sysfs: Remove support for tagged directories with untagged members (again)
[linux-btrfs-devel.git] / include / linux / perf_event.h
blobc816075c01ceb3772241e17729dabd244be62764
1 /*
2 * Performance events:
4 * Copyright (C) 2008-2009, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2011, Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2011, Red Hat, Inc., Peter Zijlstra
8 * Data type definitions, declarations, prototypes.
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * For licencing details see kernel-base/COPYING
14 #ifndef _LINUX_PERF_EVENT_H
15 #define _LINUX_PERF_EVENT_H
17 #include <linux/types.h>
18 #include <linux/ioctl.h>
19 #include <asm/byteorder.h>
22 * User-space ABI bits:
26 * attr.type
28 enum perf_type_id {
29 PERF_TYPE_HARDWARE = 0,
30 PERF_TYPE_SOFTWARE = 1,
31 PERF_TYPE_TRACEPOINT = 2,
32 PERF_TYPE_HW_CACHE = 3,
33 PERF_TYPE_RAW = 4,
34 PERF_TYPE_BREAKPOINT = 5,
36 PERF_TYPE_MAX, /* non-ABI */
40 * Generalized performance event event_id types, used by the
41 * attr.event_id parameter of the sys_perf_event_open()
42 * syscall:
44 enum perf_hw_id {
46 * Common hardware events, generalized by the kernel:
48 PERF_COUNT_HW_CPU_CYCLES = 0,
49 PERF_COUNT_HW_INSTRUCTIONS = 1,
50 PERF_COUNT_HW_CACHE_REFERENCES = 2,
51 PERF_COUNT_HW_CACHE_MISSES = 3,
52 PERF_COUNT_HW_BRANCH_INSTRUCTIONS = 4,
53 PERF_COUNT_HW_BRANCH_MISSES = 5,
54 PERF_COUNT_HW_BUS_CYCLES = 6,
55 PERF_COUNT_HW_STALLED_CYCLES_FRONTEND = 7,
56 PERF_COUNT_HW_STALLED_CYCLES_BACKEND = 8,
58 PERF_COUNT_HW_MAX, /* non-ABI */
62 * Generalized hardware cache events:
64 * { L1-D, L1-I, LLC, ITLB, DTLB, BPU, NODE } x
65 * { read, write, prefetch } x
66 * { accesses, misses }
68 enum perf_hw_cache_id {
69 PERF_COUNT_HW_CACHE_L1D = 0,
70 PERF_COUNT_HW_CACHE_L1I = 1,
71 PERF_COUNT_HW_CACHE_LL = 2,
72 PERF_COUNT_HW_CACHE_DTLB = 3,
73 PERF_COUNT_HW_CACHE_ITLB = 4,
74 PERF_COUNT_HW_CACHE_BPU = 5,
75 PERF_COUNT_HW_CACHE_NODE = 6,
77 PERF_COUNT_HW_CACHE_MAX, /* non-ABI */
80 enum perf_hw_cache_op_id {
81 PERF_COUNT_HW_CACHE_OP_READ = 0,
82 PERF_COUNT_HW_CACHE_OP_WRITE = 1,
83 PERF_COUNT_HW_CACHE_OP_PREFETCH = 2,
85 PERF_COUNT_HW_CACHE_OP_MAX, /* non-ABI */
88 enum perf_hw_cache_op_result_id {
89 PERF_COUNT_HW_CACHE_RESULT_ACCESS = 0,
90 PERF_COUNT_HW_CACHE_RESULT_MISS = 1,
92 PERF_COUNT_HW_CACHE_RESULT_MAX, /* non-ABI */
96 * Special "software" events provided by the kernel, even if the hardware
97 * does not support performance events. These events measure various
98 * physical and sw events of the kernel (and allow the profiling of them as
99 * well):
101 enum perf_sw_ids {
102 PERF_COUNT_SW_CPU_CLOCK = 0,
103 PERF_COUNT_SW_TASK_CLOCK = 1,
104 PERF_COUNT_SW_PAGE_FAULTS = 2,
105 PERF_COUNT_SW_CONTEXT_SWITCHES = 3,
106 PERF_COUNT_SW_CPU_MIGRATIONS = 4,
107 PERF_COUNT_SW_PAGE_FAULTS_MIN = 5,
108 PERF_COUNT_SW_PAGE_FAULTS_MAJ = 6,
109 PERF_COUNT_SW_ALIGNMENT_FAULTS = 7,
110 PERF_COUNT_SW_EMULATION_FAULTS = 8,
112 PERF_COUNT_SW_MAX, /* non-ABI */
116 * Bits that can be set in attr.sample_type to request information
117 * in the overflow packets.
119 enum perf_event_sample_format {
120 PERF_SAMPLE_IP = 1U << 0,
121 PERF_SAMPLE_TID = 1U << 1,
122 PERF_SAMPLE_TIME = 1U << 2,
123 PERF_SAMPLE_ADDR = 1U << 3,
124 PERF_SAMPLE_READ = 1U << 4,
125 PERF_SAMPLE_CALLCHAIN = 1U << 5,
126 PERF_SAMPLE_ID = 1U << 6,
127 PERF_SAMPLE_CPU = 1U << 7,
128 PERF_SAMPLE_PERIOD = 1U << 8,
129 PERF_SAMPLE_STREAM_ID = 1U << 9,
130 PERF_SAMPLE_RAW = 1U << 10,
132 PERF_SAMPLE_MAX = 1U << 11, /* non-ABI */
136 * The format of the data returned by read() on a perf event fd,
137 * as specified by attr.read_format:
139 * struct read_format {
140 * { u64 value;
141 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
142 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
143 * { u64 id; } && PERF_FORMAT_ID
144 * } && !PERF_FORMAT_GROUP
146 * { u64 nr;
147 * { u64 time_enabled; } && PERF_FORMAT_TOTAL_TIME_ENABLED
148 * { u64 time_running; } && PERF_FORMAT_TOTAL_TIME_RUNNING
149 * { u64 value;
150 * { u64 id; } && PERF_FORMAT_ID
151 * } cntr[nr];
152 * } && PERF_FORMAT_GROUP
153 * };
155 enum perf_event_read_format {
156 PERF_FORMAT_TOTAL_TIME_ENABLED = 1U << 0,
157 PERF_FORMAT_TOTAL_TIME_RUNNING = 1U << 1,
158 PERF_FORMAT_ID = 1U << 2,
159 PERF_FORMAT_GROUP = 1U << 3,
161 PERF_FORMAT_MAX = 1U << 4, /* non-ABI */
164 #define PERF_ATTR_SIZE_VER0 64 /* sizeof first published struct */
167 * Hardware event_id to monitor via a performance monitoring event:
169 struct perf_event_attr {
172 * Major type: hardware/software/tracepoint/etc.
174 __u32 type;
177 * Size of the attr structure, for fwd/bwd compat.
179 __u32 size;
182 * Type specific configuration information.
184 __u64 config;
186 union {
187 __u64 sample_period;
188 __u64 sample_freq;
191 __u64 sample_type;
192 __u64 read_format;
194 __u64 disabled : 1, /* off by default */
195 inherit : 1, /* children inherit it */
196 pinned : 1, /* must always be on PMU */
197 exclusive : 1, /* only group on PMU */
198 exclude_user : 1, /* don't count user */
199 exclude_kernel : 1, /* ditto kernel */
200 exclude_hv : 1, /* ditto hypervisor */
201 exclude_idle : 1, /* don't count when idle */
202 mmap : 1, /* include mmap data */
203 comm : 1, /* include comm data */
204 freq : 1, /* use freq, not period */
205 inherit_stat : 1, /* per task counts */
206 enable_on_exec : 1, /* next exec enables */
207 task : 1, /* trace fork/exit */
208 watermark : 1, /* wakeup_watermark */
210 * precise_ip:
212 * 0 - SAMPLE_IP can have arbitrary skid
213 * 1 - SAMPLE_IP must have constant skid
214 * 2 - SAMPLE_IP requested to have 0 skid
215 * 3 - SAMPLE_IP must have 0 skid
217 * See also PERF_RECORD_MISC_EXACT_IP
219 precise_ip : 2, /* skid constraint */
220 mmap_data : 1, /* non-exec mmap data */
221 sample_id_all : 1, /* sample_type all events */
223 __reserved_1 : 45;
225 union {
226 __u32 wakeup_events; /* wakeup every n events */
227 __u32 wakeup_watermark; /* bytes before wakeup */
230 __u32 bp_type;
231 union {
232 __u64 bp_addr;
233 __u64 config1; /* extension of config */
235 union {
236 __u64 bp_len;
237 __u64 config2; /* extension of config1 */
242 * Ioctls that can be done on a perf event fd:
244 #define PERF_EVENT_IOC_ENABLE _IO ('$', 0)
245 #define PERF_EVENT_IOC_DISABLE _IO ('$', 1)
246 #define PERF_EVENT_IOC_REFRESH _IO ('$', 2)
247 #define PERF_EVENT_IOC_RESET _IO ('$', 3)
248 #define PERF_EVENT_IOC_PERIOD _IOW('$', 4, __u64)
249 #define PERF_EVENT_IOC_SET_OUTPUT _IO ('$', 5)
250 #define PERF_EVENT_IOC_SET_FILTER _IOW('$', 6, char *)
252 enum perf_event_ioc_flags {
253 PERF_IOC_FLAG_GROUP = 1U << 0,
257 * Structure of the page that can be mapped via mmap
259 struct perf_event_mmap_page {
260 __u32 version; /* version number of this structure */
261 __u32 compat_version; /* lowest version this is compat with */
264 * Bits needed to read the hw events in user-space.
266 * u32 seq;
267 * s64 count;
269 * do {
270 * seq = pc->lock;
272 * barrier()
273 * if (pc->index) {
274 * count = pmc_read(pc->index - 1);
275 * count += pc->offset;
276 * } else
277 * goto regular_read;
279 * barrier();
280 * } while (pc->lock != seq);
282 * NOTE: for obvious reason this only works on self-monitoring
283 * processes.
285 __u32 lock; /* seqlock for synchronization */
286 __u32 index; /* hardware event identifier */
287 __s64 offset; /* add to hardware event value */
288 __u64 time_enabled; /* time event active */
289 __u64 time_running; /* time event on cpu */
292 * Hole for extension of the self monitor capabilities
295 __u64 __reserved[123]; /* align to 1k */
298 * Control data for the mmap() data buffer.
300 * User-space reading the @data_head value should issue an rmb(), on
301 * SMP capable platforms, after reading this value -- see
302 * perf_event_wakeup().
304 * When the mapping is PROT_WRITE the @data_tail value should be
305 * written by userspace to reflect the last read data. In this case
306 * the kernel will not over-write unread data.
308 __u64 data_head; /* head in the data section */
309 __u64 data_tail; /* user-space written tail */
312 #define PERF_RECORD_MISC_CPUMODE_MASK (7 << 0)
313 #define PERF_RECORD_MISC_CPUMODE_UNKNOWN (0 << 0)
314 #define PERF_RECORD_MISC_KERNEL (1 << 0)
315 #define PERF_RECORD_MISC_USER (2 << 0)
316 #define PERF_RECORD_MISC_HYPERVISOR (3 << 0)
317 #define PERF_RECORD_MISC_GUEST_KERNEL (4 << 0)
318 #define PERF_RECORD_MISC_GUEST_USER (5 << 0)
321 * Indicates that the content of PERF_SAMPLE_IP points to
322 * the actual instruction that triggered the event. See also
323 * perf_event_attr::precise_ip.
325 #define PERF_RECORD_MISC_EXACT_IP (1 << 14)
327 * Reserve the last bit to indicate some extended misc field
329 #define PERF_RECORD_MISC_EXT_RESERVED (1 << 15)
331 struct perf_event_header {
332 __u32 type;
333 __u16 misc;
334 __u16 size;
337 enum perf_event_type {
340 * If perf_event_attr.sample_id_all is set then all event types will
341 * have the sample_type selected fields related to where/when
342 * (identity) an event took place (TID, TIME, ID, CPU, STREAM_ID)
343 * described in PERF_RECORD_SAMPLE below, it will be stashed just after
344 * the perf_event_header and the fields already present for the existing
345 * fields, i.e. at the end of the payload. That way a newer perf.data
346 * file will be supported by older perf tools, with these new optional
347 * fields being ignored.
349 * The MMAP events record the PROT_EXEC mappings so that we can
350 * correlate userspace IPs to code. They have the following structure:
352 * struct {
353 * struct perf_event_header header;
355 * u32 pid, tid;
356 * u64 addr;
357 * u64 len;
358 * u64 pgoff;
359 * char filename[];
360 * };
362 PERF_RECORD_MMAP = 1,
365 * struct {
366 * struct perf_event_header header;
367 * u64 id;
368 * u64 lost;
369 * };
371 PERF_RECORD_LOST = 2,
374 * struct {
375 * struct perf_event_header header;
377 * u32 pid, tid;
378 * char comm[];
379 * };
381 PERF_RECORD_COMM = 3,
384 * struct {
385 * struct perf_event_header header;
386 * u32 pid, ppid;
387 * u32 tid, ptid;
388 * u64 time;
389 * };
391 PERF_RECORD_EXIT = 4,
394 * struct {
395 * struct perf_event_header header;
396 * u64 time;
397 * u64 id;
398 * u64 stream_id;
399 * };
401 PERF_RECORD_THROTTLE = 5,
402 PERF_RECORD_UNTHROTTLE = 6,
405 * struct {
406 * struct perf_event_header header;
407 * u32 pid, ppid;
408 * u32 tid, ptid;
409 * u64 time;
410 * };
412 PERF_RECORD_FORK = 7,
415 * struct {
416 * struct perf_event_header header;
417 * u32 pid, tid;
419 * struct read_format values;
420 * };
422 PERF_RECORD_READ = 8,
425 * struct {
426 * struct perf_event_header header;
428 * { u64 ip; } && PERF_SAMPLE_IP
429 * { u32 pid, tid; } && PERF_SAMPLE_TID
430 * { u64 time; } && PERF_SAMPLE_TIME
431 * { u64 addr; } && PERF_SAMPLE_ADDR
432 * { u64 id; } && PERF_SAMPLE_ID
433 * { u64 stream_id;} && PERF_SAMPLE_STREAM_ID
434 * { u32 cpu, res; } && PERF_SAMPLE_CPU
435 * { u64 period; } && PERF_SAMPLE_PERIOD
437 * { struct read_format values; } && PERF_SAMPLE_READ
439 * { u64 nr,
440 * u64 ips[nr]; } && PERF_SAMPLE_CALLCHAIN
443 * # The RAW record below is opaque data wrt the ABI
445 * # That is, the ABI doesn't make any promises wrt to
446 * # the stability of its content, it may vary depending
447 * # on event, hardware, kernel version and phase of
448 * # the moon.
450 * # In other words, PERF_SAMPLE_RAW contents are not an ABI.
453 * { u32 size;
454 * char data[size];}&& PERF_SAMPLE_RAW
455 * };
457 PERF_RECORD_SAMPLE = 9,
459 PERF_RECORD_MAX, /* non-ABI */
462 enum perf_callchain_context {
463 PERF_CONTEXT_HV = (__u64)-32,
464 PERF_CONTEXT_KERNEL = (__u64)-128,
465 PERF_CONTEXT_USER = (__u64)-512,
467 PERF_CONTEXT_GUEST = (__u64)-2048,
468 PERF_CONTEXT_GUEST_KERNEL = (__u64)-2176,
469 PERF_CONTEXT_GUEST_USER = (__u64)-2560,
471 PERF_CONTEXT_MAX = (__u64)-4095,
474 #define PERF_FLAG_FD_NO_GROUP (1U << 0)
475 #define PERF_FLAG_FD_OUTPUT (1U << 1)
476 #define PERF_FLAG_PID_CGROUP (1U << 2) /* pid=cgroup id, per-cpu mode only */
478 #ifdef __KERNEL__
480 * Kernel-internal data types and definitions:
483 #ifdef CONFIG_PERF_EVENTS
484 # include <linux/cgroup.h>
485 # include <asm/perf_event.h>
486 # include <asm/local64.h>
487 #endif
489 struct perf_guest_info_callbacks {
490 int (*is_in_guest)(void);
491 int (*is_user_mode)(void);
492 unsigned long (*get_guest_ip)(void);
495 #ifdef CONFIG_HAVE_HW_BREAKPOINT
496 #include <asm/hw_breakpoint.h>
497 #endif
499 #include <linux/list.h>
500 #include <linux/mutex.h>
501 #include <linux/rculist.h>
502 #include <linux/rcupdate.h>
503 #include <linux/spinlock.h>
504 #include <linux/hrtimer.h>
505 #include <linux/fs.h>
506 #include <linux/pid_namespace.h>
507 #include <linux/workqueue.h>
508 #include <linux/ftrace.h>
509 #include <linux/cpu.h>
510 #include <linux/irq_work.h>
511 #include <linux/jump_label.h>
512 #include <linux/atomic.h>
513 #include <asm/local.h>
515 #define PERF_MAX_STACK_DEPTH 255
517 struct perf_callchain_entry {
518 __u64 nr;
519 __u64 ip[PERF_MAX_STACK_DEPTH];
522 struct perf_raw_record {
523 u32 size;
524 void *data;
527 struct perf_branch_entry {
528 __u64 from;
529 __u64 to;
530 __u64 flags;
533 struct perf_branch_stack {
534 __u64 nr;
535 struct perf_branch_entry entries[0];
538 struct task_struct;
541 * extra PMU register associated with an event
543 struct hw_perf_event_extra {
544 u64 config; /* register value */
545 unsigned int reg; /* register address or index */
546 int alloc; /* extra register already allocated */
547 int idx; /* index in shared_regs->regs[] */
551 * struct hw_perf_event - performance event hardware details:
553 struct hw_perf_event {
554 #ifdef CONFIG_PERF_EVENTS
555 union {
556 struct { /* hardware */
557 u64 config;
558 u64 last_tag;
559 unsigned long config_base;
560 unsigned long event_base;
561 int idx;
562 int last_cpu;
563 struct hw_perf_event_extra extra_reg;
565 struct { /* software */
566 struct hrtimer hrtimer;
568 #ifdef CONFIG_HAVE_HW_BREAKPOINT
569 struct { /* breakpoint */
570 struct arch_hw_breakpoint info;
571 struct list_head bp_list;
573 * Crufty hack to avoid the chicken and egg
574 * problem hw_breakpoint has with context
575 * creation and event initalization.
577 struct task_struct *bp_target;
579 #endif
581 int state;
582 local64_t prev_count;
583 u64 sample_period;
584 u64 last_period;
585 local64_t period_left;
586 u64 interrupts;
588 u64 freq_time_stamp;
589 u64 freq_count_stamp;
590 #endif
594 * hw_perf_event::state flags
596 #define PERF_HES_STOPPED 0x01 /* the counter is stopped */
597 #define PERF_HES_UPTODATE 0x02 /* event->count up-to-date */
598 #define PERF_HES_ARCH 0x04
600 struct perf_event;
603 * Common implementation detail of pmu::{start,commit,cancel}_txn
605 #define PERF_EVENT_TXN 0x1
608 * struct pmu - generic performance monitoring unit
610 struct pmu {
611 struct list_head entry;
613 struct device *dev;
614 char *name;
615 int type;
617 int * __percpu pmu_disable_count;
618 struct perf_cpu_context * __percpu pmu_cpu_context;
619 int task_ctx_nr;
622 * Fully disable/enable this PMU, can be used to protect from the PMI
623 * as well as for lazy/batch writing of the MSRs.
625 void (*pmu_enable) (struct pmu *pmu); /* optional */
626 void (*pmu_disable) (struct pmu *pmu); /* optional */
629 * Try and initialize the event for this PMU.
630 * Should return -ENOENT when the @event doesn't match this PMU.
632 int (*event_init) (struct perf_event *event);
634 #define PERF_EF_START 0x01 /* start the counter when adding */
635 #define PERF_EF_RELOAD 0x02 /* reload the counter when starting */
636 #define PERF_EF_UPDATE 0x04 /* update the counter when stopping */
639 * Adds/Removes a counter to/from the PMU, can be done inside
640 * a transaction, see the ->*_txn() methods.
642 int (*add) (struct perf_event *event, int flags);
643 void (*del) (struct perf_event *event, int flags);
646 * Starts/Stops a counter present on the PMU. The PMI handler
647 * should stop the counter when perf_event_overflow() returns
648 * !0. ->start() will be used to continue.
650 void (*start) (struct perf_event *event, int flags);
651 void (*stop) (struct perf_event *event, int flags);
654 * Updates the counter value of the event.
656 void (*read) (struct perf_event *event);
659 * Group events scheduling is treated as a transaction, add
660 * group events as a whole and perform one schedulability test.
661 * If the test fails, roll back the whole group
663 * Start the transaction, after this ->add() doesn't need to
664 * do schedulability tests.
666 void (*start_txn) (struct pmu *pmu); /* optional */
668 * If ->start_txn() disabled the ->add() schedulability test
669 * then ->commit_txn() is required to perform one. On success
670 * the transaction is closed. On error the transaction is kept
671 * open until ->cancel_txn() is called.
673 int (*commit_txn) (struct pmu *pmu); /* optional */
675 * Will cancel the transaction, assumes ->del() is called
676 * for each successful ->add() during the transaction.
678 void (*cancel_txn) (struct pmu *pmu); /* optional */
682 * enum perf_event_active_state - the states of a event
684 enum perf_event_active_state {
685 PERF_EVENT_STATE_ERROR = -2,
686 PERF_EVENT_STATE_OFF = -1,
687 PERF_EVENT_STATE_INACTIVE = 0,
688 PERF_EVENT_STATE_ACTIVE = 1,
691 struct file;
692 struct perf_sample_data;
694 typedef void (*perf_overflow_handler_t)(struct perf_event *,
695 struct perf_sample_data *,
696 struct pt_regs *regs);
698 enum perf_group_flag {
699 PERF_GROUP_SOFTWARE = 0x1,
702 #define SWEVENT_HLIST_BITS 8
703 #define SWEVENT_HLIST_SIZE (1 << SWEVENT_HLIST_BITS)
705 struct swevent_hlist {
706 struct hlist_head heads[SWEVENT_HLIST_SIZE];
707 struct rcu_head rcu_head;
710 #define PERF_ATTACH_CONTEXT 0x01
711 #define PERF_ATTACH_GROUP 0x02
712 #define PERF_ATTACH_TASK 0x04
714 #ifdef CONFIG_CGROUP_PERF
716 * perf_cgroup_info keeps track of time_enabled for a cgroup.
717 * This is a per-cpu dynamically allocated data structure.
719 struct perf_cgroup_info {
720 u64 time;
721 u64 timestamp;
724 struct perf_cgroup {
725 struct cgroup_subsys_state css;
726 struct perf_cgroup_info *info; /* timing info, one per cpu */
728 #endif
730 struct ring_buffer;
733 * struct perf_event - performance event kernel representation:
735 struct perf_event {
736 #ifdef CONFIG_PERF_EVENTS
737 struct list_head group_entry;
738 struct list_head event_entry;
739 struct list_head sibling_list;
740 struct hlist_node hlist_entry;
741 int nr_siblings;
742 int group_flags;
743 struct perf_event *group_leader;
744 struct pmu *pmu;
746 enum perf_event_active_state state;
747 unsigned int attach_state;
748 local64_t count;
749 atomic64_t child_count;
752 * These are the total time in nanoseconds that the event
753 * has been enabled (i.e. eligible to run, and the task has
754 * been scheduled in, if this is a per-task event)
755 * and running (scheduled onto the CPU), respectively.
757 * They are computed from tstamp_enabled, tstamp_running and
758 * tstamp_stopped when the event is in INACTIVE or ACTIVE state.
760 u64 total_time_enabled;
761 u64 total_time_running;
764 * These are timestamps used for computing total_time_enabled
765 * and total_time_running when the event is in INACTIVE or
766 * ACTIVE state, measured in nanoseconds from an arbitrary point
767 * in time.
768 * tstamp_enabled: the notional time when the event was enabled
769 * tstamp_running: the notional time when the event was scheduled on
770 * tstamp_stopped: in INACTIVE state, the notional time when the
771 * event was scheduled off.
773 u64 tstamp_enabled;
774 u64 tstamp_running;
775 u64 tstamp_stopped;
778 * timestamp shadows the actual context timing but it can
779 * be safely used in NMI interrupt context. It reflects the
780 * context time as it was when the event was last scheduled in.
782 * ctx_time already accounts for ctx->timestamp. Therefore to
783 * compute ctx_time for a sample, simply add perf_clock().
785 u64 shadow_ctx_time;
787 struct perf_event_attr attr;
788 u16 header_size;
789 u16 id_header_size;
790 u16 read_size;
791 struct hw_perf_event hw;
793 struct perf_event_context *ctx;
794 struct file *filp;
797 * These accumulate total time (in nanoseconds) that children
798 * events have been enabled and running, respectively.
800 atomic64_t child_total_time_enabled;
801 atomic64_t child_total_time_running;
804 * Protect attach/detach and child_list:
806 struct mutex child_mutex;
807 struct list_head child_list;
808 struct perf_event *parent;
810 int oncpu;
811 int cpu;
813 struct list_head owner_entry;
814 struct task_struct *owner;
816 /* mmap bits */
817 struct mutex mmap_mutex;
818 atomic_t mmap_count;
819 int mmap_locked;
820 struct user_struct *mmap_user;
821 struct ring_buffer *rb;
823 /* poll related */
824 wait_queue_head_t waitq;
825 struct fasync_struct *fasync;
827 /* delayed work for NMIs and such */
828 int pending_wakeup;
829 int pending_kill;
830 int pending_disable;
831 struct irq_work pending;
833 atomic_t event_limit;
835 void (*destroy)(struct perf_event *);
836 struct rcu_head rcu_head;
838 struct pid_namespace *ns;
839 u64 id;
841 perf_overflow_handler_t overflow_handler;
842 void *overflow_handler_context;
844 #ifdef CONFIG_EVENT_TRACING
845 struct ftrace_event_call *tp_event;
846 struct event_filter *filter;
847 #endif
849 #ifdef CONFIG_CGROUP_PERF
850 struct perf_cgroup *cgrp; /* cgroup event is attach to */
851 int cgrp_defer_enabled;
852 #endif
854 #endif /* CONFIG_PERF_EVENTS */
857 enum perf_event_context_type {
858 task_context,
859 cpu_context,
863 * struct perf_event_context - event context structure
865 * Used as a container for task events and CPU events as well:
867 struct perf_event_context {
868 struct pmu *pmu;
869 enum perf_event_context_type type;
871 * Protect the states of the events in the list,
872 * nr_active, and the list:
874 raw_spinlock_t lock;
876 * Protect the list of events. Locking either mutex or lock
877 * is sufficient to ensure the list doesn't change; to change
878 * the list you need to lock both the mutex and the spinlock.
880 struct mutex mutex;
882 struct list_head pinned_groups;
883 struct list_head flexible_groups;
884 struct list_head event_list;
885 int nr_events;
886 int nr_active;
887 int is_active;
888 int nr_stat;
889 int rotate_disable;
890 atomic_t refcount;
891 struct task_struct *task;
894 * Context clock, runs when context enabled.
896 u64 time;
897 u64 timestamp;
900 * These fields let us detect when two contexts have both
901 * been cloned (inherited) from a common ancestor.
903 struct perf_event_context *parent_ctx;
904 u64 parent_gen;
905 u64 generation;
906 int pin_count;
907 int nr_cgroups; /* cgroup events present */
908 struct rcu_head rcu_head;
912 * Number of contexts where an event can trigger:
913 * task, softirq, hardirq, nmi.
915 #define PERF_NR_CONTEXTS 4
918 * struct perf_event_cpu_context - per cpu event context structure
920 struct perf_cpu_context {
921 struct perf_event_context ctx;
922 struct perf_event_context *task_ctx;
923 int active_oncpu;
924 int exclusive;
925 struct list_head rotation_list;
926 int jiffies_interval;
927 struct pmu *active_pmu;
928 struct perf_cgroup *cgrp;
931 struct perf_output_handle {
932 struct perf_event *event;
933 struct ring_buffer *rb;
934 unsigned long wakeup;
935 unsigned long size;
936 void *addr;
937 int page;
940 #ifdef CONFIG_PERF_EVENTS
942 extern int perf_pmu_register(struct pmu *pmu, char *name, int type);
943 extern void perf_pmu_unregister(struct pmu *pmu);
945 extern int perf_num_counters(void);
946 extern const char *perf_pmu_name(void);
947 extern void __perf_event_task_sched_in(struct task_struct *prev,
948 struct task_struct *task);
949 extern void __perf_event_task_sched_out(struct task_struct *prev,
950 struct task_struct *next);
951 extern int perf_event_init_task(struct task_struct *child);
952 extern void perf_event_exit_task(struct task_struct *child);
953 extern void perf_event_free_task(struct task_struct *task);
954 extern void perf_event_delayed_put(struct task_struct *task);
955 extern void perf_event_print_debug(void);
956 extern void perf_pmu_disable(struct pmu *pmu);
957 extern void perf_pmu_enable(struct pmu *pmu);
958 extern int perf_event_task_disable(void);
959 extern int perf_event_task_enable(void);
960 extern int perf_event_refresh(struct perf_event *event, int refresh);
961 extern void perf_event_update_userpage(struct perf_event *event);
962 extern int perf_event_release_kernel(struct perf_event *event);
963 extern struct perf_event *
964 perf_event_create_kernel_counter(struct perf_event_attr *attr,
965 int cpu,
966 struct task_struct *task,
967 perf_overflow_handler_t callback,
968 void *context);
969 extern u64 perf_event_read_value(struct perf_event *event,
970 u64 *enabled, u64 *running);
972 struct perf_sample_data {
973 u64 type;
975 u64 ip;
976 struct {
977 u32 pid;
978 u32 tid;
979 } tid_entry;
980 u64 time;
981 u64 addr;
982 u64 id;
983 u64 stream_id;
984 struct {
985 u32 cpu;
986 u32 reserved;
987 } cpu_entry;
988 u64 period;
989 struct perf_callchain_entry *callchain;
990 struct perf_raw_record *raw;
993 static inline void perf_sample_data_init(struct perf_sample_data *data, u64 addr)
995 data->addr = addr;
996 data->raw = NULL;
999 extern void perf_output_sample(struct perf_output_handle *handle,
1000 struct perf_event_header *header,
1001 struct perf_sample_data *data,
1002 struct perf_event *event);
1003 extern void perf_prepare_sample(struct perf_event_header *header,
1004 struct perf_sample_data *data,
1005 struct perf_event *event,
1006 struct pt_regs *regs);
1008 extern int perf_event_overflow(struct perf_event *event,
1009 struct perf_sample_data *data,
1010 struct pt_regs *regs);
1012 static inline bool is_sampling_event(struct perf_event *event)
1014 return event->attr.sample_period != 0;
1018 * Return 1 for a software event, 0 for a hardware event
1020 static inline int is_software_event(struct perf_event *event)
1022 return event->pmu->task_ctx_nr == perf_sw_context;
1025 extern struct jump_label_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
1027 extern void __perf_sw_event(u32, u64, struct pt_regs *, u64);
1029 #ifndef perf_arch_fetch_caller_regs
1030 static inline void perf_arch_fetch_caller_regs(struct pt_regs *regs, unsigned long ip) { }
1031 #endif
1034 * Take a snapshot of the regs. Skip ip and frame pointer to
1035 * the nth caller. We only need a few of the regs:
1036 * - ip for PERF_SAMPLE_IP
1037 * - cs for user_mode() tests
1038 * - bp for callchains
1039 * - eflags, for future purposes, just in case
1041 static inline void perf_fetch_caller_regs(struct pt_regs *regs)
1043 memset(regs, 0, sizeof(*regs));
1045 perf_arch_fetch_caller_regs(regs, CALLER_ADDR0);
1048 static __always_inline void
1049 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
1051 struct pt_regs hot_regs;
1053 if (static_branch(&perf_swevent_enabled[event_id])) {
1054 if (!regs) {
1055 perf_fetch_caller_regs(&hot_regs);
1056 regs = &hot_regs;
1058 __perf_sw_event(event_id, nr, regs, addr);
1062 extern struct jump_label_key perf_sched_events;
1064 static inline void perf_event_task_sched_in(struct task_struct *prev,
1065 struct task_struct *task)
1067 if (static_branch(&perf_sched_events))
1068 __perf_event_task_sched_in(prev, task);
1071 static inline void perf_event_task_sched_out(struct task_struct *prev,
1072 struct task_struct *next)
1074 perf_sw_event(PERF_COUNT_SW_CONTEXT_SWITCHES, 1, NULL, 0);
1076 if (static_branch(&perf_sched_events))
1077 __perf_event_task_sched_out(prev, next);
1080 extern void perf_event_mmap(struct vm_area_struct *vma);
1081 extern struct perf_guest_info_callbacks *perf_guest_cbs;
1082 extern int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1083 extern int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *callbacks);
1085 extern void perf_event_comm(struct task_struct *tsk);
1086 extern void perf_event_fork(struct task_struct *tsk);
1088 /* Callchains */
1089 DECLARE_PER_CPU(struct perf_callchain_entry, perf_callchain_entry);
1091 extern void perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs);
1092 extern void perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs);
1094 static inline void perf_callchain_store(struct perf_callchain_entry *entry, u64 ip)
1096 if (entry->nr < PERF_MAX_STACK_DEPTH)
1097 entry->ip[entry->nr++] = ip;
1100 extern int sysctl_perf_event_paranoid;
1101 extern int sysctl_perf_event_mlock;
1102 extern int sysctl_perf_event_sample_rate;
1104 extern int perf_proc_update_handler(struct ctl_table *table, int write,
1105 void __user *buffer, size_t *lenp,
1106 loff_t *ppos);
1108 static inline bool perf_paranoid_tracepoint_raw(void)
1110 return sysctl_perf_event_paranoid > -1;
1113 static inline bool perf_paranoid_cpu(void)
1115 return sysctl_perf_event_paranoid > 0;
1118 static inline bool perf_paranoid_kernel(void)
1120 return sysctl_perf_event_paranoid > 1;
1123 extern void perf_event_init(void);
1124 extern void perf_tp_event(u64 addr, u64 count, void *record,
1125 int entry_size, struct pt_regs *regs,
1126 struct hlist_head *head, int rctx);
1127 extern void perf_bp_event(struct perf_event *event, void *data);
1129 #ifndef perf_misc_flags
1130 # define perf_misc_flags(regs) \
1131 (user_mode(regs) ? PERF_RECORD_MISC_USER : PERF_RECORD_MISC_KERNEL)
1132 # define perf_instruction_pointer(regs) instruction_pointer(regs)
1133 #endif
1135 extern int perf_output_begin(struct perf_output_handle *handle,
1136 struct perf_event *event, unsigned int size);
1137 extern void perf_output_end(struct perf_output_handle *handle);
1138 extern void perf_output_copy(struct perf_output_handle *handle,
1139 const void *buf, unsigned int len);
1140 extern int perf_swevent_get_recursion_context(void);
1141 extern void perf_swevent_put_recursion_context(int rctx);
1142 extern void perf_event_enable(struct perf_event *event);
1143 extern void perf_event_disable(struct perf_event *event);
1144 extern void perf_event_task_tick(void);
1145 #else
1146 static inline void
1147 perf_event_task_sched_in(struct task_struct *prev,
1148 struct task_struct *task) { }
1149 static inline void
1150 perf_event_task_sched_out(struct task_struct *prev,
1151 struct task_struct *next) { }
1152 static inline int perf_event_init_task(struct task_struct *child) { return 0; }
1153 static inline void perf_event_exit_task(struct task_struct *child) { }
1154 static inline void perf_event_free_task(struct task_struct *task) { }
1155 static inline void perf_event_delayed_put(struct task_struct *task) { }
1156 static inline void perf_event_print_debug(void) { }
1157 static inline int perf_event_task_disable(void) { return -EINVAL; }
1158 static inline int perf_event_task_enable(void) { return -EINVAL; }
1159 static inline int perf_event_refresh(struct perf_event *event, int refresh)
1161 return -EINVAL;
1164 static inline void
1165 perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr) { }
1166 static inline void
1167 perf_bp_event(struct perf_event *event, void *data) { }
1169 static inline int perf_register_guest_info_callbacks
1170 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1171 static inline int perf_unregister_guest_info_callbacks
1172 (struct perf_guest_info_callbacks *callbacks) { return 0; }
1174 static inline void perf_event_mmap(struct vm_area_struct *vma) { }
1175 static inline void perf_event_comm(struct task_struct *tsk) { }
1176 static inline void perf_event_fork(struct task_struct *tsk) { }
1177 static inline void perf_event_init(void) { }
1178 static inline int perf_swevent_get_recursion_context(void) { return -1; }
1179 static inline void perf_swevent_put_recursion_context(int rctx) { }
1180 static inline void perf_event_enable(struct perf_event *event) { }
1181 static inline void perf_event_disable(struct perf_event *event) { }
1182 static inline void perf_event_task_tick(void) { }
1183 #endif
1185 #define perf_output_put(handle, x) perf_output_copy((handle), &(x), sizeof(x))
1188 * This has to have a higher priority than migration_notifier in sched.c.
1190 #define perf_cpu_notifier(fn) \
1191 do { \
1192 static struct notifier_block fn##_nb __cpuinitdata = \
1193 { .notifier_call = fn, .priority = CPU_PRI_PERF }; \
1194 fn(&fn##_nb, (unsigned long)CPU_UP_PREPARE, \
1195 (void *)(unsigned long)smp_processor_id()); \
1196 fn(&fn##_nb, (unsigned long)CPU_STARTING, \
1197 (void *)(unsigned long)smp_processor_id()); \
1198 fn(&fn##_nb, (unsigned long)CPU_ONLINE, \
1199 (void *)(unsigned long)smp_processor_id()); \
1200 register_cpu_notifier(&fn##_nb); \
1201 } while (0)
1203 #endif /* __KERNEL__ */
1204 #endif /* _LINUX_PERF_EVENT_H */