2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
22 #include "transaction.h"
25 #include "print-tree.h"
29 /* magic values for the inode_only field in btrfs_log_inode:
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
39 * directory trouble cases
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
48 * rename foo/some_dir foo2/some_dir
50 * fsync foo/some_dir/some_file
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
94 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
, struct inode
*inode
,
97 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
,
99 struct btrfs_path
*path
, u64 objectid
);
100 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*root
,
102 struct btrfs_root
*log
,
103 struct btrfs_path
*path
,
104 u64 dirid
, int del_all
);
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
134 static int start_log_trans(struct btrfs_trans_handle
*trans
,
135 struct btrfs_root
*root
)
140 mutex_lock(&root
->log_mutex
);
141 if (root
->log_root
) {
142 if (!root
->log_start_pid
) {
143 root
->log_start_pid
= current
->pid
;
144 root
->log_multiple_pids
= false;
145 } else if (root
->log_start_pid
!= current
->pid
) {
146 root
->log_multiple_pids
= true;
150 atomic_inc(&root
->log_writers
);
151 mutex_unlock(&root
->log_mutex
);
154 root
->log_multiple_pids
= false;
155 root
->log_start_pid
= current
->pid
;
156 mutex_lock(&root
->fs_info
->tree_log_mutex
);
157 if (!root
->fs_info
->log_root_tree
) {
158 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
162 if (err
== 0 && !root
->log_root
) {
163 ret
= btrfs_add_log_tree(trans
, root
);
167 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
169 atomic_inc(&root
->log_writers
);
170 mutex_unlock(&root
->log_mutex
);
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
179 static int join_running_log_trans(struct btrfs_root
*root
)
187 mutex_lock(&root
->log_mutex
);
188 if (root
->log_root
) {
190 atomic_inc(&root
->log_writers
);
192 mutex_unlock(&root
->log_mutex
);
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
201 int btrfs_pin_log_trans(struct btrfs_root
*root
)
205 mutex_lock(&root
->log_mutex
);
206 atomic_inc(&root
->log_writers
);
207 mutex_unlock(&root
->log_mutex
);
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
215 int btrfs_end_log_trans(struct btrfs_root
*root
)
217 if (atomic_dec_and_test(&root
->log_writers
)) {
219 if (waitqueue_active(&root
->log_writer_wait
))
220 wake_up(&root
->log_writer_wait
);
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
232 struct walk_control
{
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
248 /* pin only walk, we record which extents on disk belong to the
253 /* what stage of the replay code we're currently in */
256 /* the root we are currently replaying */
257 struct btrfs_root
*replay_dest
;
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle
*trans
;
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
267 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
268 struct walk_control
*wc
, u64 gen
);
272 * process_func used to pin down extents, write them or wait on them
274 static int process_one_buffer(struct btrfs_root
*log
,
275 struct extent_buffer
*eb
,
276 struct walk_control
*wc
, u64 gen
)
279 btrfs_pin_extent(log
->fs_info
->extent_root
,
280 eb
->start
, eb
->len
, 0);
282 if (btrfs_buffer_uptodate(eb
, gen
)) {
284 btrfs_write_tree_block(eb
);
286 btrfs_wait_tree_block_writeback(eb
);
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
303 * If the key isn't in the destination yet, a new item is inserted.
305 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
306 struct btrfs_root
*root
,
307 struct btrfs_path
*path
,
308 struct extent_buffer
*eb
, int slot
,
309 struct btrfs_key
*key
)
313 u64 saved_i_size
= 0;
314 int save_old_i_size
= 0;
315 unsigned long src_ptr
;
316 unsigned long dst_ptr
;
317 int overwrite_root
= 0;
319 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
322 item_size
= btrfs_item_size_nr(eb
, slot
);
323 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
325 /* look for the key in the destination tree */
326 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
330 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
332 if (dst_size
!= item_size
)
335 if (item_size
== 0) {
336 btrfs_release_path(path
);
339 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
340 src_copy
= kmalloc(item_size
, GFP_NOFS
);
341 if (!dst_copy
|| !src_copy
) {
342 btrfs_release_path(path
);
348 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
350 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
351 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
353 ret
= memcmp(dst_copy
, src_copy
, item_size
);
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
364 btrfs_release_path(path
);
370 btrfs_release_path(path
);
371 /* try to insert the key into the destination tree */
372 ret
= btrfs_insert_empty_item(trans
, root
, path
,
375 /* make sure any existing item is the correct size */
376 if (ret
== -EEXIST
) {
378 found_size
= btrfs_item_size_nr(path
->nodes
[0],
380 if (found_size
> item_size
) {
381 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
382 } else if (found_size
< item_size
) {
383 ret
= btrfs_extend_item(trans
, root
, path
,
384 item_size
- found_size
);
389 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
392 /* don't overwrite an existing inode if the generation number
393 * was logged as zero. This is done when the tree logging code
394 * is just logging an inode to make sure it exists after recovery.
396 * Also, don't overwrite i_size on directories during replay.
397 * log replay inserts and removes directory items based on the
398 * state of the tree found in the subvolume, and i_size is modified
401 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
402 struct btrfs_inode_item
*src_item
;
403 struct btrfs_inode_item
*dst_item
;
405 src_item
= (struct btrfs_inode_item
*)src_ptr
;
406 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
408 if (btrfs_inode_generation(eb
, src_item
) == 0)
411 if (overwrite_root
&&
412 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
413 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
415 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
420 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
423 if (save_old_i_size
) {
424 struct btrfs_inode_item
*dst_item
;
425 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
426 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
429 /* make sure the generation is filled in */
430 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
431 struct btrfs_inode_item
*dst_item
;
432 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
433 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
434 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
439 btrfs_mark_buffer_dirty(path
->nodes
[0]);
440 btrfs_release_path(path
);
445 * simple helper to read an inode off the disk from a given root
446 * This can only be called for subvolume roots and not for the log
448 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
451 struct btrfs_key key
;
454 key
.objectid
= objectid
;
455 key
.type
= BTRFS_INODE_ITEM_KEY
;
457 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
460 } else if (is_bad_inode(inode
)) {
467 /* replays a single extent in 'eb' at 'slot' with 'key' into the
468 * subvolume 'root'. path is released on entry and should be released
471 * extents in the log tree have not been allocated out of the extent
472 * tree yet. So, this completes the allocation, taking a reference
473 * as required if the extent already exists or creating a new extent
474 * if it isn't in the extent allocation tree yet.
476 * The extent is inserted into the file, dropping any existing extents
477 * from the file that overlap the new one.
479 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
480 struct btrfs_root
*root
,
481 struct btrfs_path
*path
,
482 struct extent_buffer
*eb
, int slot
,
483 struct btrfs_key
*key
)
486 u64 mask
= root
->sectorsize
- 1;
489 u64 start
= key
->offset
;
491 struct btrfs_file_extent_item
*item
;
492 struct inode
*inode
= NULL
;
496 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
497 found_type
= btrfs_file_extent_type(eb
, item
);
499 if (found_type
== BTRFS_FILE_EXTENT_REG
||
500 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
501 extent_end
= start
+ btrfs_file_extent_num_bytes(eb
, item
);
502 else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
503 size
= btrfs_file_extent_inline_len(eb
, item
);
504 extent_end
= (start
+ size
+ mask
) & ~mask
;
510 inode
= read_one_inode(root
, key
->objectid
);
517 * first check to see if we already have this extent in the
518 * file. This must be done before the btrfs_drop_extents run
519 * so we don't try to drop this extent.
521 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
525 (found_type
== BTRFS_FILE_EXTENT_REG
||
526 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
527 struct btrfs_file_extent_item cmp1
;
528 struct btrfs_file_extent_item cmp2
;
529 struct btrfs_file_extent_item
*existing
;
530 struct extent_buffer
*leaf
;
532 leaf
= path
->nodes
[0];
533 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
534 struct btrfs_file_extent_item
);
536 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
538 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
542 * we already have a pointer to this exact extent,
543 * we don't have to do anything
545 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
546 btrfs_release_path(path
);
550 btrfs_release_path(path
);
552 saved_nbytes
= inode_get_bytes(inode
);
553 /* drop any overlapping extents */
554 ret
= btrfs_drop_extents(trans
, inode
, start
, extent_end
,
558 if (found_type
== BTRFS_FILE_EXTENT_REG
||
559 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
561 unsigned long dest_offset
;
562 struct btrfs_key ins
;
564 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
567 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
569 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
570 (unsigned long)item
, sizeof(*item
));
572 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
573 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
574 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
575 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
577 if (ins
.objectid
> 0) {
580 LIST_HEAD(ordered_sums
);
582 * is this extent already allocated in the extent
583 * allocation tree? If so, just add a reference
585 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
588 ret
= btrfs_inc_extent_ref(trans
, root
,
589 ins
.objectid
, ins
.offset
,
590 0, root
->root_key
.objectid
,
591 key
->objectid
, offset
);
595 * insert the extent pointer in the extent
598 ret
= btrfs_alloc_logged_file_extent(trans
,
599 root
, root
->root_key
.objectid
,
600 key
->objectid
, offset
, &ins
);
603 btrfs_release_path(path
);
605 if (btrfs_file_extent_compression(eb
, item
)) {
606 csum_start
= ins
.objectid
;
607 csum_end
= csum_start
+ ins
.offset
;
609 csum_start
= ins
.objectid
+
610 btrfs_file_extent_offset(eb
, item
);
611 csum_end
= csum_start
+
612 btrfs_file_extent_num_bytes(eb
, item
);
615 ret
= btrfs_lookup_csums_range(root
->log_root
,
616 csum_start
, csum_end
- 1,
619 while (!list_empty(&ordered_sums
)) {
620 struct btrfs_ordered_sum
*sums
;
621 sums
= list_entry(ordered_sums
.next
,
622 struct btrfs_ordered_sum
,
624 ret
= btrfs_csum_file_blocks(trans
,
625 root
->fs_info
->csum_root
,
628 list_del(&sums
->list
);
632 btrfs_release_path(path
);
634 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
635 /* inline extents are easy, we just overwrite them */
636 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
640 inode_set_bytes(inode
, saved_nbytes
);
641 btrfs_update_inode(trans
, root
, inode
);
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
653 * This is a helper function to do the unlink of a specific directory
656 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
657 struct btrfs_root
*root
,
658 struct btrfs_path
*path
,
660 struct btrfs_dir_item
*di
)
665 struct extent_buffer
*leaf
;
666 struct btrfs_key location
;
669 leaf
= path
->nodes
[0];
671 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
672 name_len
= btrfs_dir_name_len(leaf
, di
);
673 name
= kmalloc(name_len
, GFP_NOFS
);
677 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
678 btrfs_release_path(path
);
680 inode
= read_one_inode(root
, location
.objectid
);
686 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
689 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
698 * helper function to see if a given name and sequence number found
699 * in an inode back reference are already in a directory and correctly
700 * point to this inode
702 static noinline
int inode_in_dir(struct btrfs_root
*root
,
703 struct btrfs_path
*path
,
704 u64 dirid
, u64 objectid
, u64 index
,
705 const char *name
, int name_len
)
707 struct btrfs_dir_item
*di
;
708 struct btrfs_key location
;
711 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
712 index
, name
, name_len
, 0);
713 if (di
&& !IS_ERR(di
)) {
714 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
715 if (location
.objectid
!= objectid
)
719 btrfs_release_path(path
);
721 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
722 if (di
&& !IS_ERR(di
)) {
723 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
724 if (location
.objectid
!= objectid
)
730 btrfs_release_path(path
);
735 * helper function to check a log tree for a named back reference in
736 * an inode. This is used to decide if a back reference that is
737 * found in the subvolume conflicts with what we find in the log.
739 * inode backreferences may have multiple refs in a single item,
740 * during replay we process one reference at a time, and we don't
741 * want to delete valid links to a file from the subvolume if that
742 * link is also in the log.
744 static noinline
int backref_in_log(struct btrfs_root
*log
,
745 struct btrfs_key
*key
,
746 char *name
, int namelen
)
748 struct btrfs_path
*path
;
749 struct btrfs_inode_ref
*ref
;
751 unsigned long ptr_end
;
752 unsigned long name_ptr
;
758 path
= btrfs_alloc_path();
762 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
766 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
767 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
768 ptr_end
= ptr
+ item_size
;
769 while (ptr
< ptr_end
) {
770 ref
= (struct btrfs_inode_ref
*)ptr
;
771 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
772 if (found_name_len
== namelen
) {
773 name_ptr
= (unsigned long)(ref
+ 1);
774 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
781 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
784 btrfs_free_path(path
);
790 * replay one inode back reference item found in the log tree.
791 * eb, slot and key refer to the buffer and key found in the log tree.
792 * root is the destination we are replaying into, and path is for temp
793 * use by this function. (it should be released on return).
795 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
796 struct btrfs_root
*root
,
797 struct btrfs_root
*log
,
798 struct btrfs_path
*path
,
799 struct extent_buffer
*eb
, int slot
,
800 struct btrfs_key
*key
)
804 struct btrfs_inode_ref
*ref
;
808 unsigned long ref_ptr
;
809 unsigned long ref_end
;
813 * it is possible that we didn't log all the parent directories
814 * for a given inode. If we don't find the dir, just don't
815 * copy the back ref in. The link count fixup code will take
818 dir
= read_one_inode(root
, key
->offset
);
822 inode
= read_one_inode(root
, key
->objectid
);
828 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
829 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
832 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
834 namelen
= btrfs_inode_ref_name_len(eb
, ref
);
835 name
= kmalloc(namelen
, GFP_NOFS
);
838 read_extent_buffer(eb
, name
, (unsigned long)(ref
+ 1), namelen
);
840 /* if we already have a perfect match, we're done */
841 if (inode_in_dir(root
, path
, btrfs_ino(dir
), btrfs_ino(inode
),
842 btrfs_inode_ref_index(eb
, ref
),
848 * look for a conflicting back reference in the metadata.
849 * if we find one we have to unlink that name of the file
850 * before we add our new link. Later on, we overwrite any
851 * existing back reference, and we don't want to create
852 * dangling pointers in the directory.
858 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
862 struct btrfs_inode_ref
*victim_ref
;
864 unsigned long ptr_end
;
865 struct extent_buffer
*leaf
= path
->nodes
[0];
867 /* are we trying to overwrite a back ref for the root directory
868 * if so, just jump out, we're done
870 if (key
->objectid
== key
->offset
)
873 /* check all the names in this back reference to see
874 * if they are in the log. if so, we allow them to stay
875 * otherwise they must be unlinked as a conflict
877 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
878 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
879 while (ptr
< ptr_end
) {
880 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
881 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
883 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
884 BUG_ON(!victim_name
);
886 read_extent_buffer(leaf
, victim_name
,
887 (unsigned long)(victim_ref
+ 1),
890 if (!backref_in_log(log
, key
, victim_name
,
892 btrfs_inc_nlink(inode
);
893 btrfs_release_path(path
);
895 ret
= btrfs_unlink_inode(trans
, root
, dir
,
900 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
905 * NOTE: we have searched root tree and checked the
906 * coresponding ref, it does not need to check again.
910 btrfs_release_path(path
);
913 /* insert our name */
914 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
, 0,
915 btrfs_inode_ref_index(eb
, ref
));
918 btrfs_update_inode(trans
, root
, inode
);
921 ref_ptr
= (unsigned long)(ref
+ 1) + namelen
;
923 if (ref_ptr
< ref_end
)
926 /* finally write the back reference in the inode */
927 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
931 btrfs_release_path(path
);
937 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
938 struct btrfs_root
*root
, u64 offset
)
941 ret
= btrfs_find_orphan_item(root
, offset
);
943 ret
= btrfs_insert_orphan_item(trans
, root
, offset
);
949 * There are a few corners where the link count of the file can't
950 * be properly maintained during replay. So, instead of adding
951 * lots of complexity to the log code, we just scan the backrefs
952 * for any file that has been through replay.
954 * The scan will update the link count on the inode to reflect the
955 * number of back refs found. If it goes down to zero, the iput
956 * will free the inode.
958 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
959 struct btrfs_root
*root
,
962 struct btrfs_path
*path
;
964 struct btrfs_key key
;
967 unsigned long ptr_end
;
969 u64 ino
= btrfs_ino(inode
);
972 key
.type
= BTRFS_INODE_REF_KEY
;
973 key
.offset
= (u64
)-1;
975 path
= btrfs_alloc_path();
980 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
984 if (path
->slots
[0] == 0)
988 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
990 if (key
.objectid
!= ino
||
991 key
.type
!= BTRFS_INODE_REF_KEY
)
993 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
994 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
996 while (ptr
< ptr_end
) {
997 struct btrfs_inode_ref
*ref
;
999 ref
= (struct btrfs_inode_ref
*)ptr
;
1000 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1002 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1006 if (key
.offset
== 0)
1009 btrfs_release_path(path
);
1011 btrfs_release_path(path
);
1012 if (nlink
!= inode
->i_nlink
) {
1013 inode
->i_nlink
= nlink
;
1014 btrfs_update_inode(trans
, root
, inode
);
1016 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1018 if (inode
->i_nlink
== 0) {
1019 if (S_ISDIR(inode
->i_mode
)) {
1020 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1024 ret
= insert_orphan_item(trans
, root
, ino
);
1027 btrfs_free_path(path
);
1032 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1033 struct btrfs_root
*root
,
1034 struct btrfs_path
*path
)
1037 struct btrfs_key key
;
1038 struct inode
*inode
;
1040 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1041 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1042 key
.offset
= (u64
)-1;
1044 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1049 if (path
->slots
[0] == 0)
1054 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1055 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1056 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1059 ret
= btrfs_del_item(trans
, root
, path
);
1063 btrfs_release_path(path
);
1064 inode
= read_one_inode(root
, key
.offset
);
1068 ret
= fixup_inode_link_count(trans
, root
, inode
);
1074 * fixup on a directory may create new entries,
1075 * make sure we always look for the highset possible
1078 key
.offset
= (u64
)-1;
1082 btrfs_release_path(path
);
1088 * record a given inode in the fixup dir so we can check its link
1089 * count when replay is done. The link count is incremented here
1090 * so the inode won't go away until we check it
1092 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1093 struct btrfs_root
*root
,
1094 struct btrfs_path
*path
,
1097 struct btrfs_key key
;
1099 struct inode
*inode
;
1101 inode
= read_one_inode(root
, objectid
);
1105 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1106 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1107 key
.offset
= objectid
;
1109 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1111 btrfs_release_path(path
);
1113 btrfs_inc_nlink(inode
);
1114 btrfs_update_inode(trans
, root
, inode
);
1115 } else if (ret
== -EEXIST
) {
1126 * when replaying the log for a directory, we only insert names
1127 * for inodes that actually exist. This means an fsync on a directory
1128 * does not implicitly fsync all the new files in it
1130 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1131 struct btrfs_root
*root
,
1132 struct btrfs_path
*path
,
1133 u64 dirid
, u64 index
,
1134 char *name
, int name_len
, u8 type
,
1135 struct btrfs_key
*location
)
1137 struct inode
*inode
;
1141 inode
= read_one_inode(root
, location
->objectid
);
1145 dir
= read_one_inode(root
, dirid
);
1150 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1152 /* FIXME, put inode into FIXUP list */
1160 * take a single entry in a log directory item and replay it into
1163 * if a conflicting item exists in the subdirectory already,
1164 * the inode it points to is unlinked and put into the link count
1167 * If a name from the log points to a file or directory that does
1168 * not exist in the FS, it is skipped. fsyncs on directories
1169 * do not force down inodes inside that directory, just changes to the
1170 * names or unlinks in a directory.
1172 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1173 struct btrfs_root
*root
,
1174 struct btrfs_path
*path
,
1175 struct extent_buffer
*eb
,
1176 struct btrfs_dir_item
*di
,
1177 struct btrfs_key
*key
)
1181 struct btrfs_dir_item
*dst_di
;
1182 struct btrfs_key found_key
;
1183 struct btrfs_key log_key
;
1189 dir
= read_one_inode(root
, key
->objectid
);
1193 name_len
= btrfs_dir_name_len(eb
, di
);
1194 name
= kmalloc(name_len
, GFP_NOFS
);
1198 log_type
= btrfs_dir_type(eb
, di
);
1199 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1202 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1203 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1208 btrfs_release_path(path
);
1210 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1211 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1213 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1214 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1221 if (IS_ERR_OR_NULL(dst_di
)) {
1222 /* we need a sequence number to insert, so we only
1223 * do inserts for the BTRFS_DIR_INDEX_KEY types
1225 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1230 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1231 /* the existing item matches the logged item */
1232 if (found_key
.objectid
== log_key
.objectid
&&
1233 found_key
.type
== log_key
.type
&&
1234 found_key
.offset
== log_key
.offset
&&
1235 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1240 * don't drop the conflicting directory entry if the inode
1241 * for the new entry doesn't exist
1246 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1249 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1252 btrfs_release_path(path
);
1258 btrfs_release_path(path
);
1259 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1260 name
, name_len
, log_type
, &log_key
);
1262 BUG_ON(ret
&& ret
!= -ENOENT
);
1267 * find all the names in a directory item and reconcile them into
1268 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1269 * one name in a directory item, but the same code gets used for
1270 * both directory index types
1272 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1273 struct btrfs_root
*root
,
1274 struct btrfs_path
*path
,
1275 struct extent_buffer
*eb
, int slot
,
1276 struct btrfs_key
*key
)
1279 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1280 struct btrfs_dir_item
*di
;
1283 unsigned long ptr_end
;
1285 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1286 ptr_end
= ptr
+ item_size
;
1287 while (ptr
< ptr_end
) {
1288 di
= (struct btrfs_dir_item
*)ptr
;
1289 if (verify_dir_item(root
, eb
, di
))
1291 name_len
= btrfs_dir_name_len(eb
, di
);
1292 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1294 ptr
= (unsigned long)(di
+ 1);
1301 * directory replay has two parts. There are the standard directory
1302 * items in the log copied from the subvolume, and range items
1303 * created in the log while the subvolume was logged.
1305 * The range items tell us which parts of the key space the log
1306 * is authoritative for. During replay, if a key in the subvolume
1307 * directory is in a logged range item, but not actually in the log
1308 * that means it was deleted from the directory before the fsync
1309 * and should be removed.
1311 static noinline
int find_dir_range(struct btrfs_root
*root
,
1312 struct btrfs_path
*path
,
1313 u64 dirid
, int key_type
,
1314 u64
*start_ret
, u64
*end_ret
)
1316 struct btrfs_key key
;
1318 struct btrfs_dir_log_item
*item
;
1322 if (*start_ret
== (u64
)-1)
1325 key
.objectid
= dirid
;
1326 key
.type
= key_type
;
1327 key
.offset
= *start_ret
;
1329 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1333 if (path
->slots
[0] == 0)
1338 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1340 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1344 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1345 struct btrfs_dir_log_item
);
1346 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1348 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1350 *start_ret
= key
.offset
;
1351 *end_ret
= found_end
;
1356 /* check the next slot in the tree to see if it is a valid item */
1357 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1358 if (path
->slots
[0] >= nritems
) {
1359 ret
= btrfs_next_leaf(root
, path
);
1366 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1368 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1372 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1373 struct btrfs_dir_log_item
);
1374 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1375 *start_ret
= key
.offset
;
1376 *end_ret
= found_end
;
1379 btrfs_release_path(path
);
1384 * this looks for a given directory item in the log. If the directory
1385 * item is not in the log, the item is removed and the inode it points
1388 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1389 struct btrfs_root
*root
,
1390 struct btrfs_root
*log
,
1391 struct btrfs_path
*path
,
1392 struct btrfs_path
*log_path
,
1394 struct btrfs_key
*dir_key
)
1397 struct extent_buffer
*eb
;
1400 struct btrfs_dir_item
*di
;
1401 struct btrfs_dir_item
*log_di
;
1404 unsigned long ptr_end
;
1406 struct inode
*inode
;
1407 struct btrfs_key location
;
1410 eb
= path
->nodes
[0];
1411 slot
= path
->slots
[0];
1412 item_size
= btrfs_item_size_nr(eb
, slot
);
1413 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1414 ptr_end
= ptr
+ item_size
;
1415 while (ptr
< ptr_end
) {
1416 di
= (struct btrfs_dir_item
*)ptr
;
1417 if (verify_dir_item(root
, eb
, di
)) {
1422 name_len
= btrfs_dir_name_len(eb
, di
);
1423 name
= kmalloc(name_len
, GFP_NOFS
);
1428 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1431 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1432 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1435 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1436 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1442 if (IS_ERR_OR_NULL(log_di
)) {
1443 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1444 btrfs_release_path(path
);
1445 btrfs_release_path(log_path
);
1446 inode
= read_one_inode(root
, location
.objectid
);
1452 ret
= link_to_fixup_dir(trans
, root
,
1453 path
, location
.objectid
);
1455 btrfs_inc_nlink(inode
);
1456 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1462 /* there might still be more names under this key
1463 * check and repeat if required
1465 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1472 btrfs_release_path(log_path
);
1475 ptr
= (unsigned long)(di
+ 1);
1480 btrfs_release_path(path
);
1481 btrfs_release_path(log_path
);
1486 * deletion replay happens before we copy any new directory items
1487 * out of the log or out of backreferences from inodes. It
1488 * scans the log to find ranges of keys that log is authoritative for,
1489 * and then scans the directory to find items in those ranges that are
1490 * not present in the log.
1492 * Anything we don't find in the log is unlinked and removed from the
1495 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1496 struct btrfs_root
*root
,
1497 struct btrfs_root
*log
,
1498 struct btrfs_path
*path
,
1499 u64 dirid
, int del_all
)
1503 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1505 struct btrfs_key dir_key
;
1506 struct btrfs_key found_key
;
1507 struct btrfs_path
*log_path
;
1510 dir_key
.objectid
= dirid
;
1511 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1512 log_path
= btrfs_alloc_path();
1516 dir
= read_one_inode(root
, dirid
);
1517 /* it isn't an error if the inode isn't there, that can happen
1518 * because we replay the deletes before we copy in the inode item
1522 btrfs_free_path(log_path
);
1530 range_end
= (u64
)-1;
1532 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1533 &range_start
, &range_end
);
1538 dir_key
.offset
= range_start
;
1541 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1546 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1547 if (path
->slots
[0] >= nritems
) {
1548 ret
= btrfs_next_leaf(root
, path
);
1552 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1554 if (found_key
.objectid
!= dirid
||
1555 found_key
.type
!= dir_key
.type
)
1558 if (found_key
.offset
> range_end
)
1561 ret
= check_item_in_log(trans
, root
, log
, path
,
1565 if (found_key
.offset
== (u64
)-1)
1567 dir_key
.offset
= found_key
.offset
+ 1;
1569 btrfs_release_path(path
);
1570 if (range_end
== (u64
)-1)
1572 range_start
= range_end
+ 1;
1577 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1578 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1579 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1580 btrfs_release_path(path
);
1584 btrfs_release_path(path
);
1585 btrfs_free_path(log_path
);
1591 * the process_func used to replay items from the log tree. This
1592 * gets called in two different stages. The first stage just looks
1593 * for inodes and makes sure they are all copied into the subvolume.
1595 * The second stage copies all the other item types from the log into
1596 * the subvolume. The two stage approach is slower, but gets rid of
1597 * lots of complexity around inodes referencing other inodes that exist
1598 * only in the log (references come from either directory items or inode
1601 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1602 struct walk_control
*wc
, u64 gen
)
1605 struct btrfs_path
*path
;
1606 struct btrfs_root
*root
= wc
->replay_dest
;
1607 struct btrfs_key key
;
1612 btrfs_read_buffer(eb
, gen
);
1614 level
= btrfs_header_level(eb
);
1619 path
= btrfs_alloc_path();
1622 nritems
= btrfs_header_nritems(eb
);
1623 for (i
= 0; i
< nritems
; i
++) {
1624 btrfs_item_key_to_cpu(eb
, &key
, i
);
1626 /* inode keys are done during the first stage */
1627 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1628 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1629 struct btrfs_inode_item
*inode_item
;
1632 inode_item
= btrfs_item_ptr(eb
, i
,
1633 struct btrfs_inode_item
);
1634 mode
= btrfs_inode_mode(eb
, inode_item
);
1635 if (S_ISDIR(mode
)) {
1636 ret
= replay_dir_deletes(wc
->trans
,
1637 root
, log
, path
, key
.objectid
, 0);
1640 ret
= overwrite_item(wc
->trans
, root
, path
,
1644 /* for regular files, make sure corresponding
1645 * orhpan item exist. extents past the new EOF
1646 * will be truncated later by orphan cleanup.
1648 if (S_ISREG(mode
)) {
1649 ret
= insert_orphan_item(wc
->trans
, root
,
1654 ret
= link_to_fixup_dir(wc
->trans
, root
,
1655 path
, key
.objectid
);
1658 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
1661 /* these keys are simply copied */
1662 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
1663 ret
= overwrite_item(wc
->trans
, root
, path
,
1666 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
1667 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
1669 BUG_ON(ret
&& ret
!= -ENOENT
);
1670 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
1671 ret
= replay_one_extent(wc
->trans
, root
, path
,
1674 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
1675 key
.type
== BTRFS_DIR_INDEX_KEY
) {
1676 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
1681 btrfs_free_path(path
);
1685 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
1686 struct btrfs_root
*root
,
1687 struct btrfs_path
*path
, int *level
,
1688 struct walk_control
*wc
)
1693 struct extent_buffer
*next
;
1694 struct extent_buffer
*cur
;
1695 struct extent_buffer
*parent
;
1699 WARN_ON(*level
< 0);
1700 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1702 while (*level
> 0) {
1703 WARN_ON(*level
< 0);
1704 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1705 cur
= path
->nodes
[*level
];
1707 if (btrfs_header_level(cur
) != *level
)
1710 if (path
->slots
[*level
] >=
1711 btrfs_header_nritems(cur
))
1714 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
1715 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
1716 blocksize
= btrfs_level_size(root
, *level
- 1);
1718 parent
= path
->nodes
[*level
];
1719 root_owner
= btrfs_header_owner(parent
);
1721 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1726 wc
->process_func(root
, next
, wc
, ptr_gen
);
1728 path
->slots
[*level
]++;
1730 btrfs_read_buffer(next
, ptr_gen
);
1732 btrfs_tree_lock(next
);
1733 clean_tree_block(trans
, root
, next
);
1734 btrfs_set_lock_blocking(next
);
1735 btrfs_wait_tree_block_writeback(next
);
1736 btrfs_tree_unlock(next
);
1738 WARN_ON(root_owner
!=
1739 BTRFS_TREE_LOG_OBJECTID
);
1740 ret
= btrfs_free_reserved_extent(root
,
1744 free_extent_buffer(next
);
1747 btrfs_read_buffer(next
, ptr_gen
);
1749 WARN_ON(*level
<= 0);
1750 if (path
->nodes
[*level
-1])
1751 free_extent_buffer(path
->nodes
[*level
-1]);
1752 path
->nodes
[*level
-1] = next
;
1753 *level
= btrfs_header_level(next
);
1754 path
->slots
[*level
] = 0;
1757 WARN_ON(*level
< 0);
1758 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1760 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
1766 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
1767 struct btrfs_root
*root
,
1768 struct btrfs_path
*path
, int *level
,
1769 struct walk_control
*wc
)
1776 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
1777 slot
= path
->slots
[i
];
1778 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
1781 WARN_ON(*level
== 0);
1784 struct extent_buffer
*parent
;
1785 if (path
->nodes
[*level
] == root
->node
)
1786 parent
= path
->nodes
[*level
];
1788 parent
= path
->nodes
[*level
+ 1];
1790 root_owner
= btrfs_header_owner(parent
);
1791 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1792 btrfs_header_generation(path
->nodes
[*level
]));
1794 struct extent_buffer
*next
;
1796 next
= path
->nodes
[*level
];
1798 btrfs_tree_lock(next
);
1799 clean_tree_block(trans
, root
, next
);
1800 btrfs_set_lock_blocking(next
);
1801 btrfs_wait_tree_block_writeback(next
);
1802 btrfs_tree_unlock(next
);
1804 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1805 ret
= btrfs_free_reserved_extent(root
,
1806 path
->nodes
[*level
]->start
,
1807 path
->nodes
[*level
]->len
);
1810 free_extent_buffer(path
->nodes
[*level
]);
1811 path
->nodes
[*level
] = NULL
;
1819 * drop the reference count on the tree rooted at 'snap'. This traverses
1820 * the tree freeing any blocks that have a ref count of zero after being
1823 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
1824 struct btrfs_root
*log
, struct walk_control
*wc
)
1829 struct btrfs_path
*path
;
1833 path
= btrfs_alloc_path();
1837 level
= btrfs_header_level(log
->node
);
1839 path
->nodes
[level
] = log
->node
;
1840 extent_buffer_get(log
->node
);
1841 path
->slots
[level
] = 0;
1844 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
1850 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
1857 /* was the root node processed? if not, catch it here */
1858 if (path
->nodes
[orig_level
]) {
1859 wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
1860 btrfs_header_generation(path
->nodes
[orig_level
]));
1862 struct extent_buffer
*next
;
1864 next
= path
->nodes
[orig_level
];
1866 btrfs_tree_lock(next
);
1867 clean_tree_block(trans
, log
, next
);
1868 btrfs_set_lock_blocking(next
);
1869 btrfs_wait_tree_block_writeback(next
);
1870 btrfs_tree_unlock(next
);
1872 WARN_ON(log
->root_key
.objectid
!=
1873 BTRFS_TREE_LOG_OBJECTID
);
1874 ret
= btrfs_free_reserved_extent(log
, next
->start
,
1880 for (i
= 0; i
<= orig_level
; i
++) {
1881 if (path
->nodes
[i
]) {
1882 free_extent_buffer(path
->nodes
[i
]);
1883 path
->nodes
[i
] = NULL
;
1886 btrfs_free_path(path
);
1891 * helper function to update the item for a given subvolumes log root
1892 * in the tree of log roots
1894 static int update_log_root(struct btrfs_trans_handle
*trans
,
1895 struct btrfs_root
*log
)
1899 if (log
->log_transid
== 1) {
1900 /* insert root item on the first sync */
1901 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
1902 &log
->root_key
, &log
->root_item
);
1904 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
1905 &log
->root_key
, &log
->root_item
);
1910 static int wait_log_commit(struct btrfs_trans_handle
*trans
,
1911 struct btrfs_root
*root
, unsigned long transid
)
1914 int index
= transid
% 2;
1917 * we only allow two pending log transactions at a time,
1918 * so we know that if ours is more than 2 older than the
1919 * current transaction, we're done
1922 prepare_to_wait(&root
->log_commit_wait
[index
],
1923 &wait
, TASK_UNINTERRUPTIBLE
);
1924 mutex_unlock(&root
->log_mutex
);
1926 if (root
->fs_info
->last_trans_log_full_commit
!=
1927 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
1928 atomic_read(&root
->log_commit
[index
]))
1931 finish_wait(&root
->log_commit_wait
[index
], &wait
);
1932 mutex_lock(&root
->log_mutex
);
1933 } while (root
->log_transid
< transid
+ 2 &&
1934 atomic_read(&root
->log_commit
[index
]));
1938 static int wait_for_writer(struct btrfs_trans_handle
*trans
,
1939 struct btrfs_root
*root
)
1942 while (atomic_read(&root
->log_writers
)) {
1943 prepare_to_wait(&root
->log_writer_wait
,
1944 &wait
, TASK_UNINTERRUPTIBLE
);
1945 mutex_unlock(&root
->log_mutex
);
1946 if (root
->fs_info
->last_trans_log_full_commit
!=
1947 trans
->transid
&& atomic_read(&root
->log_writers
))
1949 mutex_lock(&root
->log_mutex
);
1950 finish_wait(&root
->log_writer_wait
, &wait
);
1956 * btrfs_sync_log does sends a given tree log down to the disk and
1957 * updates the super blocks to record it. When this call is done,
1958 * you know that any inodes previously logged are safely on disk only
1961 * Any other return value means you need to call btrfs_commit_transaction.
1962 * Some of the edge cases for fsyncing directories that have had unlinks
1963 * or renames done in the past mean that sometimes the only safe
1964 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1965 * that has happened.
1967 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
1968 struct btrfs_root
*root
)
1974 struct btrfs_root
*log
= root
->log_root
;
1975 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
1976 unsigned long log_transid
= 0;
1978 mutex_lock(&root
->log_mutex
);
1979 index1
= root
->log_transid
% 2;
1980 if (atomic_read(&root
->log_commit
[index1
])) {
1981 wait_log_commit(trans
, root
, root
->log_transid
);
1982 mutex_unlock(&root
->log_mutex
);
1985 atomic_set(&root
->log_commit
[index1
], 1);
1987 /* wait for previous tree log sync to complete */
1988 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
1989 wait_log_commit(trans
, root
, root
->log_transid
- 1);
1992 unsigned long batch
= root
->log_batch
;
1993 if (root
->log_multiple_pids
) {
1994 mutex_unlock(&root
->log_mutex
);
1995 schedule_timeout_uninterruptible(1);
1996 mutex_lock(&root
->log_mutex
);
1998 wait_for_writer(trans
, root
);
1999 if (batch
== root
->log_batch
)
2003 /* bail out if we need to do a full commit */
2004 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2006 mutex_unlock(&root
->log_mutex
);
2010 log_transid
= root
->log_transid
;
2011 if (log_transid
% 2 == 0)
2012 mark
= EXTENT_DIRTY
;
2016 /* we start IO on all the marked extents here, but we don't actually
2017 * wait for them until later.
2019 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2022 btrfs_set_root_node(&log
->root_item
, log
->node
);
2024 root
->log_batch
= 0;
2025 root
->log_transid
++;
2026 log
->log_transid
= root
->log_transid
;
2027 root
->log_start_pid
= 0;
2030 * IO has been started, blocks of the log tree have WRITTEN flag set
2031 * in their headers. new modifications of the log will be written to
2032 * new positions. so it's safe to allow log writers to go in.
2034 mutex_unlock(&root
->log_mutex
);
2036 mutex_lock(&log_root_tree
->log_mutex
);
2037 log_root_tree
->log_batch
++;
2038 atomic_inc(&log_root_tree
->log_writers
);
2039 mutex_unlock(&log_root_tree
->log_mutex
);
2041 ret
= update_log_root(trans
, log
);
2043 mutex_lock(&log_root_tree
->log_mutex
);
2044 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2046 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2047 wake_up(&log_root_tree
->log_writer_wait
);
2051 BUG_ON(ret
!= -ENOSPC
);
2052 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2053 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2054 mutex_unlock(&log_root_tree
->log_mutex
);
2059 index2
= log_root_tree
->log_transid
% 2;
2060 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2061 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2062 wait_log_commit(trans
, log_root_tree
,
2063 log_root_tree
->log_transid
);
2064 mutex_unlock(&log_root_tree
->log_mutex
);
2068 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2070 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2071 wait_log_commit(trans
, log_root_tree
,
2072 log_root_tree
->log_transid
- 1);
2075 wait_for_writer(trans
, log_root_tree
);
2078 * now that we've moved on to the tree of log tree roots,
2079 * check the full commit flag again
2081 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2082 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2083 mutex_unlock(&log_root_tree
->log_mutex
);
2085 goto out_wake_log_root
;
2088 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
2089 &log_root_tree
->dirty_log_pages
,
2090 EXTENT_DIRTY
| EXTENT_NEW
);
2092 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2094 btrfs_set_super_log_root(&root
->fs_info
->super_for_commit
,
2095 log_root_tree
->node
->start
);
2096 btrfs_set_super_log_root_level(&root
->fs_info
->super_for_commit
,
2097 btrfs_header_level(log_root_tree
->node
));
2099 log_root_tree
->log_batch
= 0;
2100 log_root_tree
->log_transid
++;
2103 mutex_unlock(&log_root_tree
->log_mutex
);
2106 * nobody else is going to jump in and write the the ctree
2107 * super here because the log_commit atomic below is protecting
2108 * us. We must be called with a transaction handle pinning
2109 * the running transaction open, so a full commit can't hop
2110 * in and cause problems either.
2112 btrfs_scrub_pause_super(root
);
2113 write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2114 btrfs_scrub_continue_super(root
);
2117 mutex_lock(&root
->log_mutex
);
2118 if (root
->last_log_commit
< log_transid
)
2119 root
->last_log_commit
= log_transid
;
2120 mutex_unlock(&root
->log_mutex
);
2123 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2125 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2126 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2128 atomic_set(&root
->log_commit
[index1
], 0);
2130 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2131 wake_up(&root
->log_commit_wait
[index1
]);
2135 static void free_log_tree(struct btrfs_trans_handle
*trans
,
2136 struct btrfs_root
*log
)
2141 struct walk_control wc
= {
2143 .process_func
= process_one_buffer
2146 ret
= walk_log_tree(trans
, log
, &wc
);
2150 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2151 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
);
2155 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
2156 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
2159 free_extent_buffer(log
->node
);
2164 * free all the extents used by the tree log. This should be called
2165 * at commit time of the full transaction
2167 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2169 if (root
->log_root
) {
2170 free_log_tree(trans
, root
->log_root
);
2171 root
->log_root
= NULL
;
2176 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
2177 struct btrfs_fs_info
*fs_info
)
2179 if (fs_info
->log_root_tree
) {
2180 free_log_tree(trans
, fs_info
->log_root_tree
);
2181 fs_info
->log_root_tree
= NULL
;
2187 * If both a file and directory are logged, and unlinks or renames are
2188 * mixed in, we have a few interesting corners:
2190 * create file X in dir Y
2191 * link file X to X.link in dir Y
2193 * unlink file X but leave X.link
2196 * After a crash we would expect only X.link to exist. But file X
2197 * didn't get fsync'd again so the log has back refs for X and X.link.
2199 * We solve this by removing directory entries and inode backrefs from the
2200 * log when a file that was logged in the current transaction is
2201 * unlinked. Any later fsync will include the updated log entries, and
2202 * we'll be able to reconstruct the proper directory items from backrefs.
2204 * This optimizations allows us to avoid relogging the entire inode
2205 * or the entire directory.
2207 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2208 struct btrfs_root
*root
,
2209 const char *name
, int name_len
,
2210 struct inode
*dir
, u64 index
)
2212 struct btrfs_root
*log
;
2213 struct btrfs_dir_item
*di
;
2214 struct btrfs_path
*path
;
2218 u64 dir_ino
= btrfs_ino(dir
);
2220 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2223 ret
= join_running_log_trans(root
);
2227 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2229 log
= root
->log_root
;
2230 path
= btrfs_alloc_path();
2236 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
2237 name
, name_len
, -1);
2243 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2244 bytes_del
+= name_len
;
2247 btrfs_release_path(path
);
2248 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
2249 index
, name
, name_len
, -1);
2255 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2256 bytes_del
+= name_len
;
2260 /* update the directory size in the log to reflect the names
2264 struct btrfs_key key
;
2266 key
.objectid
= dir_ino
;
2268 key
.type
= BTRFS_INODE_ITEM_KEY
;
2269 btrfs_release_path(path
);
2271 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2277 struct btrfs_inode_item
*item
;
2280 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2281 struct btrfs_inode_item
);
2282 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2283 if (i_size
> bytes_del
)
2284 i_size
-= bytes_del
;
2287 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2288 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2291 btrfs_release_path(path
);
2294 btrfs_free_path(path
);
2296 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2297 if (ret
== -ENOSPC
) {
2298 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2301 btrfs_end_log_trans(root
);
2306 /* see comments for btrfs_del_dir_entries_in_log */
2307 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2308 struct btrfs_root
*root
,
2309 const char *name
, int name_len
,
2310 struct inode
*inode
, u64 dirid
)
2312 struct btrfs_root
*log
;
2316 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2319 ret
= join_running_log_trans(root
);
2322 log
= root
->log_root
;
2323 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2325 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
2327 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2328 if (ret
== -ENOSPC
) {
2329 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2332 btrfs_end_log_trans(root
);
2338 * creates a range item in the log for 'dirid'. first_offset and
2339 * last_offset tell us which parts of the key space the log should
2340 * be considered authoritative for.
2342 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2343 struct btrfs_root
*log
,
2344 struct btrfs_path
*path
,
2345 int key_type
, u64 dirid
,
2346 u64 first_offset
, u64 last_offset
)
2349 struct btrfs_key key
;
2350 struct btrfs_dir_log_item
*item
;
2352 key
.objectid
= dirid
;
2353 key
.offset
= first_offset
;
2354 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2355 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2357 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2358 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2362 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2363 struct btrfs_dir_log_item
);
2364 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2365 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2366 btrfs_release_path(path
);
2371 * log all the items included in the current transaction for a given
2372 * directory. This also creates the range items in the log tree required
2373 * to replay anything deleted before the fsync
2375 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2376 struct btrfs_root
*root
, struct inode
*inode
,
2377 struct btrfs_path
*path
,
2378 struct btrfs_path
*dst_path
, int key_type
,
2379 u64 min_offset
, u64
*last_offset_ret
)
2381 struct btrfs_key min_key
;
2382 struct btrfs_key max_key
;
2383 struct btrfs_root
*log
= root
->log_root
;
2384 struct extent_buffer
*src
;
2389 u64 first_offset
= min_offset
;
2390 u64 last_offset
= (u64
)-1;
2391 u64 ino
= btrfs_ino(inode
);
2393 log
= root
->log_root
;
2394 max_key
.objectid
= ino
;
2395 max_key
.offset
= (u64
)-1;
2396 max_key
.type
= key_type
;
2398 min_key
.objectid
= ino
;
2399 min_key
.type
= key_type
;
2400 min_key
.offset
= min_offset
;
2402 path
->keep_locks
= 1;
2404 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2405 path
, 0, trans
->transid
);
2408 * we didn't find anything from this transaction, see if there
2409 * is anything at all
2411 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
2412 min_key
.objectid
= ino
;
2413 min_key
.type
= key_type
;
2414 min_key
.offset
= (u64
)-1;
2415 btrfs_release_path(path
);
2416 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2418 btrfs_release_path(path
);
2421 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
2423 /* if ret == 0 there are items for this type,
2424 * create a range to tell us the last key of this type.
2425 * otherwise, there are no items in this directory after
2426 * *min_offset, and we create a range to indicate that.
2429 struct btrfs_key tmp
;
2430 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2432 if (key_type
== tmp
.type
)
2433 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2438 /* go backward to find any previous key */
2439 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
2441 struct btrfs_key tmp
;
2442 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2443 if (key_type
== tmp
.type
) {
2444 first_offset
= tmp
.offset
;
2445 ret
= overwrite_item(trans
, log
, dst_path
,
2446 path
->nodes
[0], path
->slots
[0],
2454 btrfs_release_path(path
);
2456 /* find the first key from this transaction again */
2457 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2464 * we have a block from this transaction, log every item in it
2465 * from our directory
2468 struct btrfs_key tmp
;
2469 src
= path
->nodes
[0];
2470 nritems
= btrfs_header_nritems(src
);
2471 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2472 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2474 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
2476 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2483 path
->slots
[0] = nritems
;
2486 * look ahead to the next item and see if it is also
2487 * from this directory and from this transaction
2489 ret
= btrfs_next_leaf(root
, path
);
2491 last_offset
= (u64
)-1;
2494 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2495 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
2496 last_offset
= (u64
)-1;
2499 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2500 ret
= overwrite_item(trans
, log
, dst_path
,
2501 path
->nodes
[0], path
->slots
[0],
2506 last_offset
= tmp
.offset
;
2511 btrfs_release_path(path
);
2512 btrfs_release_path(dst_path
);
2515 *last_offset_ret
= last_offset
;
2517 * insert the log range keys to indicate where the log
2520 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
2521 ino
, first_offset
, last_offset
);
2529 * logging directories is very similar to logging inodes, We find all the items
2530 * from the current transaction and write them to the log.
2532 * The recovery code scans the directory in the subvolume, and if it finds a
2533 * key in the range logged that is not present in the log tree, then it means
2534 * that dir entry was unlinked during the transaction.
2536 * In order for that scan to work, we must include one key smaller than
2537 * the smallest logged by this transaction and one key larger than the largest
2538 * key logged by this transaction.
2540 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2541 struct btrfs_root
*root
, struct inode
*inode
,
2542 struct btrfs_path
*path
,
2543 struct btrfs_path
*dst_path
)
2548 int key_type
= BTRFS_DIR_ITEM_KEY
;
2554 ret
= log_dir_items(trans
, root
, inode
, path
,
2555 dst_path
, key_type
, min_key
,
2559 if (max_key
== (u64
)-1)
2561 min_key
= max_key
+ 1;
2564 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2565 key_type
= BTRFS_DIR_INDEX_KEY
;
2572 * a helper function to drop items from the log before we relog an
2573 * inode. max_key_type indicates the highest item type to remove.
2574 * This cannot be run for file data extents because it does not
2575 * free the extents they point to.
2577 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
2578 struct btrfs_root
*log
,
2579 struct btrfs_path
*path
,
2580 u64 objectid
, int max_key_type
)
2583 struct btrfs_key key
;
2584 struct btrfs_key found_key
;
2586 key
.objectid
= objectid
;
2587 key
.type
= max_key_type
;
2588 key
.offset
= (u64
)-1;
2591 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
2596 if (path
->slots
[0] == 0)
2600 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2603 if (found_key
.objectid
!= objectid
)
2606 ret
= btrfs_del_item(trans
, log
, path
);
2609 btrfs_release_path(path
);
2611 btrfs_release_path(path
);
2615 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
2616 struct btrfs_root
*log
,
2617 struct btrfs_path
*dst_path
,
2618 struct extent_buffer
*src
,
2619 int start_slot
, int nr
, int inode_only
)
2621 unsigned long src_offset
;
2622 unsigned long dst_offset
;
2623 struct btrfs_file_extent_item
*extent
;
2624 struct btrfs_inode_item
*inode_item
;
2626 struct btrfs_key
*ins_keys
;
2630 struct list_head ordered_sums
;
2632 INIT_LIST_HEAD(&ordered_sums
);
2634 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
2635 nr
* sizeof(u32
), GFP_NOFS
);
2639 ins_sizes
= (u32
*)ins_data
;
2640 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
2642 for (i
= 0; i
< nr
; i
++) {
2643 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
2644 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
2646 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
2647 ins_keys
, ins_sizes
, nr
);
2653 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
2654 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
2655 dst_path
->slots
[0]);
2657 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
2659 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
2660 src_offset
, ins_sizes
[i
]);
2662 if (inode_only
== LOG_INODE_EXISTS
&&
2663 ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
2664 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
2666 struct btrfs_inode_item
);
2667 btrfs_set_inode_size(dst_path
->nodes
[0], inode_item
, 0);
2669 /* set the generation to zero so the recover code
2670 * can tell the difference between an logging
2671 * just to say 'this inode exists' and a logging
2672 * to say 'update this inode with these values'
2674 btrfs_set_inode_generation(dst_path
->nodes
[0],
2677 /* take a reference on file data extents so that truncates
2678 * or deletes of this inode don't have to relog the inode
2681 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
) {
2683 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
2684 struct btrfs_file_extent_item
);
2686 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
2689 found_type
= btrfs_file_extent_type(src
, extent
);
2690 if (found_type
== BTRFS_FILE_EXTENT_REG
||
2691 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2693 ds
= btrfs_file_extent_disk_bytenr(src
,
2695 /* ds == 0 is a hole */
2699 dl
= btrfs_file_extent_disk_num_bytes(src
,
2701 cs
= btrfs_file_extent_offset(src
, extent
);
2702 cl
= btrfs_file_extent_num_bytes(src
,
2704 if (btrfs_file_extent_compression(src
,
2710 ret
= btrfs_lookup_csums_range(
2711 log
->fs_info
->csum_root
,
2712 ds
+ cs
, ds
+ cs
+ cl
- 1,
2719 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
2720 btrfs_release_path(dst_path
);
2724 * we have to do this after the loop above to avoid changing the
2725 * log tree while trying to change the log tree.
2728 while (!list_empty(&ordered_sums
)) {
2729 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
2730 struct btrfs_ordered_sum
,
2733 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
2734 list_del(&sums
->list
);
2740 /* log a single inode in the tree log.
2741 * At least one parent directory for this inode must exist in the tree
2742 * or be logged already.
2744 * Any items from this inode changed by the current transaction are copied
2745 * to the log tree. An extra reference is taken on any extents in this
2746 * file, allowing us to avoid a whole pile of corner cases around logging
2747 * blocks that have been removed from the tree.
2749 * See LOG_INODE_ALL and related defines for a description of what inode_only
2752 * This handles both files and directories.
2754 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2755 struct btrfs_root
*root
, struct inode
*inode
,
2758 struct btrfs_path
*path
;
2759 struct btrfs_path
*dst_path
;
2760 struct btrfs_key min_key
;
2761 struct btrfs_key max_key
;
2762 struct btrfs_root
*log
= root
->log_root
;
2763 struct extent_buffer
*src
= NULL
;
2767 int ins_start_slot
= 0;
2769 u64 ino
= btrfs_ino(inode
);
2771 log
= root
->log_root
;
2773 path
= btrfs_alloc_path();
2776 dst_path
= btrfs_alloc_path();
2778 btrfs_free_path(path
);
2782 min_key
.objectid
= ino
;
2783 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
2786 max_key
.objectid
= ino
;
2788 /* today the code can only do partial logging of directories */
2789 if (!S_ISDIR(inode
->i_mode
))
2790 inode_only
= LOG_INODE_ALL
;
2792 if (inode_only
== LOG_INODE_EXISTS
|| S_ISDIR(inode
->i_mode
))
2793 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2795 max_key
.type
= (u8
)-1;
2796 max_key
.offset
= (u64
)-1;
2798 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
2800 btrfs_free_path(path
);
2801 btrfs_free_path(dst_path
);
2805 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2808 * a brute force approach to making sure we get the most uptodate
2809 * copies of everything.
2811 if (S_ISDIR(inode
->i_mode
)) {
2812 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2814 if (inode_only
== LOG_INODE_EXISTS
)
2815 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
2816 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
2818 ret
= btrfs_truncate_inode_items(trans
, log
, inode
, 0, 0);
2824 path
->keep_locks
= 1;
2828 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2829 path
, 0, trans
->transid
);
2833 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2834 if (min_key
.objectid
!= ino
)
2836 if (min_key
.type
> max_key
.type
)
2839 src
= path
->nodes
[0];
2840 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
2843 } else if (!ins_nr
) {
2844 ins_start_slot
= path
->slots
[0];
2849 ret
= copy_items(trans
, log
, dst_path
, src
, ins_start_slot
,
2850 ins_nr
, inode_only
);
2856 ins_start_slot
= path
->slots
[0];
2859 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2861 if (path
->slots
[0] < nritems
) {
2862 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
2867 ret
= copy_items(trans
, log
, dst_path
, src
,
2869 ins_nr
, inode_only
);
2876 btrfs_release_path(path
);
2878 if (min_key
.offset
< (u64
)-1)
2880 else if (min_key
.type
< (u8
)-1)
2882 else if (min_key
.objectid
< (u64
)-1)
2888 ret
= copy_items(trans
, log
, dst_path
, src
,
2890 ins_nr
, inode_only
);
2898 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
2899 btrfs_release_path(path
);
2900 btrfs_release_path(dst_path
);
2901 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
2907 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2909 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2911 btrfs_free_path(path
);
2912 btrfs_free_path(dst_path
);
2917 * follow the dentry parent pointers up the chain and see if any
2918 * of the directories in it require a full commit before they can
2919 * be logged. Returns zero if nothing special needs to be done or 1 if
2920 * a full commit is required.
2922 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
2923 struct inode
*inode
,
2924 struct dentry
*parent
,
2925 struct super_block
*sb
,
2929 struct btrfs_root
*root
;
2930 struct dentry
*old_parent
= NULL
;
2933 * for regular files, if its inode is already on disk, we don't
2934 * have to worry about the parents at all. This is because
2935 * we can use the last_unlink_trans field to record renames
2936 * and other fun in this file.
2938 if (S_ISREG(inode
->i_mode
) &&
2939 BTRFS_I(inode
)->generation
<= last_committed
&&
2940 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2943 if (!S_ISDIR(inode
->i_mode
)) {
2944 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2946 inode
= parent
->d_inode
;
2950 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2953 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
2954 root
= BTRFS_I(inode
)->root
;
2957 * make sure any commits to the log are forced
2958 * to be full commits
2960 root
->fs_info
->last_trans_log_full_commit
=
2966 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2969 if (IS_ROOT(parent
))
2972 parent
= dget_parent(parent
);
2974 old_parent
= parent
;
2975 inode
= parent
->d_inode
;
2983 static int inode_in_log(struct btrfs_trans_handle
*trans
,
2984 struct inode
*inode
)
2986 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
2989 mutex_lock(&root
->log_mutex
);
2990 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
&&
2991 BTRFS_I(inode
)->last_sub_trans
<= root
->last_log_commit
)
2993 mutex_unlock(&root
->log_mutex
);
2999 * helper function around btrfs_log_inode to make sure newly created
3000 * parent directories also end up in the log. A minimal inode and backref
3001 * only logging is done of any parent directories that are older than
3002 * the last committed transaction
3004 int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
3005 struct btrfs_root
*root
, struct inode
*inode
,
3006 struct dentry
*parent
, int exists_only
)
3008 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
3009 struct super_block
*sb
;
3010 struct dentry
*old_parent
= NULL
;
3012 u64 last_committed
= root
->fs_info
->last_trans_committed
;
3016 if (btrfs_test_opt(root
, NOTREELOG
)) {
3021 if (root
->fs_info
->last_trans_log_full_commit
>
3022 root
->fs_info
->last_trans_committed
) {
3027 if (root
!= BTRFS_I(inode
)->root
||
3028 btrfs_root_refs(&root
->root_item
) == 0) {
3033 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
3034 sb
, last_committed
);
3038 if (inode_in_log(trans
, inode
)) {
3039 ret
= BTRFS_NO_LOG_SYNC
;
3043 ret
= start_log_trans(trans
, root
);
3047 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3052 * for regular files, if its inode is already on disk, we don't
3053 * have to worry about the parents at all. This is because
3054 * we can use the last_unlink_trans field to record renames
3055 * and other fun in this file.
3057 if (S_ISREG(inode
->i_mode
) &&
3058 BTRFS_I(inode
)->generation
<= last_committed
&&
3059 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
3064 inode_only
= LOG_INODE_EXISTS
;
3066 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
3069 inode
= parent
->d_inode
;
3070 if (root
!= BTRFS_I(inode
)->root
)
3073 if (BTRFS_I(inode
)->generation
>
3074 root
->fs_info
->last_trans_committed
) {
3075 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3079 if (IS_ROOT(parent
))
3082 parent
= dget_parent(parent
);
3084 old_parent
= parent
;
3090 BUG_ON(ret
!= -ENOSPC
);
3091 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
3094 btrfs_end_log_trans(root
);
3100 * it is not safe to log dentry if the chunk root has added new
3101 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3102 * If this returns 1, you must commit the transaction to safely get your
3105 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
3106 struct btrfs_root
*root
, struct dentry
*dentry
)
3108 struct dentry
*parent
= dget_parent(dentry
);
3111 ret
= btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
, parent
, 0);
3118 * should be called during mount to recover any replay any log trees
3121 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
3124 struct btrfs_path
*path
;
3125 struct btrfs_trans_handle
*trans
;
3126 struct btrfs_key key
;
3127 struct btrfs_key found_key
;
3128 struct btrfs_key tmp_key
;
3129 struct btrfs_root
*log
;
3130 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
3131 struct walk_control wc
= {
3132 .process_func
= process_one_buffer
,
3136 path
= btrfs_alloc_path();
3140 fs_info
->log_root_recovering
= 1;
3142 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
3143 BUG_ON(IS_ERR(trans
));
3148 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
3152 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
3153 key
.offset
= (u64
)-1;
3154 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
3157 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
3161 if (path
->slots
[0] == 0)
3165 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3167 btrfs_release_path(path
);
3168 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
3171 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
3173 BUG_ON(IS_ERR(log
));
3175 tmp_key
.objectid
= found_key
.offset
;
3176 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3177 tmp_key
.offset
= (u64
)-1;
3179 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
3180 BUG_ON(IS_ERR_OR_NULL(wc
.replay_dest
));
3182 wc
.replay_dest
->log_root
= log
;
3183 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
3184 ret
= walk_log_tree(trans
, log
, &wc
);
3187 if (wc
.stage
== LOG_WALK_REPLAY_ALL
) {
3188 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
3193 key
.offset
= found_key
.offset
- 1;
3194 wc
.replay_dest
->log_root
= NULL
;
3195 free_extent_buffer(log
->node
);
3196 free_extent_buffer(log
->commit_root
);
3199 if (found_key
.offset
== 0)
3202 btrfs_release_path(path
);
3204 /* step one is to pin it all, step two is to replay just inodes */
3207 wc
.process_func
= replay_one_buffer
;
3208 wc
.stage
= LOG_WALK_REPLAY_INODES
;
3211 /* step three is to replay everything */
3212 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
3217 btrfs_free_path(path
);
3219 free_extent_buffer(log_root_tree
->node
);
3220 log_root_tree
->log_root
= NULL
;
3221 fs_info
->log_root_recovering
= 0;
3223 /* step 4: commit the transaction, which also unpins the blocks */
3224 btrfs_commit_transaction(trans
, fs_info
->tree_root
);
3226 kfree(log_root_tree
);
3231 * there are some corner cases where we want to force a full
3232 * commit instead of allowing a directory to be logged.
3234 * They revolve around files there were unlinked from the directory, and
3235 * this function updates the parent directory so that a full commit is
3236 * properly done if it is fsync'd later after the unlinks are done.
3238 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
3239 struct inode
*dir
, struct inode
*inode
,
3243 * when we're logging a file, if it hasn't been renamed
3244 * or unlinked, and its inode is fully committed on disk,
3245 * we don't have to worry about walking up the directory chain
3246 * to log its parents.
3248 * So, we use the last_unlink_trans field to put this transid
3249 * into the file. When the file is logged we check it and
3250 * don't log the parents if the file is fully on disk.
3252 if (S_ISREG(inode
->i_mode
))
3253 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3256 * if this directory was already logged any new
3257 * names for this file/dir will get recorded
3260 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
3264 * if the inode we're about to unlink was logged,
3265 * the log will be properly updated for any new names
3267 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
3271 * when renaming files across directories, if the directory
3272 * there we're unlinking from gets fsync'd later on, there's
3273 * no way to find the destination directory later and fsync it
3274 * properly. So, we have to be conservative and force commits
3275 * so the new name gets discovered.
3280 /* we can safely do the unlink without any special recording */
3284 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
3288 * Call this after adding a new name for a file and it will properly
3289 * update the log to reflect the new name.
3291 * It will return zero if all goes well, and it will return 1 if a
3292 * full transaction commit is required.
3294 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
3295 struct inode
*inode
, struct inode
*old_dir
,
3296 struct dentry
*parent
)
3298 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
3301 * this will force the logging code to walk the dentry chain
3304 if (S_ISREG(inode
->i_mode
))
3305 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3308 * if this inode hasn't been logged and directory we're renaming it
3309 * from hasn't been logged, we don't need to log it
3311 if (BTRFS_I(inode
)->logged_trans
<=
3312 root
->fs_info
->last_trans_committed
&&
3313 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
3314 root
->fs_info
->last_trans_committed
))
3317 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 1);