL(pci_disable_device);
3597 EXPORT_SYMBOL(pci_find_capability);
3598 EXPORT_SYMBOL(pci_bus_find_capability);
3599 EXPORT_SYMBOL(pci_release_regions);
3600 EXPORT_SYMBOL(pci_request_regions);
3601 EXPORT_SYMBOL(pci_request_regions_exclusive);
3602 EXPORT_SYMBOL(pci_release_region);
3603 EXPORT_SYMBOL(pci_request_region);
3604 EXPORT_SYMBOL(pci_request_region_exclusive);
3605 EXPORT_SYMBOL(pci_release_selected_regions);
3606 EXPORT_SYMBOL(pci_request_selected_regions);
3607 EXPORT_SYMBOL(pci_request_selected_regions_exclusive);
3608 EXPORT_SYMBOL(pci_set_master);
3609 EXPORT_SYMBOL(pci_clear_master);
3610 EXPORT_SYMBOL(pci_set_mwi);
3611 EXPORT_SYMBOL(pci_try_set_mwi);
3612 EXPORT_SYMBOL(pci_clear_mwi);
3613 EXPORT_SYMBOL_GPL(pci_intx);
3614 EXPORT_SYMBOL(pci_assign_resource);
3615 EXPORT_SYMBOL(pci_find_parent_resource);
3616 EXPORT_SYMBOL(pci_select_bars);
3618 EXPORT_SYMBOL(pci_set_power_state);
3619 EXPORT_SYMBOL(pci_save_state);
3620 EXPORT_SYMBOL(pci_restore_state);
3621 EXPORT_SYMBOL(pci_pme_capable);
3622 EXPORT_SYMBOL(pci_pme_active);
3623 EXPORT_SYMBOL(pci_wake_from_d3);
3624 EXPORT_SYMBOL(pci_target_state);
3625 EXPORT_SYMBOL(pci_prepare_to_sleep);
3626 EXPORT_SYMBOL(pci_back_from_sleep);
3627 EXPORT_SYMBOL_GPL(pci_set_pcie_reset_state);