Merge branch 'btrfs-3.0' of git://github.com/chrismason/linux
[linux-btrfs-devel.git] / fs / btrfs / delayed-inode.c
blobb52c672f4c180beae28f60302071731bd343dcba
1 /*
2 * Copyright (C) 2011 Fujitsu. All rights reserved.
3 * Written by Miao Xie <miaox@cn.fujitsu.com>
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public
7 * License v2 as published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public
15 * License along with this program; if not, write to the
16 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
17 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include "delayed-inode.h"
22 #include "disk-io.h"
23 #include "transaction.h"
25 #define BTRFS_DELAYED_WRITEBACK 400
26 #define BTRFS_DELAYED_BACKGROUND 100
28 static struct kmem_cache *delayed_node_cache;
30 int __init btrfs_delayed_inode_init(void)
32 delayed_node_cache = kmem_cache_create("delayed_node",
33 sizeof(struct btrfs_delayed_node),
35 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
36 NULL);
37 if (!delayed_node_cache)
38 return -ENOMEM;
39 return 0;
42 void btrfs_delayed_inode_exit(void)
44 if (delayed_node_cache)
45 kmem_cache_destroy(delayed_node_cache);
48 static inline void btrfs_init_delayed_node(
49 struct btrfs_delayed_node *delayed_node,
50 struct btrfs_root *root, u64 inode_id)
52 delayed_node->root = root;
53 delayed_node->inode_id = inode_id;
54 atomic_set(&delayed_node->refs, 0);
55 delayed_node->count = 0;
56 delayed_node->in_list = 0;
57 delayed_node->inode_dirty = 0;
58 delayed_node->ins_root = RB_ROOT;
59 delayed_node->del_root = RB_ROOT;
60 mutex_init(&delayed_node->mutex);
61 delayed_node->index_cnt = 0;
62 INIT_LIST_HEAD(&delayed_node->n_list);
63 INIT_LIST_HEAD(&delayed_node->p_list);
64 delayed_node->bytes_reserved = 0;
67 static inline int btrfs_is_continuous_delayed_item(
68 struct btrfs_delayed_item *item1,
69 struct btrfs_delayed_item *item2)
71 if (item1->key.type == BTRFS_DIR_INDEX_KEY &&
72 item1->key.objectid == item2->key.objectid &&
73 item1->key.type == item2->key.type &&
74 item1->key.offset + 1 == item2->key.offset)
75 return 1;
76 return 0;
79 static inline struct btrfs_delayed_root *btrfs_get_delayed_root(
80 struct btrfs_root *root)
82 return root->fs_info->delayed_root;
85 static struct btrfs_delayed_node *btrfs_get_delayed_node(struct inode *inode)
87 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
88 struct btrfs_root *root = btrfs_inode->root;
89 u64 ino = btrfs_ino(inode);
90 struct btrfs_delayed_node *node;
92 node = ACCESS_ONCE(btrfs_inode->delayed_node);
93 if (node) {
94 atomic_inc(&node->refs);
95 return node;
98 spin_lock(&root->inode_lock);
99 node = radix_tree_lookup(&root->delayed_nodes_tree, ino);
100 if (node) {
101 if (btrfs_inode->delayed_node) {
102 atomic_inc(&node->refs); /* can be accessed */
103 BUG_ON(btrfs_inode->delayed_node != node);
104 spin_unlock(&root->inode_lock);
105 return node;
107 btrfs_inode->delayed_node = node;
108 atomic_inc(&node->refs); /* can be accessed */
109 atomic_inc(&node->refs); /* cached in the inode */
110 spin_unlock(&root->inode_lock);
111 return node;
113 spin_unlock(&root->inode_lock);
115 return NULL;
118 static struct btrfs_delayed_node *btrfs_get_or_create_delayed_node(
119 struct inode *inode)
121 struct btrfs_delayed_node *node;
122 struct btrfs_inode *btrfs_inode = BTRFS_I(inode);
123 struct btrfs_root *root = btrfs_inode->root;
124 u64 ino = btrfs_ino(inode);
125 int ret;
127 again:
128 node = btrfs_get_delayed_node(inode);
129 if (node)
130 return node;
132 node = kmem_cache_alloc(delayed_node_cache, GFP_NOFS);
133 if (!node)
134 return ERR_PTR(-ENOMEM);
135 btrfs_init_delayed_node(node, root, ino);
137 atomic_inc(&node->refs); /* cached in the btrfs inode */
138 atomic_inc(&node->refs); /* can be accessed */
140 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
141 if (ret) {
142 kmem_cache_free(delayed_node_cache, node);
143 return ERR_PTR(ret);
146 spin_lock(&root->inode_lock);
147 ret = radix_tree_insert(&root->delayed_nodes_tree, ino, node);
148 if (ret == -EEXIST) {
149 kmem_cache_free(delayed_node_cache, node);
150 spin_unlock(&root->inode_lock);
151 radix_tree_preload_end();
152 goto again;
154 btrfs_inode->delayed_node = node;
155 spin_unlock(&root->inode_lock);
156 radix_tree_preload_end();
158 return node;
162 * Call it when holding delayed_node->mutex
164 * If mod = 1, add this node into the prepared list.
166 static void btrfs_queue_delayed_node(struct btrfs_delayed_root *root,
167 struct btrfs_delayed_node *node,
168 int mod)
170 spin_lock(&root->lock);
171 if (node->in_list) {
172 if (!list_empty(&node->p_list))
173 list_move_tail(&node->p_list, &root->prepare_list);
174 else if (mod)
175 list_add_tail(&node->p_list, &root->prepare_list);
176 } else {
177 list_add_tail(&node->n_list, &root->node_list);
178 list_add_tail(&node->p_list, &root->prepare_list);
179 atomic_inc(&node->refs); /* inserted into list */
180 root->nodes++;
181 node->in_list = 1;
183 spin_unlock(&root->lock);
186 /* Call it when holding delayed_node->mutex */
187 static void btrfs_dequeue_delayed_node(struct btrfs_delayed_root *root,
188 struct btrfs_delayed_node *node)
190 spin_lock(&root->lock);
191 if (node->in_list) {
192 root->nodes--;
193 atomic_dec(&node->refs); /* not in the list */
194 list_del_init(&node->n_list);
195 if (!list_empty(&node->p_list))
196 list_del_init(&node->p_list);
197 node->in_list = 0;
199 spin_unlock(&root->lock);
202 struct btrfs_delayed_node *btrfs_first_delayed_node(
203 struct btrfs_delayed_root *delayed_root)
205 struct list_head *p;
206 struct btrfs_delayed_node *node = NULL;
208 spin_lock(&delayed_root->lock);
209 if (list_empty(&delayed_root->node_list))
210 goto out;
212 p = delayed_root->node_list.next;
213 node = list_entry(p, struct btrfs_delayed_node, n_list);
214 atomic_inc(&node->refs);
215 out:
216 spin_unlock(&delayed_root->lock);
218 return node;
221 struct btrfs_delayed_node *btrfs_next_delayed_node(
222 struct btrfs_delayed_node *node)
224 struct btrfs_delayed_root *delayed_root;
225 struct list_head *p;
226 struct btrfs_delayed_node *next = NULL;
228 delayed_root = node->root->fs_info->delayed_root;
229 spin_lock(&delayed_root->lock);
230 if (!node->in_list) { /* not in the list */
231 if (list_empty(&delayed_root->node_list))
232 goto out;
233 p = delayed_root->node_list.next;
234 } else if (list_is_last(&node->n_list, &delayed_root->node_list))
235 goto out;
236 else
237 p = node->n_list.next;
239 next = list_entry(p, struct btrfs_delayed_node, n_list);
240 atomic_inc(&next->refs);
241 out:
242 spin_unlock(&delayed_root->lock);
244 return next;
247 static void __btrfs_release_delayed_node(
248 struct btrfs_delayed_node *delayed_node,
249 int mod)
251 struct btrfs_delayed_root *delayed_root;
253 if (!delayed_node)
254 return;
256 delayed_root = delayed_node->root->fs_info->delayed_root;
258 mutex_lock(&delayed_node->mutex);
259 if (delayed_node->count)
260 btrfs_queue_delayed_node(delayed_root, delayed_node, mod);
261 else
262 btrfs_dequeue_delayed_node(delayed_root, delayed_node);
263 mutex_unlock(&delayed_node->mutex);
265 if (atomic_dec_and_test(&delayed_node->refs)) {
266 struct btrfs_root *root = delayed_node->root;
267 spin_lock(&root->inode_lock);
268 if (atomic_read(&delayed_node->refs) == 0) {
269 radix_tree_delete(&root->delayed_nodes_tree,
270 delayed_node->inode_id);
271 kmem_cache_free(delayed_node_cache, delayed_node);
273 spin_unlock(&root->inode_lock);
277 static inline void btrfs_release_delayed_node(struct btrfs_delayed_node *node)
279 __btrfs_release_delayed_node(node, 0);
282 struct btrfs_delayed_node *btrfs_first_prepared_delayed_node(
283 struct btrfs_delayed_root *delayed_root)
285 struct list_head *p;
286 struct btrfs_delayed_node *node = NULL;
288 spin_lock(&delayed_root->lock);
289 if (list_empty(&delayed_root->prepare_list))
290 goto out;
292 p = delayed_root->prepare_list.next;
293 list_del_init(p);
294 node = list_entry(p, struct btrfs_delayed_node, p_list);
295 atomic_inc(&node->refs);
296 out:
297 spin_unlock(&delayed_root->lock);
299 return node;
302 static inline void btrfs_release_prepared_delayed_node(
303 struct btrfs_delayed_node *node)
305 __btrfs_release_delayed_node(node, 1);
308 struct btrfs_delayed_item *btrfs_alloc_delayed_item(u32 data_len)
310 struct btrfs_delayed_item *item;
311 item = kmalloc(sizeof(*item) + data_len, GFP_NOFS);
312 if (item) {
313 item->data_len = data_len;
314 item->ins_or_del = 0;
315 item->bytes_reserved = 0;
316 item->delayed_node = NULL;
317 atomic_set(&item->refs, 1);
319 return item;
323 * __btrfs_lookup_delayed_item - look up the delayed item by key
324 * @delayed_node: pointer to the delayed node
325 * @key: the key to look up
326 * @prev: used to store the prev item if the right item isn't found
327 * @next: used to store the next item if the right item isn't found
329 * Note: if we don't find the right item, we will return the prev item and
330 * the next item.
332 static struct btrfs_delayed_item *__btrfs_lookup_delayed_item(
333 struct rb_root *root,
334 struct btrfs_key *key,
335 struct btrfs_delayed_item **prev,
336 struct btrfs_delayed_item **next)
338 struct rb_node *node, *prev_node = NULL;
339 struct btrfs_delayed_item *delayed_item = NULL;
340 int ret = 0;
342 node = root->rb_node;
344 while (node) {
345 delayed_item = rb_entry(node, struct btrfs_delayed_item,
346 rb_node);
347 prev_node = node;
348 ret = btrfs_comp_cpu_keys(&delayed_item->key, key);
349 if (ret < 0)
350 node = node->rb_right;
351 else if (ret > 0)
352 node = node->rb_left;
353 else
354 return delayed_item;
357 if (prev) {
358 if (!prev_node)
359 *prev = NULL;
360 else if (ret < 0)
361 *prev = delayed_item;
362 else if ((node = rb_prev(prev_node)) != NULL) {
363 *prev = rb_entry(node, struct btrfs_delayed_item,
364 rb_node);
365 } else
366 *prev = NULL;
369 if (next) {
370 if (!prev_node)
371 *next = NULL;
372 else if (ret > 0)
373 *next = delayed_item;
374 else if ((node = rb_next(prev_node)) != NULL) {
375 *next = rb_entry(node, struct btrfs_delayed_item,
376 rb_node);
377 } else
378 *next = NULL;
380 return NULL;
383 struct btrfs_delayed_item *__btrfs_lookup_delayed_insertion_item(
384 struct btrfs_delayed_node *delayed_node,
385 struct btrfs_key *key)
387 struct btrfs_delayed_item *item;
389 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
390 NULL, NULL);
391 return item;
394 struct btrfs_delayed_item *__btrfs_lookup_delayed_deletion_item(
395 struct btrfs_delayed_node *delayed_node,
396 struct btrfs_key *key)
398 struct btrfs_delayed_item *item;
400 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
401 NULL, NULL);
402 return item;
405 struct btrfs_delayed_item *__btrfs_search_delayed_insertion_item(
406 struct btrfs_delayed_node *delayed_node,
407 struct btrfs_key *key)
409 struct btrfs_delayed_item *item, *next;
411 item = __btrfs_lookup_delayed_item(&delayed_node->ins_root, key,
412 NULL, &next);
413 if (!item)
414 item = next;
416 return item;
419 struct btrfs_delayed_item *__btrfs_search_delayed_deletion_item(
420 struct btrfs_delayed_node *delayed_node,
421 struct btrfs_key *key)
423 struct btrfs_delayed_item *item, *next;
425 item = __btrfs_lookup_delayed_item(&delayed_node->del_root, key,
426 NULL, &next);
427 if (!item)
428 item = next;
430 return item;
433 static int __btrfs_add_delayed_item(struct btrfs_delayed_node *delayed_node,
434 struct btrfs_delayed_item *ins,
435 int action)
437 struct rb_node **p, *node;
438 struct rb_node *parent_node = NULL;
439 struct rb_root *root;
440 struct btrfs_delayed_item *item;
441 int cmp;
443 if (action == BTRFS_DELAYED_INSERTION_ITEM)
444 root = &delayed_node->ins_root;
445 else if (action == BTRFS_DELAYED_DELETION_ITEM)
446 root = &delayed_node->del_root;
447 else
448 BUG();
449 p = &root->rb_node;
450 node = &ins->rb_node;
452 while (*p) {
453 parent_node = *p;
454 item = rb_entry(parent_node, struct btrfs_delayed_item,
455 rb_node);
457 cmp = btrfs_comp_cpu_keys(&item->key, &ins->key);
458 if (cmp < 0)
459 p = &(*p)->rb_right;
460 else if (cmp > 0)
461 p = &(*p)->rb_left;
462 else
463 return -EEXIST;
466 rb_link_node(node, parent_node, p);
467 rb_insert_color(node, root);
468 ins->delayed_node = delayed_node;
469 ins->ins_or_del = action;
471 if (ins->key.type == BTRFS_DIR_INDEX_KEY &&
472 action == BTRFS_DELAYED_INSERTION_ITEM &&
473 ins->key.offset >= delayed_node->index_cnt)
474 delayed_node->index_cnt = ins->key.offset + 1;
476 delayed_node->count++;
477 atomic_inc(&delayed_node->root->fs_info->delayed_root->items);
478 return 0;
481 static int __btrfs_add_delayed_insertion_item(struct btrfs_delayed_node *node,
482 struct btrfs_delayed_item *item)
484 return __btrfs_add_delayed_item(node, item,
485 BTRFS_DELAYED_INSERTION_ITEM);
488 static int __btrfs_add_delayed_deletion_item(struct btrfs_delayed_node *node,
489 struct btrfs_delayed_item *item)
491 return __btrfs_add_delayed_item(node, item,
492 BTRFS_DELAYED_DELETION_ITEM);
495 static void __btrfs_remove_delayed_item(struct btrfs_delayed_item *delayed_item)
497 struct rb_root *root;
498 struct btrfs_delayed_root *delayed_root;
500 delayed_root = delayed_item->delayed_node->root->fs_info->delayed_root;
502 BUG_ON(!delayed_root);
503 BUG_ON(delayed_item->ins_or_del != BTRFS_DELAYED_DELETION_ITEM &&
504 delayed_item->ins_or_del != BTRFS_DELAYED_INSERTION_ITEM);
506 if (delayed_item->ins_or_del == BTRFS_DELAYED_INSERTION_ITEM)
507 root = &delayed_item->delayed_node->ins_root;
508 else
509 root = &delayed_item->delayed_node->del_root;
511 rb_erase(&delayed_item->rb_node, root);
512 delayed_item->delayed_node->count--;
513 atomic_dec(&delayed_root->items);
514 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND &&
515 waitqueue_active(&delayed_root->wait))
516 wake_up(&delayed_root->wait);
519 static void btrfs_release_delayed_item(struct btrfs_delayed_item *item)
521 if (item) {
522 __btrfs_remove_delayed_item(item);
523 if (atomic_dec_and_test(&item->refs))
524 kfree(item);
528 struct btrfs_delayed_item *__btrfs_first_delayed_insertion_item(
529 struct btrfs_delayed_node *delayed_node)
531 struct rb_node *p;
532 struct btrfs_delayed_item *item = NULL;
534 p = rb_first(&delayed_node->ins_root);
535 if (p)
536 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
538 return item;
541 struct btrfs_delayed_item *__btrfs_first_delayed_deletion_item(
542 struct btrfs_delayed_node *delayed_node)
544 struct rb_node *p;
545 struct btrfs_delayed_item *item = NULL;
547 p = rb_first(&delayed_node->del_root);
548 if (p)
549 item = rb_entry(p, struct btrfs_delayed_item, rb_node);
551 return item;
554 struct btrfs_delayed_item *__btrfs_next_delayed_item(
555 struct btrfs_delayed_item *item)
557 struct rb_node *p;
558 struct btrfs_delayed_item *next = NULL;
560 p = rb_next(&item->rb_node);
561 if (p)
562 next = rb_entry(p, struct btrfs_delayed_item, rb_node);
564 return next;
567 static inline struct btrfs_root *btrfs_get_fs_root(struct btrfs_root *root,
568 u64 root_id)
570 struct btrfs_key root_key;
572 if (root->objectid == root_id)
573 return root;
575 root_key.objectid = root_id;
576 root_key.type = BTRFS_ROOT_ITEM_KEY;
577 root_key.offset = (u64)-1;
578 return btrfs_read_fs_root_no_name(root->fs_info, &root_key);
581 static int btrfs_delayed_item_reserve_metadata(struct btrfs_trans_handle *trans,
582 struct btrfs_root *root,
583 struct btrfs_delayed_item *item)
585 struct btrfs_block_rsv *src_rsv;
586 struct btrfs_block_rsv *dst_rsv;
587 u64 num_bytes;
588 int ret;
590 if (!trans->bytes_reserved)
591 return 0;
593 src_rsv = trans->block_rsv;
594 dst_rsv = &root->fs_info->global_block_rsv;
596 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
597 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
598 if (!ret)
599 item->bytes_reserved = num_bytes;
601 return ret;
604 static void btrfs_delayed_item_release_metadata(struct btrfs_root *root,
605 struct btrfs_delayed_item *item)
607 struct btrfs_block_rsv *rsv;
609 if (!item->bytes_reserved)
610 return;
612 rsv = &root->fs_info->global_block_rsv;
613 btrfs_block_rsv_release(root, rsv,
614 item->bytes_reserved);
617 static int btrfs_delayed_inode_reserve_metadata(
618 struct btrfs_trans_handle *trans,
619 struct btrfs_root *root,
620 struct btrfs_delayed_node *node)
622 struct btrfs_block_rsv *src_rsv;
623 struct btrfs_block_rsv *dst_rsv;
624 u64 num_bytes;
625 int ret;
627 if (!trans->bytes_reserved)
628 return 0;
630 src_rsv = trans->block_rsv;
631 dst_rsv = &root->fs_info->global_block_rsv;
633 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
634 ret = btrfs_block_rsv_migrate(src_rsv, dst_rsv, num_bytes);
635 if (!ret)
636 node->bytes_reserved = num_bytes;
638 return ret;
641 static void btrfs_delayed_inode_release_metadata(struct btrfs_root *root,
642 struct btrfs_delayed_node *node)
644 struct btrfs_block_rsv *rsv;
646 if (!node->bytes_reserved)
647 return;
649 rsv = &root->fs_info->global_block_rsv;
650 btrfs_block_rsv_release(root, rsv,
651 node->bytes_reserved);
652 node->bytes_reserved = 0;
656 * This helper will insert some continuous items into the same leaf according
657 * to the free space of the leaf.
659 static int btrfs_batch_insert_items(struct btrfs_trans_handle *trans,
660 struct btrfs_root *root,
661 struct btrfs_path *path,
662 struct btrfs_delayed_item *item)
664 struct btrfs_delayed_item *curr, *next;
665 int free_space;
666 int total_data_size = 0, total_size = 0;
667 struct extent_buffer *leaf;
668 char *data_ptr;
669 struct btrfs_key *keys;
670 u32 *data_size;
671 struct list_head head;
672 int slot;
673 int nitems;
674 int i;
675 int ret = 0;
677 BUG_ON(!path->nodes[0]);
679 leaf = path->nodes[0];
680 free_space = btrfs_leaf_free_space(root, leaf);
681 INIT_LIST_HEAD(&head);
683 next = item;
684 nitems = 0;
687 * count the number of the continuous items that we can insert in batch
689 while (total_size + next->data_len + sizeof(struct btrfs_item) <=
690 free_space) {
691 total_data_size += next->data_len;
692 total_size += next->data_len + sizeof(struct btrfs_item);
693 list_add_tail(&next->tree_list, &head);
694 nitems++;
696 curr = next;
697 next = __btrfs_next_delayed_item(curr);
698 if (!next)
699 break;
701 if (!btrfs_is_continuous_delayed_item(curr, next))
702 break;
705 if (!nitems) {
706 ret = 0;
707 goto out;
711 * we need allocate some memory space, but it might cause the task
712 * to sleep, so we set all locked nodes in the path to blocking locks
713 * first.
715 btrfs_set_path_blocking(path);
717 keys = kmalloc(sizeof(struct btrfs_key) * nitems, GFP_NOFS);
718 if (!keys) {
719 ret = -ENOMEM;
720 goto out;
723 data_size = kmalloc(sizeof(u32) * nitems, GFP_NOFS);
724 if (!data_size) {
725 ret = -ENOMEM;
726 goto error;
729 /* get keys of all the delayed items */
730 i = 0;
731 list_for_each_entry(next, &head, tree_list) {
732 keys[i] = next->key;
733 data_size[i] = next->data_len;
734 i++;
737 /* reset all the locked nodes in the patch to spinning locks. */
738 btrfs_clear_path_blocking(path, NULL, 0);
740 /* insert the keys of the items */
741 ret = setup_items_for_insert(trans, root, path, keys, data_size,
742 total_data_size, total_size, nitems);
743 if (ret)
744 goto error;
746 /* insert the dir index items */
747 slot = path->slots[0];
748 list_for_each_entry_safe(curr, next, &head, tree_list) {
749 data_ptr = btrfs_item_ptr(leaf, slot, char);
750 write_extent_buffer(leaf, &curr->data,
751 (unsigned long)data_ptr,
752 curr->data_len);
753 slot++;
755 btrfs_delayed_item_release_metadata(root, curr);
757 list_del(&curr->tree_list);
758 btrfs_release_delayed_item(curr);
761 error:
762 kfree(data_size);
763 kfree(keys);
764 out:
765 return ret;
769 * This helper can just do simple insertion that needn't extend item for new
770 * data, such as directory name index insertion, inode insertion.
772 static int btrfs_insert_delayed_item(struct btrfs_trans_handle *trans,
773 struct btrfs_root *root,
774 struct btrfs_path *path,
775 struct btrfs_delayed_item *delayed_item)
777 struct extent_buffer *leaf;
778 struct btrfs_item *item;
779 char *ptr;
780 int ret;
782 ret = btrfs_insert_empty_item(trans, root, path, &delayed_item->key,
783 delayed_item->data_len);
784 if (ret < 0 && ret != -EEXIST)
785 return ret;
787 leaf = path->nodes[0];
789 item = btrfs_item_nr(leaf, path->slots[0]);
790 ptr = btrfs_item_ptr(leaf, path->slots[0], char);
792 write_extent_buffer(leaf, delayed_item->data, (unsigned long)ptr,
793 delayed_item->data_len);
794 btrfs_mark_buffer_dirty(leaf);
796 btrfs_delayed_item_release_metadata(root, delayed_item);
797 return 0;
801 * we insert an item first, then if there are some continuous items, we try
802 * to insert those items into the same leaf.
804 static int btrfs_insert_delayed_items(struct btrfs_trans_handle *trans,
805 struct btrfs_path *path,
806 struct btrfs_root *root,
807 struct btrfs_delayed_node *node)
809 struct btrfs_delayed_item *curr, *prev;
810 int ret = 0;
812 do_again:
813 mutex_lock(&node->mutex);
814 curr = __btrfs_first_delayed_insertion_item(node);
815 if (!curr)
816 goto insert_end;
818 ret = btrfs_insert_delayed_item(trans, root, path, curr);
819 if (ret < 0) {
820 btrfs_release_path(path);
821 goto insert_end;
824 prev = curr;
825 curr = __btrfs_next_delayed_item(prev);
826 if (curr && btrfs_is_continuous_delayed_item(prev, curr)) {
827 /* insert the continuous items into the same leaf */
828 path->slots[0]++;
829 btrfs_batch_insert_items(trans, root, path, curr);
831 btrfs_release_delayed_item(prev);
832 btrfs_mark_buffer_dirty(path->nodes[0]);
834 btrfs_release_path(path);
835 mutex_unlock(&node->mutex);
836 goto do_again;
838 insert_end:
839 mutex_unlock(&node->mutex);
840 return ret;
843 static int btrfs_batch_delete_items(struct btrfs_trans_handle *trans,
844 struct btrfs_root *root,
845 struct btrfs_path *path,
846 struct btrfs_delayed_item *item)
848 struct btrfs_delayed_item *curr, *next;
849 struct extent_buffer *leaf;
850 struct btrfs_key key;
851 struct list_head head;
852 int nitems, i, last_item;
853 int ret = 0;
855 BUG_ON(!path->nodes[0]);
857 leaf = path->nodes[0];
859 i = path->slots[0];
860 last_item = btrfs_header_nritems(leaf) - 1;
861 if (i > last_item)
862 return -ENOENT; /* FIXME: Is errno suitable? */
864 next = item;
865 INIT_LIST_HEAD(&head);
866 btrfs_item_key_to_cpu(leaf, &key, i);
867 nitems = 0;
869 * count the number of the dir index items that we can delete in batch
871 while (btrfs_comp_cpu_keys(&next->key, &key) == 0) {
872 list_add_tail(&next->tree_list, &head);
873 nitems++;
875 curr = next;
876 next = __btrfs_next_delayed_item(curr);
877 if (!next)
878 break;
880 if (!btrfs_is_continuous_delayed_item(curr, next))
881 break;
883 i++;
884 if (i > last_item)
885 break;
886 btrfs_item_key_to_cpu(leaf, &key, i);
889 if (!nitems)
890 return 0;
892 ret = btrfs_del_items(trans, root, path, path->slots[0], nitems);
893 if (ret)
894 goto out;
896 list_for_each_entry_safe(curr, next, &head, tree_list) {
897 btrfs_delayed_item_release_metadata(root, curr);
898 list_del(&curr->tree_list);
899 btrfs_release_delayed_item(curr);
902 out:
903 return ret;
906 static int btrfs_delete_delayed_items(struct btrfs_trans_handle *trans,
907 struct btrfs_path *path,
908 struct btrfs_root *root,
909 struct btrfs_delayed_node *node)
911 struct btrfs_delayed_item *curr, *prev;
912 int ret = 0;
914 do_again:
915 mutex_lock(&node->mutex);
916 curr = __btrfs_first_delayed_deletion_item(node);
917 if (!curr)
918 goto delete_fail;
920 ret = btrfs_search_slot(trans, root, &curr->key, path, -1, 1);
921 if (ret < 0)
922 goto delete_fail;
923 else if (ret > 0) {
925 * can't find the item which the node points to, so this node
926 * is invalid, just drop it.
928 prev = curr;
929 curr = __btrfs_next_delayed_item(prev);
930 btrfs_release_delayed_item(prev);
931 ret = 0;
932 btrfs_release_path(path);
933 if (curr)
934 goto do_again;
935 else
936 goto delete_fail;
939 btrfs_batch_delete_items(trans, root, path, curr);
940 btrfs_release_path(path);
941 mutex_unlock(&node->mutex);
942 goto do_again;
944 delete_fail:
945 btrfs_release_path(path);
946 mutex_unlock(&node->mutex);
947 return ret;
950 static void btrfs_release_delayed_inode(struct btrfs_delayed_node *delayed_node)
952 struct btrfs_delayed_root *delayed_root;
954 if (delayed_node && delayed_node->inode_dirty) {
955 BUG_ON(!delayed_node->root);
956 delayed_node->inode_dirty = 0;
957 delayed_node->count--;
959 delayed_root = delayed_node->root->fs_info->delayed_root;
960 atomic_dec(&delayed_root->items);
961 if (atomic_read(&delayed_root->items) <
962 BTRFS_DELAYED_BACKGROUND &&
963 waitqueue_active(&delayed_root->wait))
964 wake_up(&delayed_root->wait);
968 static int btrfs_update_delayed_inode(struct btrfs_trans_handle *trans,
969 struct btrfs_root *root,
970 struct btrfs_path *path,
971 struct btrfs_delayed_node *node)
973 struct btrfs_key key;
974 struct btrfs_inode_item *inode_item;
975 struct extent_buffer *leaf;
976 int ret;
978 mutex_lock(&node->mutex);
979 if (!node->inode_dirty) {
980 mutex_unlock(&node->mutex);
981 return 0;
984 key.objectid = node->inode_id;
985 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
986 key.offset = 0;
987 ret = btrfs_lookup_inode(trans, root, path, &key, 1);
988 if (ret > 0) {
989 btrfs_release_path(path);
990 mutex_unlock(&node->mutex);
991 return -ENOENT;
992 } else if (ret < 0) {
993 mutex_unlock(&node->mutex);
994 return ret;
997 btrfs_unlock_up_safe(path, 1);
998 leaf = path->nodes[0];
999 inode_item = btrfs_item_ptr(leaf, path->slots[0],
1000 struct btrfs_inode_item);
1001 write_extent_buffer(leaf, &node->inode_item, (unsigned long)inode_item,
1002 sizeof(struct btrfs_inode_item));
1003 btrfs_mark_buffer_dirty(leaf);
1004 btrfs_release_path(path);
1006 btrfs_delayed_inode_release_metadata(root, node);
1007 btrfs_release_delayed_inode(node);
1008 mutex_unlock(&node->mutex);
1010 return 0;
1013 /* Called when committing the transaction. */
1014 int btrfs_run_delayed_items(struct btrfs_trans_handle *trans,
1015 struct btrfs_root *root)
1017 struct btrfs_delayed_root *delayed_root;
1018 struct btrfs_delayed_node *curr_node, *prev_node;
1019 struct btrfs_path *path;
1020 struct btrfs_block_rsv *block_rsv;
1021 int ret = 0;
1023 path = btrfs_alloc_path();
1024 if (!path)
1025 return -ENOMEM;
1026 path->leave_spinning = 1;
1028 block_rsv = trans->block_rsv;
1029 trans->block_rsv = &root->fs_info->global_block_rsv;
1031 delayed_root = btrfs_get_delayed_root(root);
1033 curr_node = btrfs_first_delayed_node(delayed_root);
1034 while (curr_node) {
1035 root = curr_node->root;
1036 ret = btrfs_insert_delayed_items(trans, path, root,
1037 curr_node);
1038 if (!ret)
1039 ret = btrfs_delete_delayed_items(trans, path, root,
1040 curr_node);
1041 if (!ret)
1042 ret = btrfs_update_delayed_inode(trans, root, path,
1043 curr_node);
1044 if (ret) {
1045 btrfs_release_delayed_node(curr_node);
1046 break;
1049 prev_node = curr_node;
1050 curr_node = btrfs_next_delayed_node(curr_node);
1051 btrfs_release_delayed_node(prev_node);
1054 btrfs_free_path(path);
1055 trans->block_rsv = block_rsv;
1056 return ret;
1059 static int __btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1060 struct btrfs_delayed_node *node)
1062 struct btrfs_path *path;
1063 struct btrfs_block_rsv *block_rsv;
1064 int ret;
1066 path = btrfs_alloc_path();
1067 if (!path)
1068 return -ENOMEM;
1069 path->leave_spinning = 1;
1071 block_rsv = trans->block_rsv;
1072 trans->block_rsv = &node->root->fs_info->global_block_rsv;
1074 ret = btrfs_insert_delayed_items(trans, path, node->root, node);
1075 if (!ret)
1076 ret = btrfs_delete_delayed_items(trans, path, node->root, node);
1077 if (!ret)
1078 ret = btrfs_update_delayed_inode(trans, node->root, path, node);
1079 btrfs_free_path(path);
1081 trans->block_rsv = block_rsv;
1082 return ret;
1085 int btrfs_commit_inode_delayed_items(struct btrfs_trans_handle *trans,
1086 struct inode *inode)
1088 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1089 int ret;
1091 if (!delayed_node)
1092 return 0;
1094 mutex_lock(&delayed_node->mutex);
1095 if (!delayed_node->count) {
1096 mutex_unlock(&delayed_node->mutex);
1097 btrfs_release_delayed_node(delayed_node);
1098 return 0;
1100 mutex_unlock(&delayed_node->mutex);
1102 ret = __btrfs_commit_inode_delayed_items(trans, delayed_node);
1103 btrfs_release_delayed_node(delayed_node);
1104 return ret;
1107 void btrfs_remove_delayed_node(struct inode *inode)
1109 struct btrfs_delayed_node *delayed_node;
1111 delayed_node = ACCESS_ONCE(BTRFS_I(inode)->delayed_node);
1112 if (!delayed_node)
1113 return;
1115 BTRFS_I(inode)->delayed_node = NULL;
1116 btrfs_release_delayed_node(delayed_node);
1119 struct btrfs_async_delayed_node {
1120 struct btrfs_root *root;
1121 struct btrfs_delayed_node *delayed_node;
1122 struct btrfs_work work;
1125 static void btrfs_async_run_delayed_node_done(struct btrfs_work *work)
1127 struct btrfs_async_delayed_node *async_node;
1128 struct btrfs_trans_handle *trans;
1129 struct btrfs_path *path;
1130 struct btrfs_delayed_node *delayed_node = NULL;
1131 struct btrfs_root *root;
1132 struct btrfs_block_rsv *block_rsv;
1133 unsigned long nr = 0;
1134 int need_requeue = 0;
1135 int ret;
1137 async_node = container_of(work, struct btrfs_async_delayed_node, work);
1139 path = btrfs_alloc_path();
1140 if (!path)
1141 goto out;
1142 path->leave_spinning = 1;
1144 delayed_node = async_node->delayed_node;
1145 root = delayed_node->root;
1147 trans = btrfs_join_transaction(root);
1148 if (IS_ERR(trans))
1149 goto free_path;
1151 block_rsv = trans->block_rsv;
1152 trans->block_rsv = &root->fs_info->global_block_rsv;
1154 ret = btrfs_insert_delayed_items(trans, path, root, delayed_node);
1155 if (!ret)
1156 ret = btrfs_delete_delayed_items(trans, path, root,
1157 delayed_node);
1159 if (!ret)
1160 btrfs_update_delayed_inode(trans, root, path, delayed_node);
1163 * Maybe new delayed items have been inserted, so we need requeue
1164 * the work. Besides that, we must dequeue the empty delayed nodes
1165 * to avoid the race between delayed items balance and the worker.
1166 * The race like this:
1167 * Task1 Worker thread
1168 * count == 0, needn't requeue
1169 * also needn't insert the
1170 * delayed node into prepare
1171 * list again.
1172 * add lots of delayed items
1173 * queue the delayed node
1174 * already in the list,
1175 * and not in the prepare
1176 * list, it means the delayed
1177 * node is being dealt with
1178 * by the worker.
1179 * do delayed items balance
1180 * the delayed node is being
1181 * dealt with by the worker
1182 * now, just wait.
1183 * the worker goto idle.
1184 * Task1 will sleep until the transaction is commited.
1186 mutex_lock(&delayed_node->mutex);
1187 if (delayed_node->count)
1188 need_requeue = 1;
1189 else
1190 btrfs_dequeue_delayed_node(root->fs_info->delayed_root,
1191 delayed_node);
1192 mutex_unlock(&delayed_node->mutex);
1194 nr = trans->blocks_used;
1196 trans->block_rsv = block_rsv;
1197 btrfs_end_transaction_dmeta(trans, root);
1198 __btrfs_btree_balance_dirty(root, nr);
1199 free_path:
1200 btrfs_free_path(path);
1201 out:
1202 if (need_requeue)
1203 btrfs_requeue_work(&async_node->work);
1204 else {
1205 btrfs_release_prepared_delayed_node(delayed_node);
1206 kfree(async_node);
1210 static int btrfs_wq_run_delayed_node(struct btrfs_delayed_root *delayed_root,
1211 struct btrfs_root *root, int all)
1213 struct btrfs_async_delayed_node *async_node;
1214 struct btrfs_delayed_node *curr;
1215 int count = 0;
1217 again:
1218 curr = btrfs_first_prepared_delayed_node(delayed_root);
1219 if (!curr)
1220 return 0;
1222 async_node = kmalloc(sizeof(*async_node), GFP_NOFS);
1223 if (!async_node) {
1224 btrfs_release_prepared_delayed_node(curr);
1225 return -ENOMEM;
1228 async_node->root = root;
1229 async_node->delayed_node = curr;
1231 async_node->work.func = btrfs_async_run_delayed_node_done;
1232 async_node->work.flags = 0;
1234 btrfs_queue_worker(&root->fs_info->delayed_workers, &async_node->work);
1235 count++;
1237 if (all || count < 4)
1238 goto again;
1240 return 0;
1243 void btrfs_assert_delayed_root_empty(struct btrfs_root *root)
1245 struct btrfs_delayed_root *delayed_root;
1246 delayed_root = btrfs_get_delayed_root(root);
1247 WARN_ON(btrfs_first_delayed_node(delayed_root));
1250 void btrfs_balance_delayed_items(struct btrfs_root *root)
1252 struct btrfs_delayed_root *delayed_root;
1254 delayed_root = btrfs_get_delayed_root(root);
1256 if (atomic_read(&delayed_root->items) < BTRFS_DELAYED_BACKGROUND)
1257 return;
1259 if (atomic_read(&delayed_root->items) >= BTRFS_DELAYED_WRITEBACK) {
1260 int ret;
1261 ret = btrfs_wq_run_delayed_node(delayed_root, root, 1);
1262 if (ret)
1263 return;
1265 wait_event_interruptible_timeout(
1266 delayed_root->wait,
1267 (atomic_read(&delayed_root->items) <
1268 BTRFS_DELAYED_BACKGROUND),
1269 HZ);
1270 return;
1273 btrfs_wq_run_delayed_node(delayed_root, root, 0);
1276 int btrfs_insert_delayed_dir_index(struct btrfs_trans_handle *trans,
1277 struct btrfs_root *root, const char *name,
1278 int name_len, struct inode *dir,
1279 struct btrfs_disk_key *disk_key, u8 type,
1280 u64 index)
1282 struct btrfs_delayed_node *delayed_node;
1283 struct btrfs_delayed_item *delayed_item;
1284 struct btrfs_dir_item *dir_item;
1285 int ret;
1287 delayed_node = btrfs_get_or_create_delayed_node(dir);
1288 if (IS_ERR(delayed_node))
1289 return PTR_ERR(delayed_node);
1291 delayed_item = btrfs_alloc_delayed_item(sizeof(*dir_item) + name_len);
1292 if (!delayed_item) {
1293 ret = -ENOMEM;
1294 goto release_node;
1297 ret = btrfs_delayed_item_reserve_metadata(trans, root, delayed_item);
1299 * we have reserved enough space when we start a new transaction,
1300 * so reserving metadata failure is impossible
1302 BUG_ON(ret);
1304 delayed_item->key.objectid = btrfs_ino(dir);
1305 btrfs_set_key_type(&delayed_item->key, BTRFS_DIR_INDEX_KEY);
1306 delayed_item->key.offset = index;
1308 dir_item = (struct btrfs_dir_item *)delayed_item->data;
1309 dir_item->location = *disk_key;
1310 dir_item->transid = cpu_to_le64(trans->transid);
1311 dir_item->data_len = 0;
1312 dir_item->name_len = cpu_to_le16(name_len);
1313 dir_item->type = type;
1314 memcpy((char *)(dir_item + 1), name, name_len);
1316 mutex_lock(&delayed_node->mutex);
1317 ret = __btrfs_add_delayed_insertion_item(delayed_node, delayed_item);
1318 if (unlikely(ret)) {
1319 printk(KERN_ERR "err add delayed dir index item(name: %s) into "
1320 "the insertion tree of the delayed node"
1321 "(root id: %llu, inode id: %llu, errno: %d)\n",
1322 name,
1323 (unsigned long long)delayed_node->root->objectid,
1324 (unsigned long long)delayed_node->inode_id,
1325 ret);
1326 BUG();
1328 mutex_unlock(&delayed_node->mutex);
1330 release_node:
1331 btrfs_release_delayed_node(delayed_node);
1332 return ret;
1335 static int btrfs_delete_delayed_insertion_item(struct btrfs_root *root,
1336 struct btrfs_delayed_node *node,
1337 struct btrfs_key *key)
1339 struct btrfs_delayed_item *item;
1341 mutex_lock(&node->mutex);
1342 item = __btrfs_lookup_delayed_insertion_item(node, key);
1343 if (!item) {
1344 mutex_unlock(&node->mutex);
1345 return 1;
1348 btrfs_delayed_item_release_metadata(root, item);
1349 btrfs_release_delayed_item(item);
1350 mutex_unlock(&node->mutex);
1351 return 0;
1354 int btrfs_delete_delayed_dir_index(struct btrfs_trans_handle *trans,
1355 struct btrfs_root *root, struct inode *dir,
1356 u64 index)
1358 struct btrfs_delayed_node *node;
1359 struct btrfs_delayed_item *item;
1360 struct btrfs_key item_key;
1361 int ret;
1363 node = btrfs_get_or_create_delayed_node(dir);
1364 if (IS_ERR(node))
1365 return PTR_ERR(node);
1367 item_key.objectid = btrfs_ino(dir);
1368 btrfs_set_key_type(&item_key, BTRFS_DIR_INDEX_KEY);
1369 item_key.offset = index;
1371 ret = btrfs_delete_delayed_insertion_item(root, node, &item_key);
1372 if (!ret)
1373 goto end;
1375 item = btrfs_alloc_delayed_item(0);
1376 if (!item) {
1377 ret = -ENOMEM;
1378 goto end;
1381 item->key = item_key;
1383 ret = btrfs_delayed_item_reserve_metadata(trans, root, item);
1385 * we have reserved enough space when we start a new transaction,
1386 * so reserving metadata failure is impossible.
1388 BUG_ON(ret);
1390 mutex_lock(&node->mutex);
1391 ret = __btrfs_add_delayed_deletion_item(node, item);
1392 if (unlikely(ret)) {
1393 printk(KERN_ERR "err add delayed dir index item(index: %llu) "
1394 "into the deletion tree of the delayed node"
1395 "(root id: %llu, inode id: %llu, errno: %d)\n",
1396 (unsigned long long)index,
1397 (unsigned long long)node->root->objectid,
1398 (unsigned long long)node->inode_id,
1399 ret);
1400 BUG();
1402 mutex_unlock(&node->mutex);
1403 end:
1404 btrfs_release_delayed_node(node);
1405 return ret;
1408 int btrfs_inode_delayed_dir_index_count(struct inode *inode)
1410 struct btrfs_delayed_node *delayed_node = btrfs_get_delayed_node(inode);
1412 if (!delayed_node)
1413 return -ENOENT;
1416 * Since we have held i_mutex of this directory, it is impossible that
1417 * a new directory index is added into the delayed node and index_cnt
1418 * is updated now. So we needn't lock the delayed node.
1420 if (!delayed_node->index_cnt) {
1421 btrfs_release_delayed_node(delayed_node);
1422 return -EINVAL;
1425 BTRFS_I(inode)->index_cnt = delayed_node->index_cnt;
1426 btrfs_release_delayed_node(delayed_node);
1427 return 0;
1430 void btrfs_get_delayed_items(struct inode *inode, struct list_head *ins_list,
1431 struct list_head *del_list)
1433 struct btrfs_delayed_node *delayed_node;
1434 struct btrfs_delayed_item *item;
1436 delayed_node = btrfs_get_delayed_node(inode);
1437 if (!delayed_node)
1438 return;
1440 mutex_lock(&delayed_node->mutex);
1441 item = __btrfs_first_delayed_insertion_item(delayed_node);
1442 while (item) {
1443 atomic_inc(&item->refs);
1444 list_add_tail(&item->readdir_list, ins_list);
1445 item = __btrfs_next_delayed_item(item);
1448 item = __btrfs_first_delayed_deletion_item(delayed_node);
1449 while (item) {
1450 atomic_inc(&item->refs);
1451 list_add_tail(&item->readdir_list, del_list);
1452 item = __btrfs_next_delayed_item(item);
1454 mutex_unlock(&delayed_node->mutex);
1456 * This delayed node is still cached in the btrfs inode, so refs
1457 * must be > 1 now, and we needn't check it is going to be freed
1458 * or not.
1460 * Besides that, this function is used to read dir, we do not
1461 * insert/delete delayed items in this period. So we also needn't
1462 * requeue or dequeue this delayed node.
1464 atomic_dec(&delayed_node->refs);
1467 void btrfs_put_delayed_items(struct list_head *ins_list,
1468 struct list_head *del_list)
1470 struct btrfs_delayed_item *curr, *next;
1472 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1473 list_del(&curr->readdir_list);
1474 if (atomic_dec_and_test(&curr->refs))
1475 kfree(curr);
1478 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1479 list_del(&curr->readdir_list);
1480 if (atomic_dec_and_test(&curr->refs))
1481 kfree(curr);
1485 int btrfs_should_delete_dir_index(struct list_head *del_list,
1486 u64 index)
1488 struct btrfs_delayed_item *curr, *next;
1489 int ret;
1491 if (list_empty(del_list))
1492 return 0;
1494 list_for_each_entry_safe(curr, next, del_list, readdir_list) {
1495 if (curr->key.offset > index)
1496 break;
1498 list_del(&curr->readdir_list);
1499 ret = (curr->key.offset == index);
1501 if (atomic_dec_and_test(&curr->refs))
1502 kfree(curr);
1504 if (ret)
1505 return 1;
1506 else
1507 continue;
1509 return 0;
1513 * btrfs_readdir_delayed_dir_index - read dir info stored in the delayed tree
1516 int btrfs_readdir_delayed_dir_index(struct file *filp, void *dirent,
1517 filldir_t filldir,
1518 struct list_head *ins_list)
1520 struct btrfs_dir_item *di;
1521 struct btrfs_delayed_item *curr, *next;
1522 struct btrfs_key location;
1523 char *name;
1524 int name_len;
1525 int over = 0;
1526 unsigned char d_type;
1528 if (list_empty(ins_list))
1529 return 0;
1532 * Changing the data of the delayed item is impossible. So
1533 * we needn't lock them. And we have held i_mutex of the
1534 * directory, nobody can delete any directory indexes now.
1536 list_for_each_entry_safe(curr, next, ins_list, readdir_list) {
1537 list_del(&curr->readdir_list);
1539 if (curr->key.offset < filp->f_pos) {
1540 if (atomic_dec_and_test(&curr->refs))
1541 kfree(curr);
1542 continue;
1545 filp->f_pos = curr->key.offset;
1547 di = (struct btrfs_dir_item *)curr->data;
1548 name = (char *)(di + 1);
1549 name_len = le16_to_cpu(di->name_len);
1551 d_type = btrfs_filetype_table[di->type];
1552 btrfs_disk_key_to_cpu(&location, &di->location);
1554 over = filldir(dirent, name, name_len, curr->key.offset,
1555 location.objectid, d_type);
1557 if (atomic_dec_and_test(&curr->refs))
1558 kfree(curr);
1560 if (over)
1561 return 1;
1563 return 0;
1566 BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1567 generation, 64);
1568 BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1569 sequence, 64);
1570 BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1571 transid, 64);
1572 BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1573 BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1574 nbytes, 64);
1575 BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1576 block_group, 64);
1577 BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1578 BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1579 BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1580 BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1581 BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1582 BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1584 BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1585 BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1587 static void fill_stack_inode_item(struct btrfs_trans_handle *trans,
1588 struct btrfs_inode_item *inode_item,
1589 struct inode *inode)
1591 btrfs_set_stack_inode_uid(inode_item, inode->i_uid);
1592 btrfs_set_stack_inode_gid(inode_item, inode->i_gid);
1593 btrfs_set_stack_inode_size(inode_item, BTRFS_I(inode)->disk_i_size);
1594 btrfs_set_stack_inode_mode(inode_item, inode->i_mode);
1595 btrfs_set_stack_inode_nlink(inode_item, inode->i_nlink);
1596 btrfs_set_stack_inode_nbytes(inode_item, inode_get_bytes(inode));
1597 btrfs_set_stack_inode_generation(inode_item,
1598 BTRFS_I(inode)->generation);
1599 btrfs_set_stack_inode_sequence(inode_item, BTRFS_I(inode)->sequence);
1600 btrfs_set_stack_inode_transid(inode_item, trans->transid);
1601 btrfs_set_stack_inode_rdev(inode_item, inode->i_rdev);
1602 btrfs_set_stack_inode_flags(inode_item, BTRFS_I(inode)->flags);
1603 btrfs_set_stack_inode_block_group(inode_item, 0);
1605 btrfs_set_stack_timespec_sec(btrfs_inode_atime(inode_item),
1606 inode->i_atime.tv_sec);
1607 btrfs_set_stack_timespec_nsec(btrfs_inode_atime(inode_item),
1608 inode->i_atime.tv_nsec);
1610 btrfs_set_stack_timespec_sec(btrfs_inode_mtime(inode_item),
1611 inode->i_mtime.tv_sec);
1612 btrfs_set_stack_timespec_nsec(btrfs_inode_mtime(inode_item),
1613 inode->i_mtime.tv_nsec);
1615 btrfs_set_stack_timespec_sec(btrfs_inode_ctime(inode_item),
1616 inode->i_ctime.tv_sec);
1617 btrfs_set_stack_timespec_nsec(btrfs_inode_ctime(inode_item),
1618 inode->i_ctime.tv_nsec);
1621 int btrfs_fill_inode(struct inode *inode, u32 *rdev)
1623 struct btrfs_delayed_node *delayed_node;
1624 struct btrfs_inode_item *inode_item;
1625 struct btrfs_timespec *tspec;
1627 delayed_node = btrfs_get_delayed_node(inode);
1628 if (!delayed_node)
1629 return -ENOENT;
1631 mutex_lock(&delayed_node->mutex);
1632 if (!delayed_node->inode_dirty) {
1633 mutex_unlock(&delayed_node->mutex);
1634 btrfs_release_delayed_node(delayed_node);
1635 return -ENOENT;
1638 inode_item = &delayed_node->inode_item;
1640 inode->i_uid = btrfs_stack_inode_uid(inode_item);
1641 inode->i_gid = btrfs_stack_inode_gid(inode_item);
1642 btrfs_i_size_write(inode, btrfs_stack_inode_size(inode_item));
1643 inode->i_mode = btrfs_stack_inode_mode(inode_item);
1644 inode->i_nlink = btrfs_stack_inode_nlink(inode_item);
1645 inode_set_bytes(inode, btrfs_stack_inode_nbytes(inode_item));
1646 BTRFS_I(inode)->generation = btrfs_stack_inode_generation(inode_item);
1647 BTRFS_I(inode)->sequence = btrfs_stack_inode_sequence(inode_item);
1648 inode->i_rdev = 0;
1649 *rdev = btrfs_stack_inode_rdev(inode_item);
1650 BTRFS_I(inode)->flags = btrfs_stack_inode_flags(inode_item);
1652 tspec = btrfs_inode_atime(inode_item);
1653 inode->i_atime.tv_sec = btrfs_stack_timespec_sec(tspec);
1654 inode->i_atime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1656 tspec = btrfs_inode_mtime(inode_item);
1657 inode->i_mtime.tv_sec = btrfs_stack_timespec_sec(tspec);
1658 inode->i_mtime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1660 tspec = btrfs_inode_ctime(inode_item);
1661 inode->i_ctime.tv_sec = btrfs_stack_timespec_sec(tspec);
1662 inode->i_ctime.tv_nsec = btrfs_stack_timespec_nsec(tspec);
1664 inode->i_generation = BTRFS_I(inode)->generation;
1665 BTRFS_I(inode)->index_cnt = (u64)-1;
1667 mutex_unlock(&delayed_node->mutex);
1668 btrfs_release_delayed_node(delayed_node);
1669 return 0;
1672 int btrfs_delayed_update_inode(struct btrfs_trans_handle *trans,
1673 struct btrfs_root *root, struct inode *inode)
1675 struct btrfs_delayed_node *delayed_node;
1676 int ret = 0;
1678 delayed_node = btrfs_get_or_create_delayed_node(inode);
1679 if (IS_ERR(delayed_node))
1680 return PTR_ERR(delayed_node);
1682 mutex_lock(&delayed_node->mutex);
1683 if (delayed_node->inode_dirty) {
1684 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1685 goto release_node;
1688 ret = btrfs_delayed_inode_reserve_metadata(trans, root, delayed_node);
1690 * we must reserve enough space when we start a new transaction,
1691 * so reserving metadata failure is impossible
1693 BUG_ON(ret);
1695 fill_stack_inode_item(trans, &delayed_node->inode_item, inode);
1696 delayed_node->inode_dirty = 1;
1697 delayed_node->count++;
1698 atomic_inc(&root->fs_info->delayed_root->items);
1699 release_node:
1700 mutex_unlock(&delayed_node->mutex);
1701 btrfs_release_delayed_node(delayed_node);
1702 return ret;
1705 static void __btrfs_kill_delayed_node(struct btrfs_delayed_node *delayed_node)
1707 struct btrfs_root *root = delayed_node->root;
1708 struct btrfs_delayed_item *curr_item, *prev_item;
1710 mutex_lock(&delayed_node->mutex);
1711 curr_item = __btrfs_first_delayed_insertion_item(delayed_node);
1712 while (curr_item) {
1713 btrfs_delayed_item_release_metadata(root, curr_item);
1714 prev_item = curr_item;
1715 curr_item = __btrfs_next_delayed_item(prev_item);
1716 btrfs_release_delayed_item(prev_item);
1719 curr_item = __btrfs_first_delayed_deletion_item(delayed_node);
1720 while (curr_item) {
1721 btrfs_delayed_item_release_metadata(root, curr_item);
1722 prev_item = curr_item;
1723 curr_item = __btrfs_next_delayed_item(prev_item);
1724 btrfs_release_delayed_item(prev_item);
1727 if (delayed_node->inode_dirty) {
1728 btrfs_delayed_inode_release_metadata(root, delayed_node);
1729 btrfs_release_delayed_inode(delayed_node);
1731 mutex_unlock(&delayed_node->mutex);
1734 void btrfs_kill_delayed_inode_items(struct inode *inode)
1736 struct btrfs_delayed_node *delayed_node;
1738 delayed_node = btrfs_get_delayed_node(inode);
1739 if (!delayed_node)
1740 return;
1742 __btrfs_kill_delayed_node(delayed_node);
1743 btrfs_release_delayed_node(delayed_node);
1746 void btrfs_kill_all_delayed_nodes(struct btrfs_root *root)
1748 u64 inode_id = 0;
1749 struct btrfs_delayed_node *delayed_nodes[8];
1750 int i, n;
1752 while (1) {
1753 spin_lock(&root->inode_lock);
1754 n = radix_tree_gang_lookup(&root->delayed_nodes_tree,
1755 (void **)delayed_nodes, inode_id,
1756 ARRAY_SIZE(delayed_nodes));
1757 if (!n) {
1758 spin_unlock(&root->inode_lock);
1759 break;
1762 inode_id = delayed_nodes[n - 1]->inode_id + 1;
1764 for (i = 0; i < n; i++)
1765 atomic_inc(&delayed_nodes[i]->refs);
1766 spin_unlock(&root->inode_lock);
1768 for (i = 0; i < n; i++) {
1769 __btrfs_kill_delayed_node(delayed_nodes[i]);
1770 btrfs_release_delayed_node(delayed_nodes[i]);